744 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Active disturbance cancellation in nonlinear dynamical systems using neural networks

    Get PDF
    A proposal for the use of a time delay CMAC neural network for disturbance cancellation in nonlinear dynamical systems is presented. Appropriate modifications to the CMAC training algorithm are derived which allow convergent adaptation for a variety of secondary signal paths. Analytical bounds on the maximum learning gain are presented which guarantee convergence of the algorithm and provide insight into the necessary reduction in learning gain as a function of the system parameters. Effectiveness of the algorithm is evaluated through mathematical analysis, simulation studies, and experimental application of the technique on an acoustic duct laboratory model

    New structures and algorithms for adaptive system identification and channel equalization

    Get PDF
    The main drawback of the ADF is that it takes lot of iteration and fails to identify nonlinear systems. BAF converges fast while maintaining the same performance as ADF but its performance degrades at nonlinear conditions.In this thesis we propose an ANN, which provides better and faster converges when employed for identifying nonlinear systems. This network employs chebyschev based nonlinear inputs updated with the RLS algorithm. Through extensive computer simulation it is demonstrated that CFLANN updated with RLS is a better candidate compared to FLANN and MLP in terms of less complex structure, less number of input simple needed and does accurate identification

    Spatial Detection of Multiple Movement Intentions from SAM-Filtered Single-Trial MEG for a high performance BCI

    Get PDF
    The objective of this study is to test whether human intentions to sustain or cease movements in right and left hands can be decoded reliably from spatially filtered single trial magneto-encephalographic (MEG) signals. This study was performed using motor execution and motor imagery movements to achieve a potential high performance Brain-Computer interface (BCI). Seven healthy volunteers, naïve to BCI technology, participated in this study. Signals were recorded from 275-channel MEG and synthetic aperture magnetometry (SAM) was employed as the spatial filter. The four-class classification for natural movement intentions was performed offline; Genetic Algorithm based Mahalanobis Linear Distance (GA-MLD) and direct-decision tree classifier (DTC) techniques were adopted for the classification through 10-fold cross-validation. Through SAM imaging, strong and distinct event related desynchronisation (ERD) associated with sustaining, and event related synchronisation (ERS) patterns associated with ceasing of hand movements were observed in the beta band (15 - 30 Hz). The right and left hand ERD/ERS patterns were observed on the contralateral hemispheres for motor execution and motor imagery sessions. Virtual channels were selected from these cortical areas of high activity to correspond with the motor tasks as per the paradigm of the study. Through a statistical comparison between SAM-filtered virtual channels from single trial MEG signals and basic MEG sensors, it was found that SAM-filtered virtual channels significantly increased the classification accuracy for motor execution (GA-MLD: 96.51 ± 2.43 %) as well as motor imagery sessions (GA-MLD: 89.69 ± 3.34%). Thus, multiple movement intentions can be reliably detected from SAM-based spatially-filtered single trial MEG signals. MEG signals associated with natural motor behavior may be utilized for a reliable high-performance brain-computer interface (BCI) and may reduce long-term training compared with conventional BCI methods using rhythm control. This may prove tremendously helpful for patients suffering from various movement disorders to improve their quality of life

    An interactive, real-time, high precision and portable monitoring system of obstructive sleep apnea

    Get PDF
    Obstructive sleep apnea (OSA) is the most common type of sleep apnea which is defined as the suspension of breathing. OSA is generally caused by complete or partial obstruction of airway during sleep, making the breathing pattern irregular and abnormal for prolonged periods of time. Apnea can contribute to a variety of life threatening medical conditions, and can be deadly if left untreated. Nowadays, out of 18 to 50 million people in the US, most cases remain undiagnosed due to the cost, cumbersome and resource limitations of overnight polysomnography (PSG) at sleep labs. Currently PSG relies on a doctor's experience. In order to improve the medical service efficiency, reduce diagnosis time and ensure a more accurate diagnosis, a quantitative and objective method is needed. In this dissertation, an innovative method in characterizing bio-signals for detecting epochs of sleep apnea with high accuracy is presented. Three data channels that are related to breath defect; respiratory sound, ECG and SpO2 are investigated, in order to extract physiological indicators that characterize sleep apnea. An automated method was used to analyze the respiratory sound to find pauses in breathing. Furthermore, the automated method analyzed ECG to find irregular heartbeats and SpO 2 to find rises and drops. The system consists of three main parts which are signal segmentation, features extraction and features classification. Feature extractions process is based on statistical measures. Features classification process is learned through Support Vector Machines (SVMs) and Neural Network (NN) classifiers. Moreover, a preprocessing technique is carried out to distinguish the R-wave from the other waves of the ECG signal. The approach presented in this dissertation was tested using downloaded polysomnographic ECG and SpO2 data from the Physionet database. In addition, to identifying sleep apnea using the acoustic signal of respiration; the characterization of breathing sound was carried by Voice Activity Detection (VAD) algorithm. VAD was used to measure the energy of the acoustic respiratory signal during breath and silence segments. From the experimental results for the three signals, it was concluded that the precision of classifying sleep apnea has an accuracy of 97%. This result offers a clinical reference value for identifying OSA instead of expensive PSG visual scoring method which is commonly used to asses sleep apnea, and could reduce diagnostic time and improve medical service efficiency

    Performance Evaluation of Phase Optimized Spreading Codes in Non Linear DS-CDMA Receiver

    Get PDF
    Spread spectrum (SS) is a modulation technique in which the signal occupies a bandwidth much larger than the minimum necessary to send the information. A synchronized reception with the code at the receiver is used for despreading the information before data recovery. Bandspread is accomplished by means of a code which is independent of the data. Bandspreading code is pseudo-random, thus the spread signal resembles noise. The coded modulation characteristic of SS system uniquely qualifies it for navigation applications. Any signal used in ranging is subject to time/distance relations. A SS signal has advantage that its phase is easily resolvable. Direct-sequence (DS) form of modulation is mostly preferred over Frequency Hopping system (FH) as FH systems do not normally possess high resolution properties. Higher the chip rate, the better the measurement capability. The basic resolution is one code chip. Initially, some existing code families e.g. Gold, Kasami (large and smal..
    corecore