
An Efficient Algorithm for Bulk-Loading xBR+-trees

George Roumelisa, Michael Vassilakopoulosb,∗, Antonio Corralc, Yannis Manolopoulosa

aDept. of Informatics, Aristotle University of Thessaloniki, Greece
bDept. of Electrical and Computer Engineering, University of Thessaly, Volos, Greece

cDept. on Informatics, University of Almeria, Spain

Abstract

A major part of the interface to a database is made up of the queries that can be addressed to this database and answered
(processed) in an efficient way, contributing to the quality of the developed software. Efficiently processed spatial
queries constitute a fundamental part of the interface to spatial databases due to the wide area of applications that may
address such queries, like geographical information systems (GIS), location-based services, computer visualization,
automated mapping, facilities management, etc. Another important capability of the interface to a spatial database is
to offer the creation of efficient index structures to speed up spatial query processing. The xBR+-tree is a balanced
disk-resident quadtree-based index structure for point data, which is very efficient for processing such queries. Bulk-
loading refers to the process of creating an index from scratch, when the dataset to be indexed is available beforehand,
instead of creating the index gradually (and more slowly), when the dataset elements are inserted one-by-one. In this
paper, we present an algorithm for bulk-loading xBR+-trees for big datasets residing on disk, using a limited amount
of main memory. The resulting tree is not only built fast, but exhibits high performance in processing a broad range
of spatial queries, where one or two datasets are involved. To justify these characteristics, using real and artificial
datasets of various cardinalities, first, we present an experimental comparison of this algorithm vs. a previous version
of the same algorithm and STR, a popular algorithm of bulk-loading R-trees, regarding tree creation time and the
characteristics of the trees created, and second, we experimentally compare the query efficiency of bulk-loaded xBR+-
trees vs. bulk-loaded R-trees, regarding I/O and execution time. Thus, this paper contributes to the implementation of
spatial database interfaces and the efficient storage organization for big spatial data management.

Keywords: Spatial Database Interfaces, Spatial Indexes, Bulk-Loading, xBR+-trees, Spatial Query Processing

1. Introduction

The various types of queries that can be addressed to a database and answered (processed) in an efficient way
make up a key part of the interface to this database. Spatial queries that can be efficiently processed constitute a
fundamental part of the interface to spatial databases due to the wide area of applications that may address such
queries, like geographical information systems (GIS), location-based services, computer visualization, automated
mapping, facilities management, etc. One of the most important characteristics of the interface to a spatial database is
to provide the creation of spatial indexes that can be used for the execution of efficient algorithms for spatial queries
[1, 2] on big data. In many cases, the efficiency of these index structures depends on whether the execution time of
spatial queries without such indexes is less than the total time to execute them when the time to create such indexes
is added. For example, these spatial indexes can be created from non-indexed datasets or from intermediate results of
the query executions, and such a creation process must not be too time-consuming. To carry out this creation task, a
bulk-loading algorithm of a spatial index is needed. A bulk-loading algorithm creates an index from scratch, when all
data are known a priori, and therefore it is based on more information than the standard insertion algorithm, where all

∗Corresponding author
Email addresses: groumeli@csd.auth.gr (George Roumelis), mvasilako@uth.gr (Michael Vassilakopoulos), acorral@ual.es

(Antonio Corral), manolopo@csd.auth.gr (Yannis Manolopoulos)

Preprint submitted to Elsevier April 7, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Almería (Spain)

https://core.ac.uk/display/143458128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

data are inserted one-by-one. By using this additional knowledge, the bulk-loading algorithm can produce a spatial
index (1) in smaller creation time, (2) with better storage utilization, and (3) with better performance of spatial query
processing. These three issues should be taken into account in the design of an efficient bulk-loading algorithm for a
particular spatial index structure.

If the dataset for which a spatial index is needed is static (i.e. when insertions and deletions are rarely executed
or even they are not performed at all), then we can devote efforts on building the spatial index in a way that permits
the efficient execution of queries. However, it is also desirable that the creation time of the index is as small as
possible. Both these goals become even more important when this dataset is big. The fast construction of an optimized
spatial index structure regarding certain index characteristics (e.g. storage overhead minimization, storage utilization
maximization, etc.) is an interesting challenge, since it is anticipated that, due to these characteristics, spatial query
processing performance will be improved. The creation of indexes by inserting elements one-by-one is less efficient
than bulk-loading algorithms that can be executed for creating the indexes with the same complexity as external sorting
[3].

Bulk-loading refers to the process of creating an index from scratch for a given dataset [3], and here we use this
term to characterize the process of building a disk-based spatial index for an entire dataset. Bulk-loading is especially
necessary and useful when an index has to be built up for the first time, knowing the data in advance and the datasets
are large enough [4]. The bulk-loading methods can be classified into three categories: sort-based, buffer-based and
sampled-based methods [3]. The sorted-based methods are the ones most studied in the literature and they are widely
used in popular spatial DBMS [5, 6, 7], because they roughly consist of sorting the data and create the tree in a
bottom-up fashion.

In this research work, we study the efficiency of building quadtree-based index structures. In particular, we focus
on the xBR+-tree [8], a balanced disk-based index structure for point data that belongs to the Quadtree family, and
hierarchically decomposes the space in a regular manner. The xBR+-tree improves the xBR-tree [9, 10] regarding
nodes structure and the splitting process of nodes. Moreover, it outperforms xBR-trees and R*-trees [11] with respect
to several well-known spatial queries, such as Point Location, Window Query, K-Nearest Neighbor, etc.

Material that contributes to the foundation of this research work appeared in [12]. The algorithm proposed in that
paper (called PBL) was the first algorithm for bulk-loading xBR+-trees for large datasets residing on disk, using a
limited amount of main memory. This algorithm belongs to sort-based bulk-loading methods, since it sorts, according
to z-order, groups of data items that either fit in the available internal memory, or in a disk page, depending on the
phase of the algorithm. This sorting is performed in parallel to tree building. This algorithm improves the index
structure creation process with respect to the xBR+-tree algorithm of loading the elements one-by-one, and allowed
better spatial query processing of single dataset spatial queries (Point Location − PLQ, Window Query −WQ, Distance
Range Query − DRQ, K-Nearest Neighbors Query − KNNQ, Constrained K-Nearest Neighbors Query − CKNNQ)
and of dual dataset spatial queries (K-Closest Pairs Query − KCPQ and Distance Join Query − εDJQ).

In this paper, we present PBL+, an improvement of the PBL bulk-loading algorithm for bulk loading xBR+-trees
[12]. The new algorithm, like its predecessor, consists of four phases, however, in the new algorithm, all the phases of
[12] have been improved so that the xBR+-tree is created by making better use of the available main memory, faster
and with improved structural characteristics and reduced size that lead to increased performance in processing queries.
Moreover, using real and artificial datasets of various (small and big) cardinalities, first, we present an experimental
comparison of the new algorithm (PBL+) vs. the algorithm of [12] (PBL) and Sort-Tile-Recursive (STR) [13], a
popular algorithm of bulk-loading R-trees, regarding tree creation time and the characteristics of the trees created,
and second, we experimentally compare the query efficiency of xBR+-trees created by the new algorithm vs. R-
trees created by STR, regarding I/O and execution time. Thus, through improving spatial storage structures and the
efficiency of processing spatial queries, this paper contributes to the implementation of spatial database interfaces and
the quality of software for big spatial data management.

This paper is organized as follows. In Section 2, we review related work on bulk-loading techniques, the PBL
algorithm, its key differences to the PBL+ algorithm and the most important characteristics of xBR+-trees, from the
implementation point of view. Section 3 presents our new bulk-loading method for the xBR+-tree. In Section 4, we
present and discuss the results of our experiments. And finally, Section 5 provides the conclusions arising from our
work and discusses related future work directions.

2

2. Related Work and Background

This section reviews previous bulk-loading methods in general, whose main target is to reduce the creation time,
the storage utilization and the query cost of the resulting index structure, or all of them. In [3] the bulk-loading
methods are roughly classified into three categories: sort-based, buffer-based and sampled-based methods.

• The sort-based bulk-loading methods are characterized by the following two steps: first, the dataset is sorted
and second, the tree is built in a bottom-up fashion. The advantages of these methods are their simplicity of
implementation and their good query performance.

• The buffer-based bulk-loading methods use the buffer-tree techniques [14], and they can be considered as a
hybrid of top-down and bottom-up strategies [15]. They employ buffers attached to nodes of the tree, trying
to keep the efficiency of the bulk-loading tree creation and reducing the I/O activity. A disadvantage of this
technique is that the performance depends on the input ordering of the elements. Moreover, its objective is only
to reduce the number of disk accesses, ignoring the CPU cost [16].

• The sample-based bulk-loading methods choose a sample with size small enough to fit in main memory and
build the index structure for the full dataset using estimations provided by the sample [17]. The main problem
of this method is that it depends strongly on the quality of the sample, which at times can lead to a bulk-loading
time larger than that required by a one-by-one insertion [3].

2.1. Sort-based Bulk-loading Methods
There are several bulk-loading methods that belong to the sort-based category, but the most representative ones

are proposed in [18, 19, 20, 13, 15]. In [18], a method (so-called packed R-tree) that uses a heuristic for aggregating
rectangles into nodes is introduced. It suggests to sort the data items with respect to minimum value of the objects
in a certain dimension. In [19] a variant of the packed R-tree is proposed, so-called Hilbert-packed R-tree, wherein
the order is based purely on the Hilbert code of the objects’ centroids. In order to improve the query performance,
heuristics like the one proposed in [20] can be used for local data reorganization. Conclusions from the experiments
in [20] suggest that a better space partitioning can be obtained with the Hilbert-packed R-tree by sacrificing 100%
storage utilization. In particular, they proposed that nodes be initially filled to 75% in the usual way. If any of the items
subsequently scheduled to be inserted into a node cause the node region to be enlarged by too much (e.g., by more
than 20%), then no more items are inserted into the node. Another sort-based method for bulk-loading R-trees, called
Sort-Tile-Recursive (STR) method, is presented in [13], and it can be applied to d-dimensional datasets. Assuming
that N is the number of objects, B is the node capacity and d are the dimensions of the input dataset, the method starts
sorting the data source with respect to the first dimension (e.g. using the center of the spatial objects). Then, (N/B)1/d

contiguous partitions are generated, each of them containing (almost) the same number of objects. In the next step,
each partition is sorted individually with respect to the next dimension. Again, partitions are generated of almost equal
size and the process is repeated until each dimension has been treated. The final partitions will eventually contain at
most B objects. In [13], it was also shown that this bulk-loading method creates R-trees whose search quality is
superior to R-trees created with respect to the Hilbert-ordering [19]. However, the method also requires the input
being sorted d times. Recently, in [15] a sort-based query-adaptive loading for building R-trees optimally designed
for a given query profile is presented. Query-adaptive loading refers to the problem of generating R-trees whose
average performance is minimized regarding a given static profile. Finally, in [21] a scalable alternative MapReduce
approach to parallel loading of R-trees using a level-by-level design, based on [15], is introduced.

2.2. Buffer-based Bulk-loading Methods
Bulk-Loading methods based on buffer-trees [22] can be considered as a hybrid of top-down and bottom-up

strategies [15], and they are called buffer-based bulk-loading methods. The basic idea of these methods is to delay
insertions by temporarily storing input data in buffers attached to the nodes of the tree. If buffers are filled up, the
batch of insertions is reactivated and the data continue their traversal down to the leaves. There are several outstanding
research works in this category [23, 22, 24]. In [23], a generic algorithm for bulk-loading based on buffer-trees for a
broad class of index structures (e.g. R-trees) is proposed. Instead of sorting, the split and merge routines of the target
index structure are exploited for building an efficient temporary structure (based on buffer-tree). From this structure,

3

the desired index structure is built up incrementally bottom-up, one level at a time. [22] achieves a similar effect by
using a regular R-tree structure (i.e. where the non-leaf nodes have the same fan-out as the leaf nodes) and attaching
buffers to nodes only at certain levels of the tree. In [24], two extensible buffer-based algorithms for bulk operations
(bulk-loading and bulk-insertion) in the class of space-partitioning trees (a class of hierarchical data structures that
recursively decompose the space into disjoint partitions) are proposed. The main idea of these algorithms is to build
an in-memory tree of the desired index structure using the standard insertion procedure. Then, the in-memory tree is
used to distribute the remaining data items into disk-based buffers. Bulk-loading algorithms are applied recursively to
the disk-based buffers.

2.3. Sample-based Bulk-loading Methods

The most remarkable sample-based bulk-loading algorithms have been proposed in [16, 25, 3, 26]. In [16] a
method to build an M-tree [27] was proposed. This algorithm selects a number of seed objects (by sampling) around
which other objects are recursively clustered to build an unbalanced tree, which must later be re-balanced. In [25],
a kd-tree [28] structure is built up using a fast external algorithm for computing the median (or a point within an
interval centered at the median). The sample is used for computing the skeleton of a kd-tree that is kept as an index
in an internal node of the index structure. In [3], two generic sample-based bulk-loading algorithms are proposed that
recursively partition the input by using a main-memory index of the same type as the target index to be built. In [26],
two sample-based bulk-loading algorithms for dynamic metric access methods are presented, and they are based on
the idea of covering radius of representative items employed to organize data in hierarchical data structures. These
proposed algorithms were designed to Slim-trees [29], although they can be used in other metric access methods. In
[30], a generic framework for R-tree bulk-loading based on sampling on a parallel architecture was introduced.

2.4. Bulk-loading Quadtree Structures

In [31, 32, 33, 24], we can find the most significant contributions related to bulk-loading techniques for Quadtree
index structures. In [31], the bulk-loading is characterized by the process of building a disk-based spatial index for an
entire set of objects without any intervening queries. The proposed approaches, trying to speed up the bulk-loading
process on PMR-quadtrees [34], are based on the idea of trying to fill up memory with as much of the Quadtree as
possible (using buffers) before writing some of its nodes on disk. The input data is sorted in such a way that the
portions that are written out to the disk would not be inserted again. A first approach focused on the problem of
B-tree level, increasing the amount of buffering done by the B-tree (B-tree buffering), similarly to [35]. A second
approach focused on the problem of PMR-quadtree level, reducing the number of accesses to the B-tree as much
as possible by storing parts of the PMR-quadtree in main memory (Quadtree buffering). In [32], improved versions
of the bulk-loading algorithms studied in [31] for PMR-quadtrees are presented, assuming that the algorithms are
implemented using a linear quadtree [36], which is a disk-resident representation that stores objects contained in
the leaf nodes of the quadtree in a linear index (B+-tree [37]) ordered on the basis of a space-filling curve (z-order
[38]). Finally, an extended version of [31, 32] is presented in [33], where the problem of creating and updating spatial
indexes in situations where the database is dynamic, is addressed. The functionalities that arise when the database is
dynamic are covered by bulk-loading, bulk-insertion and dynamic insertion methods. Additionally, in [33], detailed
algorithms for the proposed sort-based bulk-loading method, analytic observations, an extensive experimental study
and interesting discussions are presented. According to [24], the two extensible buffer-based algorithms for bulk
operations can be applied to Quadtrees, because of this is a type of space-partitioning tree, but no implementation and
no experimentation were performed.

Our contribution differs from that presented in [33] in the following aspects: (1) The type of Quadtree; in [33] the
bulk-loading method has been designed for the linear quadtree (a pointerless quadtree) using a B+-tree (as a part of
SAND -Spatial and Non-Spatial Data- research project [39]), while we propose a bulk-loading algorithm for a height-
balanced, disk-resident, pointer-based Quadtree, the xBR+-tree. (2) The strategy of tree creation; in [33] a top-down
approach for bulk-loading was proposed, while we present a bottom-up approach for building the xBR+-tree. (3) The
scheme of buffers; in [33] a complex scheme of buffers (Quadtree buffer and B+-tree buffer) was proposed, while
we use an in-memory tree, the m-xBR+-tree, for the bulk-loading algorithm. (4) Merge operations; in [33], complex
merge operations for both a Quadtree and a B+-tree are presented, while we use merge operations for the m-xBR+-tree
and the xBR+-tree already built in secondary memory.

4

2.5. The PBL algorithm for xBR+-trees
In [12], an algorithm, called Process of Bulk Loading (PBL), for bulk-loading xBR+-trees (a totally disk-resident,

height-balanced, pointer-based, multiway tree for multidimensional points; a presentation of xBR+-trees appears in
Subsection 2.6) for large datasets residing on disk was presented, using a limited amount of main memory.

PBL consists of four phases. These phases are pipelined. Each phase produces an output that is used as input for
the next phase. During the first phase (Algorithm 1a), the initial dataset file is transformed to binary format and is
split in two files.

Algorithm 1a PBL Phase1
Input: file f

1: split f in files f1, f2 by the middle of dimension 0
2: if sizeof(f1) > MemoryLimit then
3: Phase2(f1, 1)
4: else
5: read f1 in memory block b
6: Phase3(b)
7: if sizeof(f2) > MemoryLimit then
8: Phase2(f2, 1)
9: else

10: read f2 in memory block b
11: Phase3(b)

During the second phase (Algorithm 2a), each of the two input item files is partitioned into item blocks of size
≤ MemoryLimit in a regular fashion. The resulting blocks are transferred in main memory, as input for the next phase.

Algorithm 2a PBL Phase2
Input: file fi, dimension d

1: create files t0, t1 . temporary files
2: split fi in files t0, t1 by the middle of fi.region in dimension d
3: d ← (d + 1) mod #dimensions
4: if t0.size > MemoryLimit then
5: Phase2(t0, d) . recursive call
6: else
7: read t0 in memory block b
8: Phase3(b)
9: if t1.size > MemoryLimit then

10: Phase2(t1, d) . recursive call
11: else
12: read t0 in memory block b
13: Phase3(b)

During the third phase (Algorithm 3a), for each block of items, a Quadtree (a four way tree) is built top-down n
main memory by splitting this block regularly as long as the resulting regions contain more items than the capacity
of xBR+-tree leaves. This Quadtree is gradually transformed to an m-xBR+-tree (main memory xBR+-tree) in a
bottom-up fashion.

During the last phase (Algorithm 4a), the m-xBR+-tree is merged with the xBR+-tree already built in secondary
memory (created during the previous iteration of the bulk-loading process), discriminating between three different
cases among the heights of the trees to be merged. More details about the PBL algorithm appear in [12].

This algorithm belongs to sort-based bulk-loading methods, because in Phases 1 and 2 it sorts (according to z-
order) groups of data items that fit in the available internal memory size (MemoryLimit). This means that points are
reordered in groups (an enumeration of groups is produced), where each group corresponds to a subquadrant and
contains at most points that fit in MemoryLimit size, such that, each subsequent group in this enumeration (order)
contains points with z-order value larger than the z-order of the points in any precedent group. However, the order

5

Algorithm 3a PBL Phase3
Input: memory block of points b

1: build Quadtree Q for b
2: pack Q subtrees that form level-0 nodes of the m-xBR+-tree
3: save level-0 nodes of the m-xBR+-tree . leaves of m-xBR+-tree
4: if #leaves of Q > C then
5: NextLevel← TRUE
6: else
7: NextLevel← FALSE
8: l = 0
9: while NextLevel = TRUE do

10: remove packed Q nodes
11: if #nodes of lowest level of Q ≤ C then
12: NextLevel← FALSE
13: l← l + 1
14: pack Q subtrees that form level-l nodes of the m-xBR+-tree
15: Phase4(m-xBR+-tree)

Algorithm 4a PBL Phase 4
Input: m-xBR+-tree m
Output: xBR+-tree saved in disk

1: d ← xBR+-tree already saved in disk
2: if IsNull(d.root) then . empty xBR+-tree

. 1st block being processed
3: save m
4: d.root ← m.root
5: else if m.height = d.height then . trees of equal height
6: if #entries of (m.root) + #entries of (d.root) ≤ C then
7: save the whole m except for m.root
8: copy the entries of m.root in d.root
9: else . merging of roots will cause an overflow

10: create new root d.rootNew for d
11: save m . save the whole tree m
12: insert m.root and d.root as entries in d.rootNew
13: d.root ← m.root
14: else if m.height < d.height then . the tree in disk is taller
15: find the closest ancestor Ad of m.root at m.height
16: if #entries of (m.root) + #entries of (Ad) ≤ C then
17: save the whole m except for the m.root
18: copy the entries of m.root in node Ad

19: else . merging of nodes will cause an overflow
20: save m . save the whole tree m
21: copy the entry pointing to m.root in parent node of Ad

22: else . the tree in main memory is taller
23: i← 0
24: while i < #entries of m.root do
25: Phase4(m.root.entry[i]) . recursive call for a subtree

. with smaller height
26: i← i + 1
27: save d.root
28: return d.root

of points within each group is irrelevant. In Phase 3, sorting is continued, but now, at the page size level: points
are reordered in pages, where each subsequent page in this order contains points with z-order value larger than the

6

z-order of the points in any preceding page. This is a type of sorting in 2 dimensions (or more dimensions, since
the algorithm of [12] and the algorithm proposed in this paper work for any number of dimensions), or sorting to
according to z-order, at MemoryLimit / disk page size resolution. This sorting is performed in parallel to tree building.
The algorithm proposed here improves the index structure creation process with respect to the xBR+-tree algorithm
of loading the elements one-by-one, and allowed better spatial query processing of single dataset spatial queries and
of dual dataset spatial queries.

The main motivation of this work is to improve the bulk-loading algorithm for xBR+-tree presented in [12] (PBL).
The enhancements of the algorithm presented in this paper, called PBL+, are summarized in the following.

• In Phases 1 (Algorithm 1b) and 2 (Algorithm 2b), instead of partitioning in two parts (either in disk, or in main
memory), we partition in 2d parts, reducing movements of data items on disk.

Algorithm 1b PBL+ Phase1
Input: file f

1: create files t0, t1, t2, t3 . four temporary files
2: split f in files f0, f1, f2, f3 regularly . in quadrants of space
3: for i = 0 .. 3 do
4: if sizeof(fi) > MemoryLimit then
5: Phase2(fi, t0, t1, t2, t3)
6: else
7: read fi in memory block b
8: Phase3(b)

Algorithm 2b PBL+ Phase2
Input: file fi, files t0, t1, t2, t3

1: split fi in files t0, t1, t2, t3 regularly . in quadrants of fi.region
2: for i = 0 .. 3 do
3: if sizeof(ti) > MemoryLimit then
4: Phase2(ti, t0, t1, t2, t3) . recursive call
5: else
6: read ti in memory block b
7: Phase3(b)

• In Phase 3 (Algorithm 3b), instead of building top-down a Quadtree in main memory, we build bottom-up the
m-xBR+-tree, using an auxiliary tree, called T , in the following. T is a degree up-to-four tree (an incomplete
Quaddtree) without leaves, that holds only the information that is necessary for creating the internal m-xBR+-
tree nodes, making better use of the available main memory and increasing tree creation speed.

• In Phase 4 (Algorithm 4b), when the m-xBR+-tree and the tree already built in secondary memory have equal
heights, or when the tree already built in secondary memory is higher, instead of creating a new root pointing
to the two existing roots, without making any changes in the regions covered by these roots, we merge the
roots of the two trees in a possibly overflown node. If this node is overflown, it is subsequently partitioned,
in the best way possible, in two nodes that are pointed by a new root that is created. Moreover, when the m-
xBR+-tree is higher, we save it in secondary memory, we adjust the region of the root of the tree just saved to
correspond to the whole space and then we apply the previous procedure of merging the roots of the two trees.
Following the approach of merging roots and repartitioning the merged region to two regions, instead of leaving
the regions of the original roots unchanged, as in [12], we achieve better partitioning of space and increased
query performance in the resulting tree.

More details about PBL+ are given in Section 3.

7

Algorithm 3b PBL+ Phase3
Input: memory block b

1: recursively, split b regularly to create leaves of the m-xBR+-tree and save information for its internal nodes in an auxiliary tree
T

2: save leaves of the m-xBR+-tree
3: pack T nodes pointing to level-0 nodes of m-xBR+-tree
4: if #leaves of T > C then
5: NextLevel← TRUE
6: else
7: NextLevel← FALSE
8: l = 0
9: while NextLevel = TRUE do

10: remove packed T nodes
11: if #nodes of lowest level of T ≤ C then
12: NextLevel← FALSE
13: l← l + 1
14: pack T nodes pointing to level l nodes of m-xBR+-tree
15: Phase4(m-xBR+-tree)

2.6. The xBR+-tree
The xBR+-tree [8] (an extension of the xBR-tree [9, 10]) is a hierarchical pointer based, disk-resident Quadtree-

based (space-driven access method) index structure for multidimensional points. The xBR-tree family is the unique
disk-resident pointer-based Quadtree in the literature together with [40]. For 2d space, the space indexed is a square
and is recursively subdivided in 4 equal subquadrants. The nodes of the tree are disk pages of two kinds: leaves, which
store the actual multidimensional data themselves and internal nodes, which provide a multiway indexing mechanism.

Internal node entries in xBR+-trees contain entries of the form (Shape, qside, DBR, Pointer). Each entry corre-
sponds to a child-node pointed by Pointer. The region of this child-node is related to a subquadrant of the original
space. Shape is a flag that determines if the region of the child-node is a complete or non-complete square (the area
remaining, after one or more splits; explained later in this subsection). This field is heavily used in queries. DBR
(Data Bounding Rectangle) stores the coordinates of the rectangular subregion of the child-node region that contains
point data (at least two points must reside on the sides of the DBR), while qside is the side length of the subquadrant
of the original space that corresponds to the child-node.

The subquadrant of the original space related to the child-node is expressed by an Address. This Address (which
has a variable size) is not explicitly stored in the xBR+-tree, although it is uniquely determined and can be easily
calculated using qside and DBR. Each Address represents a subquadrant that has been produced by Quadtree-like
hierarchical subdivision of the current space (of the subquadrant of the original space related to the current node). It
consists of a number of directional digits that make up this subdivision. The NW, NE, SW and SE subquadrants of a
quadrant are distinguished by the directional digits 0, 1, 2 and 3, respectively. For 2d space, we use two directional
bits each of every dimension. The lower bit represents the subdivision on horizontal (X-axis) dimension, while the
higher bit represents the subdivision on vertical (Y-axis) dimension [9, 10]. For example, the Address 1 represents the
NE quadrant of the current space, while the Address 10 the NW subquadrant of the NE quadrant of the current space.
The address of the left child is * (has zero digits), since the region of the left child is the whole space minus the region
of the right child.

However, the actual region of the child-node is, in general, the subquadrant of its Address minus a number of
smaller subquadrants, the subquadrants corresponding to the next entries of the internal node (the entries in an internal
node are saved sequentially, in preorder traversal of the Quadtree that corresponds to the internal node). For example,
in Figure 1 an internal node (a root) that points to 2 internal nodes that point to 5 leaves is depicted. The region of
the root is the original space, which is assumed to have a quadrangular shape. The region of the right child is the NW
quadrant of the original space. The region of the left child is the whole space minus the region of the NW quadrant -
a non-complete square. The * symbol is used to denote the end of a variable size address. The Address of the right
child is 0*, since the region of this child is the NW quadrant of the original space. The Address of the left child is *
(has zero directional digits), since the region of this child refers to the remaining space. Each of these Addresses is

8

Algorithm 4b PBL+ Phase 4
Input: m-xBR+-tree m
Output: xBR+-tree saved in disk

1: d ← xBR+-tree already saved in disk
2: if IsNull(d.root) then . empty xBR+-tree

. 1st block being processed
3: save m
4: d.root ← m.root
5: else if m.height = d.height then . trees of equal height
6: save the whole m except for m.root
7: if #entries of (m.root) + #entries of (d.root) ≤ C then
8: copy the entries of m.root in d.root
9: else . merging of roots will cause an overflow

10: create new node Nnew for
#entries of (m.root) + #entries of (d.root)

11: copy the entries of m.root and d.root to node Nnew

12: split the overflown Nnew to regions R1,R2

13: create new root d.rootNew for the xBR+-tree
14: insert the entries of R1 and R2 in d.rootNew
15: d.root ← d.rootNew
16: else if m.height < d.height then . the tree in disk is taller
17: find the closest Ancestor Ad of m.root at m.height
18: save the whole m except for m.root
19: if #entries of (m.root) + #entries of (Ad) ≤ C then
20: copy the entries of m.root to node Ad

21: else . merging of nodes will cause an overflow
22: create new node Nnew for

#entries of (m.root)+#entries of (Ad)
23: copy the entries of m.root and Ad to node Nnew

24: split the overflown Nnew in regions R1,R2

25: save entries of R1 in node Ad, of R2 in new node of d
26: insert the entries of R1 and R2 into parent of Ad

27: else . the tree in main memory is taller
28: save m
29: insert the entry pointing to d.root into the

leftmost node at d.height of m
30: d.root = root of the saved m
31: save d.root
32: return d.root

expressed relatively to the minimal quadrant that covers the internal node (each Address determines a subquadrant of
this minimal quadrant). For example, in Figure 1, the Address 3* is the SE subquadrant of the NW subquadrant of
whole space (absolute Address 03*). During a search, or an insertion of a data element with specified coordinates, the
appropriate leaf and its region is determined by descending the tree from the root.

External nodes (leaves) of the xBR+-tree simply contain the data elements and have a predetermined capacity C.
When C is exceeded, due to an insertion in a leaf, the region of this leaf is partitioned in two subregions. The one
(new) of these subregions is a subquadrant of the region of the leaf, which is created by partitioning the region of
the leaf according to hierarchical (Quadtree-like) decomposition, as many times as needed so that the most populated
subquadrant (that corresponds to this new subregion) has a cardinality that is smaller than or equal to C. The other
one (old) of these subregions is the region of the leaf minus the new subregion.

9

*

* *

0*

1* 3*12*

INTERNAL

(0,0)-200

LEAF

(0,0)-200
LEAF

(0,0)-100

nSQ

nSQ nSQ

SQ

nSQ SQSQ

L
2

L
3

L
4

L
5

L
1

p
16

p
3

11
p

p
15

p
2

p
10

p
4

9
p

12
p

p
13

p
1

8
p

14
p

p
6

p
5

7
p

Figure 1: A collection of points, its grouping to xBR+-tree nodes and its xBR+-tree.

3. Bulk-Loading xBR+-tree (the PBL+ Algorithm)

In this section, we present the method, PBL+, that we developed for bulk-loading xBR+-trees. This method
consists of four phases.

3.1. Phase 1 (transformation of input file format)
This phase, that is rather technical, is necessary, since data are usually acquainted and stored in text format. Every

application that uses such data has to transform them to a suitable format. It is necessary to transform the input file to
binary format with fixed width records, for faster accessing and processing.

During this phase (Algorithm 1b), we split the input data file (whether initially in text, or binary format) in 2d

binary files (where d is the number of the space dimensions) (Algorithm 1b, Line 2). We transfer, in each of these
files, data depending on the hyperquadrant (quadrant, if d is 2; octant, if d is 3; and so on) to which they belong,
by comparing each coordinate of every point with the midpoint of the corresponding axis. Note that the reference
space can be defined as wide as needed to satisfy the applications restrictions, however, it is finite. Next, we examine
the size of each of the 2d binary files created. If the file we examine contains an amount of data that is smaller than
the predefined limit (MemoryLimit), meaning that the total memory required to create a complete xBR+-tree in main
memory is available, then we read the contents of this file in a memory block (Algorithm 1b, Line 7), and directly
proceed to Phase 3 for this block (Algorithm 1b, Line 8). Otherwise, if the amount of data in this binary file remains
large, we proceed to Phase 2 for this file (Algorithm 1b, Line 5).

3.2. Phase 2 (partitioning input data)
In this phase (Algorithm 2b), we group data so that the size of each group does not exceed the predefined Memo-

ryLimit size and at the same time the data in a group belong to the same subquadrant.
Next, let’s consider that our data are 2d points. As usual in technical texts, axis 0 will be called x axis and axis 1

will be called y axis. Assuming that the points are contained in file f and belong to one quadrant having side midpoints
xm and ym, we separate them in four (22) temporary (helper) files one for each subquadrant (Algorithm 2b, Line 1).
The temporary files (t0, t1, t2 and t3) are passed (from Phase 1) initially empty. Afterwards, we examine the cardinality
of each file ti (Algorithm 2b, Line 3) and if it is smaller than or equal to MemoryLimit we read the file ti in a memory
block and then we call the routine of Phase 3 for this memory block (Algorithm 2b, Line 1). Otherwise, we call
recursively the current routine, passing as arguments the file ti as input file and the temporary files (t0, t1, t2 and t3)
which are not empty now (Algorithm 2b, Line 4). In each recursive call the input file is one of the ti files. This file
will be used as input for the continuous portion of ti containing the points of the corresponding subquadrant and for
output after the position of the last input point. Since the process is always executed in Depth-First mode, the points
of a subquadrant in the file ti are partitioned, while the points that wait for processing are not affected.

10

Figure 2: An input file in text format with points in 2d space is divided in 22 binary files.

Note that, during the examination of the cardinality of each file ti, and for the first of these files for which we call
the routine of Phase 3, we pass as parameter values this group (contained in the file) and the whole region which was
divided in the ti files.

In this way, this group of points will belong to a parental region, and thus, we will have obtained better cohesion
in the final xBR+-tree that we construct. In these two phases (1 and 2) the bulk-loading algorithm sorts groups of data
items that fit in MemoryLimit main memory size, according to z-order. This means that groups of points corresponding
to subquadrants and at most contain points that fit in MemoryLimit size are reordered so that each subsequent group
in this order contains points with z-order value larger than the z-order of the points in any preceding group. Note that,
the order of points within each group is irrelevant.

3.3. Phase 3 (creation of the m-xBR+-tree)
The third phase (Algorithm 3b) gets as input a group of points with a cardinality smaller than, or equal to Memo-

ryLimit that is contained in a subregion of space where it is guaranteed that no other data of the dataset are contained.
Instead of proceeding to the creation of a Quadtree in memory [12] that will be used as a guide for the creation of
the respective m-xBR+-tree in memory, we create one root node (that contains only the range of indexes of the whole
group of points) and proceed as follows.

Part A: Creation of the lower level (leaves).
We start a recursive procedure (Algorithm 3b, Line 1) that looks similar, in its general structure, to the one of Phase 2,
though it is more complex. In each call we try to reduce the extent of the reference space, so as, eventually the space
under processing to consist of 4 subquadrants with cardinalities of points that each one does not exceed the maximum
capacity (C) of a leaf of the xBR+-tree.

Eventually, we will reach a parental node with none overflown child. In this case, we check for which of the child
regions, which correspond to leaves, we can transfer their data to the parental region without causing overflow of the
leaf corresponding the parental region. Afterwards, if there are non-empty children which can be merged without
causing overflow of a leaf, then we merge them.

Returning to the previous level of routine calls, the previously overflown parental region is now a child one with
acceptable cardinality of points. We continue processing as before, until all the leaves have been created and then we
finish the process by saving them (Algorithm 3b, Line 2).

Part B: Creation of the levels above leaves.
The leaf records created by the previous process exist within the auxiliary tree T . Every node has a number of child
nodes from zero up to 2d and an equal number of pointers to the children. It has a field that holds the number of non
empty descendant nodes. However, they are not organized in groups that could form nodes of the m-xBR+-tree. To
accomplish this, we execute the following procedure for each level of nodes (Algorithm 3b, Line 3).

In order to split an overflown xBR+-tree node when we insert items one-by-one into it, the goal is to split it in
two nodes with cardinalities of minimum possible difference [8, 9, 10]. If the tree T has a number of nodes which

11

correspond to non-empty leaves smaller than or equal to C then the whole tree can be packed into a single node of m-
xBR+-tree (Algorithm 3b, Line 7 in conjunction with the execution of Line 14 only once). Otherwise (Algorithm 3b,
Line 5), the tree is scanned from top to bottom in Depth-First mode and the child-node with the maximum cardinality
of non-empty leaves is chosen first. When a root of a sub-tree with cardinality up to C is found, a node of m-xBR+-tree
is formed having entries from the non-empty leaves of this sub-tree. By returning to the calling procedure of leaves
creation, we have grouped all the leaves in the first level of the m-xBR+-tree that is already created. If the number of
nodes of the first level is greater than C then (Algorithm 3b, Line 5 is not executed) we repeat the procedure above
(Algorithm 3b, Line 9) considering as leaf nodes the nodes of the m-xBR+-tree of the previous level, but traversing
the same tree T (Algorithm 3b, while loop in Lines 9-14). We continue creating levels of nodes of the m-xBR+-tree
until the number of nodes becomes smaller than or equal to C (, Line 12), the m-xBR+-tree is completely created and
Phase 3 for the current group is completed.

In Figure 3, a tree of 5 leaves of the lowest level-0 as an example is shown. The maximum capacity of the leaves
and internal nodes is set to the value C=4. The nodes of the largest family of the leaves L2 and L3 (the region of L2
overlaps the region of L3) are pruned from the tree and one entry for this sub-tree of the higher level-1 (of internal
nodes) is created. The rest of nodes of the tree are inserted into the head node of the level-0. The cardinality of the
tree with leaf-nodes the nodes of the previous level-0 is 2, less than the maximum capacity, therefore the two entries
can be packed in the root node of the m-xBR+-tree.

1*

2*

nSQ

SQ

L
4

L
5

L
1

(100, 0)-100

* nSQ
(0, 0)-200

(100, 50)-50

0*

3*

nSQ

SQ

L
2

L
3

(0, 0)-100

(50, 50)-50

1

2

1

2

5

*Level-0

LEAVES
nSQ

(0, 0)-200

L
1

0* SQ
(0, 0)-100

Level-1

internal nodes
* nSQ
(0, 0)-200

* 3*nSQ SQ

L
2

L
3

(0, 0)-100 (50, 50)-50
1* 12*nSQ SQ

L
4

L
5

(100, 0)-100 (100, 50)-50

Figure 3: The tree of 5 entries for leaves (level 0) on the left, which are grouped in 2 entries for internal node of the next level 1, on the right.

3.4. Phase 4 (merging of trees)

During the last phase (Algorithm 4b), the m-xBR+-tree created in main memory is merged with the xBR+-tree
already built in secondary memory (existing xBR+-tree). This xBR+-tree was created during the previous iterations
of the bulk-loading process.

During the first execution of this phase, the xBR+-tree in disk is empty (Algorithm 4b, Line 2), thus it is necessary
to access all the nodes of the m-xBR+-tree and store them in disk (Algorithm 4b, Line 3). During every subsequent
execution of Phase 4, we initially examine the relation of heights of the two trees. Let hm the height of the m-xBR+-tree
created during Phase 3 and hd the height of the xBR+-tree already in disk.

If hm = hd (Algorithm 4b, Line 5), then, after saving the whole m-xBR+-tree, except for its root, we examine the
current occupancy of the two roots. Let Nm the occupancy of the root Rm of the m-xBR+-tree and Nd the occupancy
of the root Rd of the xBR+-tree.

• If Nm + Nd ≤ C (Algorithm 4b, Line 7), then Rm is merged with Rd, copying all its entries to the empty slots of
Rd (Algorithm 4b, Line 8). Of course, we examine if the insertion of a region affects the characterization as a
rectangle, or not of the existing entries of Rd.

12

• If Nm + Nd > C (Algorithm 4b, Line 9), then we proceed to a procedure of creating a new node (Algorithm
4b, Lines 10-15), Nnew, capable of holding Nm + Nd entries, in which we will copy all entries of two roots.
Afterwards the overflown node Nnew will be spit in two regions R1,R2 and this procedure will be continued by
creating a new root node, Rd−new, since an increase of the height of the whole tree is necessary. The entries of
regions R1,R2 are inserted in the new root node, Rd−new, that we subsequently store (Algorithm 4b, Lines 15
and 31).

In Figure 4, the xBR+-tree, at the top of the left side, has height hd = 3 and its root Rd has occupancy Nd = 2,
similarly, at the bottom of the same side the m-xBR+-tree has height hm = 3 and its root Rm has occupancy Nm = 2. In
order to merge the two trees with maximum capacity (C = 4) we, simply, add the entries M1 and M2 into the empty
(two) slots in the root Rd and the resulting tree (on the right side) has height without changes hd = 3.

Level-0 : LEAVES

Level-1

Level-0 : LEAVES

+

R
d

R
m

N
1

N
2

M
1

M
2

Level-2

Level-1

Level-2

m h-xBR -tree (=3)
+

m

xBR -tree (=3)
+

h
d

=
Level-1

R
d

M
1

M
2

N
2

N
1

final xBR -tree (=3)
+

h
d

Level-2

Figure 4: Merge xBR+-tree and m-xBR+-tree of equal height (hm = hd = 3) on the left, and the resulting xBR+-tree of the same height, on the
right.

In Figure 5 an xBR+-tree, at the top of the left side, and an m-xBR+-tree at the bottom of the same side are
depicted. On the right side of the Figure 5 the resulting xBR+-tree, after merging, is shown. In this case, the two
trees have equal heights (hm = hd = 3) but the original xBR+-tree has a root (Rd) with occupancy Nd = 3, while the
root Rm of the m-xBR+-tree has occupancy Nm = 2. Since both roots have total occupancy bigger than the maximum
capacity (C = 4), we merge the two trees in a process of two steps. First we create an internal node having capacity
Cmax = Nd + Nm enough to host all the 5 entries of both roots. Afterwards we split this overflowed node in two nodes,
giving into the second one the maximum occupancy, in the example, shown in the figure, this occupancy is 3. The
smaller number of entries (2) is added into the old root of the original xBR+-tree. In the second step we create a new
node for the new root (Rd−new) and two new entries are added. The first entry R1 points at the old root Rd while the
second one R2 points at the new node created from the split of the overflowed node.

If hm < hd (Algorithm 4b, Line 16), then, using a Depth-First traversal of the xBR+-tree (like in a Point Location
Query) and starting from Rd, we seek for the region that is the closest ancestor of the region of Rm (Algorithm 4b,
Line 17). The search stops at level hm + 1. We mark the pointer to the node of the region Ad that is the closest ancestor
(i.e. totally contains) of the region of Rm and resides at level hm. We also mark the node Pd containing this pointer
(the parental node of Ad). {Subsequently, the whole m-xBR+-tree will be stored, except for its root (Algorithm 4b,
Line 18). If Nm is the occupancy of Rm and Nd the occupancy of Ad then:

• If Nm + Nd ≤ C (Algorithm 4b, Line 19), the root Rm is merged with Ad, by copying its entries to the empty slots
of Ad {(Algorithm 4b, Line 20). Of course, we examine if the insertion of a region affects the characterization
as a rectangle, or not of the existing entries of Ad.

• If Nm + Nd > C (Algorithm 4b, Line 21), we proceed to a procedure of creating a new node, Nnew, capable
of holding Nm + Nd entries, in which we will copy all entries of two roots. This overflown node is spit in
two regions R1,R2 and this procedure is continued by storing the updated node Ad with the entries of R1 and
a node with the entries of R2, and by saving the entries of regions R1,R2 in the parent node Pd. Since Pd may
overflow (if it already contains C entries), the insertion of the new entry (for R2) is done following the insertion

13

Level-0 : LEAVES

Level-1

Level-0 : LEAVES

+
R

m

R
d

M
1

M
2

N
1

N
2

Level-2

Level-1

Level-2

m h-xBR -tree (=3)
+

m

N
3

xBR -tree (=3)
+

h
d

=

Level-0 : LEAVES

Level-1

N
1

N
2

Level-2

R
d R

1
R

2
Level-3

final xBR -tree (=4)
+

h
d

N
3

M
1

M
2

Figure 5: Merge xBR+-tree and m-xBR+-tree of equal height (hm = hd = 3) on the left, and the resulting xBR+-tree with bigger height, on the
right.

to an internal node that is described in [8], but without creating a temporary Quadtree for deciding about the
way the overflown node is divided. In this work, we followed a procedure similar to part B of Phase 3 and
more specifically the procedure where we seek for the sequence of regions with a cardinality closest to a target
occupancy.

In Figure 6, the xBR+-tree, at the top of the left side, has height hd = 3 and its root Rd has occupancy Nd = 2, similarly,
at the bottom of the same side the m-xBR+-tree has height hm = 2 and its root Rm has occupancy Nm = 2. In order to
merge the two trees with maximum capacity (C = 4) we scan the node Rd and the second entry Ad corresponds to a
region that overlaps the region of the root Rm. The occupancy of the node that points the entry Ad is two and the free
slots in this node are enough to host the entries of the root Rm. In the right side of the Figure 6 the final xBR+-tree is
shown. The entries M1 and M2 of the root Rm are added into the node pointed from the entry Ad.

Level-0 : LEAVES

Level-1

Level-0 : LEAVES

+

R
d

R
m

N
1

M
1

M
2

Level-2

Level-1

m h-xBR -tree (=2)
+

m

xBR -tree (=3)
+

h
d

P
d

A
d

=
final xBR -tree (=3)

+
h

d

Level-0 : LEAVES

Level-1

R
d N

1
Level-2

M
1

M
2

A
d

Figure 6: Merge xBR+-tree (hd = 3) with m-xBR+-tree (hm = 2) on the left, and the resulting xBR+-tree of the same height (hd = 3), on the right.

In Figure 7, an xBR+-tree, at the top of the left side, and an m-xBR+-tree at the bottom of the same side are
depicted. On the right side of the Figure 7 the resulting xBR+-tree, after merging, is shown. In this case the original
xBR+-tree is taller (hd = 3) than the m-xBR+-tree (hm = 2). The root Rd has occupancy Nd = 2, while the root
Rm of the m-xBR+-tree has occupancy Nm = 3. Since both roots have total occupancy bigger than the maximum
capacity (C = 4), we merge the two trees in a process of two steps. First we create an internal node having capacity
Cmax = Nd + Nm enough to host all the 5 entries of both nodes Ad and Rm. Afterwards we split this overflowed node in
two nodes, giving into the second one the maximum occupancy, in the example, shown in the figure, this occupancy
is 3. The smaller number of entries (2) is added into the old node Ad of the original xBR+-tree. In the second step we
create a new entry for the Rm and it is added into the parent of the Ad node (Pd). The entry Ad is updated if entries of
the child moved into the new node created from the split of the overflowed node.

14

Level-0 : LEAVES

Level-1

Level-0 : LEAVES

+

R
d

R
m

N
1

M
1

M
2

Level-2

Level-1

m h-xBR -tree (=2)
+

m

xBR -tree (=3)
+

h
d

P
d

A
d

M
3

=

Level-0 : LEAVES

R
d

N
1

A
d

Level-1

Level-2R
m

xBR -tree (=3)
+

h
d

P
d

M
1

M
2

M
3

Figure 7: Merge xBR+-tree and m-xBR+-tree of equal height (hm = hd = 3) on the left, and the resulting xBR+-tree with bigger height, on the
right.

Last, if hm > hd (Algorithm 4b, Line 27), we save all the nodes of the m-xBR+-tree (Algorithm 4b, Line 28). The
root of the m-xBR+-tree becomes the root of the xBR+-tree. Afterwards, starting from the new root, we follow the
left-most path in order to find the node of the hd + 1 level. Then, we add a new entry that corresponds to the region of
the old root (Algorithm 4b, Line 29), and the xBR+-tree is updated with its new root (Algorithm 4b, Line 30).

In Figure 8, the xBR+-tree, at the top of the left side, has height hd = 2, and is shorter than the m-xBR+-tree at the
bottom of the same side has height hm = 3. On the right side of the Figure 8 the resulting xBR+-tree, after merging,
is shown having height hd = 3. Since the root Rd corresponds to all defined space so overlaps the region of the Rm

which however is at higher level than the Rd root. First, we set the root Rm as new root of the merged xBR+-tree. We
shift the entries of the Rm one place on the right in order to leave free slot to host the entry that points to the Rd node.

Level-0 : LEAVES

Level-1

Level-0 : LEAVES

+
R

m

R
d

M
1

N
1

N
2

Level-2

Level-1

m h-xBR -tree (=3)
+

m

xBR -tree (=2)
+

h
d

N
3

M
2

=
R

m
R

d
M

1
Level-2M

2

xBR -tree (=3)
+

h
d

N
1

N
2

N
3

Level-0 : LEAVES

Level-1

Figure 8: Merge xBR+-tree (hd = 2) with taller m-xBR+-tree (hm = 3) on the left, and the resulting xBR+-tree of height hd = 3, on the right.

Note that the four phases are pipelined (Phase 1 produces an output file as input to Phase 2 that produces a block as
input to Phase 3 that produces an m-xBR+-tree as input to Phase 4). Note also that partitioning data items in a regular
(Quadtree-like) fashion is a way of two dimensional sorting in z-order. Moreover, m-xBR+-trees are built bottom-up.
Therefore, we characterize our technique as a bottom-up, sort-based like approach for bulk-loading the xBR+-tree.

4. Experimental Results

We designed and run a large set of experiments to compare the Process of Bulk-Loading xBR+-trees (PBL) of
[12], the Process of Bulk-Loading xBR+-trees as presented in Section 3 (PBL+) and the process of Bulk-Loading
R-trees (STR) as published in [13]. The STR algorithm is a very popular and fast, frequently used as base line,
algorithm for Bulk-Loading comparisons. We used 6 real spatial datasets of North America, representing cultural
landmarks (NAclN with 9203 points) and populated places (NAppN with 24491 points), roads (NArdN with 569082
line-segments) and rail-roads (NArrN with 191558 line-segments). To create sets of 2d points, we have transformed
the MBRs of line-segments from NArdN and NArrN into points by taking the center of each MBR (i.e. |NArdN| =

15

569082 points, |NArrN| = 191558 points). Moreover, in order to get the double amount of points from NArrN and
NArdN, we chose the two points with min and max coordinates of the MBR of each line-segment (i.e. |NArdND|
= 1138188 points, |NArrND| = 383180 points). The data of these 6 files were normalized in the range [0, 1]2. We
have also created synthetic clustered datasets of 125000, 250000, 500000 and 1000000 points, with 125 clusters in
each dataset (uniformly distributed in the range [0, 1]2), where for a set having N points, N/125 points were gathered
around the center of each cluster, according to Gaussian distribution. Finally, we have also used three big real datasets1

to justify the use of spatial query algorithms on disk-resident data instead of using them in-memory. They represent
water resources of North America (Water) consisting of 5836360 line-segments, world parks or green areas (Park)
consisting of 11503925 polygons, and world buildings (Build) consisting of 114736539 polygons. To create sets of
points, we used the centers of the line-segment MBRs from Water and the centroids of polygons from Park and Build.
The experiments were run on a Linux machine, with Intel core duo 2x2.8 GHz processor and 4 GB of RAM.

We run experiments for tree building, counting tree characteristics and creation time. We also run experiments
for several single dataset spatial queries (PLQ,WQ, DRQ, KNNQ, CKNNQ) and for two dual dataset spatial queries
(KCPQ and εDJQ), counting disk read accesses (I/O) and total execution time.

4.1. Experiments for tree building

In [12] it is shown that, using PBL bulk-loading algorithm, the xBR+-tree structure is built with good quality
characteristics, if a MemoryLimit bigger than 1% of the size of dataset is set. Therefore in this paper we selected
to create indexes of xBR+-tree with MemoryLimit equal to 2% of the size of dataset. On the other hand, the STR
algorithm was given an equal size of main memory to the memory size of the PBL+ algorithm.

In Table 1, for PBL, we present for five indicative datasets (three big and one smaller real datasets and one
synthetic dataset) the effect of the node size (size) to the tree characteristics: tree height (H), internal nodes occupancy
percentage (Iocc), leaf nodes occupancy percentage (Locc), size of the data memory in main memory (M.Size), size
of the tree in disk (D.Size) and the total creation time of the tree (Time), for all three algorithms. The conclusions for
the rest of the datasets are analogous.

Table 1: Tree creation characteristics, using the PBL, PBL+ and the STR.

size Alg H Int Iocc Leaf Locc M.Size D.Size Time
(KB) Nodes (%) Nodes (%) (MB) (MB) (s)

Dataset : NArd

1
PBL 6 2683 68.3 33967 67.0 1.71 35.79 0.719
PBL+ 5 2529 68.6 32182 70.7 0.83 33.90 0.748
STR 5 1357 99.9 27100 100 0.78 27.79 0.950

Dataset : 1000KC

2
PBL 5 1223 64.1 30151 65.0 2.36 61.28 1.808
PBL+ 5 1087 66.5 27820 70.5 1.38 56.46 0.995
STR 4 582 99.8 23810 100 1.38 47.64 1.729

Dataset : Water

4
PBL 4 1624 67.2 87917 65.1 13.98 349.77 13.59
PBL+ 4 1484 69.1 82603 69.3 7.27 328.46 13.14
STR 4 819 99.8 68664 100 7.27 271.42 24.84

Dataset : Park

8
PBL 4 822 65.9 89089 63.3 36.50 702.43 35.44
PBL+ 4 730 68.4 82140 68.7 14.26 647.42 34.92
STR 4 403 99.4 67671 100 14.26 531.83 51.41

Dataset : Build

16
PBL 4 1979 70.1 460038 61.0 435.44 7219.0 1373.3
PBL+ 4 1771 70.2 412428 68.0 138.86 6471.9 678.4
STR 4 991 99.9 336471 100 138.86 5272.8 992.1

Comparing PBL to PBL+ based on this table, we observe the following:

1Retrieved from http://spatialhadoop.cs.umn.edu/datasets.html.

16

• The trees have almost equal heights. If the node size is greater than 2KB then this is true for all datasets.

• PBL+ builds more compact indexes with smaller number of internal nodes (equal or larger internal nodes
occupancy) than the PBL, for all node sizes and all datasets.

• Additionally, the PBL+ builds more compact indexes with smaller number of leaf nodes and larger leaf nodes
occupancy (close to 70%) than the PBL, for all node sizes and all datasets.

• Because of these two properties (Iocc and Locc), the trees created with PBL+ have a smaller overall size than
the corresponding trees created with PBL on disk.

• The PBL+ needs less memory space for data than the PBL, for all node sizes and all datasets. This difference is
maximized in big datasets, having a range of 48-65% for all sizes of nodes.

• The time that the PBL+ takes to create the tree is almost equal or smaller than the PBL. Only for the biggest
dataset (Build) there is a large difference but this is mainly due to I/O.

Comparing the PBL+ to the STR based again on Table 1, we observe the following:

• The trees have almost equal height. As expected for the STR, the index is shorter because of the best occupancy
of internal and leaf nodes.

• The STR builds the most compact indexes with the smallest number of internal nodes (almost 100% of internal
nodes occupancy).

• Additionally the STR builds the most compact indexes with the smallest number of leaf nodes occupancy (up to
100% especially for the big datasets).

• Because of these two properties of the trees created by STR have the smallest overall size than the corresponding
trees created with PBL+ on disk. Note that the R-trees built with STR algorithm appear as ideal for storing static
data. But if it is necessary to add additional data, they are forced to split their already full nodes. This results to
the typical for R-trees nodes occupancy (in a range of 65-70%). On the other hand, there is no reduction of the
degree of overlap, especially in the internal nodes.

• The time that the STR takes to create the tree is larger than the PBL/PBL+, in all cases of datasets or node sizes.

We implemented the STR algorithm in a way to ensure fair comparison conditions. We chose to implement the sorting
of each data block required at each stage of STR according to the size of this block. If the data block was larger than
a predefined limit, we used external merge sort with several buffers. If the data block was smaller than this limit, then
we transferred it to main memory and applied quick sort. This limit was defined so that an equal size of main memory
was used for STR and PBL+, for the each dataset and node size. So we tried to speed up the STR algorithm and reduce
the disk activity, which is a retarding factor in execution time.

The way to decide the boundaries of each data block that forms a leaf or a set of records of an internal node
between PBL/PBL+ and STR algorithms has a similar time cost. In all cases, simple arithmetical operations are
needed. Therefore, the main factor of the difference in creation time between the xBR+-tree and R-tree is the difference
of the disk activity and the movements of data in main memory. In PBL/PBL+ algorithms, sorting continues down to
MemoryLimit / disk page size resolution. In STR algorithm, sorting continues down to single item resolution. This
difference is the main factor for the faster tree creation by PBL/PBL+ algorithms.

Table 2 presents an overall comparison of the three bulk-loading methods with respect to the six performance
measures of the tree creation, as listed in the leftmost column. For each row in this table, an entry with value ”1”
indicates that the corresponding bulk-loading method performs the best regarding the corresponding measure, while
an interval “[a, b]” in other entries indicates that the corresponding method is a to b times more expensive than the
best one.

For example, the second data row summarizes the Iocc measure for all methods. We can see that the STR has a
value ”1”, which indicates that it outperforms the other methods. As for PBL+, the interval “[0.297, 0.333]” indicates
that the internal node occupancy percentage (Iocc) of PBL+ is 29.7% less, in the best case, and 33.3% less Iocc, in the

17

worst case, than the one of STR. The sixth data row shows the creation time. We can observe that PBL+ outperforms
the other methods; for STR, the interval “[1.2, 1.9]” indicates that the creation time of STR is about 1.2 times larger, in
the best case, and about 1.9 times larger, in the worst case, than that of PBL+. Therefore, we can deduce that smaller
endpoint numbers and a smaller range of the interval indicate a better and more stable performance.

A general conclusion arising from the Table 2 is that all trees have almost the same height, STR builds more
compact trees and consumes less resources (memory and disk) and, PBL+ is the fastest bulk-loading method.

Table 2: Performance summary for tree creation characteristics.

Performance
measure PBL PBL+ STR
Height 1 (except 1 & 2KB) 1 (except 2KB) 1
Iocc [0.298, 0.357] [0.297, 0.333] 1
Locc [0.33, 0.39] [0.293, 0.32] 1
Mem Size [1.7, 3.1] 1 (except 2KB) 1
Disk Size [1.3, 1.4] [1.1, 1.2] 1
Time [1, 2] 1 [1.2, 1.9]

4.2. Experiments for single dataset spatial queries

For each of the single data queries we executed 65 experiments (13 datasets × 5 node sizes). Each experiment
was performed several times so that the input data scanned all the specified reference space. In order to examine
the efficiency of each structure in each query, we created different sets of input query windows. Every set of query
windows consisted of equal squares that were distributed throughout the whole space without overlapping and was
created as follows. To create a set of 22k query windows, the space [0,1] was divided in

√
22k equal segments in each

dimension. Within each cell of the created grid, one square query window with side equal to 1
3 of this cell side was

positioned in a random position. When the query input consisted of reference points and not windows, we used the
centroids of these query windows. The query input data for each experiment was given in a random order.

Since the tree created by PBL+ is built faster and has superior characteristics (less internal nodes and less leaves of
higher occupancy, thus, processing of queries will access less nodes performing similar calculations and be faster) to
the tree created by the PBL, therefore to study the performance of query processing we will only use the tree created
by PBL+ vs. the tree created by STR.

For PLQs, we executed two sets of experiments. In the first set, we used as query input the nearest point belonging
in the dataset to each of the 214 = 16384 query points (existing points). When searching for existing points the number
of disk accesses in xBR+-trees is equal to their height while in R-tree that number may be larger than the height of the
tree. Since the height of the R-tree is smaller than or equal to the height of the xBR+-tree, the number of disk accesses
per query in that experiment, searching for 214 points, may be smaller for any of the two compared structures.

This set of experiments is summarized in the first two data rows of Table 3. In this table, for each query, regarding
disk read accesses and execution time, we present percentages (%) of the experimental cases where trees created by
the two bulk-loading processes perform equivalently (data columns 1 and 4, respectively) and where trees created
by PBL+ / STR have a performance that is more than 5% better than their rival (data columns 2 and 5 / 3 and 6,
respectively). It is evident that, for this set of experiments, regarding the number of disk accesses both types of trees
perform almost equivalently in the most cases (60%).

• In 22% of the cases of small datasets the R-tree needed a smaller average number of disk accesses, while in
14% of the cases the xBR+-tree reported less I/O activity. In over half of the cases (64%) both type of trees
needed almost an equal average number (≤ 5%) of disk accesses.

• In big datasets there was a tie in half of the cases (46.7%) while in the rest of them (53.3%) the xBR+-tree was
the winner.

18

The results of total time needed for the execution of each experiment pointed out that the xBR+-tree created by PBL+

was the big winner (76.9% of the cases).

• In small datasets, 20% of the cases showed the R-tree needed a smaller average time, while in 72% of the cases
the xBR+-tree was faster. In a small number of cases (8%) both types of trees needed an almost equal average
execution time (≤ 5%).

• In big datasets there was a tie in only one case (6.7%) while in the rest of them (93.3%) the xBR+-tree was the
winner.

Table 3: Percentages of cases of Disk Accesses and Execution Time winners in PLQs.

PLQ

Number of Disk
Execution Time

Size Accesses
of data PBL+ STR PBL+ STR

set tie wins wins tie wins wins
d≤ 5% d> 5% d> 5% d≤ 5% d> 5% d> 5%

Existing Small 64.0 14.0 22.0 8.00 72.0 20.0
points Big 46.7 53.3 0.00 6.67 93.3 0.00
Non-existing Small 22.0 60.0 18.0 8.00 80.0 12.0
points Big 20.0 73.3 6.7 0.00 86.7 13.3

In the second set of experiments for PLQs, we used as query input 214 = 16384 query points (non-existing points).
While searching for non existing points in the dataset, the disk accesses may be less than the tree-height for both trees
(due to DBRs of the xBR+-trees and MBRs of the R-trees). This set of experiments is summarized in the 2nd group of
data rows (3 and 4) of Table 3. It is clear that trees created by PBL+, on the average, perform better in both metrics
for all datasets. Regarding the number of disk accesses the xBR+-tree performed better in most cases (63.1%).

• In small datasets, 18% of the cases showed that the R-tree needed a smaller average number of disk accesses,
while in 60% of the cases the xBR+-tree required less disk accesses. In the rest of the cases (22%) both types
of trees needed an almost equal average number (≤ 5%) of disk accesses.

• In big datasets there was a tie in 20% of the cases. In a smaller number of cases (6.7%) the R-tree needed a
smaller number of disk accesses, while in the rest of them (73.3%) the xBR+-tree was the winner.

The results of total time needed for the execution of each experiment pointed out that the xBR+-tree created by PBL+

was the big winner (81.5% of the cases).

• In small datasets there were 12% of cases in which the R-tree needed smaller average time, while in 80% of
cases the xBR+-tree was faster. In a small number of cases (8%) both types of trees needed an almost equal
average execution time (≤ 5%).

• In big datasets there was a tie only in two cases (13.3%), while in the rest of them (86.7%) the xBR+-tree was
the winner.

For WQs, we executed five sets of experiments using as query input one set of 26, 28, 210, 212 and 214 query
windows. This query performed using a Depth-First scan of the trees, and there is only one criterion in order to visit
the child node pointed by the current entry of the current root under consideration, and that is if the query window
has intersection with the current region. Thus, as the number of query windows becomes larger the performance of
xBR+-tree vs. R-tree tends to approach that of the above PLQs.

The experiments of WQ are summarized in the bar charts of Figure 9. The left column of charts refers to small
datasets, while the right one to big datasets. The percentage of the number of experimental cases where the two bulk-
loading processes perform equivalently (tie), PBL+ and STR has a performance that is more than 5% better than its

19

rival is depicted by empty, gray and black bars, respectively, regarding disc accesses (top row of charts) and execution
time (bottom row of charts). It is evident that, for the small datasets, regarding the number of disk accesses, the xBR+-
tree created by PBL+ performs better than the R-tree created by STR algorithm in 4/5 of the sizes of query windows.
Additionally, we observe that the performance of the xBR+-tree is improved as the extents of the query windows are
reduced (increasing the number of query windows). Instead, we observe that for big datasets the R-tree outperforms
the xBR+-tree in 4/5 of the sizes of query windows. However, we observe that the trend of improving the performance
of xBR+-tree as the extents of the query windows are reduced appears again.

10%

20%

30%

40%

50%

60%

70%

80%

26 28 210 212 214

Small datasets Query Windows

WQ : Disk Accesses winners

tie

34
30

18
14 14

PBL+

22

50

70
74 72

STR

44

20
12 12 14

 0%

10%

20%

30%

40%

50%

60%

70%

26 28 210 212 214

Small datasets Query Windows

WQ : Exec. Time winners

tie

2
6

10
14 12

PBL+

56
60

48

28
24

STR

42
34

42

58
64

 0%

20%

40%

60%

80%

100%

26 28 210 212 214

Big datasets Query Windows

WQ : Disk Accesses winners

tie

0
7 7

20
13

PBL+

0 0

20 20

47

STR

100
93

73
60

40

 0%

20%

40%

60%

80%

100%

26 28 210 212 214

Big datasets Query Windows

WQ : Exec. Time winners

tie

0 0 0 0 0

PBL+ STR

0 0 0 0 0

Figure 9: Percentages of cases of Disk Accesses and Execution Time winners in WQs.

On the average of all sets of queries, the two trees performed as follows.

• In 20.4% of the cases of small datasets the R-tree needed a smaller average number of disk accesses, while in
57.6% of the cases the xBR+-tree required less I/O activity. In the remaining cases (22%) both type of trees
needed almost an equal average number (≤ 5%) of disk accesses.

• In big datasets there was a tie in 9.3% of cases, xBR+-tree was the winner in 17.3% of cases, while in the rest
of them (73.3%) the R-tree was the winner. Note the percentage of 47% of the xBR+-tree for the set of the
smallest query windows (214) vs. the 40% of the R-tree.

The results of total time needed for the execution of each experiment pointed out that the xBR+-tree was faster in
small datasets in fewer cases than the R-tree, while in the big datasets xBR+-tree won in all cases. On the average of
all sets, regarding execution time, the two trees performed as follows.

• The R-tree was a winner for the small datasets in more cases (48%) than the xBR+-tree (43.2% of the cases).

• In big datasets the xBR+-tree was the big winner (won in all the sets of query windows).

For DRQs, we executed five sets of experiments using as query input one set of 26, 28, 210, 212 and 214 query
ranges. Each query range of a set of 22k query ranges was centered at the centroid of a query window (used in WQs)
and defined by the radius of the incircle of this query window (ε ≤ (1

2 ×
1
3 ×

1
√

22k
)). Additionally, five algorithms,

four versions of Depth-First (DF) and one version of Best-First (BF) were tested in 325 experiments (13 datasets × 5

20

node sizes × 5 sets of query circles), each. The xBR+-tree created with PBL+ algorithm responded best (in 118/325
of the cases) using the HDF algorithm (this algorithm uses a local minimum binary heap, prioritized by the minimum
distance between the query point and DBRs to define the order of processing in Depth-First traversal).

The experiments of DRQ are depicted in the bar charts of Figure 10, following the same layout as in Figure 9. It
is evident that, for the small datasets, regarding the number of disk accesses the xBR+-tree performs better than the
R-tree created by STR algorithm in 4/5 of the set of query ranges. Additionally we observe that the performance of
the xBR+-tree is improved as the distance ranges are reduced (increasing the number of query ranges). Instead, we
observe that for big datasets the R-tree outperforms the xBR+-tree in all set of query ranges. However, we observe that
the trend of improving the performance of xBR+-tree, as the extents of the query ranges are reduced, appears again.

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

26 28 210 212 214

Small datasets Query Ranges

DRQ : Disk Accesses winners

tie

36 32

14 10 12

PBL+

24

48

72
78 74

STR

40

20
14 12 14

 0%
10%
20%
30%
40%
50%
60%
70%
80%

26 28 210 212 214

Small datasets Query Ranges

DRQ : Exec. Time winners

tie

26

12 8

22

10

PBL+

28 28 24
14

24

STR

46

60
68 64 66

 0%

20%

40%

60%

80%

100%

26 28 210 212 214

Big datasets Query Ranges

DRQ : Disk Accesses winners

tie

13 13 13
20 20

PBL+

0 0
13

27

47

STR

87 87
73

53

33

 0%

20%

40%

60%

80%

100%

26 28 210 212 214

Big datasets Query Ranges

DRQ : Exec. Time winners

tie

0
7

0
7

0

PBL+

93
87

100
93

100

STR

7 7
0 0 0

Figure 10: Percentages of cases of Disk Accesses and Execution Time winners in DRQs.

On the average of all sets of queries the two trees performed as follows.

• In 20% of the cases of small datasets the R-tree needed a smaller average number of disk accesses, while in
59.2% of the cases the xBR+-tree required less I/O activity. In the remaining cases (20.8%) both type of trees
needed almost an equal average number (≤ 5%) of disk accesses.

• In big datasets there was a tie in 16.0% of cases, xBR+-tree was the winner in 17.3% of cases, while in most of
the rest of cases (66.7%) the R-tree was the winner. Note the percentage of 46.7% of the xBR+-tree for the set
of the smallest query windows (214) vs. 33.3% of the R-tree.

On the average of all sets, the results of total time needed for the execution of each experiment pointed out that the
R-tree was fastest in small datasets (61.6% of the cases), while in the big datasets xBR+-tree won in 97.3% of the
cases.

Note that although WQs and DRQs have a similar description, processing of queries is different. Processing of WQs
follows an overlap comparison of the item regions of each node with the query window and wherever an intersection
is discovered the pointer to the respective child node is followed. Processing of DRQs is based on calculation of
distances either between a point and a rectangle, or between points and the structure of xBR+-trees, that does not have
overlapping between nodes, is best suited to these calculations. For both queries, for specific datasets, it is possible to
have a reverse behavior of the two performance metrics. That is, for a specific dataset, the number of disk accesses

21

may be larger (worse) for one of the two trees, while the execution time is better for this tree. This may arise when
CPU processing of nodes of this tree is faster and dominates execution time. This phenomenon can explain that, for
WQs, the execution time winner for big datasets is the xBR+-tree, although the R-tree has smaller I/O. In general, the
partitioning of data items, the number of disk accesses and CPU processing of nodes are the factors that determine the
execution time winner.

For KNNQs, we executed four sets of experiments using as query input one set of 212 query points and searching
for K-values of 1, 10, 100, 1000 of nearest neighbors. Additionally, five algorithms, four versions of Depth-First (DF)
and one version of Best-First (BF) were tested in a project of 260 experiments (13 datasets × 5 node sizes × 4 (K-
values or sets of query points)), each. Since both trees responded best (xBR+-tree in 142/260 of the cases, R-tree in
210/260 of the cases) using the BF algorithm, Therefore, the performance comparison was based on BF algorithm.

The experimental results of KNNQ, are depicted in the bar charts of Figure 11, following the same layout as in
Figure 9. It is evident that, for the small datasets, regarding the number of disk accesses the xBR+-tree performs better
than the R-tree created by STR algorithm in 2/4 of the K-values. Additionally we observe that the performance of the
xBR+-tree is better for K < 103, while for bigger K-values, the number of Disk Accesses is smaller for the R-tree.
Instead, we observe that for big datasets the xBR+-tree outperforms the R-tree in all K-values.

10%

20%

30%

40%

50%

60%

70%

80%

1 10 102 103

Small datasets K-values

KNNQ : Disk Accesses winners

tie

24
32

20
14

PBL+

62
56

32

16

STR

14 12

48

70

10%

20%

30%

40%

50%

60%

70%

1 10 102 103

Small datasets K-values

KNNQ : Exec. Time winners

tie

18 16 18

34

PBL+

20
26

36 38

STR

62
58

46

28

 0%

20%

40%

60%

80%

100%

1 10 102 103

Big datasets K-values

KNNQ : Disk Accesses winners

tie

0 0 0 0

PBL+

100 100 100 100

STR

0 0 0 0

 0%

20%

40%

60%

80%

100%

1 10 102 103

Big datasets K-values

KNNQ : Exec. Time winners

tie

0 0 0 0

PBL+

100 100 100 100

STR

0 0 0 0

Figure 11: Percentages of cases of Disk Accesses and Execution Time winners in KNNQs.

On the average of all sets of queries the two trees performed as follows.

• In 36% of the cases of small datasets the R-tree needed a smaller average number of disk accesses, while in
41.5% of the cases the xBR+-tree required less cost of read operations. In the remaining cases (22.5%) both
type of trees needed almost an equal average number (≤ 5%) of disk accesses.

• For big datasets and in all cases (100%) of the xBR+-tree was the absolute winner.

Regarding the execution time, for small datasets, the R-tree was faster than the xBR+-tree in the most cases with
percentages which reduced as the K-values increased (62%, 58%, 46%, 28% of the cases). This decrease was partly
absorbed by the xBR+-tree (20%, 26%, 36%, 38% of the cases) and the other in tie (18%, 16%, 18%, 34% of the
cases). Instead, we observe that for big datasets the xBR+-tree outperforms the R-tree for all K-values.

On the average of all K-values the two trees performed as follows.

22

• In 48.5% of the cases of small datasets the R-tree needed less execution time, while in 30% of the cases the
xBR+-tree was fastest. In the remaining cases (21.5%) the two types of trees needed almost an equal execution
time (≤ 5%).

• In big datasets and in all cases (100%) the xBR+-tree was the absolute winner.

For CKNNQs, we executed four sets of experiments using as query input one set of 212 query points searching
for K-values of 1, 10, 100, 1000 of nearest neighbors having distances not larger than 1

3 ×
1
2 ×

1
√

212
. Additionally,

five algorithms, four versions of Depth-First (DF) and one version of Best-First (BF) were tested in a project of 260
experiments (13 datasets × 5 node sizes × 4 K-values or sets of query points), each. Since both trees responded best
(xBR+-tree in 86/260 of the cases, R-tree in 104/260 of the cases) using the BF algorithm, therefore, the performance
comparison was based on BF algorithm.

The experimental results of CKNNQ are depicted in the bar charts of Figure 12, following the same layout as
in Figure 9. It is evident that, for all experiments and for all datasets (small and big), regarding the number of disk
accesses the xBR+-tree performs better than the R-tree created by STR algorithm.

 0%

20%

40%

60%

80%

100%

1 10 102 103

Small datasets Constrained K-values

CKNNQ : Disk Accesses winners

tie

4 6 6 6

PBL+

80 82 84 84

STR

16 12 10 10

 0%
10%
20%
30%
40%
50%
60%
70%
80%

1 10 102 103

Small datasets Constrained K-values

CKNNQ : Exec. Time winners

tie

16
10 14 18

PBL+

8

20 24

36

STR

66 70
62

46

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 10 102 103

Big datasets Constrained K-values

CKNNQ : Disk Accesses winners

tie

20
13

20
27

PBL+

80 80 80
73

STR

0
7

0 0

 0%

20%

40%

60%

80%

100%

1 10 102 103

Big datasets Constrained K-values

CKNNQ : Exec. Time winners

tie

7
0 0 0

PBL+

93
100 100 100

STR

0 0 0 0

Figure 12: Percentages of cases of Disk Accesses and Execution Time winners in CKNNQs.

On the average of all constrained K-values the two trees performed as follows.

• In 12% of the cases of small datasets the R-tree needed a smaller average number of disk accesses, while in
82.5% of the cases the xBR+-tree required less I/O operations. In the remaining cases (5.5%) both type of trees
needed almost an equal average number (≤ 5%) of disk accesses.

• In big datasets, in 1.7% of the cases of small datasets the R-tree needed a smaller average number of disk
accesses, while in 78.3% of the cases the xBR+-tree needed a smaller number of disk accesses. In the remaining
cases (20%) both type of trees needed almost an equal average number (≤ 5%) of disk accesses.

Regarding the execution time, for small datasets, the R-tree was faster than the xBR+-tree in all the cases with
percentages which reduced as the constrained K-values increased (66%, 70%, 62%, 46% of the cases). This decrease
was partly absorbed by the xBR+-tree (18%, 20%, 24%, 36% of the cases) and the other in tie (16%, 10%, 14%,

23

18% of the cases). Instead, we observe that for big datasets the xBR+-tree outperforms the R-tree in all constrained
K-values with percentages greater than 93%.

On the average of all K-values the two trees performed as follows.

• In 61% of the cases of small datasets the R-tree needed less execution, while in 24.5% of the cases the xBR+-
tree was the fastest. In a few number of the cases (14.5%) both type of trees needed almost an equal execution
time (≤ 5%).

• In big datasets and in almost all cases (98.3%) the xBR+-tree was the winner.

Similarly to Table 2, Table 4 presents an overall comparison of the two bulk-loading methods (PLB+ and STR) with
respect to the five spatial queries when one index is used. The performance measures that we have taken into account
are I/O activity (number of disk accesses) and total execution time (ET) in seconds, and we have also considered the
behavior of these queries for Small and Big datasets.

In this table, for a specific query performance measure, dataset size and bulk-loading method, the interval “[a, b]”
indicates the minimum (a) and the maximum (b) values of percentages of cases in the different sets of experiments
performed where this method exhibited a better value for this performance measure with respect to the best bulk-
loading method (indicated by “1”). For example, the interval [12%, 44%] at the third data column and second data
row of this table indicates that the percentages of cases in the different sets of experiments performed for WQ I/O
and Small datasets where STR had a smaller number of disk access than PBL+ ranged between 12% and 44%. The
interval [0%, 0%] at the fourth data column and ninth data row of this table indicates that, for the different sets of
experiments performed for KNNQ ET and Big datasets, the execution time of STR was never better than the one of
PBL+ (i.e. PBL+ was always faster than STR in all the executed sets of experiments). Therefore, we can deduce that
the closer to 0% the maximum value of this interval is, the worse the performance of the corresponding method is, in
comparison to the best method.

A general conclusion arising from Table 4 is that PBL+ is the best bulk-loading method for Big datasets and for
all spatial queries, taking into account both performance measures (I/O and execution time), except for WQ and DRQ
where STR proves to be better in I/O activity. On the other hand, STR is the best regarding execution time, when
we have Small datasets, except for PLQs, while PBL+ is the best regarding the number of disk accesses, except for
KNNQs where STR is the best.

Table 4: Performance summary for single dataset spatial queries.

Spatial PBL+ STR
Query Small Big Small Big
PLQ I/O 1 1 [18%, 22%] [0%, 6.7%]
WQ I/O 1 [0%, 47%] [12%, 44%] 1
DRQ I/O 1 [0%, 47%] [12%, 40%] 1
KNNQ I/O [16%, 62%] 1 1 [0%, 0%]
CKNNQ I/O 1 1 [10%, 16%] [0%, 7%]
PLQ ET 1 1 [12%, 20%] [0%, 13.3%]
WQ ET [24%, 60%] 1 1 [0%, 0%]
DRQ ET [14%, 28%] 1 1 [0%, 7%]
KNNQ ET [20%, 38%] 1 1 [0%, 0%]
CKNNQ ET [8%, 36%] 1 1 [0%, 0%]

4.3. Experiments for dual dataset spatial queries
For KCPQs / εDJQs, four algorithms, three versions of DF and one version of BF were tested in 225 experiments

(9 combinations of datasets × 5 node sizes × 5 K-values or different ε values).
For KCPQs, the xBR+-tree was faster with the BF algorithm in most cases (107/225), while the R-tree was faster

with the DF algorithm, that utilized the classic plain sweep algorithm [41, 42], in most cases (89/225). Therefore, the
performance comparison was based on these algorithms.

24

In Table 5, we depict the results of 3 combinations of real and 2 combinations of synthetic datasets having node size
of 8KB, as particular examples. The experiments were executed for K=1000 closest pairs for each combination. In
these experiments, the xBR+-tree created by PBL+ algorithm performed best in all combinations in both performance
metrics. In these experiments, the xBR+-tree needed smaller number of Disk Accesses than the R-tree in most cases
(96.6%) of experiments, while in 3.6% of the cases the R-tree required less I/O operations. In the remaining cases
(0.9%) both type of trees needed almost an equal average number (≤ 5%) of disk accesses. The average relative
difference percentage of Disk Accesses for each node size was over 50% (58.6%, 55.2%, 59.7%, 55.0%, 50.8% for
node size 1KB, 2KB, 4KB, 8KB and 16KB, respectively) in favor of the xBR+-tree. Regarding execution time, in all
the 225 experiments the xBR+-tree was faster than the R-tree. The average relative difference percentage of execution
time for each node size was over 70% (71.7%, 74.5%, 70.8%, 74.8%, 76.0% for node size 1KB, 2KB, 4KB, 8KB
and 16KB, respectively) in favor of the xBR+-tree. It is clear that trees created by PBL+ perform, on the average,
significantly better in both performance metrics.

Table 5: KCPQs: average number of Disk Accesses and Execution Time, per query.

Dataset Disk Accesses Relative time (ms) Relative

Name PBL+ STR diff (%) PBL+ STR diff (%)

NArrND×NArdND 14631 29332 50.12 290 1579 81.62

500KC2N×1000KC1N 14886 33122 55.06 314 1990 84.21

1000KC1N×1000KC2N 19383 45636 57.53 530 3880 86.33

Water×Park 55762 119926 53.50 8067 22937 64.83

Water×Build 114059 265810 57.09 40505 63964 36.68

For εDJQs, the xBR+-tree was faster with the HDF algorithm in most cases (66/225), while the R-tree responded
best (in execution time) with DF algorithm in most cases (96/225). Therefore, the performance comparison was based
on these algorithms.

In Table 6, we depict the results of same combinations of datasets as in KCPQs. In the particular experiments
shown in Table 6 the value of ε was set ε ≤ 5× 10−5 for the first three combinations, and ε ≤ 5× 10−8 for the rest two
combinations of datasets.

Table 6: εDJQs: average number of Disk Accesses and Execution Time, per query.

Dataset Disk Accesses Relative time (ms) Relative

Name PBL+ STR diff (%) PBL+ STR diff (%)

NArrND×NArdND 26287 29746 11.63 529 1653 68.00

500KC2N×1000KC1N 16793 32946 49.03 409 2136 80.85

1000KC1N×1000KC2N 24832 45384 45.28 793 4043 80.37

Water×Park 54390 119442 54.46 21345 23132 7.72

Water×Build 101382 263934 61.59 46611 63810 26.95

In these experiments, the xBR+-tree created by PBL+ algorithm was the best in both performance metrics. The
xBR+-tree needed a smaller number of Disk Accesses than the R-tree in most cases (92.9%), while in 5.8% of the
cases the R-tree required less I/O operations. In the remaining cases (1.3%) both types of trees needed almost an
equal average number (≤ 5%) of disk accesses. The average relative difference percentage of Disk Accesses for each
node size was over 49.5% (60.2%, 53.9%, 57.8%, 54.6%, 49.7% for node size 1KB, 2KB, 4KB, 8KB and 16KB,
respectively) in favor of the xBR+-tree. Regarding execution time, the xBR+-tree was faster than R-tree in almost
all cases (99.1%), while in the rest 0.89% of the cases the R-tree was faster than the xBR+-tree with a small relative
time difference (≤ 5%). The average percentage of execution time for each node size was over 63% (69.3%, 65.4%,
63.1%, 67.4%, 70.8% for node size 1KB, 2KB, 4KB, 8KB and 16KB, respectively) in favor of the xBR+-tree. It is
clear that trees created by PBL+ perform, on the average, significantly better in both metrics.

25

The explanation for the significantly better performance of trees created by PBL+ is related to the better grouping
of subregions and the fact that the execution of KCPQs / εDJQs corresponds to multiple KNNQs / εDRQs, maximizing
the benefits resulting from the PBL+.

Table 7 has the same structure as Table 4 for comparison of the two distance-based join queries (KCPQ and εDJQ).
In this table the performance measures that we have taken into account are I/O activity (number of disk accesses) and
total execution time (ET) in seconds for Small and Big datasets.

In this table, the interval “[a, b]” indicates that the corresponding method is a to b times more expensive than
the best one. For example, the interval ”[1.5, 2.8]” means the execution time of the KCPQ when Big datasets are
considered is about 1.5 times larger for STR in the case of Water × Park and about 2.8 times larger in the case of
Water × Build, than the one for PBL+.

A general conclusion arising from Table 7 is that the xBR+-tree built by PBL+ needs less disk accesses and is
faster than the R-tree built by STR, regardless of the size of the datasets.

Table 7: Performance summary for dual dataset spatial queries.

PBL+ STR
Distance Join Query Small Big Small Big
KCPQ I/O 1 1 [2.0, 2.3] [2.1, 2.3]
εDJQ I/O 1 1 [1.1, 2.0] [2.2, 2.6]
KCPQ ET 1 1 [5.4, 7.3] [1.5, 2.8]
εDJQ ET 1 1 [3.1, 5.1] [1.1, 1.4]

5. Conclusions, Discussion and Future Work

In this paper, we presented an improvement of the algorithm of [12] (PBL), which was the first algorithm for bulk-
loading xBR+-trees for large datasets residing on disk, using a limited amount of RAM. The new algorithm (PBL+),
improves all the four phases of its predecessor (it reduces movements of data items, makes better use of internal
memory and achieves better partitioning of space).

Using real and artificial datasets of various cardinalities, we presented an extensive experimental comparison of
PBL+, PBL and STR, one of the most popular algorithms for bulk-loading R-trees, regarding tree creation time and
the characteristics of the trees created. This comparison unveiled that

• PBL+ is faster than PBL and STR,

• PBL+ creates trees that exhibit improved structural characteristics and better storage utilization (reduced size)
than PBL; these characteristics lead to increased performance in processing queries and satisfy the main targets
of an efficient bulk-loading algorithm.

Moreover, we experimentally compared the query efficiency of xBR+-trees created by PBL+ vs. R-trees created by
STR, regarding disk accesses and execution time. It was shown that

• the trees created by PBL+ exhibit better performance for the majority of queries and datasets (this is due to the
fact that the xBR+-tree created divides space in non-overlapping of areas and, in general, needs simpler CPU
calculations for processing queries),

• especially for big datasets, the trees created by PBL+ exhibit better execution time in almost all cases,

• the trees created by PBL+ will retain their characteristics in a dynamic environment, with many insertions and
deletions, contrary to the R-trees created by STR that will degrade very soon to smaller node occupancy and (as
a consequence) reduced query performance, as data items are inserted or deleted.

26

This paper, through improving the creation of spatial storage structures and the efficiency of processing of spatial
queries, contributes to the implementation of spatial database interfaces and the quality of software for big spatial data
management.

The algorithm presented in this paper could be adapted to parallel and distributed environments, like Apache
Hadoop 2, or Apache Spark 3. Since in PBL+ data is partitioned in disjoint quadrangular areas, separate computing
nodes could build m-xBR+-trees for such areas. These trees could be subsequently merged to form a total xBR+-tree.
Alternatively, a computing environment with multiple CPUs or GPUs and large main memory could be utilized for
parallelizing the PBL+ algorithm. Several, non-trivial, changes should be applied to the PBL+ algorithm for such
environments. These include parallel partitioning of input data and multiway merging of m-xBR+-trees.

Moreover, PBL+ could be adapted to other tree structures that do not utilize overlapping between regions of
nodes, like R+-trees, or other members of the Quadtree family. However, PBL+ cannot be easily applied to trees with
overlapping regions (like R*-trees, or R-trees).

Our current future work plans include:

• The development of bulk-insertion methods for xBR+-trees. That is, when a large batch of data is scheduled
to be inserted to an existing xBR+-tree, to process the insertion as a whole and not to insert the data items
one-by-one.

• An extension of the experimental study to data of higher dimensions.

• Embedding of bulk-loaded xBR+-trees in SpatialHadoop4 and study their performance in relation of other space
partitioning strategies, already existing in SpatialHadoop.

• Create variations of bulk-loaded xBR+-trees that will take advantage of the characteristics of SSD disks.

Acknowledgments

Work of Antonio Corral, Michael Vassilakopoulos and Yannis Manolopoulos funded by the MINECO research
project [TIN2013-41576-R].

[1] R. H. Güting, An introduction to spatial database systems, VLDB J. 3 (4) (1994) 357–399.
[2] S. Shekhar, S. Chawla, Spatial databases - a tour, Prentice Hall, 2003.
[3] J. V. den Bercken, B. Seeger, An evaluation of generic bulk loading techniques, in: VLDB Conference, 2001, pp. 461–470.
[4] H. Tan, W. Luo, H. Mao, L. M. Ni, On packing very large r-trees, in: MDM Conference, 2012, pp. 99–104.
[5] N. An, K. V. R. Kanth, S. Ravada, Improving performance with bulk-inserts in oracle r-trees, in: VLDB Conference, 2003, pp. 948–951.
[6] M. Y. Eltabakh, R. Eltarras, W. G. Aref, Space-partitioning trees in postgresql: Realization and performance, in: ICDE Conference, 2006, p.

100.
[7] Y. Fang, M. Friedman, G. Nair, M. Rys, A. Schmid, Spatial indexing in microsoft SQL server 2008, in: SIGMOD Conference, 2008, pp.

1207–1216.
[8] G. Roumelis, M. Vassilakopoulos, T. Loukopoulos, A. Corral, Y. Manolopoulos, The xBR+-tree: An efficient access method for points, in:

DEXA Conference, 2015, pp. 43–58.
[9] G. Roumelis, M. Vassilakopoulos, A. Corral, Performance comparison of xbr-trees and r*-trees for single dataset spatial queries, in: ADBIS

Conference, 2011, pp. 228–242.
[10] M. Vassilakopoulos, Y. Manolopoulos, External balanced regular (x-br) trees: New structures for very large spatial databases, in: Advances

in Informatics: Selected papers of the 7th Panhellenic Conf. on Informatics, World Scientific Publ. Co., 2000, pp. 324–333.
[11] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The r*-tree: An efficient and robust access method for points and rectangles, in:

SIGMOD Conference, 1990, pp. 322–331.
[12] G. Roumelis, M. Vassilakopoulos, A. Corral, Y. Manolopoulos, Bulk-loading xBR+-trees, in: MEDI Conference, 2016, pp. 57–71.
[13] S. T. Leutenegger, J. M. Edgington, M. A. Lopez, Str: A simple and efficient algorithm for r-tree packing, in: ICDE Conference, 1997, pp.

497–506.
[14] L. Arge, K. H. Hinrichs, J. Vahrenhold, J. S. Vitter, Efficient bulk operations on dynamic r-trees, Algorithmica 33 (1) (2002) 104–128.
[15] D. Achakeev, B. Seeger, P. Widmayer, Sort-based query-adaptive loading of r-trees, in: CIKM Conference, 2012, pp. 2080–2084.
[16] P. Ciaccia, M. Patella, Bulk loading the m-tree, in: ADC Conference, 1998, pp. 15–26.
[17] C. A. Lang, A. K. Singh, Modeling high-dimensional index structures using sampling, in: SIGMOD Conference, 2001, pp. 389–400.

2http://hadoop.apache.org/
3http://spark.apache.org/
4http://spatialhadoop.cs.umn.edu/

27

[18] N. Roussopoulos, D. Leifker, Direct spatial search on pictorial databases using packed r-trees, in: SIGMOD Conference, 1985, pp. 17–31.
[19] I. Kamel, C. Faloutsos, On packing r-trees, in: CIKM Conference, 1993, pp. 490–499.
[20] D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, J. Yu, Client-server paradise, in: VLDB Conference, 1994, pp. 558–569.
[21] D. Achakeev, M. Seidemann, M. Schmidt, B. Seeger, Sort-based parallel loading of r-trees, in: BigSpatial Workshop, 2012, pp. 62–70.
[22] L. Arge, K. H. Hinrichs, J. Vahrenhold, J. S. Vitter, Efficient bulk operations on dynamic r-trees, in: ALENEX Workshop, 1999, pp. 328–348.
[23] J. V. den Bercken, B. Seeger, P. Widmayer, A generic approach to bulk loading multidimensional index structures, in: VLDB Conference,

1997, pp. 406–415.
[24] T. M. Ghanem, R. Shah, M. F. Mokbel, W. G. Aref, J. S. Vitter, Bulk operations for space-partitioning trees, in: ICDE Conference, 2004, pp.

29–40.
[25] S. Berchtold, C. Böhm, H. Kriegel, Improving the query performance of high-dimensional index structures by bulk-load operations, in: EDBT

Conference, 1998, pp. 216–230.
[26] T. G. Vespa, C. T. Jr., A. J. M. Traina, Efficient bulk-loading on dynamic metric access methods, Information Systems 35 (5) (2010) 557–569.
[27] P. Ciaccia, M. Patella, P. Zezula, M-tree: An efficient access method for similarity search in metric spaces, in: VLDB Conference, 1997, pp.

426–435.
[28] J. L. Bentley, Multidimensional binary search trees used for associative searching, Commun. ACM 18 (9) (1975) 509–517.
[29] C. Traina, A. J. M. Traina, B. Seeger, C. Faloutsos, Slim-trees: High performance metric trees minimizing overlap between nodes, in: EDBT

Conference, 2000, pp. 51–65.
[30] A. Papadopoulos, Y. Manolopoulos, Parallel bulk-loading of spatial data, Parallel Computing 29 (10) (2003) 1419–1444.
[31] G. R. Hjaltason, H. Samet, Y. J. Sussmann, Speeding up bulk-loading of quadtrees, in: ACM-GIS Conference, 1997, pp. 50–53.
[32] G. R. Hjaltason, H. Samet, Improved bulk-loading algorithms for quadtrees, in: ACM-GIS Conference, 1999, pp. 110–115.
[33] G. R. Hjaltason, H. Samet, Speeding up construction of PMR quadtree-based spatial indexes, VLDB Journal 11 (2) (2002) 109–137.
[34] R. C. Nelson, H. Samet, A population analysis for hierarchical data structures, in: SIGMOD Conference, 1987, pp. 270–277.
[35] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, R. Kanneganti, Incremental organization for data recording and warehousing, in:

VLDB Conference, 1997, pp. 16–25.
[36] I. Gargantini, An effective way to represent quadtrees, Communications of the ACM 25 (12) (1982) 905–910.
[37] D. Comer, The ubiquitous b-tree, ACM Comput. Surv. 11 (2) (1979) 121–137.
[38] J. A. Orenstein, T. H. Merrett, A class of data structures for associative searching, in: PODS Conference, 1984, pp. 181–190.
[39] W. G. Aref, H. Samet, Extending a DBMS with spatial operations, in: SSD Conference, 1991, pp. 299–318.
[40] C. A. Shaffer, P. R. Brown, A paging scheme for pointer-based quadtrees, in: SSD Conference, 1993, pp. 89–104.
[41] G. Roumelis, M. Vassilakopoulos, A. Corral, Y. Manolopoulos, A new plane-sweep algorithm for the k-closest-pairs query, in: SOFSEM

Conference, 2014, pp. 478–490.
[42] G. Roumelis, A. Corral, M. Vassilakopoulos, Y. Manolopoulos, New plane-sweep algorithms for distance-based join queries in spatial

databases, GeoInformatica 20 (4) (2016) 571–628.

28

