352 research outputs found

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    BADANIE NIELINIOWYCH WŁAŚCIWOŚCI MEMRYSTORA

    Get PDF
    The study of nonlinear systems is an important research topic for scientists and researchers. Memristor, for a long time, it remained just as a theoretical element and rarely appeared in the literature because of having no simple and practical realization. In this paper, we reviewed the theoretical substantiation of the memristor and conducted a practical study of its nonlinear properties using the memristor company KNOWM of series BS-AF-W 16DIP. We also investigated the characteristics of the memristor via the LabView environment.Badanie systemów nieliniowych jest ważnym tematem dla badaczy i naukowców. Memrystor przez długi czas pozostawał elementem teoretycznym i rzadko pojawiał się w literaturze z powodu braku prostej i praktycznej realizacji. W tym artykule zostały przedstawione teoretyczne uzasadnienie memrystora i badania jego właściwości nieliniowych na przykładzie memrystora firmy KNOWM serii BS-AF-W 16DIP. Zostały przeprowadzone badania charakterystyk memrystora w środowisku LabView

    Machine Learning Based Compensation for Inconsistencies in Knitted Force Sensors

    Full text link
    Knitted sensors frequently suffer from inconsistencies due to innate effects such as offset, relaxation, and drift. These properties, in combination, make it challenging to reliably map from sensor data to physical actuation. In this paper, we demonstrate a method for counteracting this by applying processing using a minimal artificial neural network (ANN) in combination with straightforward pre-processing. We apply a number of exponential smoothing filters on a re-sampled sensor signal, to produce features that preserve different levels of historical sensor data and, in combination, represent an adequate state of previous sensor actuation. By training a three-layer ANN with a total of 8 neurons, we manage to significantly improve the mapping between sensor reading and actuation force. Our findings also show that our technique translates to sensors of reasonably different composition in terms of material and structure, and it can furthermore be applied to related physical features such as strain

    Black-box modeling of nonlinear system using evolutionary neural NARX model

    Get PDF
    Nonlinear systems with uncertainty and disturbance are very difficult to model using mathematic approach. Therefore, a black-box modeling approach without any prior knowledge is necessary. There are some modeling approaches have been used to develop a black box model such as fuzzy logic, neural network, and evolution algorithms. In this paper, an evolutionary neural network by combining a neural network and a modified differential evolution algorithm is applied to model a nonlinear system. The feasibility and effectiveness of the proposed modeling are tested on a piezoelectric actuator SISO system and an experimental quadruple tank MIMO system

    Deep learning applied to data-driven dynamic characterization of hysteretic piezoelectric micromanipulators

    Get PDF
    The presence of nonlinearities such as hysteresis and creep increases the difficulty in the dynamic modeling and control of piezoelectric micromanipulators, in spite of the fact that the application of such devices requires high accuracy. Moreover, sensing in the microscale is expensive, making model feedback the only viable option. On the other hand, data-driven dynamic models are powerful tools within system identification that may be employed to construct models for a given plant. Recently, considerable effort has been devoted in extending the huge success of deep learning models to the identification of dynamic systems. In the present paper, we present the results of the successful application of deep learning based black-boxmodels for characterizing the dynamic behavior of micromanipulators. The excitation signal is a multisine spanning the frequency band of interest and the selected model is validated with semi static individual sinusoidal curves. Various architectures are tested to achieve a reasonable result and we try to summarize the best approach for the fine tuning required for such application. The results indicate the usefulness and predictive power for deep learning based models inthe field of system identification and in particular hysteresis modeling and compensation in micromanipulation applications

    Organic electrochemical networks for biocompatible and implantable machine learning: Organic bioelectronic beyond sensing

    Get PDF
    How can the brain be such a good computer? Part of the answer lies in the astonishing number of neurons and synapses that process electrical impulses in parallel. Part of it must be found in the ability of the nervous system to evolve in response to external stimuli and grow, sharpen, and depress synaptic connections. However, we are far from understanding even the basic mechanisms that allow us to think, be aware, recognize patterns, and imagine. The brain can do all this while consuming only around 20 Watts, out-competing any human-made processor in terms of energy-efficiency. This question is of particular interest in a historical era and technological stage where phrases like machine learning and artificial intelligence are more and more widespread, thanks to recent advances produced in the field of computer science. However, brain-inspired computation is today still relying on algorithms that run on traditional silicon-made, digital processors. Instead, the making of brain-like hardware, where the substrate itself can be used for computation and it can dynamically update its electrical pathways, is still challenging. In this work, I tried to employ organic semiconductors that work in electrolytic solutions, called organic mixed ionic-electronic conductors (OMIECs) to build hardware capable of computation. Moreover, by exploiting an electropolymerization technique, I could form conducting connections in response to electrical spikes, in analogy to how synapses evolve when the neuron fires. After demonstrating artificial synapses as a potential building block for neuromorphic chips, I shifted my attention to the implementation of such synapses in fully operational networks. In doing so, I borrowed the mathematical framework of a machine learning approach known as reservoir computing, which allows computation with random (neural) networks. I capitalized my work on demonstrating the possibility of using such networks in-vivo for the recognition and classification of dangerous and healthy heartbeats. This is the first demonstration of machine learning carried out in a biological environment with a biocompatible substrate. The implications of this technology are straightforward: a constant monitoring of biological signals and fluids accompanied by an active recognition of the presence of malign patterns may lead to a timely, targeted and early diagnosis of potentially mortal conditions. Finally, in the attempt to simulate the random neural networks, I faced difficulties in the modeling of the devices with the state-of-the-art approach. Therefore, I tried to explore a new way to describe OMIECs and OMIECs-based devices, starting from thermodynamic axioms. The results of this model shine a light on the mechanism behind the operation of the organic electrochemical transistors, revealing the importance of the entropy of mixing and suggesting new pathways for device optimization for targeted applications
    corecore