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1. INTRODUCTION.

One of our motivation is to introduce a notion of convergence

well adapted to the study of extremal problems that can not be redu-
ced to minimization problems. For example, let us consider a seqguence

of variational inequalities

< Aeue - f£f,v - ue > 2 0 ¥ v e x®
£ u € KE
€
where ¢ is a parameter describing an approximation, or a perturbation,
homogenization... procedure. The operators (AE)E>0, the contraints
K& are varying with e, and the problem is to determine the behaviour,

as ¢ goes to zero, of the solutions (ue) of the corresponding

>0
problems (16). When the operators A* are subdifferentials of convex
functionals and K° is convex, the problems (16) can be viewed as mini-
mization ones; but in general (take at general operators of the
calculus of variations, fog example non symmetric second order
elliptic operators, parabolic operators...) (16) does not come from
a minimization problem. However, it can always be expressed as a
saddle value problem, under rather general assumptions, as already
noticed by Glowinski, Lions and Tremoliéres [1], see also
Rockafellar [13].
1.2 PROPOSITION. Let V be a vector space and denote by V' 7ts dual
space. Given A : V —= V', g monotone operator, i.e. for all
X, yeV, <AX-Ay, Xx-y> 2 0, and ¢ : V— J-=,+=] g
real-valued function defined on V, ¢ ¥ =, for any f€ V' , the
following statements are equivalent

(i) u Zs a solution of the variational inequality

(1.3) <Au-f, v-ud>+4¢(v) ~¢(u) 20 Vvev



(ii) (u,u) is a saddle point of the function H : VXV —> R

H(u,v) = <au-f, u=-v >+ ¢(u) - ¢(v).

PROOF. By definition of H, u is a solution of the variational ine-

guality (1.3), if and only if

(1.4) H(u,v) § 0, for all v € V.

Note that H(u,v) _ 0 whenever u is a solution of (1.3). Thus

it necessarily satisfies

H(u,v) § H(u,u) for all v € V.
On the other hand, for all w e V

<Aw - f, w-u>> + ¢(w) - ¢(u)

H(w,u)

<AW - Au, w-u> + <Au-f, w-u>>+ ¢(w) - ¢(u)

"

= < AW - Au, w-u > - H(u,w)

e O.
This last inequality following from the monotonicity of A and (1.4).
So, for all v e Vand w € V, H(u,v) £ H(u,u) $ H(w,u) which means

that (u,u) is a saddle point of H.
Conversely if u is a saddle point of H, for all v € V
H(u,v) £ H(u,u) = 0,

which from (1.4) implies that u is a solution of the variational

inequality (1.3).0

Let us now examine an important example : take V = H;(Q), 1}

a bounded regular open set in RN, V' = H1(q).
N
€ ] € Ju
Af(u) = - ) = (aj.(x) £=)
i,3=1 axi ij axj

where the aij e L7(R) satisfy :



€ 2
Dajy & €52 2l¢l

with A > 0 and M independent of x and €. We do not require that

1]
to agi. This class of problems is being studied by A. Brillard.
For simplicity, we only consider the case with no constraints on u,

the matrix (aij) be symmetric, i.e. a®. is not necessarily equal

i.e. K¥ = V or equivalently ¢€ = 0. So, the variational inegualities

(1.1€) reduce to the linear partial differential equations afu = £,

The natural notion of convergence At —Ee A, as introduced by De

Giorgi and Spagnolo [2] and Murat and Tartar [3], is

1 1

Q) : u = @) E——u = @)
w=V

(1.5) for all f € H £,

i.e. for the weak topology of H;(Q). Let us examine what is the
corresponding notion of convergence for the saddle-functions
(1.6) H® (u,v) = < A%u, u - v >.
1.7. PROPOSITION. The following statements are equivalent
e G

(i) A" —» A

(ii) HB® — H in the following sense : for every u,v € V

I

L4 u, — u :3v€ — v such that lim inf He(ue,ve) H({u,v),
(1.8) €0
ve —V .aut — u such that H(u,v) 2 lim sup He(ue,ve).

e+0

where ——= denotes weak-convergence.

PROOF. Let us first note that A® —C» A if and only if (af)® G, at

where (AE)t and At are the elliptic operators with the transposed

. €\t _ _¢ t _
matrix (aij) = aji and (aij) = aji'



Let us first verify that (i) = (ii). Fix u. —> u and
v ¢ V. We are looking er a sequence v — v such that
lim inf < AEuv, u. - v, > 2 <Au, u-v >

€ €
e~>0
Let wE be the solution of

(1.9) (Ac)tw€= At - v,

By the definition of G-convergence for the sequence of operators

t to At, as € + 0 we have

(a%)
W —u-v
€
in the weak topology of V. Set
v. T u - w_ .
€ € €
Then v —> u - (u - v)

v and u - v_ = w_. Hence
€ € €

€ €
< - > < >
A ue, uE ve \ A ue, wE
et
< >
ue, (A~) We

= <u, At(u -v) >
as follows from (1.9). Letting ¢ tend to 0, we get

lim < Afu , u_ - v_ 5% = < u, At(u -v) >
€0 € € €

< Au, u -~V >,
This ccmpletes the proof of the first part.of (1.8). Next, fix

v._—> v and u € V. This time we search for a seguence u — u

€
such that
< AU, U-v>2 lim sup < A%u , u_ - v_ >.
€40 e’ e €
Let u_ be the solution of the equation A®u = AU . Then
€ - = -
< A ue, u€ v€ > = < Au, ue ve >

and since u, — u and Ve —> Vwe get

1im < Afu ;s U_—-V_> = < AU, u-v>

Next we prove that (ii) = (i), that is to say, we verify if the

conivergence of the saddle functions H, has the desired variational



properties. Fix f ¢ V and for e > 0, let U denote the solution
of the eguation a®u = f. The uniform coerciveness of the operators

[

' yields the boundedness of the u~ in V. Passing to a subsequence

if necessary, we have that

u — >~ E'
€
~ for some u. To complete the proof we need to show that Au = f. This
will follow from the unigueness of the solution of the equation
Au = f. From (1.8), for any v € V there exists Ve —/ Vv such that

lim inf < 2%u , u - v_ > 32 < A4, u-v >

€ € €
€+

which means that

lim inf < f, uo - v > 2 <Au, u-v>

e+0
or still

< f,Uu-Vv>2<AU, u-v>,
and thus for all v € V
<Au-f, u=-v>%50

and Au = f. O

In the preceeding example, we like to stress the fact that
the saddle functions H® are not convex-concave. The lack of con-
vexity comes from the non-symmetry of the monotone operators af.
Note also that in this example is not guite necessary to require
both parts of (1.8), since the first part implies the second. This
will not be the case in general, both conditions of (1.8) are
usually necessary to obtain the desired variational properties.

Our next example is intented to illustrate the problems that
arise in connection with Lagrangians and Hamiltonians. Let us
consider the following class of optimization problems, for v = 1,

2,...



. v
(1.10V) Minimize fo(x)

subject to fz(x) s 0 i Treee,m
xeCcX
with X a reflexive Banach space and C a closed subset. The asso-

ciated Lagrangian function is
- m
: v v .
(1.11) Lv(x,y) =[£J(x) + 121 y; £5(x) if X e Candy 2 0
+o if x¢édCandy 2 0

- o otherwise.

We think of the problems (1'10v) and their Lagrangians as the

approximates of some limit problem :
(1.12) Minimize fo(x)
subject to fi(x) £ 0 i=1,...,m

xe CcX

with associated Lagrangian

m
(1.13) Lix,y) = [£ (x) + } y, £.(x) if xe€e Candy 2 0
o jEq 1

+o if x ¢ Cand y 2 0

- o oOtherwise.

A typical situation is when the problems (1.1Q) are obtained from
(1.12) as the result cof penalization or barrier terms being added
to the objective, or when the (1'10v) are the restrictions of (1.12)
to finite dimensional subspaces of X, and so on. In particular,
when dealing with numerical procedures, one is naturally interested
in the convergence of the solutions, but also in the convergence

of the multipliers, for reason of stability [4] or to be able to
calculate rates of convergence such as in augmented Lagrangian

méthods. From the convergence of the {fz, v =1...} to the fi



one cannot conclude in general that the feasible sets

s, = {x e lei(x) <0, i=1,...,m}
converge to the feasible set of the limit problem,

s ={xecl[fj(x) £0, i=1,...,m}.
A fortiori, it is not possible to obtain the convergence of the
infima or of the optimal solutions. However, there are some relati-
vely weak conditions that can be imposed on the convergence of the
objectives and of the constraints that will guarantee the conver-
gence of the Lagrangians Lv to L in a sense similar to that induced
by G-convergence on the saddle functions (1.6) associated with the
partial differential equations A%u = f. The sought for, convergence
of the solutions and multipliers will ensue.

Given {f;fY : X —» R, v = 1,...} a collection of func-

tions, we say that the fV epi-convergence to £ if for all X

(1.14) for all x_-—> x, lim inf £°(x ) 2 £(x),
v o
and
(1.15) there exists X, —> X with lim sup fv(xv) < f(x).
AV L o -]

As is well-known, epi-convergence is neither implied nor does
it imply pointwise convergence, but they coincide, for example,
if the sequence of functions is monotone, either increasing or
decreasing'(provided f is lower semicontinuous). We have so-callegd
continuous convergence if condition (1.15) is replaced by the stron-
ger requirement

(1.16) for all X, — X, li€+zup fv(xv) g f£(x).
Continuous convergence is much stronger that both epi- and

pointwise-convergence.



1.17 PROPOSITION. Suppose the {fz, v =1,...} epi-converge

f , and for all i = 1,...,m, the {fz, v =1,...} continuously

o’
converge to fi. Then, the assoctiated lLagrangian functions Lv con-
verge to the Lagrangian L in the following sense : for all x € X
and y e ¥ .

for any X, —> X, there exists Y, —> Y such that

lim inf L (x ,y.) 2 L(x,y)
Vo viTvity !

(1.18)

for any Yy, —7vY, there exists X, —> X such that

lim sup Lv(xv’yv) s Lix,y).

Y
Moreover, suppose that the Lagrangians Lv converge to L in the above
gsense, and for some subsequence {vk, k = 1,...} the sequence
{(§k,§k), k = 1,..., which converge to (X,¥) is such that §k solves
problem (1.10Vk) and ?k is a (Lagrange) multiplier. Then X solves

(1.12) and ; is an assoctated multiplier.

PROOF. We start by showing- that the conditions imposed on the fg
and {fz, i=1,...,m} yield (1.18). Let x" be any sequence conver-
ging to x and set yv = y for all v. We have to verify that when
xe€ Cand y 2 0

m m
lim inf (fg(xv) + i£1yi £,(x,)) 2 £ (x) + Z yi £;(x),

Vo i=1
the cases when y ¥ 0 and/or x ¢ C are automatically satisfied.
Since C is closed, any sequence that converges to x # C is such

that xV

€ X\C for v sufficiently large. The inequality in fact
follows directly from (1.14) which is satisfied by both the epi-
convergence of the fg and the continuous convergence of the fz,
i=1,...,m.

Next we have to verify that for any sequence Y, —> Y

there exists x° — x such that when x ¢ Candy 2 0
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m m
. \Y Vv ¢V
113*:up (£ (x) + iz1yi £i(x,) s £_(x) + iz1yi £, (x).

When x ¢ C or/and y ¥ 0 the desired relation between I%T+gup Lv

and L is automatically satisfied. The preceeding inequality then

follows from (1.15) and (1.16).

1f Eksolves (1'10vk) and ?k is an associated multiplier. ,

we have that for i = 1,...,m

k

kx*) = o,

=k

=k k <k v
y 20, fi(x ) S0 andy; f;

—k Vk

X ¢ argmin (fo (x) + y};_ f:_k(x)) .
xeC

ne1yg

i=1
This is equivalent to : for all x and y

—k -k -k -k
L (xX7,y) s L (x7,y) sL (x,v)
\)k ’ \)k ’ \)k ’ ’

with the first inequality equivalent to the first part of the
optimality conditions and the second inequality is just a restate-
ment of the second part of the optimality conditions.

Thus the assertion will be complete if we show that

(x,y) = lim(ik,yk) is a saddle point of L, i.e.

koo
L(x,y) s L(x,y) € L(x,y).
First note that if the sequence Lv converges to L in the sense
of (1.8) so does the subsequence {ka, k = 1,...} . Since the
(Ik’yk) are saddle points, for any pair of sequences {xk, k =1...}

and {yk, k = 1...} converging to x and y respectively, we have

lim inf L, (x%,v*) s lim inf L, x5, v5)

k4o k k> k
$ lim sup L (Ek,yk) $ lim sup L, (xk,yk)
ke k ko k

In particular the {xk, k = 1...} and {yk, k = 1...} could have been

those satisfying (1.18), and hence

L(EIY) < L(X,;)
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which yields the saddle point property of (X,y). This in turn

yvields the final assertions of the Proposition. O

Proposition 1.17 extends the results of T. Zolezzi [5,
Theorem 4] about stability in mathematical programming. Many
assumptions, such as compactness conditions on the feasible regions,
can be ignored when one use this type of convergence rather than

convergence notions that only involve the x variables.
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2. EPI/HYPO-CONVERGENCE FROM A VARIATIONAL VIEWPOINT.

Let {F’ : XxYy — R = [-=, +<],v = 1,...} be a sequence
of bivariate functions, and for each v, let (xv,yv) denote a saddle

point of Fv, i.e.
(2.1) Fv(xv,y) < Fv(xv,yv) g Fv(x,yv) for all x ¢ X and y ¢ Y.

We show that the convergence of saddle points and saddle values
implicitly subsumes certain topological properties for the sequence

{F¥, v = 1,...} which lead naturally to the definition of epi/hypo-

1
convergence.

Relation (2.1) yields estimates for x, and Yy and hence

\V

also relative compactness properties for the sequence {(xv,yv),
v = 1...}. Let us assume that for some topologies 1 and o, a
subsequence {ka, k = 1...} T-converge to x and {yvk ; k= 1...}
o-converge to ¥ ¢ Y. Neither T nor ¢ need be given a priori, they
could for example, be the result of some uniform coerciveness pro-
perties of the F’ and compact embeddings. For any pair
{x,y) € XxY, not only does (2.1) hold but also

sup, . y Fv(xv,v) < infu cU Fv(u,yv)
for all U e nT(x) and V e ﬂo(x) where W%(x) and d%(y) are the 1-
and o-neighborhood systems of x and y respvectively. Since

X, —2 x and y
Yk T Vk

and k large enough

——g_y, for any pair (U;,Vy)ts'nT(x) x’ﬂo(y)

X = U—~ and V—
v X fop €Y

and hence

(2.2) 1nfu e U; sup, . v ka(u,v) g sup_ V§ infu‘au Fv (u,v).



-12-

This holds for any convergent subsequence of the {(xv,yv),v = 1,...}
and since for any seguence of extended real-numbers {av,v = 1,...}
inf lim inf a, = lim inf a,

{Vk}C{1,--.} koo k AV

and

y g
SP(u,) €1, L0 SUP 3, = lim sup a,

it follows that

lim inf inf sup F¥ (u,v)

Voo ueU; veV

(2.3)

g 1lim sup sup_ infu R Fv(u,v),

Yoo V§ ¢ U

which must hold for any pair (x,y).
To extract as much information from (2.3) at the (local)

pointwise level, we use the fact that the above holds for all
U e’ﬂT(x), U e’nT(E), Y e’no(y) and V§é470(§) to take infs and
sups with respect to these neighborhood systems. Since
inf sup 2 sup inf, and because the lim inf and lim sup that appear
in (2.3) are monotone with respect to U and V as they decrease to x
and y respectively, the sharpest inequality one can obtain at x and
Yy is
Fv(u,v)

inf (§)11m inf 1nfu

AVE: o]

sup

Ve M y) *Pu e, eU SWPyevy

(2.4)

. . . v
s supUeO?T(x) lané/)?o (y)llr\:} Sup sup, .y lnfu'c—_ UF {u,v).

-»-00

The expression which appears on the left of the inequality is a func-
tion of X and y, the one on the right depends on x and y. Let us
denote them by h/e-1li F¥ and e/h-1s FY respectively ; this notation
to be justified later on. Rewriting (2.4), we see that whenever x

and y are limit points of saddle points, then

(2.5) h/e-1i FY(X,y) s e/h-1s F"(x,Y)
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for all x ¢ Xand y ¢ Y. In particular this implies that
h/e-1i F’(X,y) € e/h-1s Fv(§,§) for all y
and

h/e-1i F°(X,y) s e/h-1s FY(x,y) for all x.

e/h-1s F’, then the preceeding inequalities

Suppose F' = h/e-1li FY
imply that (X,y) is a saddle point of F'. Since admittedly we seek
a notion of convergence for bivariate functions that will yield the
convergence of the saddle points to a saddle point of the limit
function, the function F', if it exists, is a natural candidate.
This is somewhat too restrictive and would exclude a large class
of interesting applications. In fact any function F with the pro-
perty that

(2.6) e/h-1s F¥ s F s h/e-1i F’
will have the desired property, since then

F(x,y) § h/e-1i FY(X,y) € e/h-1s F'(X,y) £ F(X,y)
and

F(X,y) s h/e-1li FY(X,y) < e/h-1s F’(x,y) $ F(x,y)
for all x ¢ X and y ¢ Y, i.e. (X,y)is a saddle point of F.

We started with a collection of bivariate functions whose
only property was to possess a (sub)sequence of convergent saddle
points. If the limit of such a sequence is to be a saddle point
of the limit function, we are led to certain conditions that must
be satisfied by the limit function(s), and it is precisely these
conditions that we shall use for the definition of epi/hypo-
convergence.

We now review this at a somewhat more formal level. As we
have seen, we need the two functions associated to the sequence
{r¥, v=1,...}

h/e=1i F° = h /e -1i F’ = hypo_/epi_-lim inf F"

Vo

e/h - 1s F’ = er/ho - 1s FY = epiT/hypoO - lim sup F’

Voo
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with
. oV _
ho/er—ll F'(x,y) =
(2.7) '
inf sup . . . v
VeN (y) Ue T, (x) 11mvi:f inf .y SUP, v F(u,v)
called the hypo/epi-limit inferior, and
v -
eT/hc-ls F (x,y) =
(2.8)
. inf : 13 i v
SUPy ¢ N (%) iy e Ny (¥) lmvi:p SUP, ¢y Inf ey Folusv)

called the epi/hypo-limit superior. The properties of these limit
functions will be reviewed in the next Section.
A (bivariate) function F is said to be an epi/hypo-1limit

of the sequence {F', v=1,...} if

(2.9) e /h,~ls F’ s F £ h_/e -1i FV.
Thus in general epi/hypo-limits are not unique, i.e. the topology
induced by epi/hypo-convergence on the space of (bivariate) func-
tions is not Hauédorff. This is intimately connected to the nature
of saddle functions, as ié again exemplified in Section 7.

As already suggested by our discussion, this is not the
only type of convergence of bivariate functions that could be de-
fined. In fact our two limit functions are just two among many
possible limit functions introduced by De Giorgi [6] in a very
general setting and called I'-limits. In his notation

T(N", 17, ¢") lim F’(u,v)
Vo

u-+x
vy

v
h /e -11 F" (x,y)

and

r(n*, ¢, 7)) 1lim FY(u,v)

(Ve
vry
u+x

v
eT/hO—ls F ' (x,y)

(Wwe have adopted a simplified notation because it carries important
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geometric information, cf. Section 3, that gets lost with the T-
notation). It is however important to choose these two functions
since, nbt only do -they arise naturally from the convergence of
saddle points, but in some sense they are the "minimal" pair, as
made clear in Section 4 of [7] . Other definitions have been pro-
posed by Cavazutti [8], [9], see also Sonntag [10], that imply
epi/hypo-convergence, but unfortunately restrict somewhat the
domain of applications.

Finally, observe that when the F’ do not depend on y, then
the definition of epi/hypo-convergence specializes to the classical
definition of epi-convergence (with respect to the variable x). On
the other hand if the F' do not depend on x, then epi/hypo-
convergence is simply hypo-convergence. Thus, the theory contains
both the theory of epi- and hypo-convergence.

The variational properties of epi/hypo-convergence, that

motivated the definition, are formalized by the next Theorem.

2.10 THEOREM [7] . Suppose (X,1) and (Y,0) are two topological
spaces and {FY, v = 1,...} a sequence of bivariate functions, defined
on XxY and with values in the extended reals, that epﬂT/hypoo-
converge to a function F. Suppose that for some subsequence of func-—
ttons {F. , k = 1,...} with saddle points (x,,y,) i.e. for all

Vi k’'*k
k=1,...

F o(x.,y) s F, (x_,y,) sF (x,5.),

Vi k Vi k''k Vi k

the saddle points converge with X = 1-lim X, and y = o-lim y,_. Then
koo k k> k

(x,Y) is a saddle point of F and

F(XIY) = ]](--J;g F\)k (Xk:Yk)
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The second property which gives to this notion of convergence
a great flexibility and renders it sigrnificant, when applied to
variational problems, is its stability properties with respect to

a large class of perturbations.

2.11 THEOREM. Suppose X,Y and the {Fv,v = 1,...} are as in Theorem
2.10 with
. . v
F = eplT/hypoo-llmv*mF .

Then, for any continuous funetion G : (X,1)x(Y¥,0) — R,

_ . v v
F+G-= epJ.T/hypoo llmv*m(F + G).

PROOF. Since G is continuous at (x,y), for every € > 0 there exists
U, € WT(x) and V_e¢ fﬂc(y) such that for all u e U_, v e V_

G(x,y) - € § G(u,v) s G(x,y) + ¢
From this, it follows that

e/h-1s(F¥ + G) (x,y)

= sup inf lim sup sup inf_  (FY + G) (u,v)
U‘:.UE VC’VE Y vev uevu !
2 supy _ v, J.nfche ln\r)\%soup |:supV ey Infy o y(F, (W,v) + G(x,y) - €)]

2 (e/h-1s F) (x,y) + G(x,y) - .

This holds for every € > D0 and thus

e/h-1s(F’ + G) 2 (e/h-1s F’) + G.
Again using the continuity of G, one shows similarly the converse
inequality which thus yields

e/h-1s(F¥ + G) = G + e/h-1s F’ .
The same arguments can be used to obtain the identity involving
e/h~1i(F¥ + G) and e/h-1i F’. Thus, if

e/h-1s F' £ F < h/e-1i F’
it implies that

e/h-1s(F¥ + G) € F + G £ h/e-1i(F’ + G)

which is precisely what is meant by F+G = e/h-1im(F’ + G).
)
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3. PROPERTIES OF EPI/HYPO-LIMITS. GEOMETRICAL INTERPRETATION.

In general, an arbitrary collection of saddle functions
does not have an epi/hypo-limit, and when it does the limit is
not necessarily unique. This all comes from the fact that, in
general, the two limit functions are not comparable. For example,
let X = Y = R and for v odd

Y (x,y) = |y x| on [0,1]x[0,1\{ (0,00} ,
arbitrary when (x,y}) = (0,0},

- o if x €[0,1] and y &[0,1],

+ = otherwise,

and for v even, FY = 2 F1. Then

y xV <2 y "1 = e/h-1s F’(x,y)

h/e-1i F’(x,y)
on ]0,1]x]0,1]
bat
h/e-1i FY(0,0) = +=> e/h-1s F’(0,0) = 0.
When a sequence of bivariate functions {Fv, v = 1,...} epi-hypo-

converges, its epi/hypo-limits form an interval
(3.1) [e/h-1s F’, h/e-1i FY] = {F:XxY>R|e/h-1ls F’' $F £ h/e-1i F"}

These two limit functions have semicontinuity properties that follow
directly from the definition and the following general lemma [7,

Lemma 4.30] .

3.2 LEMMA. Suppose (X,1) is a topological space and g an extended

real valued function defined on the subsets of X. Then the function
X —> suPUE‘WT(x) g (U)

is 1-lower semicontinuous, and the function

X +— infUG’QT(x) q (U)
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is 1-upper semicontinuous.

PROOF. Simply note that for every x
glx) = supUG4nT(x)q(U) s cng(x) = suPUe‘nT(x)lnfueaUg(u)’

as follows from the definition of g, since

g(u) = infueug(u]. ]

3.3. PROPOSITION. Suppose {Fv:(X,o)X(Y,T) +R,v=1,...} i a
sequence of bivariate functions. Then for all y,
x —> e /h -1s F(x,y)
8 1-l.8c. in x , and for all x
y —> h /e -li FY(x,y)
i8 O-u.g8c. in Y.
One can also derive the semicontinuity properties of the

limit functions from their geometrical interpretation as done in [7]

3.4. THEOREM. Suppose {F':(X,0)x(¥,t) - R, v = 1,...} is a sequence

of bivariate functions. Then for every yveY and xeX

epi(e/h-1s Fv)(.,y) = Lim inf epi Fv(.,y'),
v' oy

and

hypo (h/e-1i FY) (x,.) = Lim inf hypo FY(x',.).

M

Tﬁus the epi-hypo-convergence of a sequence of bivariate functions
is a limit concept that involves both epi- and hypo-convergence.
That is clearly at the origin of our terminology. However note

that both formulas require that limits be taken with respect to

both v and either x or y, and can not be equated with the epi- or
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hypo-convergence of the univariate functions FY(.,y) and F'(x,.)
respectively. It is a much weaker notion, more sophisticated, which

does not allow the two variables x and y to be handled independently.
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4. EPI/HYPO-CONVERGENCE : THE METRIZABLE CASE.

In the metric case, or more generally when (X,t) and (Y,0)
are metrizable, it is possible to give a representation of the limit
functions in terms of sequences that turn out to be very useful in
verifying epi/hypo-convergence, cf. E7, Corollary 4.4] . The formu-
las that we give here in terms of sequence--rather than subsequence--
are new and thus complement those given earlier in [7, Theorem 4.10

and Corollary 4. 14] .

4.1 THEOREM. Suppose (X,t) and (Y,0) are two metrizable spaces, and
{FV:XxY > R, v = 1,...} a sequence of functions. Then for every

(x,y) € XxY

(4.2) e/h-1s Fv(x,y) = sup min lim sup Fv(x Y. ).
Yy 5 Y Xy ¥ Vo VT
Yk
= sup min lim sup F (%, ,Y.)
{vk}cN xk—_: S k'Tk’’
Yy T Y
and
(4.3) h/e-1i FY(x,y) = inf max lim inf FY (x
(x,y x\)_{ x yv?y - ( \)Iy\))l
Yk
= lnf{vk}cN maxyk_6 y 11E+;nf F (xk,yk)
X, F X

These characterizations of the limit functions yield directly the

following criteria for epi/hypo-convergence.

4.4 COROLLARY. Suppose (X,t) and (Y,0) are metrizable, and
{FV:XxY > R, v = 1,...} a sequence of functions. Then the following

assertions are equivalent
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= - - ‘\)
(4.5) F = eT/h0 lim F

(4.6) (i) For aZZ_yv —% Y+ there exists X, == X such that

lim sup FY (x Y. ) € Fx,y),
Voo V] vV

and

(ii) for all X, —=% X, there exists Yy, =% Y such that

C v
F(x,y) £ lim inf F (x,y ),

o

hold for all (x,y) ¢ XxY,

(4.7) (i) for all {vk,k=1,..;}cN, Yy TV there exists Xy —= X
Yk
such that 1lim sup F (xk,yk) < F(x,y)
k-+o0
and

(ii) for all {vk}CN, X) X X there exists Y %Y
Yk
such that F(x,y) £ lim inf F (xk,yk)
ko
hold for all (x,y) € XxY.
PROOF OF THEOREM 4.1. Since e/h-1s F’ = -(h/e-1i{-F’)) it clearly

suffices to prove one of the identities (4.2) or (4.3), say (4.3).

We denote by G and H the following functions

(. \V
Gi(x,y) = lnfxv'_’ % supyv — ll$+inf F (xv,yv),
and
Hi(x,y) = inf{v }e N sup lim inf ka(xk,yk)
k Yy ™% ko
xk_"l'x

Obviously G > H, thus to obtain (4.3) we only need to prove that
G < h/e-1i F° £ H.

First, we show that G € h/e-1i F°. There is nothing to prove if

h/e~1i FY = + =, so let us assume that for some pair (x,y),

h/e~-14i Fv(x,y) < o, "Given any 8 > h/e-1i Fv(x,y), the definition
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of h/e-1i F’ yields a neighborhood Vs¢sfn0(y) such that for all
U é‘yk(x)

e s \V
B 2 lim inf 1nfu Sque.VB F’" (u,v).

AVE o]

< U
Let {Uu, u=1,...} be a countable base of open neighborhoods of x,
decreasing with u to {x}. The preceeding inequality with U replaced

by Uu' implies the existence of a sequence {Xv c Uu, v = 1,...} such

i}
that
s \Y
B 2 1lim inf sup F (x. ,v).
Voo ve VB Vi
Since this holds for all u, we get that
8 2 lim sup lim inf SUp, . v Fv(xv V).
J-+co Vo B “

We now rely on the Diagonalization Lemma, proved in the Appendix,
to obtain a sequence {xv =Xy, uw)’ V= 1,...} with v ¥ p(v) increa-
sing (which implies that X, —= x) such that

8 2 lim inf sup

v+
‘Now, for any seguence Y, =z Y, for v sufficiently large y e VB and

\Y

vev F (XVIV).

B
hence

. \Y
B 2 lim inf F (x ).
- VER 4V

The above holds for any sequence {yv,v = 1,... c-converging to y.

Using this and the fact that the X, T-converge to x we have that

. s AV
B 2 supyv__q y lim inf F (xv,yv)

g v+
and also

B 2 inf Py, lim inf Fv(xv,yv) = G(x,y).

e £ A R
Since this holds for every 8 < h/e-1i Fv(x,y) we get that
h/e-11 F¥ 2 G.
Next we show that H 2 h/e-1i FV. Again there is nothing to
prove if h/e-1i F¥ = - », so let us assume that for some (x,y),

h/e-1i FY(x,y) > - =. The definition of h/e-1i F' implies that



_23_

given any a < h/e-1li Fv(x,y) and any Ve‘ﬂo(y) there corresponds a

neighborhood U = Uu,V of x such that

a < lim inf infu Fv(u,v).

\)—PW

Supv cV

cyu
Let {Vu, u=1,...} be a countable base of open neighborhoods of vy,
decreasing with p to {y}. To any such V“, there corresponds Uu
with

o < lim inf infu(:_'U sup Fv(u,v)
\) o

veV
i

For any subsequence {vk, k=1,...} and any X, —% X

T
a < 11E+;nf supVG'Vu ka(xk,v)
because for k sufficiently large X, € Uu and lim inf £ lim inf.
AVE 2. ) v, =0
k

This implies the existence of a seguence {qu' k=1,...} such that

< 1li inf F .
a 112 i: vk(xk”yk,u)

This being true for any u, we get

o € lim inf lim inf ka(xk’yku)

U= koo
This and the Diagonalization Lemma A.1 of [7, Appendixﬂ yields a

sequence {yk = Yk,u(k)e Vier k=1...} such that

a $ lim inf F. (x_,y.)
Kor o Vi k’‘k

and hence

a S sup lim inf Fv (xk,yk)

Yk 7Y ke k
Since this holds for any subsequence {vk, k=1,...} and Xy —% X,
o £ H(x,y). This being true for any o < h/e-1li FY, we finally get
h/e-11 F¥ < H. g
In the metrizable setting it is also possible to characte-
rize the epi/hypo-convergence in terms of the Moreau-Yosida

approximates [7, Section 5] . Here we review briefly the main results
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4.8 DEFINITICN. Let (X,t) and (Y,0) be metrizable, and dT and
d  metrics compatible with 1 and 0 respectively ; and F:XxY + R
a bivariate function. For A > 0 and u > 0 , the lower Moreau-

Yosida approximate (with parameters X and W) is

F+(X,u,x,y) = sup, .y infue.x[F(u'V) + f%d

and the upper Moreau-Yosida approximate (with parameters XA and u) is

[F(u,v) + 21a% (u,x) - =4

sup 2h T

+ _ s
F (AJUIXIY) = lnfuex veVY

4.9 THEOREM. Suppose {F°, v =1,...)} is a sequence of extended-
real valued bivariate functions defined on the product of the metric
spaces (X,dT) and (Y'do) . Suppose there exists r > 0 and some pazir

(uo,vo) ¢ XXY such that Fv(uo,v) g r[dg(v,vo)+1] and

Fv(u,v) 2 - r[df(u,uo) + dg(v,vo)+1] for all v = 1,... . Then

e/h-1s FY(x,y) = Sup, 4 infu>0 lim sup Fv+(l,u,x,y).

AVE o -]

If there exist r and (uo,vo) such that for all v= 1,...

2 . 2 2
F'(u,v,) & = rfaf(u,u ) +1]'and F' (u,v) s + rlal(u,u )+ aZ(v,v)+1] ,
then

h/e-11 FY(x,y) = inf o sup,,, lim inf F (A, m,x,y) .
AVE 2

The Moreau-Yosida approximates [7, Theorem 5.8] are locally
equi-Lipschitz, at least when the bivariate functions FY can be
minorized/majorized as in Theorem 4.9. This is a very useful pro-
perty ; it allows us to work with well-behaved functions. Moreover,
when expressed in terms of the Moreau-Yosida approximates, the epi/

hypo-convergence reduces to pointwise limit operations.
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5. SEQUENTIAL COMPACTNESS.

The fact that any sequence of bivariate functions, at
least in the metrizable case, possesses an epi/hypo-convergent
subsequence plays an important role in many applications. One
relies on this compactness result to assert the existence of
an epi/hypo-limit of a subsequence, then userthe specific pro-
perties of the elements of the sequence to identify the limit
function and finally obtain the epi/hypo-convergence of the
whole sequénce. In [7], the proof of this compactness theorem
is obtain with the help of the Moreau-Yosida approximates and
the identities that appear in Theorem 4.9. The proof given here
follows the more standard techniques of De Giorgi and Franzoni
D1], that such an argument might work was suggested to us by

Cavazzuti.

5.1. THEOREM. Suppose (X,T) and (Y,0) are topological spaces with
countable base. Then any sequence of bivariate functions
{FV:xxY + R, v = 1,...} contains a subsequence which s epiT/

kypoc~convergent.

PROOF. We have to find a subsequence {vk, k=1,...} such that

Vv Vv
e/h-1s F ¥ < h/e-1i F ¥

Let {Uu\u=1,...} and {Vu.|u'=1,...} a countable sequence of open
sets in X and Y resp.. From the compactness of R = [-», +=| and
the classical diagonalization lemma, follows the existence of a

subsequence {v, |[k=1,...} such that for every u and u°

Vk
lim infu‘EU sup F " (u,v)

k-0
i

vevw

and
)

. . k
lJ.mk_>O sup c inf F " (u,v)
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exist. It follows that for every u and u'
v v

. . | 3 N .
lim sup sup, 'J.nfm:__U F "(u,v) s lim inf mfueU S '
ko il 18 ko m B

Hence, for every x and y,

v
. . ; k
sup ; in p lim sup sup inf F " (u,v)
Ue 2 00V e g PRSP SRyey Maey T
v
. N . k
S in . sup.. . lim inf inf = sup F " (u,v)
fVu.e Ny (y) Uue ;A {x) uc Uu vcvu. '

kK

which is the desired inequality. [

F k(u,v).
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6. RELATED NOTIONS TO EPI/HYPO-CONVERGENCE.

Up to now, we have been motivated by the search for a
minimal convergende concept that allows us to obtain the con-
vergence of saddle points and saddle values, cf. Theorem 2.10.
This has led us to a notion of convergence whose limit is not
necessarily unique. This is not unexpected, since bivariate
functions are not completely determined by their saddle value
properties, as already observed by Rockafellar [12] in his work
on duality. In the convex-concave setting we formalize
this by introducing equivalence classes. The definition of epi/
hypo-convergence makes the two variables x and y play a symmetric
role, it specializes to epi- or hypo-convergence when the functions
are univariate. However, in some applications the FVY enjoy some
continuity properties and it is possible to work with stronger
notions of convergence. We exemplify this by giving one such
possibility. We proceed as before and start with the definition

of two limit functions :

_ A - a _ . . v
{6.1) ho/e'r 1s F ' (x,y) J.nf‘/,e_,nU ) SuPUE'?I'T (x) lua:l.p 1nfu€Usupv o {u,v)

and

Y _ . . . AV
(6.2) e#%lemd)—&Q%W“mm%e%w)h&fﬁ&gmvm%eg(mw

We have the following relations
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Thus :
e/h-1s F’ = e/h-1i F’
h/e-1i F’ = h/e-1s F"
and, a fortiori,
h/e-1s F’ = e/h-1i F"

imply each epi/hypo-convergence. The convergence induced by the
equality e/h-1ls F¥ = e/h-1i F’, now with unique limit (T-l.scC.
with respect to x), has been studied by Cavazzuti [8] [9]. The
study of the convergence induced by the last equality

h/e-1s F’ = e/h-1i F’, has also been sketched out in [7]. 1t is
possible, for all of these, to develop a theory similar to that
for epi/hypo-convergence, but each one of these notions requires

a certain regularity for the limit function which, a priori, cannot

be guaranteed in many apnlications.
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7. EPI/HYPO-CONVERGENCE OF CONVEX-CONCAVE FUNCTIONS.

This last section is devoted to the continuity properties
of the Legendre-Fenchel transform, which establishes a natural cor-
respondence between convex and convex-concave bivariate functions.
The argumentation is surprisingly complex, in part this comes from
the fact that the functions can take on both the values +» and -<,
and that the conjugate operation, or equivalently the Legendre-
Fenchel transformation, then loosesits local characteristics and
it is only the global properties of the operation that are preserved.
An elegant study of this phenomena and its implications has been
made by Rockafellar [12], [13] and [14] and further analysed by
McLinden [15], [16] ; see also Ekeland-Temam [17] and Aubin [18].

Let * denote the conjugate operation. For any F : X + R

the conjugate function is defined by

* % *
Fx) =sup _y [<x";x> - F(x)] .
Then one can show [12] that for convex functions

* %
Fo= el F,

where cl F is the extended closure of F with

cl F(x) = cl F(x) if c1 F > - =
- w otherwise
and cl F is the lower semicontinuous closure of F.

Convex~-concave bivariate functions can be related to convex
bivariate functions through partial conjugation, which means
conjugation with respect to one of the variables. We are led to
introduce equivalence classes. For the sake of the uninformed
reader we review quickly the motivation and the main features of

Rockafellar's scheme [13].
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Let Ko be convex-concave continuous function on

[-1,1] x [-1,1] . We associate to K, the two functions :

Kilx,y) = | + e« if |x| > 1
K, (x,y) on [-1,1]x[-1,1]
- o if |x|$1 and |y| > 1
and
Ky(x,y) = | += if |x| > 1 and |y| 2 1

K_(x,y) on [}1,1JX[-1,1]
- o if |y| > 1.

Then both K1 and K, have the same saddle points (and values) as

K although they differ on substantial portions of the plane.

o’
However, not only do these two functions have the same saddle
points but so do all linear perturbations of these two functions.
So from a variational viewpoint these two functions appear to be
undistinguishable. It is thus natural when studying limits of a
variational character that we need to deal with equivalence classes
whose members have similar saddle point properties.

Let K : XXY - R be a convex-concave function. We associate

to K its convex and concave parents defined by

* *
Flx,y") = sup, _y K(x,y) + <y ,y>]
and

G(x*,y) = infxex [K(x,y) - <x*,x>].

Thus we have the following relations between these functions

— Y * —
K:XxY » R —_— F:XxY -+ R
convex-concave convex parent
* . ”/
x //

G:X*Y » R

concave parent
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In the example above K1 and Kz have the same parents, they
cannot be distinquished as coming from different bivariate
convex or bivariate concave functions.

Given any pair of convex-concave bivariate functions

K, and K2, we say that they are equivalent if they have the

1
same parents. A bivariate function K is said to be closed if
its parents are conjugates of each other, i.e. if the above

diagram can bé closed through the classical Legendre-Fenchel

transform

—G(x*,y) = sup [(x,x*> + <y,y*> - F(x,y*)]

xeX
*

vy evY*

For closed convex-concave functions K, the associated equivalence

class is an interval, denoted by EE,R] with

K = EXK = SUP & y I:G(x*,y) + <x,x*>] ,

and

= _ . * *
R =CLX =infx vy [F(x,y*) - <y,y*>],

where cly denotes the extended lower closure with respect to x
and ETY K(= - gly(—K)) is the extended upper closure with respect

* —
to y. A convex function F:XxY¥Y =+ R is closed if El(x y*)F = F.

14

7.1 THEOREM.[J@] «The map K F_:X_, F establishes a one-to-one
correspondence between closed convex—concave (equivalence) classes
and closed convex functions.

This correspondence *y has continuity properties that are
made explicit here below. Given a sequence of convex bivariate
functions {F%, v = 1,...} epi_-converging to F, we could study
the induced convergence for the associated convex-concave (biva-

*
riate) functions (through the Legendre-Fenchel transform V).
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In the reflexive Banach case, it would be natural to consider
epiT-convergence to be epi-convergence induced by the weak and the
strong topologies'on XxY. To illustrate these type of results,

we consider the situation when the {Fv, v = 1,...} epi-converge
to F with respect to the Mosco-topology.

We start with a quick review of Mosco-epi-convergence or
for short, Mosco-convergence. Suppose X and Y are reflexive
Banach spaces whose weak and strong topologies are denoﬁed by
Wyi Wyor Sys Sy respectively. A sequence of functions, which for
reasons of exposition we take here as bivariate,

{F¥: XxY > R , v = 1,...}

is said to Mosco-converge to the (bivariate) function

F : XxY » R

if
e-1s F' s F s e -1i F’
S w
where
e~1s F(x,y) = e .o ~1s F'(x,y)
X Sy
. . AY
SuP(U;V)eq?sx(x)xﬁsx(y) 11&:“? nfyeu,vev ¥ (@)
and
ew-li Fv(x,y) = e, xw-_li Fv(x,y)
XMy

Vo

- : . N \)
sup(U'V)efnw (x)xqzw (y) lim inf lnfuéU,veV F'(u,v).
X Y

Because of the natural relations between epi-limits, this means
that

_ Y - s @V _ _ v o _ v
F = e, li F eg li F~ = e, ls F~ = e ls F~.
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This type of convergence has been introduced by Mosco [19] and
studied extensively because of the role it plays in many appli-
cations, cf. for example [19], [20] and [10]. The basic result
for convex functions first proved hy Wijsman [21] in the finite
dimensional case and extended by Mosco and Joly [22] to the
Banach reflexive case is the bicontinuity of the Legendre-Fenchel
transform with respect to the Mosco-topology. In our setting, we

can express this result through the identity
*
(7.2) e, -1i FV)* = e_-1s F’
W s

where * denotes conjugation with respect to both variables. This
is a special case of the more general relation that we need
between convex bivariate functions and classes of convex-concave
bivariate functions. We only skgtch the proof whose'details appear

in [23].

7.3. THEOREM. X and Y are -reflexive Banach spaces, and

Vi:Xx¥ » R, v=1,..)Yis a collection of closed proper convecx

{F;F
functions. Let [K,g] and {[Kv,gvj, v = 1,...J be the corresponding
classes of bivariate convex-concave functions. Then, the following

statements are equivalent

(7.4) the F¥ Mosco-converge to F
and
(7.5) for all K in [K,K|# @ , we have

.o v -y 213 wV
cl (eg/h -1s K7) < K £ cl¥(h /e -1i K').

PROOF (Sketch). The key step consists in extending the result
about the bicontinuity of the Legendre-Fenchel transform for
convex functions to this setting, i.e. for bivariate convex

functions and partial conjugation. In particular one shows that
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if the F and F’ are a collection of bivariate closed proper convex

. _ 94 V
functions, and F = ew(Xfo) lim F~ then

= — . =V
(7.6) K = cly(hs/ew—ll K")
and

. =V
glx(hs/ew—ll K')

(7.7) K

The proof of the inequality K 2 ETy(hs/ew-li RKY) follows directly
from the definitions of epi- and epi/hypo-convergence and the
Legendre-Fenchel transform. The converse inequality is much more

difficult to obtain. One start with deriving
=V
(7.8) K s hs/ew-li K",

which is first obtained under the additional condition that the
F and F" , VvV = 1,... are equi-coercive. To bring the general
problem in this more restrictive framework, we rely on Moreau-Yosida

approximates. The F¥ are replaced by

A

2
§|Y*|

Fle(xly*) = Fv(xly*) +
and F by

Fk(x,y*) = F(x,y*) + %|Y*|2 .

For each A > 0, we then have

M (x,y) s hg/e ~1i gV

We then use the monotonocity in A, and a diagonalization lemma

(7, Lemma A.1] to conclude that

K(x,y) § lim inf Ev’k(v)(x

Voo
for all X, X and A(v) some subsequence converging to 0 as v + = ,

\)IY)

Using the properties of conjugation this allows us to obtain the

existence of {yv, v = 1,...} such that

3 im inf |®V 1 2
K(x,y) £ lim inf [? (xv'yv)‘- fiTUle - yvl]'
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There remains only to show that the sequence {Rv(xv,yv), voE ol,.0.0)
is bounded above. This is equivalent to the assertion that for
every weakly convergent sequence {xv, v =1...} there exists a
bounded sequence {y:, v = 1,...} such that suvav(xv,y:) < + ®,
This would impose a very strong restriction on the sequence

{Fv, v=1...}) . To avoid imposing any such condition, rather
than working with the F¥ and F, we work with the F: and Fu that

are the Moreau-Yosida approximates with respect to x of the F’

and F respectively, i.e.
v o . \Y * 1 _ 2
F, Xy ) = 1nfu€x[F (u,y ) + m|u x| ]

and

* * 1 2
F,(x,y) infu(EX[F(u,y ) + 7E‘u - x| J
The desired inequality is then obtained for the fu and X', the
(partial) Legendre-Fenchel transforms of the Fu and Fﬁ. It is then
shown that

SUP 50 Ku = Elx cly K = K

which allows us to obtain {(7.8) without any coercivity restrictions
on the function F' and F.

We now return to the core of the proof of the Theorem. To

say that the {Fv, v 1,...} Mosco-converge to F means that

e -ls FY ¢ F s e _~1i F’
s W
The second inequality, through (7.6) yields
— — -‘—\)
{7.9) K g cly(hs/ew 1i X7).
The first inequality yields
o v
K g clx(ew/hS 1s K7)

through (7.7) and using this time the following arguments : the
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inequality es-ls F¥ s F implies
- _\) D> -
e, 1i(-G") 2 G

with G the concavé conjugate of F as identified in the diagram
above ; and then G is used in the construction of K (and GV for
§v). The reasoning is totally symmetric.

There remains to show that (7.5} implies (7.4). By ex-
ploiting duality and the fact that we are working with closed
convex-concave functions, one can prove that it really will

suffice to show that for all {(xv,y:), v = 1,...} that weakly

converge to (x,y*) we have

(7.10) F(x,y*) $ lim inf Fv(xv,y*).

)+ v

Since K § ETy(hs/ew—li XY), we have that for every (x,y*)

F(x,y*) = super[<y*,y> + K(x,y):l
< su <y*,y> + cI¥(h_/e -1i K")
= pyan Y .y : s’ Tw
* . =V
< suPye—Y <y ,y> + hs/ew—ll K| .

Thus to prove (7.10) it suffices to show that for any sequence

* *
(x,,y,) —3 (x,y ) and any yeY

* . = . , *
<y ,y> + hs/ew—ll Kv(x,y) S 11$+inf Fv(xv,yv).

Using the definition of epi/hypo-convergence, in particular of

hs/ew-li Rv, we see that to each xv'_Tﬁ X we can associate a

strongly convergent sequence yv — y such that
* . =\ * . . =V
<y ,y> + h_/e ~1i K" (x,y) & <y ,y> + lim inf K'%&_,y.)
s’ Tw NN v'iv
and thus we only need to show that

* —_— *
<y ,y> + lim inf X’(x_,y ) $ lim inf F (x_,y. ).
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But this follows directly from the relation

u

F\) *) * —\
(x, Y, Supy . y {<yv,y> + K (x\),y)}

v

* —
<yv,yv> + Kv(xv,yv). ]
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APPENDIX.

We give here the proof that we take from [24] , of a

diagonalization result used in the proof of Theorem 4.1.

A.1. LEMMA (Diagonalization). Suppose {a lv = 1,...} is

V.,
a doubly indexed family of extended-redls numbers. Then there

exists a map v —> p(v) increasing such that

(A.2) lim sup lim inf a 2 lim inf a
P> V+o Vi Vo

Vru(V)

PROOF. Let us denote a_ = lim inf a and a = lim sup a
H v++o U U 4o

If a = +» there is nothing to prove. So, let us assume that
a < +o» ., By definition of a, there exists an increasing sequence

{u; p=1,2...} , g, —> +» such that

sup(- p, a + 2°P) » a, for all p 2 up

By defirition of a, there exists an increasing sequence

{v.; p=1,2...}, v. —= +» such that
p I

- -p
sup(- p, a, + 2%) 2 a, .. for all p ¢ N.

p P''P
Let us define v) = if v S v &
u(v) up i p vp+1
Then, lim inf a € lim inf a = lim inf a as
f T e VR (V) —— Vprk (V) P>t Vprhp !

follows from the definition of u(vp) = up.

From the two above inequalities, we derive

lim inf a < lim inf |sup(- p, sup(- p,a+2"P) + 27PF)
v, u(v)
V4o p++w

sa .0
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