114,125 research outputs found

    No relationship between the cell surface hydrophobicity of coagulase-negative staphylococci and their ability to adhere onto fluorinated poly(ethylene-propylene)

    Get PDF
    The cell surface hydrophobicity of 14 encapsulated and 21 non-encapsulated coagulase-negative staphylococci (CN staph) as determined with the salt aggregation test (SAT) as well as with the xylene-water method ranged widely. Non-encapsulated strains adhered well onto fluorinated poly(ethylene-propylene) (FEP), irrespective of the hydrophobicity of the cell surface. The ability of the encapsulated strains to adhere onto FEP differed also considerably, but no correlation between the number of adherent bacteria and the cell surface hydrophobicity was observed

    Correlation between sequence hydrophobicity and surface-exposure pattern of database proteins

    Full text link
    Hydrophobicity is thought to be one of the primary forces driving the folding of proteins. On average, hydrophobic residues occur preferentially in the core, whereas polar residues tends to occur at the surface of a folded protein. By analyzing the known protein structures, we quantify the degree to which the hydrophobicity sequence of a protein correlates with its pattern of surface exposure. We have assessed the statistical significance of this correlation for several hydrophobicity scales in the literature, and find that the computed correlations are significant but far from optimal. We show that this less than optimal correlation arises primarily from the large degree of mutations that naturally occurring proteins can tolerate. Lesser effects are due in part to forces other than hydrophobicity and we quantify this by analyzing the surface exposure distributions of all amino acids. Lastly we show that our database findings are consistent with those found from an off-lattice hydrophobic-polar model of protein folding.Comment: 16 pages, 2 tables, 8 figure

    Hydrophobicity properties of graphite and reduced graphene oxide of the polysulfone (PSf) mixed matrix membrane

    Get PDF
    Hydrophobicity properties of graphite and reduced graphene oxide (rGO) (from exfoliated graphite/rGO) towards PSf polymer membrane characteristic and properties at different additives weight concentrations (1, 2, 3, 4 and 5 wt. %) were investigated. Both PSF/graphite and PSf/rGO membranes were characterized in term of hydrophobicity, surface bonding, surface roughness and porosity. FTIR peaks revealed that membrane with graphite and reduced graphene oxide nearly diminished their O-H bonding which was opposite to the graphene oxide peak that shows a strong O-H bonding as increased exfoliated times. These results were in line with the contact angle results that showed strong hydrophobicity of graphite and reduced graphene oxide membranes as increased these additives concentration. The effect of strong hydrophobicity in these membranes also has resulted in smoother surface roughness compared to pristine PSf membrane. Further investigation of the performance of water flux also proved that both above membranes have strong hydrophobic effect, with the lowest pure water flux rate (L/m2h) was given by PSf/rGO 3% membrane at 19.2437 L/m2h

    On Hydrophobicity Correlations in Protein Chains

    Get PDF
    We study the statistical properties of hydrophobic/polar model sequences with unique native states on the square lattice. It is shown that this ensemble of sequences differs from random sequences in significant ways in terms of both the distribution of hydrophobicity along the chains and total hydrophobicity. Whenever statistically feasible, the analogous calculations are performed for a set of real enzymes, too.Comment: 17 pages, 5 figures, to appear in Biophys.

    Tuning component enrichment in amino acid functionalized (organo)silicas

    Get PDF
    A straightforward procedure to synthesize cysteine functionalized materials with tailored support properties has been developed. It allows tuning the hydrophobicity of the material via the incorporation of aliphatics, aromatics or silica in the framework structure. The aldol condensation of 4-nitrobenzaldehyde and acetone, as a probe reaction for the catalytic activity of the produced materials, exhibited a remarkable interplay between the reactant, solvent, traces of water and support hydrophobicity. A selective enrichment in the catalyst pores of specific bulk phase molecules is believed to be the key to achieve the targeted catalyst performance

    Hydrophobicity

    Get PDF
    Data aproximada de la fotografi
    • …
    corecore