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ABSTRACT We study the statistical properties of hydrophobic/polar model sequences with unique native states on the
square lattice. It is shown that this ensemble of sequences differs from random sequences in significant ways in terms of both
the distribution of hydrophobicity along the chains and total hydrophobicity. Whenever statistically feasible, the analogous
calculations are performed for a set of real enzymes, too.

INTRODUCTION

Functional protein sequences exhibit the ability to fold
spontaneously into a unique native state (Creighton, 1993).
A natural step in order to understand this crucial property is
to compare good and bad folding sequences in simple
models where conformational space can be properly ex-
plored. Most such studies have been directed toward iden-
tifying physical characteristics of good folders, and in this
important area some progress has been made (Săli et al.,
1994; Bryngelson et al., 1995; Klimov and Thirumalai,
1998; Nymeyer et al., 1998). In this paper we address the
question of how good folders differ from random sequences
in purely statistical terms. A related but different topic is
how sequences that share the same (unique) native state are
distributed in sequence space. This question and its evolu-
tionary implications have recently attracted considerable
attention (Li et al., 1996; Bornberg-Bauer, 1997; Govin-
darajan and Goldstein, 1997a,b; Bastolla et al., 1999; Bro-
glia et al., 1999; Bornberg-Bauer and Chan, 1999; Tiana et
al., 2000).

In a recent study of a hydrophobic/polar off-lattice model,
it was found that good folders tend to show negative hy-
drophobicity correlations along the chains (Irbäck et al.,
1997). The analogous calculations gave, moreover, qualita-
tively similar results for a major class of real proteins,
corresponding to typical total hydrophobicities (Irbäck et
al., 1996). On the other hand, the opposite behavior, positive
hydrophobicity correlations, has been reported for a class of
designed model sequences that display certain protein-like
features (Khokhlov and Khalatur, 1998, 1999). These de-
signed sequences are, for instance, not meant to have unique
native states, so the different results do not represent a
contradiction. However, it shows that sequence correlations
in proteins is a delicate issue that requires a careful analysis.

The main goal of this paper is to test the robustness of the
conclusion that good folding model sequences as well as

functional proteins show negative hydrophobicity correla-
tions. To this end we perform new calculations for both
model and real sequences. The model we study is the
minimal HP model on the square lattice (Lau and Dill, 1989;
Dill et al., 1995). This choice makes it possible for us to
improve significantly on the statistics in the previous study
(Irbäck et al., 1997), which was based on an off-lattice
model. The real sequences studied are single-domain en-
zymes taken from the CATH protein structure classification
database (Orengo et al., 1997), which we hope displays
statistical properties representative of functional (globular)
folding units. With this restriction on protein type, it turns
out that the previous, somewhat artificial, restriction on total
hydrophobicity (Irbäck et al., 1996) can be lifted.

METHODS

Sequences

Let us first define the sequences studied. The real sequences studied are the
173 nonhomologous single domain enzymes found in the October 1998
release of the CATH database (Orengo et al., 1997). These sequences are
transformed into binary hydrophobicity strings, by taking the six amino
acids Leu, Ile, Val, Phe, Met, and Trp as hydrophobic (�i � 1) and the
others as hydrophilic (�i � �1). This choice is somewhat arbitrary.
Therefore, we also tried a 20-valued hydrophobicity scale, which did not
affect any of the conclusions below. In CATH, the most general level of
classification is denoted “class” and describes the relative content of �
helices and � sheets. Below, the class dependence of our results is checked
by separate calculations for each of the three major classes: mainly �,
mainly �, and ��. A fourth class, low secondary structure content, exists
but it is not considered separately, as only 3 of the 173 sequences belong
to it. In our calculations we also divide the sequences into extracellular and
intracellular ones. Following Martin et al. (1998), we take the presence of
a disulphide bridge as an indicator of extracellular location. The number of
enzymes in the different subsets studied can be found in Table 3 below.

The model we use is the minimal two-dimensional HP model (Lau and
Dill, 1989), whose behavior is known in quite some detail (Dill et al.,
1995). It contains only two types of amino acids, H (hydrophobic, �i � 1)
and P (polar, �i � �1), and the chain conformation is represented as a
self-avoiding walk on a lattice. The formation of a hydrophobic core is
favored by defining the energy as minus the number of HH pairs that are
nearest neighbors on the lattice but not along the chain. On the square
lattice, it turns out that this simple choice of energy function is sufficient
in order to get a significant number of sequences with unique ground states
(Chan and Dill, 1994; Irbäck and Sandelin, 1998); complete enumeration
of all possible sequences and structures shows that the fraction of such
sequences is roughly 2% for N � 18. Throughout this paper we consider
all HP sequences that have unique ground states as good folding sequences.

Received for publication 18 January 2000 and in final form 23 May 2000.

Address reprint requests to Dr. Anders Irbäck, Lund University, Depart-
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Also central is that the sequences are able to fold fast into their native
states, a requirement that we ignore. This is a reasonable simplification
because the sequences are short and because almost all have the same
energy gap between ground state and next lowest level.

Sequence correlations

Our statistical analysis of hydrophobicity strings can be divided into two
parts. The first part deals with the distribution of hydrophobicity along
the chains; how does a “good” sequence with length N and total
hydrophobicity

M � �
i�1

N

�i (1)

differ from a typical sequence with the same N and M? This question can
be addressed by monitoring variables such as the number of hydrophobic
and hydrophilic clumps along the chain (White and Jacobs, 1990), Fourier
amplitudes (Irbäck et al., 1996), or random walk (Brownian bridge) rep-
resentations (Pande et al., 1994). In this paper we work with block
variables, a widely used technique that has proven useful in studies of DNA
sequences (Peng et al., 1992) as well as proteins (Irbäck et al., 1996).

In addition to the distribution of hydrophobicity along the chains, we
also study the distribution of the total hydrophobicity M. This analysis
relies entirely on comparisons between observed sequences, which makes
it statistically more difficult, especially for the real sequences with
varying N.

The blocking method

In this method, for a given size s, the sequence is divided into blocks each
consisting of s consecutive �i along the chain. The block variable �k

(s) is
then defined as the sum of the s �i values in block k (k � 1, . . . , N/s). A
useful quantity is the mean-square fluctuation

�(s) �
s

N �
k�1

N/s

�k
(s) �k

(s) �
1
K

��k
(s) � sM/N�2 (2)

where we choose the normalization factor

K �
N2 � M2

N2 � N
�1 � s/N�. (3)

With this choice, the average of �(s) over all possible sequences with given
N and M takes the simple form (Irbäck et al., 1996)

��(s)�N,M � s, (4)

independent of N and M.

The distribution of total hydrophobicity

We study the M distribution for different fixed N, focusing on the mean
�M�N (the subscript indicates fixed N) and the normalized variance

	 �
1
N

��M � �M�N�2�N . (5)

It is easily verified that

	 �
4
N �

i�1

N

hi�1 � hi� 

1
N �

i�j

cij , (6)

where hi � (1 	 ��i�N)/2 denotes the fraction of sequences that have �i �
1, and cij � ��i�j�N � ��i�N��j�N is the �i, �j correlation. So, if the �i values
are uncorrelated, then

	 � 	1 �
4
N �

i�1

N

hi�1 � hi�, (7)

which becomes

	 � 	0 � 4h�1 � h� (8)

in case the hydrophobicity profile {hi} is flat with hi � h for all i. Below
these two predictions are tested for the model sequences.

Unfortunately, our set of enzymes cannot be analyzed this way, due to
limited statistics. However, as we will see, it turns out that the data for the
mean �M�N can be approximately described by a simple linear relation,
�M�N 
 M� � (2h� � 1)N. As an effective measure of the fluctuations in M,
we therefore consider

	� � ��M � M�

N1/2 �2� , (9)

where the average now is over all sequences, irrespective of N. If the �i

values for each N were uncorrelated with identical hi � h� , then we would
have

	� � 	� 0 � 4h��1 � h��. (10)

Let us finally stress that �(s) and 	 are fundamentally different measure-
ments. In the blocking method individual sequences are compared to
random sequences with the same N and M. Hence, �(s) provides direct
information on the distribution of �i � �1 along the chains. This is not true
for 	 and the correlation cij. This correlation is not necessarily physical.
The behavior of the analogue of cij in the ordered phase of an Ising magnet
provides an illustration of this. In this case, cij does not vanish at large
distance, although the physical correlation length is finite.

Individual structures

As mentioned in the Introduction, several recent model studies have
addressed the question of how sequences that fold to the same native state
are related. In particular, using an HP-like model with compact structures
only, Li et al. (1996) found that structure-preserving mutations tend to be
largely independent for highly designable structures. To see whether this
behavior is consistent with our analysis, we perform two measurements for
different fixed structures, too.

Consider a given structure r, and let {hi
(r)} be the corresponding hydro-

phobicity profile (hi
(r) is the probability that �i � 1). The first quantity we

calculate is

�	(r) � 	(r) �
4
N �

i�1

N

hi
(r)�1 � hi

(r)), (11)

where 	(r) is defined as 	 in Eq. 5 but for fixed structure. �	(r) measures
the average �i, �j correlation for fixed structure (see Eq. 6). The second
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quantity is the entropy

S � � �
i�1

N

hi
(r)ln hi

(r) 
 �1 � hi
(r)�ln�1 � hi

(r)�� (12)

for a system of independent �i with hydrophobicity profile {hi
(r)}. If the �i

values are approximately independent, then eS provides an order-of-mag-
nitude estimate of the actual number of sequences, Nr. If this is not the case,
then eS overestimates Nr.

RESULTS

In this section we present the results of our analyses of the
mean-square block fluctuations �(s) and the distribution of
total hydrophobicity, M, for model and real sequences. We
end the section with some comments on our model results
and related studies of similar models.

The blocking method

Model sequences

In our block variable analysis of HP sequences, we consider
the 6349 N � 18 sequences that have unique native states,
which can be obtained by exhaustive enumeration (Chan
and Dill, 1994). The results are compared to expected
values for random sequences, as described in Methods. This
comparison makes sense only if the hydrophobicity profile
{hi} is uniform. From Table 1 it can be seen that hi is
approximately constant in the midpart but increases towards
the ends. As a check, we therefore calculate the mean-
square block fluctuation �(s) in two ways for each sequence:
first, for the full sequence; and second, after elimination of
two amino acids at each end. Fig. 1 shows the results of both
these calculations. We see that the average �(s) is smaller
than for random sequences, irrespective of whether the
endpoints are included or not. The conclusion that �(s), on
average, is suppressed for good sequences is in perfect
agreement with earlier results for a different model (Irbäck
et al., 1996, 1997).

Enzymes

We now repeat essentially the same analysis for the en-
zymes. The only difference is that, because N is not fixed,
the hydrophobicity profile h(�) is taken to be a function of
the relative position � along the chains. To calculate h(�),
we divide the interval in � from 0 (N end) to 1 (C end) into

100 bins. The results obtained are shown in Fig. 2 a. We see
that h(�) is approximately constant throughout the interval
0 � � � 1.

In an earlier block analysis of functional protein se-
quences (Irbäck et al., 1996), in which there was no restric-
tion on protein type, the ends were found to display a
different behavior than the rest of the sequences, and there-
fore they were removed from the analysis. To check if this
is true for the present data set, we calculate the average of
�k

(4) (see Eq. 2) as a function of �, using 25 bins in �. The
results are shown in Fig. 2 b. Although the uncertainties are
somewhat large, there is no sign of the ends behaving
differently.

Given these two findings, we calculate the block fluctu-
ations using the full sequences, without any elimination of
amino acids at the ends.

In Fig. 3 we show the average �(s) against block size s for
the 173 enzymes. Also shown are the results obtained for
five different subsets of these sequences (see Methods). We
see that the results are similar in the different cases, and that
�(s) is smaller than for random sequences. Qualitatively, the
behavior is similar to that found for the model sequences.

In this analysis we have chosen to focus on �(s). Similar
deviations from randomness are expected in other quantities
such as the number of hydrophobic/hydrophilic clumps
along the chain. The number of clumps tends to be large
when �(s) is small (Irbäck et al., 1997).

The distribution of total hydrophobicity

Model sequences

We now turn to the distribution of the total hydrophobicity
M. Table 2 shows h � (1 	 �M�N/N)/2 and the normalized
variance 	 (see Eq. 5) for good HP sequences for N �
12, . . . , 18. Also shown in this table are the two predictions
	0 and 	1 defined in Methods, and a prediction 	2 that will

TABLE 1 Hydrophobicity profile {hi} for good N � 18
sequences in the HP model

h1 h2 h3 h4 h5 h6 h7 h8 h9

0.794 0.642 0.467 0.456 0.553 0.498 0.526 0.479 0.523

By symmetry, hi � h19�i.

FIGURE 1 The mean-square block fluctuation �(s) against block size s
for good N � 18 sequences in the HP model. Shown are results both for the
full sequences (	) and for the subsequences consisting of the central 14
amino acids (�). The straight line represents random sequences; see Eq. 4.
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be explained below. Note that h depends quite weakly on N.
This implies that the fraction of hydrophobic amino acids,
unlike the core to surface ratio of compact chains, does not
increase with N. Of course, it would be interesting to see
whether this trend persists for much larger N.

From Table 2 we see that 	 is smaller than 	0, which
implies that the �i values are not both uncorrelated and
uniformly distributed. Comparing to 	1 shows that the ma-
jor part of this difference is due to correlations rather than
non-uniformity. The fact that 	 � 	1 means that the average
cij (i � j) is negative.

The two measurements h and 	 are, of course, not enough
to fully characterize the distribution of good sequences. To
get an idea of how much information they provide, we may
compare to the one-dimensional Ising distribution

P��� � exp�K1 �
i

�i�i	1	K2 �
i

�i�. (13)

The measured values of h and 	 for good N � 18 sequences
can be reproduced by choosing K1 
 �0.16 and K2 
 0.13.
For these parameters it turns out that eS 
 1.9 � 105, S

being the entropy, which means that the effective number of
sequences contained in P(�) is considerably larger than the
number of good N � 18 sequences, 6349.

Enzymes

To study the N dependence of the total hydrophobicity M
for the enzymes, we divide the data set into groups corre-
sponding to different intervals in N. Fig. 4 shows the aver-
age M for these groups against N. We see that the N
dependence is approximately linear. Although the uncer-
tainties are difficult to estimate, it is interesting to note that
the behavior is in perfect agreement with the model results.

Next we calculate 	� in Eq. 9, using M� � N(2h� � 1) and
h� � 0.29, as obtained from a fit to the data in Fig. 4. Table
3 shows 	� for all sequences and for the different subgroups
described in Methods. We see that 	� for all sequences is
larger than predicted by Eq. 10, which contrasts sharply
with the model results above. We also note that there seems
to be a strong dependence on group. In particular there
appears to be a big difference between intra- and extracel-

FIGURE 2 (a) Hydrophobicity profile h(�) for the enzymes. The horizontal line indicates the mean h� 
 0.29. (b) �k
(4) as a function of � for the enzymes.

The horizontal line represents random sequences.

FIGURE 3 The mean-square block fluctuation �(s) against block size s for different groups of enzymes. (a) All sequences (data points connected by
dashed line) and intracellular (IC)/extracellular (EC) sequences. (b) Division of the sequences into three structural classes: mainly �, mainly �, and ��.
The straight lines represent random sequences.
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lular enzymes. However, it must be stressed that the uncer-
tainties are large. Improved statistics are definitely needed
in order to draw any firm conclusion about the different
groups and possible deviations from the model results.

Comments

Our study of HP sequences has been focused on structure-
independent properties. The question of how sequences that
share the same (unique) native structure are related has
recently been examined using similar models (Li et al.,
1996; Bornberg-Bauer, 1997; Bornberg-Bauer and Chan,
1999). From these studies, a simple picture seems to emerge
for structures that are highly designable. For high-Nr struc-
tures (Nr is the number of sequences that fold to the struc-
ture r), it has been found that the sequences tend to form a
single cluster connected by one-point mutations, called a
“neutral net” (Bornberg-Bauer, 1997), and that structure-
preserving mutations tend to be largely independent (Li et
al., 1996). The latter property was observed in a model with
compact structures only. We checked that it holds in the
present model too, which is illustrated in Fig. 5. From this
figure it can be seen that the quantities eS/Nr and ��	(r)�, as
defined in Methods, indeed tend to be small for high Nr.
Also indicated in this figure is whether or not the sequences

form a neutral net, results first obtained by Bornberg-Bauer
(1997).

The fact that structure-preserving mutations are largely
independent for high Nr does not contradict our previous
results. To verify this, we calculated 	 from the known
hydrophobicity profiles {hi

(r)} under the assumption that the
�i values are independent for each structure. The value
obtained this way, 	2, can be found in Table 2 above, and is
indeed a relatively good approximation to the observed 	.

Admittedly, the model used in this study is crude. In
particular, Buchler and Goldstein (1999, 2000) have re-
cently argued, based on a study of compact lattice chains,
that the use of a two-letter alphabet leads to designability
artifacts, which disappear with increasing alphabet size. Let
us stress, therefore, that the analyses discussed in this paper
can be tested on real proteins in a direct manner. Let us also
comment on the stability of our results. First, we note that
the dependence on chain length N is weak. This was ex-
plicitly shown for 	, and is true for �(s) too, although our
discussion focused on one system size in this case. Second,
we note that our results are in nice agreement with those
obtained earlier using a simple hydrophobic/polar off-lattice
model (Irbäck et al., 1997). To further explore the model
dependence of our results, we also did calculations for a
“solvation-like” two-letter model discussed by Ejtehadi et
al. (1998a,b) and by Buchler and Goldstein (1999, 2000).
This model differs from the HP model in that the interaction
strength is additive [�(H, H) � �2�, �(H, P) � �� and
�(P, P) � 0], which means that the total energy can be
expressed as a simple sum of monomer contributions.
Buchler and Goldstein argued that HP-like models, unlike
pair-contact models with larger alphabets, tend to have
solvation-like designability properties. It is therefore inter-
esting to note that when analyzing sequences with unique
ground states in the solvation-like model defined above, we
obtained results qualitatively different from those for the HP
model. More precisely, it turns out that the block fluctua-
tions are significantly larger, close to random, for the sol-
vation-like model.

Summary and Discussion

Hydrophobicity plays a key role in the formation of protein
structures, which makes it of utmost interest to understand

TABLE 2 h � (1 � �M�N/N)/2 and the normalized variance �
of M for good HP sequences for different N

N h 	 	0 	1 	2

12 0.527 0.577 0.997 0.913 0.589
13 0.507 0.550 1.000 0.937 0.553
14 0.519 0.684 0.999 0.924 0.688
15 0.556 0.594 0.987 0.959 0.593
16 0.542 0.687 0.993 0.936 0.663
17 0.555 0.695 0.988 0.961 0.639
18 0.548 0.718 0.991 0.949 0.646

Also shown are the three predictions 	0 (see Eq. 8), 	1 (Eq. 7), and 	2 (see
Comments).

FIGURE 4 Total hydrophobicity M against N for the enzymes. The data
points are averages over intervals of length 30 in N. The straight line is a
least-square fit.

TABLE 3 Analysis of the fluctuations in M for the enzymes

Type of chain No. sequences 	� 	� 0

All chains 173 1.50 � 0.27 0.82
Intracellular 127 0.82 � 0.13 0.83
Extracellular 46 2.92 � 1.15 0.78
Mainly � 23 1.45 � 0.25 0.81
Mainly � 39 1.63 � 0.34 0.77
�� 108 0.85 � 0.14 0.83

The quantities 	� and 	� 0 are defined by Eqs. 9 and 10, respectively.
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the statistical distribution of hydrophobicity along the
chains. In this paper we have analyzed hydrophobic/polar
sequences in the two-dimensional HP lattice model. When-
ever statistically feasible, the analogous calculations were
performed for a set of real enzymes, too. Our main findings
are as follows.

1. Both model sequences and enzymes show mean-square
block fluctuations �(s) that are smaller than for random
sequences. In particular, this implies that the enzymes
display the same behavior that had been found previ-
ously for general proteins with typical total hydropho-
bicities (Irbäck et al., 1996). The present analysis was
performed without any restriction on total hydrophobicity.

2. The average total hydrophobicity M varies approxi-
mately linearly with chain length N over the range of N
studied, both for model sequences and enzymes. This
implies, contrary to what one naively might expect, that
the fraction of hydrophobic amino acids does not grow
with increasing N. The fluctuations in M are difficult to
study for the enzymes, due to statistical uncertainties.
For the model sequences it turns out that the normalized
variance 	 is significantly smaller than for random
sequences.

We also divided the enzymes into different groups ac-
cording to their structural content, and to whether they
reside in an intra- or extracellular environment. The fluctu-
ations in total hydrophobicity appeared to depend on group.
However, whether this dependence is significant or not is
difficult to say, due to statistical uncertainties. The mean-
square block fluctuations are statistically much easier to
measure, and show only a weak dependence on group. The
conclusion that �(s) is suppressed is, in particular, the same
for all the different groups.

A full explanation of the suppression of �(s) is probably
hard to give. Let us note, however, that long hydrophobic or

hydrophilic stretches in the amino acid sequence are likely
to lead to degenerate structures, and the suppression of
sequences containing such stretches should indeed tend to
make �(s) smaller.

The nonrandomness of the block fluctuations provides an
indirect confirmation of the important role played by hy-
drophobicity in the formation of protein structures. Further-
more, it is tempting to take the similarity with the model
results as an indication that the ability to form a stable
structure represents a significant selective advantage in the
evolution of proteins. It would be interesting to check that
the behavior remains the same in more realistic models.

This work was supported by the Swedish Foundation for Strategic Re-
search.
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