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The objective of this study is to test whether human intentions to sustain or cease 

movements in right and left hands can be decoded reliably from spatially filtered single 

trial magneto-encephalographic (MEG) signals. This study was performed using motor 

execution and motor imagery movements to achieve a potential high performance Brain-

Computer interface (BCI). Seven healthy volunteers, naïve to BCI technology, participated 

in this study. Signals were recorded from 275-channel MEG and synthetic aperture 
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magnetometry (SAM) was employed as the spatial filter.  The four-class classification for 

natural movement intentions was performed offline; Genetic Algorithm based Mahalanobis 

Linear Distance (GA-MLD) and direct-decision tree classifier (DTC) techniques were 

adopted for the classification through 10-fold cross-validation. Through SAM imaging, 

strong and distinct event related desynchronisation (ERD) associated with sustaining, and 

event related synchronisation (ERS) patterns associated with ceasing of hand movements 

were observed in the beta band (15 - 30 Hz). The right and left hand ERD/ERS patterns 

were observed on the contralateral hemispheres for motor execution and motor imagery 

sessions. Virtual channels were selected from these cortical areas of high activity to 

correspond with the motor tasks as per the paradigm of the study. Through a statistical 

comparison between SAM-filtered virtual channels from single trial MEG signals and 

basic MEG sensors, it was found that SAM-filtered virtual channels significantly increased 

the classification accuracy for motor execution (GA-MLD: 96.51 ± 2.43 %) as well as 

motor imagery sessions (GA-MLD: 89.69 ± 3.34%). Thus, multiple movement intentions 

can be reliably detected from SAM-based spatially-filtered single trial MEG signals. MEG 

signals associated with natural motor behavior may be utilized for a reliable high-

performance brain-computer interface (BCI) and may reduce long-term training compared 

with conventional BCI methods using rhythm control. This may prove tremendously 

helpful for patients suffering from various movement disorders to improve their quality of 

life. 
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CHAPTER 1  

Introduction 
 

 

1.1. Literature Review: 

 

1.1.1. Need for BCI: 

 

Patients with degenerative diseases such as amyotrophic lateral sclerosis (ALS), 

muscular dystrophy and multiple sclerosis or from traumatic brain or spinal cord injury all 

suffer from the inability to control voluntary muscle movements. Without voluntary 

muscle control, these patients are unable to effectively communicate their needs to the 

environment. In the later stages of such diseases, though their cognitive ability remains 

intact, they may become completely trapped in their own body or “locked-in”. Brain-

Computer Interfaces (BCIs) may provide an effective solution for patients with such 

diseases to improve their quality of life. BCIs are devices that allow for communicating 

intentions for gross motor control by analyzing brain activity and not the muscle 

movements (Wolpaw et al. 2002). The development of BCI technology thus proves to be 

immensely advantageous to patients in the ‘locked-in’ or semi- ‘locked-in’ stage, where 
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BCI can be used as a communication and rehabilitation tool.  Direct brain communication 

or control may offer patients a possible way to interact with the external world. 

BCIs can be used for decoding brain signals and control applications based on brain 

signals invasively or non-invasively. A highly reliable and fast BCI for multi-dimensional 

control can be achieved using invasive methods, but they have inherent technical 

difficulties such as the need for chronic implantable recording and risks due to surgical 

implantation of electrodes. Due to such difficulties non-invasive methods are generally 

used. Electro-encephalogram (EEG) and Magneto-encephalogram (MEG) have emerged as 

viable noninvasive options.  Both have time resolutions in milliseconds so we can study 

the dynamic activities within specific cortical regions of the brain in contrast to imaging-

based BCI (Laconte et al. 2006). For the present study, the advantages of MEG were 

explored to propose a high performance BCI. 

 

1.1.2. Magneto-encephalography (MEG) 

 

MEG is a discipline that deals with detection and interpretation of magnetic fields 

produced by the human brain. MEG measurements span a frequency range from about 10 

mHz to 1 kHz (or perhaps as low as 1 mHz for sleep studies) and field magnitudes from 

about 10 fT for spinal cord signals to about several picotesla for brain rhythms (Nakaya 

and Mori 1992). MEG signals can be affected by the Earth’s field magnitude, which is 

about 0.5 mT and the urban magnetic noise which is about 1 nT to 1μ T, i.e. a factor of 1 
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million to 1 billion larger than the MEG signals. Such large differences between signal and 

noise demand noise cancellation with extraordinary accuracy. 

MEG signals are measured on the surface of the head and they reflect the current 

flow in the functioning brain. The cortex (see Fig. 1a) contains well-aligned pyramidal 

cells, which consist of dendrites, cell body, and axon and there are approximately 10  to 

10 cells in area of about 10 mm of cortex (Carpenter 1985). There are many connections 

between various parts of the brain mediated by nerve fibers which are connected to 

dendrites and cell bodies of other nerve cells via synapses. In the whole brain there are 

approximately 1010  cells and about 1014  synaptic connections. 

5

6 2
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Figure 1: Origin of the MEG signal (Vrba and Robinson 2001).(a) Coronal section of the 

human brain. Cortex is indicated by dark color. The primary currents flow roughly 

perpendicular to the cortex. (b) The cortex has numerous sulci and gyri and its convoluted 

nature gives rise to the currents flowing either tangentially or radially relative to the head. 

The head can be approximated by a spherical conducting medium. (c) Tangential currents 

will produce magnetic fields that are observable outside the head. (d) Radial currents will not 

produce magnetic fields outside the head. (e) Magnetic fields due to cortical sources will exit 

and re-enter the scalp.  
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 Because of ionic exchange between the cell and its surroundings, the equilibrium 

between diffusion processes and electrical forces establishes negative potentials of about -

70 mV within the cell (Partridge 1993). Cell stimulation (chemical, electrical, or even 

mechanical) can cause alteration of the cell’s trans-membrane potential and can lead to cell 

depolarization (or hyper-polarization). Such changes can occur, e.g., at the synapse, when 

neurotransmitters are released. Because the cell is conductive, the depolarization (or hyper-

polarization) causes current flow within the cell (called the impressed or intracellular 

current) and a return current outside the cell (called volume or extra-cellular current).  

The dendritic current due to cell depolarization (or hyper-polarization) flows 

roughly perpendicular to the cortex. However, the cortex is convoluted with numerous 

sulci and gyri and, depending on where the cell stimulation occurred; the current flow can 

be either tangential or radial to the scalp surface (See Fig. 1b) If the brain could be 

modeled as a uniform conducting sphere, then due to symmetry, only the tangential 

currents would produce fields outside the sphere (Sarvas 1987) (See Figs. 1c and e) and the 

radial currents would produce no magnetic fields (See Fig. 1d). If the magnetic detectors 

were radial to the head, then MEG would be mostly sensitive to the impressed intracellular 

currents, while EEG would detect the return volume currents.  

Current flow within a single cell is too small and cannot produce observable 

magnetic fields outside the scalp. For fields to be detectable, it is necessary to have nearly 

simultaneous activation of a large number of cells, typically 10  to 10  (Wikswo 1989). 

Generally, the MEG sources are distributed; however, activation of even large numbers of 

4 5
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cells can often be assumed spatially small and can be modeled by a point equivalent 

current dipole (Williamson and Kaufman 1981).  

MEG measures the distribution of magnetic fields on the two-dimensional head 

surface. However, the required information is usually a three-dimensional distribution of 

currents within the brain. Unfortunately the field inversion problem is non-unique and 

MEG data must be supplemented by additional information, physiological constraints, or 

mathematical simplifications. One way to supply more information is to also use EEG. 

Both MEG and EEG measure the same sources of neuronal activity and their information 

is complementary (Vieth et al. 1995). Additional information to assist field inversion can 

also be supplied by other imaging techniques. For structural information one can use 

magnetic resonance imaging (MRI) and computed axial tomography (CAT) and for 

functional information one can use positron emission tomography (PET), single photon 

emission computed tomography (SPECT), and functional MRI (fMRI). (Vrba and 

Robinson 2001) 

 

MEG Set-up: A typical MEG system is a complex installation as shown in the schematic 

diagram in Fig. 2. The Superconducting Quantum Interference Devices (SQUID) detectors 

of magnetic field are housed in a cryogenic container called a dewar, which is usually 

mounted on a movable gantry for horizontal or seated positions. SQUID detectors are very 

sensitive magnetometers used to measure very small magnetic fields, based on 

superconducting loops containing Josephson junctions(Josephson 1974). The subject or 

patient is positioned on an adjustable bed chair. The SQUID system and patient may or 
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may not be positioned in a shielded room. At present, the majority of installations use 

shielded rooms; however, progress is being made toward unshielded operations. The MEG 

measurement is usually supplemented by EEG and both MEG and EEG signals are 

transmitted from the shielded room to the SQUID and processing electronics and the 

computers for data analysis and archiving. The MEG system also contains stimulus 

delivery and its associated computer, which is synchronized with the data acquisition. The 

installation is completed with a video camera(s) and intercom for observation of and 

communication with the subject in the shielded room. (Vrba and Robinson 2001) 
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 Figure 2: Schematic diagram of an MEG installation 

(http://strategis.ic.gc.ca/pics/ht/ctfsystems.html) 
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1.1.3. MEG vs. EEG: 

 

Human natural voluntary movement can be associated with frequency changes 

occurring in the alpha (8-14 Hz) and beta (15-30 Hz) bands. There are two distinct power 

changes seen in EEG in both alpha and beta bands, the event-related desynchronization 

(ERD) or power decrease that occurs up to 2 s before movement and is sustained with 

continuous movement (Toro et al. 1994; Bai et al. 2005) and the event-related 

synchronization (ERS) or power increase, usual only seen in beta band, occurring after the 

end of movement (Pfurtscheller 1988).  The beta frequency band has been implicated as 

important in various motor control processes including sensorimotor integration and motor 

learning (Andres and Gerloff 1999). According to human somatotopic studies, human 

limbs are controlled by contra-lateral sensorimotor areas of the brain hemispheres. Right 

and left hand movements activate contra-lateral motor areas in the brain. However, the 

source localization of ERD/ERS with EEG is poor due to limited spatial resolution. This is 

partially due to the return volume currents generated due to the convolution of the cortex 

by numerous sulci and gyri (Vrba and Robinson 2001). MEG measures the magnetic fields 

produced by the electrical activity in the brain. It provides direct information about the 

dynamics of evoked and spontaneous neural activity via the extremely sensitive super 

conducting quantum interference devices (SQUIDs). It is least affected by the spatial 

blurring effects of the skull (Salmelin et al. 1995) produced by the return volume currents 

and thus obtains a better signal to noise ratio (SNR) as compared to EEG. Particularly for 

single trial studies, MEG can prove very advantageous due to the high SNR property and 
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consequently its ability for source localization. Accordingly, it is superior in studies related 

to movement related beta-ERD/ERS recordings. 

 

1.1.4. Limitations of MEG 

  

 MEG has many benefits namely it is completely noninvasive and non-hazardous. 

The data can be collected in the natural seated position allowing more life-like cognitive  

experiments. MEG has an extremely high temporal resolution (milliseconds) and also 

provides a good spatial resolution. Signals can be recorded over the whole cortex. There is 

no need to paste electrodes on the scalp as with EEG.  

 However, a major technical problem associated with MEG is that the localization 

of sources of electrical activity within the brain from magnetic measurement outside the 

head is complicated and does not have a unique solution. This is known as the ill-posed 

inverse problem, and is itself the subject of research. However, as indicated above, feasible 

solutions can be often obtained by using relatively simple models. 

 Due to the increased distance to sources and the almost spherical symmetry of the 

head it is difficult to provide reliable information about subcortical sources of brain 

activity. MEG does not provide structural/anatomical information. Therefore MEG data 

often must be combined with MR data into a composite image of function overlaid on 

anatomy to produce activation maps. We used Synthetic Aperture Magnetometry (SAM) to 

achieve this.  

 
10



 

1.2. Synthetic Aperture Magnetometry (SAM) 

 

Previously, most MEG data analysis focused on the average evoked potential 

paradigm (Hillebrand et al. 2005). However, with the advent of large MEG sensor arrays 

with whole-head coverage, it was found that the evoked response mapped by a large 

whole-head array was almost identical to that detected by serial multiple placement and 

measurement by single-channel MEG sensor at the same sites. Signal averaging did not 

make use of information available from large MEG sensor arrays. In contrast to this, the 

unaveraged or single-trial MEG signals seemed to exhibit spatial and temporal correlations 

which could be used for better signal to noise ratio (SNR) and source localization of the 

activity (Vrba and Robinson 2001). Synthetic Aperture Magnetometry (SAM) is a novel 

spatial filtering technique which achieves three-dimensional source estimation during task 

performance (Robinson 1998). It uses the spatial and temporal correlation of the MEG 

sensor array. It is based on the nonlinear constrained minimum variance beamformer. It 

thus provides excellent spatial resolution and can image a high signal-to-noise ratio (SNR) 

of the unaveraged or single-trial MEG signals. 

 

 

1.2.1. Minimum variance beamformer 

 

 The minimum variance beamformer has been one of the most popular spatial-filter 

techniques in various signal-processing fields. It has also been applied to neuromagnetic 
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source localization(Spencer et al. 1992; vanDrongelen et al. 1996; VanVeen et al. 1997; 

Robinson and Vrba 1999). Synthetic Aperture Magnetometry (SAM) is based on this 

method. 

Let the magnetic field measured by the mth detector coil at time t be bm(t), and a 

column vector b(t) = [b1(t), b2(t),…, bM(t)]T be a set of measured data where M is the total 

number of detector coils and the superscript T indicates the matrix transpose. A spatial 

location is represented by a 3D vector r: r = (x, y, z). A total of Q current sources are 

assumed to generate the neuromagnetic field, and the locations of these sources are 

denoted as r1, r2… rQ. The moment magnitude of the qth source at time t is denoted as s 

(rq, t), and the source magnitude vector is defined as s (t) = [s(r1, t), s(r2, t)…, s(rQ, t)]T. 

The orientation of the qth source is defined as a 3D column vector η (rq, t) = [ηx (rq, t), ηy 

(rq, t), ηz (rq, t)] T whose ψ component (where ζ equals x, y, or z in this study) is equal to the 

cosine of the angle between the direction of the source moment and the ζ direction. We 

assume that the orientation of each source is time independent. Omitting the time notation 

t, we define a 3Q X Q matrix that expresses the orientations of all Q sources as such that ψ
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Let l (r) be the mth sensor output induced by the unit-magnitude source located at r and 

directed in the ζ direction. The column vector l 

ζ
m

ζ (r) is defined as l ζ (r) = [l (r), l (r), ..., 

l (r)] 

ζ
1

ζ
2

ζ
M

T. The lead field matrix, which represents the sensitivity of the whole sensor array at 
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r, is defined as L(r) = [lx(r), ly(r), lz(r)]. For later use, the lead-field vector in the source-

moment direction is defined as l(r); it is obtained by using l(r) = L(r) η(r). The composite 

lead field matrix for the entire set of Q sources is defined as 

[ ])(,),(),( 1211 rLrLrLLc L=  

The relationship between b(t) and s(t) is then expressed as 

( ) ( ) ( ,)( tntsLtb c += ψ )  

where n(t) is the additive noise. 

Let the measurement covariance matrix be Rb; i.e., Rb = )()( tbtb T , where 〈⋅〉  indicates 

the ensemble average (this ensemble average is usually replaced with the time average 

over a certain time window). Let the covariance matrix of the source-moment activity be 

Rs; i.e., Rs = s (t) s〈 T(t) . Then, the relationship between the measurement covariance 

matrix and the source-activity covariance matrix is such that; 

〉

( ) ( ) ILRLR T
c

T
scb

2σ+= ψψ ,  

where the noise in the measured data is assumed to be the white Gaussian noise with the 

variance of σ 2 and I is the unit matrix. 

To estimate the source moment, a class of techniques referred to as the spatial filter 

was used. The spatial filter techniques use the following simple linear operation for 

estimating the source moment,  

)()(),(ˆ tbrwtrs T= , 

where sˆ(r, t) is the estimated magnitude of the source moment at r and time t. In this 

equation, w(r) is a column vector characterizing the filter weight. Note that because this 
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weight vector is calculated for any spatial location r, the source-moment distribution can 

be reconstructed by scanning the output of the spatial filter over a region of interest in a 

perfectly post-processing manner. One well-known spatial filter of this kind is the 

minimum-variance distortion-less beamformer originally developed for seismic-array 

signal processing (Capon 1969). In this technique, the filter weight vector wm(r) is obtained 

by minimizing w  (r) R b w (r) under the constraint of . The explicit form 

of the weight vector for the minimum- variance beamformer is known to be 

T
m m 1)()( =rwrl m

T

)(
)(

1

1

rlRl
rlR(r)w

b
T

b
m −

−

=  

In the present study, we employed SAM as a spatial filter for single trial MEG 

signals to design a BCI that classifies human movement intention to sustain right/left hand 

motor execution or motor imagery featured by ERD or to cease right/left hand motor 

execution or motor imagery featured by ERS. The results were compared to MEG sensor 

based classification to verify the effectiveness of SAM.  We hypothesized that the SAM-

filtered MEG signal would provide better signal to noise ratio and facilitate a fast and 

reliable detection/classification of motor activities, eventually leading to a high 

performance BCI. 

 
14



 

 

 

CHAPTER 2 

 Methods 
 

 

2.1. Subjects 

 

Seven healthy volunteers, 5 male and 2 female (age: 31±8 years) participated in the 

experiment. All subjects participating in this study were naïve to BCI and right-handed 

according to the Edinburgh inventory (Oldfield 1971). The protocol was approved by the 

Institutional Review Board.  All subjects gave written informed consent for the study. 

 

2.2. Experimental paradigm 

 

A visual instruction cue randomly selected from a set of four cues: RYES, LYES, 

RNO and LNO was presented on a computer screen placed about 50cm before the subject 

(Fig. 3, Pg. 17). The subjects were instructed to perform either physical or imaginary 

movements of their right or left hand after the initial cue presentation depending on the 

type of trial. They had to begin with or imagine repetitive wrist extensions of the right or 
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left arm at the onset of the initial cue RYES, RNO, LYES or LNO. After 2.5sec a 

RESPONSE cue was displayed at which time the subject, depending on the YES or NO 

cue for the right/left hand had to sustain (ERD) or cease (ERS) the hand movements 

respectively.  

At 4 s, a STOP cue was given, the response cue disappeared, after which the 

subject had to cease all movements and return to baseline rest. A 6 s ~ 7 s rest period was 

given after which the process was repeated. During the period of visual stimuli the subjects 

were asked to keep eyes open and reduce blinks as much as possible. The subjects were 

allowed to become familiar with the paradigm before data recording. Subjects were asked 

to keep the head still during recording to reduce head motion. 
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Figure 3: Experimental paradigm: Activation period: 0s to 1s after RESPONSE cue, i.e. 2.5s 

– 3.5s. Control period: -1s to 0s before the initial warning cue of Right Yes RYES, Left Yes 

LYES, Right No RNO or Left No LNO. The subjects began repeated wrist extensions of 

either the right or left hand as per the initial warning cue. At the RESPONSE cue, for RYES/ 

LYES, the subjects continued wrist extensions, for RNO/ LNO the wrist extensions were 

ceased till the STOP cue. From the STOP cue, there was a rest period of 6 s ~ 7 s. Data from 

the activation and control windows were used for SAM analysis, with virtual channels during 

the activation period with respect to the control period used for classification/prediction. 

Initial warning cue (RYES, RNO, LYES, or LNO) period: 0s - 2.5s, RESPONSE cue period: 

2.5s – 4s, STOP (Rest) cue period: 6 s ~ 7 s. The same paradigm was used for motor execution 

and motor imagery. 
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2.3. Data Acquisition 

 

MEG data was recorded at sampling frequency of 600 Hz using a 275-channel CTF 

whole head MEG system (VSM MedTech Inc., Coquitlam BC, Canada) in a shielded 

environment. The CTF MEG system is equipped with synthetic 3rd gradient balancing, an 

active noise cancellation technique that uses a set of reference channels to subtract 

background interference. 

High-resolution structural MRI images were also acquired for co-registration for 

each subject using a magnetization-prepared rapid acquisition by gradient echo sequence 

(MP-RAGE) (TI/TE/TR/FA=725/2.928/7.6/6°, FOV=22 cm, partition thickness=1.2mm, 

256 x 256, in-plane voxel size=0.859375). 

EMG was recorded using bipolar electrodes over the right and left wrist extensors. 

This allowed for the exclusion of any trial, not following the experimental paradigm for 

actual right/left hand movements and also the exclusion of any trial with movement prior 

to the warning cue by monitoring for premature muscular activity. For subject S 7, the 

motor execution session contained excessive movement artifacts and was excluded due to 

these performance glitches during data recording. The motor imagery session for subjects 

S 2 and S 6, was excluded from the analyses due to the lack of number of samples in 

individual events (RYES, RNO LYES, and LNO). Subject S1 did not participate in the 

motor imagery session. 
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2.4. SAM Analysis 

 

Synthetic Aperture Magnetometry (SAM) was used for source localization of MEG 

signals. “Source localization” implies simplification of the complex activity of a very large 

numbers of neurons to a few parameters that help describe that activity (Robinson 2004).  

SAM is a minimum variance beamformer technique. A beamformer is designed to pass the 

signal from a small region of interest with unit gain while blocking signals from outside 

that area (Keefer et al. 2008). Thus, the small area signal would be an estimate of the 

activity in that area. SAM has thus been used to image source power or source signal-to-

noise ratio from MEG (Robinson 2004).  It characterizes the spatial distribution of event-

related changes in cortical rhythm within a specified frequency range and time window, 

relative to the events (Robinson 2004). 
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2.4.1. SAM Imaging 

 

MEG analysis software developed at National Institute of Mental Health (NIMH) 

MEG core facility was used for epoching data, SAM analysis and MRI conversion. For all 

measurements, fiducial skin markers were placed on subjects’ nasion and bilateral 

preauricular points. 

The data was epoched according to the marker events for a period of 9 sec starting 

1 sec before the instruction cue and continuing 8 sec after. For SAM analysis, all epoched 

data for each task (RYES, RNO, LYES, or LNO) were combined together to form a grand 

dataset. Before SAM analysis, a multisphere head model was created for each subject 

(threshold value ≈ 40%) based on anatomical images of each subject using MEG analysis 

software. 

For SAM Analysis, single-trial event-related MEG data from the grand datasets 

were used to compute covariance matrices for each dataset corresponding to each task 

(RYES, RNO, LYES, and LNO). The frequency range of interest was the beta band i.e. 15-

30 Hz. For Physical movements (see Fig. 3), the active state was defined between the 

RESPONSE cue to 1 sec after cue onset (2.5s – 3.5s) and -1s to movement onset 

(instruction cue) was set as the control state (-1s – 0s). For Imaginary movements, the 

response of the subjects to RESPONSE cue was delayed and hence, a 0.5 sec delay was 

introduced for the active state (3s – 4s, see Fig. 3), the control state (-1s – 0s, see Fig. 3) 

remained unchanged. These parameters were fed in to compute the covariance between the 

active and the control states. For ERD/ERS analysis a statistical parametric image was 
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computed, on a voxel- by-voxel basis, from the difference in cortical power for the two 

states, relative to their noise variance. Only voxels displaying statistically significant 

power changes were displayed in color scale on the individual MRI. Thus an optimal 

spatial filter was designed which created a 3D source image comparing the source strength 

for the two states. This image was superposed on the MRI image of the subjects to obtain 

the source- signal-to-noise ratio image corresponding to each event for all the subjects. To 

get an impression of how the 3-D images look like, an example of ERD/ ERS tasks is 

shown in Fig. 4. 
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Figure 4: 3-D SAM images. Coronal, Sagittal and Axial view of the human brain 

corresponding to ERD (blue)/ ERS (red) tasks for the upper limb movements. 
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2.4.2. Virtual channel selection 

 

A virtual channel is similar to a regular MEG channel, except that it is tuned to a 

particular source or target. For regular SAM analysis as described above, a beamformer is 

calculated for each voxel of the image, and the beamformer is used to calculate a source 

power estimate. To calculate the virtual channel, the same beamformer was used, but in a 

different way. A beamformer is just a set of coefficients, or weights, one for each channel, 

and a virtual channel is just a weighted sum of all the MEG channels with those weights 

(http://kurage.nimh.nih.gov/meglab/Meg/Meg). 

The target location for the present study was the motor cortex area. As previously 

described, human limb movements are controlled by contalateral sensorimotor areas. It 

was of interest to study the activity associated with right and left hand movements in the 

beta band. The source-signal-to-noise ratio image obtained through SAM analysis had high 

activity regions in these areas. For the right and left hand physical movements as well as 

motor imagery, for the YES (sustain movement) case, virtual channels were selected from 

regions showing strong ERD in the left and right motor cortex area respectively (See Fig. 

6, Pg. 33). Similarly for the right and left hand physical movements as well as motor 

imagery, for the NO (cease movement) case, virtual channels were selected from regions 

showing strong ERS in the left and right motor cortex area respectively (See Fig. 6, Pg. 

33). Around 20-30 virtual channels were selected for each subject.  
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2.5. Time-course Analysis of MEG Sensor and Virtual channel Data 

 

The digital MEG signal was sent to a DELL PC workstation and was offline 

processed using a home-made MATLAB (Math Works, Natick, MA) Toolbox: brain-

computer interface to virtual reality or BCI2VR (Bai et al. 2007; Bai et al. 2008). This was 

used for time-course analysis, feature extraction and classification for MEG-Sensor 

domain as well as Virtual channel data. 

 

2.5.1. Time-Frequency Analysis of MEG Sensor Data 

 

Time-Frequency analysis was performed on the MEG sensor data (See Fig. 7, Pg. 

44) to observe the power (ERD/ERS) patterns for each event (RYES, RNO, LYES, and 

LNO). Since it was intended to study movement intention associated cortical activities, the 

region of interest for the present study was assumed to be the motor cortex area 

(Pfurtscheller and Berghold 1989a; Toro et al. 1994; Pfurtscheller and Lopes da Silva 

1999). The MEG channels constrained to the central MEG sensors (See Fig. 5) associated 

with the right or left motor cortex area were used for the analysis. It was intended to 

analyze the power in the beta band, i.e. the ERD/ERS patterns with respect to the time-

course of the motor execution as well as motor imagery tasks. 

Power in the frequency range 0- 60 Hz, for right and left hand movements was calculated 

using  Welch method, which was applied with the use of a Hamming window to reduce 

side-lobe effect and estimation variance (Welch 1967). A baseline correction was 
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introduced from -1 s to 0 s. The length of the sliding window was 1 s with a slide 

increment of 0.1 s. The segment length was 0.25 s with frequency resolution of 4 Hz and 

there was no overlapping between consecutive segments. 

 

 

 

Figure 5: MEG- 275 channel system  
(http://kurage.nimh.nih.gov/library/Meg/SensLayout-275.pdf) 
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2.5.2. Time-course of Event-related Power for Virtual channel Data 

 

An event related power analysis was performed on the virtual channels obtained 

through SAM analysis (See Fig. 8, Pg. 37) to observe the ERD/ERS patterns over these 

channels, for each event (RYES, RNO, LYES, and LNO) with respect to the parameters of 

the present study. The time-course of event-related power was obtained from the variance 

of virtual channel signal in a sliding window with length of 1s and a slide increment of 0.1 

s. These virtual channels were already filtered from the beta band. A baseline correction 

was introduced from -1 s to 0.5 s.  

Event related power analysis was mainly done to verify whether, ERD was a 

dominant pattern for virtual channels selected from the sustaining movement related events 

(RYES, LYES) and whether ERS was dominant for virtual channels selected from the 

ceasing of movement related events (RNO, LNO). This was performed for both physical 

and motor imagery virtual channel data. 
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2.6. Feature Extraction and Classification 

 

2.6.1. Feature extraction for MEG sensors and Virtual channels 

 

For SAM-filtered virtual channel based classification of movement intensions from 

MEG data, the channel reduction was achieved through selection of virtual channels. 

Similarly, for MEG -Sensor based classification, the MEG channels were constrained 

through empirical channel reduction; this covered the entire motor cortex area. Thus 

central 52 MEG channels were used for sensor based classification. (See Fig. 5). Also, the 

selection of beta band (15- 30 Hz) to study ERD/ERS served as an important parameter for 

feature reduction. In the MEG-Sensor domain, the power samples were calculated in the 

beta band (15- 30 Hz) for the active state period during motor execution (2.5 s – 3.5 s) and 

motor imagery (3 s – 4 s), the segment length was 0.25 s with no overlapping between 

consecutive segments. For Virtual channels, the beta band power samples were created 

from the active state period, which was different for motor execution (2.5 s – 3.5 s) and 

motor imagery (3 s – 4 s) events, as the variance of the data samples for the tasks RYES, 

RNO, LYES and LNO. 
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2.6.2. Feature Selection and Classification 

 

Feature Selection 

 

Bhattacharyya distance: The Bhattacharyya distance is the square of mean difference 

between two task conditions divided by the averaged variance of the samples in two task 

conditions so that a larger Bhattacharyya distance will lead to better classification accuracy 

(Marques 2001). Bhattacharya distance was applied to the feature selection for the 

classification from SAM-filtered virtual channel signals and MEG Sensor signals. The 

feature with the largest Bhattacharyya distance was selected for the classification of ‘Yes’ 

and ‘No’ intentions of both right and left hand physical movements and motor imagery. 

Genetic Algorithm (GA): Genetic algorithms are computational models inspired by 

evolution (Whitley 1994). As such, they encode a potential solution as a chromosome-like 

data structure and apply recombination operators on these structures (Yom-Tov and Inbar 

2002). In this case, the chromosomes are combinations of a predetermined number of 

features selected from SAM-filtered virtual channel signals and MEG sensor signals.  

 

Classification 

The signals from the specified single-trial MEG, virtual channel and the sensor 

domain data were fed into classification techniques developed in home-made MATLAB 

(Math Works, Natick, MA) Toolbox: brain-computer interface to virtual reality or 
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BCI2VR (Bai et al. 2007; Bai et al. 2008) based on movement related signals. It was 

intended to use these classification techniques to reliably decode movement intentions 

spatially for the proposed high performance BCI. 10-fold cross-validation (90% training 

set, 10% testing set) technique was adopted for classification. It was intended to 

discriminate four movement intentions (RYES, RNO, LYES and LNO) while sustaining 

and ceasing the movement from single trial MEG signals. The techniques used were as 

follows: 

GA-based Mahalanobis Linear Distance Classifier (GA-MLD):  The Mahalanobis 

Distance Classifier had proved effective for classification in previous studies (Babiloni et 

al. 2001; Bai et al. 2007), it was further optimized using GA-based feature extraction 

method. The optimal feature subset was selected by GA, and the selected features 

providing the best cross-validation accuracy were applied to a Mahalanobis Linear 

Distance Classifier. Mahalanobis linear distance was measured, which computed a pooled 

covariance matrix averaged from individual covariance matrices in all task conditions 

where the discriminant boundaries were hyper-planes leaning along the regressions 

(Marques 2001). The number of features for the subset was 4, which was determined from 

the 10-fold cross-validation accuracy with feature numbers of 2, 4, 6, and 8. 

 

Direct Decision Tree Classifier (DTC): Decision tree is a classifier which uses symbolic 

treelike representations of finite sets of if-then-else questions that are natural, intuitive and 

interpretable (Duda et al. 2001). A certain feature subset, for example, channels over left 

motor cortex area are associated with right hand movement  (Kawashima et al. 1993; 
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Volkmann et al. 1998; Jung et al. 2003) and hence would be the best to discriminate 

intention to move the right hand, whereas operate rather poorly for the discrimination of 

other movement intentions. We used multistage classification, i.e., decision tree classifier 

(DTC), to discriminate one intention from others in each successive stage. At each level of 

DTC, the features for one-to-others classification were ranked by Bhattacharya distance 

(see detail method in (Bai et al. 2007)) and the 4 features with higher rank were used for 

classification by MLD. The number of the feature for classification was determined from 

preliminary comparison with numbers of 2, 4, 6 and 8. 
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CHAPTER 3  

Results 
 

 

3.1. Neurophysiological analysis of ERD and ERS in SAM domain 

 

The proposed BCI in this study intended to discriminate the ERD, associated with 

sustained motor execution or motor imagery, from ERS associated with ceasing motor 

execution or motor imagery in the beta band from single trial MEG signals. To give an 

impression of SAM images and virtual channel selection, the source-signal-to-noise 

images obtained from SAM analysis are shown in Fig. 6. Data from the active and control 

states were used for the analysis. The control state used was between -1 s – 0 s. The 

regions of high activity, displaying ERD and ERS for motor execution tasks were clearly 

seen for the active state between 2.5 s to 3.5 s. For motor imagery, regions of high activity 

were observed for the active state between 3 s to 4 s. This was due to the subjects’ delayed 

response to visual cues (RYES, RNO, LYES an LNO) during the motor imagery tasks. 

Virtual channels were selected from the regions of high activity, for power analysis, 

feature extraction and classification. From the SAM images obtained for both motor 
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execution and motor imagery, it was observed that ERD/ERS signals were more enhanced 

during motor execution than for motor imagery.  

Hemispheric asymmetry which suggests that the contra-lateral hemisphere is 

predominantly involved with dominant hand movement, whereas both contra-lateral and 

ipsilateral hemispheres are involved with non-dominant hand movement was also 

established from the SAM images (Kawashima et al. 1993; Volkmann et al. 1998; Jung et 

al. 2003). 
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Figure 6: SAM Images for neurophysiological analysis of ERD and ERS. The Coronal and 

Axial view of the head is shown for Subjects 1, 2, 3 and 4. Physical movements: SAM image 

head plots for subject 1, subject 2 and subject 3 are given. Activation period: 0 s to 1 s after 

RESPONSE cue, i.e. 2.5 s – 3.5 s (see fig 3). Control period: -1 s to 0 s before the cue of RYES, 

LYES, RNO and LNO.  Imaginary movements: SAM image head plots for subject 3 and 

subject 4 are given. Activation period: 1 s delay, i.e. (3 s – 4s; see fig. 3). Control period: -1 s 

to 0 s before the cue of RYES, LYES, RNO and LNO. Band-width: 15 - 30 Hz (Beta rhythm); 

Data from the activation and control windows were used for SAM analysis. The threshold 

bar for power in ERD/ERS for corresponding movement activity is given above each head 

plot. Virtual channels corresponding to ERD (blue)/ERS (red) of contra-lateral motor area 

activation due to movement intentions were selected from areas marked (by green circle) for 

further classification. 
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3.2. Time-Frequency Analysis in Sensor Domain 

 

Time-Frequency analysis was performed on the single trial MEG sensor-channel 

data to observe the beta band ERD/ERS patterns over these channels, for each event 

RYES, LYES/RNO, LNO respectively. The MEG channels constrained to the central 

MEG sensors associated with the motor cortex area were used for the analysis. These 

central MEG sensors covered both the right and the left motor cortex area. The power 

analysis of single trial MEG sensor (from right or left motor cortex area depending on the 

events) signal for the active state time period with respect to beta band frequency can be 

seen in Fig. 7. When an MEG sensor-channel selected from the left motor cortex area was 

analyzed for the event RNO with the active state period for that event between the 

frequency band of 15 - 30 Hz, a strong, distinguishable ERS pattern was observed for 

almost all the subjects. Similar was the case for event LNO, for which the MEG sensor 

was selected from the right motor cortex area. When an MEG sensor-channel selected from 

the left motor cortex area was analyzed for the event RYES with the active state period for 

that event between the frequency band of 15-30 Hz, a distinguishable ERD pattern was 

observed for almost all the subjects.  
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Same was the case with event LYES, for which the MEG sensor-channel was 

selected from the right motor cortex area. It was interesting to see that, in all the subjects, 

ERS was more enhanced than the ERD pattern. This went with the results of a previous 

study which stated that ERS, the beta rebound is easier detectable in single trials than beta 

ERD (Pfurtscheller and Solis-Escalante 2009). The power analysis showed very weak 

ERD/ERS patterns for motor imagery in subject 3 (see Fig. 7) and subject 7. The delay in 

response to visual cues during motor imagery was again established from this power 

analysis and can be seen in Fig. 7. 

 

3.3. Event-related Power Analysis for Virtual channel data 

 

The source signals obtained from the virtual channels were used for power analysis 

with respect to time. As described earlier, event related power analysis was mainly 

performed to verify whether, ERD was a dominant pattern for virtual channels selected 

from the sustaining movement related events (RYES, LYES) and ERS was dominant for 

virtual channels selected from the ceasing of movement related events (RNO, LNO). This 

was done for both motor execution and motor imagery. Fig. 8 shows the power analysis of 

virtual channels corresponding to specific events obtained from the single trial MEG data. 

When the source signal from a virtual channel for the event RNO was plotted with respect 

to all other events (RYES, LYES, and LNO), a strong ERS was observed for the active 

state period for that event. Same was the case for event LNO with respect to events RYES, 

LYES and RNO.  
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Similarly, when the source signal from a virtual channel for the ev

plotted with respect to all other events (LYES, RNO, and LNO), ERD was observed as a 

distinguishable pattern for the active state period for that event. This was

event LYES with respect to events RYES, RNO, and LNO for its activ

trend observed, as also seen in Fig. 8, was that the events featurin

distinguishable than the events featuring ERD. 

 

3.4. Classification 

 

The proposed BCI intended to discriminate four events (RYES, RNO, LYES and 

LNO); while sustaining and ceasing movement for the motor execution and m

tasks from single trial MEG virtual channel signals obtained through SAM analysis. To 

verify the effectiveness of SAM, the results of SAM-Virtual channel classi

compared to MEG-Sensor based classification. Classification was 

MLD and DTC techniques described in the methods section. The results for motor

execution and motor imagery are displayed in Table 1 and Table 2 respectively. 



 

Table 1: SAM-Virtual channel signal vs. MEG-Sensor signal for Motor Execution (ME) 

 

SAM Virtual Sensor MEG Sensor Domain 
Subject samples/ 

 GA-MLD (%) DTC (%) GA-MLD (%)  DTC (%) 

Total no. of 

trials 
S 1 98.88 ± 0.71 97.38 ± 1.50 63.90 ± 4.46 53.50 ± 4.03 120

S 2 96.33 ± 1.05 87.25 ± 3.81 71.10 ± 2.28 62.50 ± 2.92 120
S 3 98.44 ± 1.09 98.44 ± 0.78 72.56 ± 2.46

S 4 92.38 ± 1.20 85.63 ± 3.50 7

67.11 ± 3.28 115

0.00 ± 4.22 58.11 ± 4.89 120
S 5 95.25 ± 1.54 92.75 ± 1.65 71.50 ± 3.75 55.60 ± 2.80 118

S 6 97.75 ± 1.42 98.25 ± 1.21 65.40 ± 3.90 51.80 ± 5.20 89

1 ± 2.43 93.28 ± 5.71 69.08 ± 3.58 58.10 ± 5.79 114Average 96.5
 

 

 

Table 2: SAM-Virtual channel signal vs. MEG-Sensor signal for Motor Imagery (MI) 

 

SAM Virtual Sensor  MEG Sensor Domain Subject 
GA-MLD (%) DTC (%) GA-MLD (%)  DTC (%) 

samples/ 
trials 

Total no. of 

S 3 94.63 ± 1.87 82.88 ± 2.95 39.20 ± 2.10 31.5 ± 3.34 116
S 4 88.25 ± 2.78 71.75 ± 2.65 56.40 ± 3.47 48.20 ± 2.57 120

87
S 7 88.63 ± 1.71 69.87 ± 3.51 38.33 ± 2.93 28.78 ± 3.80 114
Average 89.69 ± 3.34 75.25 ± 5.80 48.43 ± 11.26 40.68 ±12.48 110

S 5 87.25 ± 2.75 76.50 ± 2.93 59.82 ± 2.38 54.27 ± 2.43 
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From the results, it is clear that SAM-Virtual Channels were successful in 

lassifying the four events at high performance. The Virtual Channel-based classification 

accuracy for moto A-MLD w .51 % rd 

deviation of 2.43 % and for m gery for  classif  was 

averaged to be 89.69 % with standard deviat  % he SAM-V l 

channel based classification accuracy for motor execution using direct DTC was averaged 

to 93.28 % d  5.7 r m , the resul r 

direct DTC classification was averaged to be 7  st ion of 5.80

The MEG-Sensor based classification was performed in order to compare its results 

with SAM-Virtual channels.  The MEG-Sensor based classification accuracy for motor 

execution using GA-MLD was averaged to be 69.08 % with standard deviation of  3.58 % 

and, for motor imagery, the results for GA-MLD was averaged to be 48.43 % with 

standard deviation of  11.26%. Similarly, the SAM-Virtual channel classification accuracy 

using direct DTC, for motor execution was averaged to be 58.10 % with standard deviation 

o 9 % and, a ult d to  with sta d 

deviation of 12.48 %. For mot sks cat  for subjects 3 

and S 7 were found to be relatively low. It was observed by tim  

sensor domain, that ERS and ERD both were very weak for these subjects. ERD was 

hardly detected. Hence feature extraction and classification was difficult for these subjects. 
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3.5. Sta

e 

second

AM-filtered virtual channel analysis was observed. When compared with sensor-based 

lassification, a significant improvement in classification of events RYES, RNO, LYES 

tistical Analysis 

  

 To study the statistical significance of the results established through classification 

accuracies between SAM and Sensor domains, a statistical analysis was done on the results 

obtained through GA-MLD classification technique. The significance level was chosen to 

be 0.05. It was of interest to know the statistical claim on two points, the first being; 

whether the classification accuracy obtained from SAM-Virtual channel analysis was 

better than that obtained through Sensor-based classification for motor execution. Th

 point was to determine whether the classification accuracy obtained from SAM-

Virtual channel analysis was better than that obtained through sensor-based classification 

for motor imagery. 

Using a paired t-test, there was clear evidence for increased classification accuracy 

(t = 13.3, df = 5, p-value < 0.0001) through SAM-filtered virtual channel analysis for 

motor execution. There was a significant improvement in the accuracy to classify the 

events RYES, RNO, LYES   and LNO through this analysis (point estimate of +27.43%; 

95% confidence interval between 22.13% and 32.73%) as compared to the sensor domain 

results. 

For motor imagery, a paired t-test was again conducted and a statistically 

significant increase in classification accuracy (t = 6.03, df = 3, p-value < 0.0046) through 

S

c
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and LNO was seen with SAM- filtered virtual channel based classification (point estimate 

% confidence interval between 19.47% and 63.04%). 

 

of +41.25%; 95
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CHAPTER 4  

Discussion 
 

 

4.1. ERD/ERS Analysis for human natural motor behavior vs. motor imagery 

 

The analysis of movement related activities was made extremely convenient due to 

the unique paradigm used. The asymmetric hemispheric activity during motor tasks as well 

as the features of ERD and ERS seen while sustaining and ceasing natural upper limb 

movements explicitly helped in enhancing classification accuracy. The spatial distribution 

of post movement beta rebound corresponding to ERS was seen to be more focal than ERD 

distribution. The observation that the detection of ERS might be potentially more reliable 

than ERD detection was used to reliably classify the four natural right and left hand motor 

tasks. Using natural motor behavior for the paradigm was easier and motivating for the 

subjects to perform both motor execution and motor imagery tasks thus minimizing 

training period and consequently fatigue which are a common issue during data collection. 

In a study conducted by Dr. Birbaumer’s group, the performance of the MEG-based BCI 

(Mellinger et al. 2007) was similar to what had been reported for a state-of-the-art EEG-

based mu rhythm BCI with a large number of participants (Guger et al. 2003). The MEG-

based BCI used voluntary amplitude modulation of sensorimotor mu and beta rhythms. 
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The results of the present study indicate that the use of natural motor behavior for the 

roposed SAM-Virtual channels based BCI gives higher classification results when 

compared to its EEG counterpart usin lation of sensorimotor rhythms. 

For SAM analysis, the ERD p uring the planning and execution of 

movem nts whereas the ERS pattern was seen after movement for all the subjects. This has 

been demonstrated in previous studies (Pfurtscheller 1988; Toro et al. 1994; Bai et al. 

o be better 

an motor imagery. Studies show that the performance of motor imagery was associated 

with th

p

g amplitude modu

attern was seen d

e

2005) . The classification accuracy results for motor execution were observed t

th

e ERD and ERS in the beta band similar to that of motor execution (Pfurtscheller et 

al. 2005). 

 It has also been reported that only the left sensorimotor cortex is activated during 

dominant right hand movement, whereas sensorimotor cortices of both right and left 

hemispheres are activated during non-dominant left hand movement. This also has been 

reported previously with EEG studies (Kawashima et al. 1993; Volkmann et al. 1998; Jung 

et al. 2003). However for the present study, during motor imagery this pattern was not 

always observed. Although a bilateral ERD was seen for most subjects mentioned in 

previous studies as the “spill over” of cortical activation (Dhamala et al. 2003), bilateral 

ERS was observed for subject S3 and S4 for motor imagery (See Fig. 6, Pg. 33). There was 

a variation of bilateral ERS in subject S3 and midline ERS in subject S2 for motor 

execution (See Fig. 6, Pg. 33). This could result to a lower classification accuracy due to 

poor feature detection, although the ERS pattern was found to be stronger in the left motor 

cortex area for RNO and right motor cortex area for LNO. The virtual channels for feature 
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selection and classification were thus selected from the dominant lobe. Since natural motor 

behavior i.e. right and left physical hand movement, was used for the motor execution 

tasks, the ERD/ERS patterns were strong and well defined. However, the ERD/ ERS 

pattern

jects who participated in this study were naïve to BCI and this was a single trial 

study, 

s for motor imagery were more bilateral and were observed to be weak as compared 

to motor execution. Hence the feature extraction and classification of virtual channel data 

was difficult for motor imagery which led to lower classification accuracy for the events 

RYES, RNO, LYES and LNO. This can be explained by the fact that the subjects need 

more control over their movement intentions to achieve accuracy for motor imagery tasks. 

It can be achieved through more effort and longer training periods. Considering the fact 

that the sub

more accurate motor imagery classification could potentially be obtained through a 

short BCI training period.  

 

4.2. SAM-Virtual channel signal  

 

The neurophysiological mechanisms for voluntary movement have been 

extensively studied with EEG and also with MEG (Vaughan et al. 1968; Deecke et al. 

1969; Pfurtscheller and Berghold 1989b; Taniguchi et al. 2000; Bai et al. 2005; Bai et al. 

2008) . MEG has the advantage of superior spatial resolution and can identify the 

anatomical location of cortical activity with enhanced accuracy. Sensor-based processing is 

a basic method which only minimally uses the source localization ability of MEG for 

further classification of event related voluntary movements. A couple of MEG studies have 
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been conducted based on sensor domain, focusing mainly on the source identification 

problems (Lee et al. 2003; Barbati et al. 2006; Kauhanen et al. 2006). SAM, when 

compared to Sensor-based processing, is a spatially selective beamformer, which filters out 

the background brain noise from other brain regions to obtain meaningful signals from the 

arbitrary target regions. SAM transforms neuromagnetic signals into units of dipole 

moment on a per-voxel basis; this enables one to display simultaneously active multiple 

sources, provided that these sources are not perfectly synchronized (Taniguchi et al. 2000). 

For the present study, further application of statistical imaging technique was applied to 

obtain statistical difference in the power of the selected beta frequency band which was 

evaluated between the active and the control states for events RYES, RNO, LYES and 

LNO. Those areas with statistical difference were displayed on the individual MRI (See 

Fig. 6, Pg. 33) in a tomographic manner (Ishii et al. 1999).  Virtual channels were selected 

om these images. Thus SAM based virtual channels immensely facilitates feature 

es from the cortical areas, from the source of activation. 

his is a very important factor for the design of the proposed BCI because SAM-filtered 

virtual 

fr

reduction while selecting the featur

T

channels tremendously improve the signal-to-noise ratio (SNR) of the MEG signals 

and also reduces the computational load. In the present study, the original data from 275 

MEG sensors for each subject was reduced to mere 25-30 virtual channels, with high SNR 

from SAM-filtered virtual channel analysis. Classification of these reliable features related 

to the sustaining and ceasing voluntary movements RYES, LYES, RNO and LNO, while 

analyzing single-trial MEG signals thus facilitates a high-performance, high-speed BCI. 
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4.3. Event-related Power Analysis for Virtual channels and MEG-Sensors 

 

From the power analysis in the SAM domain, it is evident that among the four 

events for each virtual channel selected, the events featured by ERS were better detected 

for the single trial MEG signals than those featured by ERD, during the active state period. 

From Fig. 8, this phenomenon is clearly observed for Subjects S1, S2, and S3 for motor 

execution RNO and LNO events. For motor imagery, Subject S3 and subject S4 also 

demonstrate this phenomenon. The same can be observed in Fig.7, from power analysis in 

the MEG-Sensor domain. Studies have reported this phenomenon previously (Pfurtscheller 

and Solis-Escalante 2009). Variability in this phenomenon was seen in the MEG-Sensor 

domain in Subject S3, for whom ERS was not detected during the active state period in the 

beta band for the respective events for motor imagery trial. This suggests that, since the 

power samples for feature selection are calculated using the active state time window and 

ERS was not distinguishable for the events RNO and LNO during this period, the 

classification accuracy for subject S3 was low. This was the case with subject S 7 for the 

motor imagery trial in the sensor domain (See Table 2, Pg. 39). For Virtual channel 

analysis, since SAM further enhances the spatial resolution for the detection of both ERD 

and ERS, the selection of these features to classify the four events RYES, RNO, LYES and 

LNO proved highly efficient to achieve the proposed high performance BCI. 

Our aim for the present study was to verify the effectiveness of SAM-filtered 

virtual channel signals to classify natural human movement intentions. The performance of 

A-MLD classifier was observed to be better than DTC and hence GA-MLD based G
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classification was used for the statistical analysis to compare SAM-filtered virtual channel 

ignal vs. the MEG-sensor signals. 

unication for 

patient

s

 

4.4. Implications for BCI Application 

 

According to the statistical analysis performed on this study, the four events RYES, 

LYES, RNO and LNO associated with sustained and ceased natural human motor control 

were efficiently classified with high accuracy by the SAM-filtered, single trial MEG based 

BCI. The results for GA-MLD based classification were averaged to be 96.51 % with 

standard deviation of 2.43 %. The results for motor execution can be immensely 

advantageous for disabled motor disorder patients, even with very limited physical limb 

movement. 

For motor imagery, the results for GA-MLD classification were averaged to be 

89.69 % with standard deviation of 3.34 %. Once the basic mechanism of converting event 

related movement intensions to computerized action is perfected, the potential uses for this 

BCI technology are almost limitless. This can be easily achieved through introduction of a 

short training session for motor imagery trial for the proposed BCI. Thus, the proposed 

SAM-filtered single trial MEG based BCI may help tremendously in accelerating 

rehabilitation and provide a means for assistive device control or comm

s with severe movement disorders. 

The whole process of SAM analysis in this study was offline. For real-time use, a 

calibration study may be performed to determine the source locations of the desired region 
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of interest. Using this model, the spatio-temporal activities of neural sources, i.e., virtual 

channels signal, can be estimated online. Future study is required to explore the robustness 

of online estimation of neural source activities from pre-determined source locations.  

f portability, MEG is a less practical modality for 

CI use compared with EEG. However the advantages of MEG include high spatial and 

tempor

 movement disorders to improve the neural plasticity of their brain. Overall, 

this BC

Due to the high costs and lack o

B

al resolution and moreover the ability to use SAM for the selection of virtual 

channels, which further enhances the source-signal to noise ratio of MEG signals and also 

reduces the computational load for analyses. As technology progresses, there may be 

portable MEG devices, voiding the importance of shielded rooms for recording (see e.g. 

BabySquid, Tristan Technologies). Even though real-time processing may be difficult at 

present with the proposed BCI, it can be used effectively for training and rehabilitation of 

patients with

I has the following advantages over other BCIs: a natural control scheme, high 

spatial resolution, acceptable response time, robustness and reliability. The proposed BCI 

could bring improvement to the quality of life of the patients suffering from various 

movement disorders. 
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Feature selection and Classification: 

Feature Selection: 

 The SAM-filtered MEG virtual channel signals provided high-dimensional 

features; for example, 25 virtual channels with 16 frequency bins produced 400 features. 

Such high-dimensional features may bias the oducing a low testing  classification model pr

accuracy. A compact subset of features needs to be determined for achieving a robust 

classification. The subset feature selection can be determined either empirically or ‘data-

driven’. Because of the high dependence among features, the empirical approach usually 

does not provide a good solution. The exhaustive search method is one of the optimal 

feature selection methods, which evaluates all possible subsets to determine the best 

subsets. For example, the exhaustive search of a subset of 3 features from 400 features 

results in more than ten million combinations. It is impractical to perform this due to the 

computational burden. We adopted a sub-optimal method of genetic algorithm-based 

search, which is a stochastic search in the feature space guided by the idea of inheriting, at 

each search step, good properties of the parent subsets found in previous steps (Raymer et 

al. 2000). One important procedure in the genetic algorithm-based feature selection is the 

evaluation of feature subsets. In this study, the feature subsets were evaluated on 10-fold 

cross-validation accuracy using a Mahalanobis Linear Distance (MLD) classifier in order 

to reduce the risk of over-training (Li et al. 2006). According to the evaluation of the 

feature subset, a new generation was created from the best of them. By repeating this 

procedure, a sub-optimal feature subset for the classification was determined. In this 
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approach, the dimension of feature subset should be provided previously. We performed a 

pilot study to investigate an optimal dimension. Because of the difference in spatial and 

temporal filters, it was difficult to determine an optimal dimension. We proposed the 

strategy of grid search from 4 to 20 with step of 4 according to the finding in the pilot 

study. In GA approach, the population size was 20, the number of generations was 100, the 

crossover probability was 0.8, the mutation probability was 0.01, and the stall generation 

was 20. 

 Because of the large number of features, the convergence speed under GA was still 

very slow. For the purpose of faster convergence and less risk of local minima, we 

proposed an approach of pre-feature selection to pre-select features having larger 

Bhattacharyya distance between two task conditions. The Bhattacharyya distance is the 

square of mean difference between two task conditions divided by the variance of the 

samples in two task conditions (Marques 2001). The Bhattacharyya distance was 

calculated on each feature (univariate) in feature pool indexing the feature separability 

between two task conditions, which was somewhat similar to ANOVA statistic test by 

evaluating the volume of the pooled covariance matrix of the class relative to the 

separation of their means. As Bhattacharyya distance indexes the separability directly, it is 

preferable for feature selection with comparison of other indexing methods, for example, 

the Fisher Score which indexes the similarity. The features were sorted in descending order 

according to their Bhattacharyya distance; the first 100 features were retained for 

subsequent multivariate feature selection. 
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Classification: 

 We explored three statistical classification and three neural network classification 

approaches. For pattern recognition, the simplest classification can be achieved by finding 

the minimum distance to the prototypes, usually the sample means under different tasks. 

For example, in the case of a two-feature two-class classification problem, the discriminant 

boundary is a straight line perpendicular to the linking of means and passing at half 

distance. Because the features are not necessarily mutually uncorrelated, we adopted linear 

and quadratic Mahalanobis distance, which takes covariance into account (Marques 2001). 

‘MLD’ computed a pooled covariance matrix averaged from individual covariance 

matrices in two task conditions so that the discriminant boundary is hyper-planes leaning 

along the regression.  

    We explored a nonlinear classification approach using neural networks. The neural 

network approaches provide more complicated discriminant boundaries, for example, by 

using polynomial functions. Theoretically, it may provide higher accuracy in classification 

tasks, at least in the training procedure. Successful applications in BCI development have 

also been reported ((Garrett et al. 2003) and (Hung et al. 2005)). 
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