551 research outputs found

    Computing Spectral Elimination Ideals

    Full text link
    We present here an overview of the hypermatrix spectral decomposition deduced from the Bhattacharya-Mesner hypermatrix algebra. We describe necessary and sufficient conditions for the existence of a spectral decomposition. We further extend to hypermatrices the notion of resolution of identity and use them to derive hypermatrix analog of matrix spectral bounds. Finally we describe an algorithm for computing generators of the spectral elimination ideals which considerably improves on Groebner basis computation suggested in

    Elliptic Curves and Hyperdeterminants in Quantum Gravity

    Full text link
    Hyperdeterminants are generalizations of determinants from matrices to multi-dimensional hypermatrices. They were discovered in the 19th century by Arthur Cayley but were largely ignored over a period of 100 years before once again being recognised as important in algebraic geometry, physics and number theory. It is shown that a cubic elliptic curve whose Mordell-Weil group contains a Z2 x Z2 x Z subgroup can be transformed into the degree four hyperdeterminant on a 2x2x2 hypermatrix comprising its variables and coefficients. Furthermore, a multilinear problem defined on a 2x2x2x2 hypermatrix of coefficients can be reduced to a quartic elliptic curve whose J-invariant is expressed in terms of the hypermatrix and related invariants including the degree 24 hyperdeterminant. These connections between elliptic curves and hyperdeterminants may have applications in other areas including physics.Comment: 7 page

    Ideals of varieties parameterized by certain symmetric tensors

    Get PDF
    The ideal of a Segre variety is generated by the 2-minors of a generic hypermatrix of indeterminates. We extend this result to the case of SegreVeronese varieties. The main tool is the concept of “weak generic hypermatrix” which allows us to treat also the case of projection of Veronese surfaces from a set of generic points and of Veronese varieties from a Cohen-Macaulay subvariety of codimension 2

    Alternating Sign Matrices and Hypermatrices, and a Generalization of Latin Square

    Full text link
    An alternating sign matrix, or ASM, is a (0,±1)(0, \pm 1)-matrix where the nonzero entries in each row and column alternate in sign. We generalize this notion to hypermatrices: an n×n×nn\times n\times n hypermatrix A=[aijk]A=[a_{ijk}] is an {\em alternating sign hypermatrix}, or ASHM, if each of its planes, obtained by fixing one of the three indices, is an ASM. Several results concerning ASHMs are shown, such as finding the maximum number of nonzeros of an n×n×nn\times n\times n ASHM, and properties related to Latin squares. Moreover, we investigate completion problems, in which one asks if a subhypermatrix can be completed (extended) into an ASHM. We show several theorems of this type.Comment: 39 page
    • …
    corecore