44 research outputs found

    Weak Convergence of Probability Measures Revisited

    Get PDF
    The hypo-convergence of upper semicontinuous functions provides a natural framework for the study of the convergence of probability measures. This approach also yields some further characterizations of weak convergence and tightness

    A Convergence of Bivariate Functions aimed at the Convergence of Saddle Functions

    Get PDF
    Epi/hypo-convergence is introduced from a variational viewpoint. The known topological properties are reviewed and extended. Finally, it is shown that the (partial) Legendre-Fenchel transform is bicontinuous with respect to the topology induced by epi/hypoconvergence on the space of convex-concave bivariate functions

    Approximations of Semicontinuous Functions with Applications to Stochastic Optimization and Statistical Estimation

    Get PDF
    Upper semicontinuous (usc) functions arise in the analysis of maximization problems, distributionally robust optimization, and function identification, which includes many problems of nonparametric statistics. We establish that every usc function is the limit of a hypo-converging sequence of piecewise affine functions of the difference-of-max type and illustrate resulting algorithmic possibilities in the context of approximate solution of infinite-dimensional optimization problems. In an effort to quantify the ease with which classes of usc functions can be approximated by finite collections, we provide upper and lower bounds on covering numbers for bounded sets of usc functions under the Attouch-Wets distance. The result is applied in the context of stochastic optimization problems defined over spaces of usc functions. We establish confidence regions for optimal solutions based on sample average approximations and examine the accompanying rates of convergence. Examples from nonparametric statistics illustrate the results

    Variational Analysis of Constrained M-Estimators

    Get PDF
    We propose a unified framework for establishing existence of nonparametric M-estimators, computing the corresponding estimates, and proving their strong consistency when the class of functions is exceptionally rich. In particular, the framework addresses situations where the class of functions is complex involving information and assumptions about shape, pointwise bounds, location of modes, height at modes, location of level-sets, values of moments, size of subgradients, continuity, distance to a "prior" function, multivariate total positivity, and any combination of the above. The class might be engineered to perform well in a specific setting even in the presence of little data. The framework views the class of functions as a subset of a particular metric space of upper semicontinuous functions under the Attouch-Wets distance. In addition to allowing a systematic treatment of numerous M-estimators, the framework yields consistency of plug-in estimators of modes of densities, maximizers of regression functions, level-sets of classifiers, and related quantities, and also enables computation by means of approximating parametric classes. We establish consistency through a one-sided law of large numbers, here extended to sieves, that relaxes assumptions of uniform laws, while ensuring global approximations even under model misspecification

    When uniform weak convergence fails: Empirical processes for dependence functions and residuals via epi- and hypographs

    Full text link
    In the past decades, weak convergence theory for stochastic processes has become a standard tool for analyzing the asymptotic properties of various statistics. Routinely, weak convergence is considered in the space of bounded functions equipped with the supremum metric. However, there are cases when weak convergence in those spaces fails to hold. Examples include empirical copula and tail dependence processes and residual empirical processes in linear regression models in case the underlying distributions lack a certain degree of smoothness. To resolve the issue, a new metric for locally bounded functions is introduced and the corresponding weak convergence theory is developed. Convergence with respect to the new metric is related to epi- and hypo-convergence and is weaker than uniform convergence. Still, for continuous limits, it is equivalent to locally uniform convergence, whereas under mild side conditions, it implies LpL^p convergence. For the examples mentioned above, weak convergence with respect to the new metric is established in situations where it does not occur with respect to the supremum distance. The results are applied to obtain asymptotic properties of resampling procedures and goodness-of-fit tests.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1237 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A variational approach to a cumulative distribution function estimation problem under stochastic ambiguity

    Full text link
    We propose a method for finding a cumulative distribution function (cdf) that minimizes the (regularized) distance to a given cdf, while belonging to an ambiguity set constructed relative to another cdf and, possibly, incorporating soft information. Our method embeds the family of cdfs onto the space of upper semicontinuous functions endowed with the hypo-distance. In this setting, we present an approximation scheme based on epi-splines, defined as piecewise polynomial functions, and use bounds for estimating the hypo-distance. Under appropriate hypotheses, we guarantee that the cluster points corresponding to the sequence of minimizers of the resulting approximating problems are solutions to a limiting problem. In addition, we describe a large class of functions that satisfy these hypotheses. The approximating method produces a linear-programming-based approximation scheme, enabling us to develop an algorithm from off-the-shelf solvers. The convergence of our proposed approximation is illustrated by numerical examples for the bivariate case, one of which entails a Lipschitz condition

    Existence and uniqueness of viscosity solution for Hamilton-Jacobi equation with discontinuous coefficients dependent on time

    Get PDF
    The main result is a proof of the existence of a unique viscosity solution for Hamilton-Jacobi equation, where the hamiltonian is discontinuous with respect to variable, usually interpreted as the spatial one. Obtained generalized solution is continuous, but not necessarily differentiable
    corecore