8,393 research outputs found

    Data Aggregation and Packet Bundling of Uplink Small Packets for Monitoring Applications in LTE

    Full text link
    In cellular massive Machine-Type Communications (MTC), a device can transmit directly to the base station (BS) or through an aggregator (intermediate node). While direct device-BS communication has recently been in the focus of 5G/3GPP research and standardization efforts, the use of aggregators remains a less explored topic. In this paper we analyze the deployment scenarios in which aggregators can perform cellular access on behalf of multiple MTC devices. We study the effect of packet bundling at the aggregator, which alleviates overhead and resource waste when sending small packets. The aggregators give rise to a tradeoff between access congestion and resource starvation and we show that packet bundling can minimize resource starvation, especially for smaller numbers of aggregators. Under the limitations of the considered model, we investigate the optimal settings of the network parameters, in terms of number of aggregators and packet-bundle size. Our results show that, in general, data aggregation can benefit the uplink massive MTC in LTE, by reducing the signalling overhead.Comment: to appear in IEEE Networ

    Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes

    Get PDF
    We measure the conductivity spectra of thin films comprising bundled single-walled carbon nanotubes (CNTs) of different average lengths in the frequency range 0.3-1000 THz and temperature interval 10-530 K. The observed temperature-induced changes in the terahertz conductivity spectra are shown to depend strongly on the average CNT length, with a conductivity around 1 THz that increases/decreases as the temperature increases for short/long tubes. This behaviour originates from the temperature dependence of the electron scattering rate, which we obtain from Drude fits of the measured conductivity in the range 0.3-2 THz for 10 μ\mum length CNTs. This increasing scattering rate with temperature results in a subsequent broadening of the observed THz conductivity peak at higher temperatures and a shift to lower frequencies for increasing CNT length. Finally, we show that the change in conductivity with temperature depends not only on tube length, but also varies with tube density. We record the effective conductivities of composite films comprising mixtures of WS2_2 nanotubes and CNTs vs CNT density for frequencies in the range 0.3-1 THz, finding that the conductivity increases/decreases for low/high density films as the temperature increases. This effect arises due to the density dependence of the effective length of conducting pathways in the composite films, which again leads to a shift and temperature dependent broadening of the THz conductivity peak.Comment: Submitted to Journal of Physics D. Main manuscript: 9 pages, 8 figures. Supplementary material: 5 pages, 6 figure

    Finite Size Polyelectrolyte Bundles at Thermodynamic Equilibrium

    Full text link
    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite size aggregates

    Disease spread through animal movements: a static and temporal network analysis of pig trade in Germany

    Full text link
    Background: Animal trade plays an important role for the spread of infectious diseases in livestock populations. As a case study, we consider pig trade in Germany, where trade actors (agricultural premises) form a complex network. The central question is how infectious diseases can potentially spread within the system of trade contacts. We address this question by analyzing the underlying network of animal movements. Methodology/Findings: The considered pig trade dataset spans several years and is analyzed with respect to its potential to spread infectious diseases. Focusing on measurements of network-topological properties, we avoid the usage of external parameters, since these properties are independent of specific pathogens. They are on the contrary of great importance for understanding any general spreading process on this particular network. We analyze the system using different network models, which include varying amounts of information: (i) static network, (ii) network as a time series of uncorrelated snapshots, (iii) temporal network, where causality is explicitly taken into account. Findings: Our approach provides a general framework for a topological-temporal characterization of livestock trade networks. We find that a static network view captures many relevant aspects of the trade system, and premises can be classified into two clearly defined risk classes. Moreover, our results allow for an efficient allocation strategy for intervention measures using centrality measures. Data on trade volume does barely alter the results and is therefore of secondary importance. Although a static network description yields useful results, the temporal resolution of data plays an outstanding role for an in-depth understanding of spreading processes. This applies in particular for an accurate calculation of the maximum outbreak size.Comment: main text 33 pages, 17 figures, supporting information 7 pages, 7 figure
    • …
    corecore