129,386 research outputs found

    Solvatochromic probes for detecting hydrogen-bond-donating solvents

    Get PDF
    Hydrogen bonding heavily influences conformations, rate of reactions, and chemical equilibria. The development of a method to monitor hydrogen bonding interactions independent of polarity is challenging as both are linked. We have developed two solvatochromic dyes that detect hydrogen-bond-donating solvents. The unique solvatochromism of the triazine architecture has allowed the development of probes that monitor hydrogen-bond-donating species including water

    A comparative molecular dynamics study of sulfuric and methanesulfonic acids

    Get PDF
    The molecular dynamics computer simulation method has been used to study sulfuric and methanesulfonic acids. Calculations have been carried out between 200 K and 400 K using reliable force fields. Thermodynamic properties, such as the density, the heat of vaporization and the melting temperature, have been computed. Moreover, structural and dynamical quantities, such as the radial distribution functions, the shear viscosity and the diffusion coefficients, have also been calculated. The results display a noticeable good agreement with the available experimental data. A hydrogen bond analysis has also been performed, which shows, on one hand, that sulfuric acid has a hydrogen bond network which resembles the one of water; and, on the other hand, that methanesulfonic acid has a hydrogen bond structure which, in some details, recalls the one of methanol, but with a more important presence of single bonds and, to a lesser extent, of branching. Finally, the dynamics of the formation and rupture of hydrogen bonds has also been analyzed. To this end, the interrupted or slow hydrogen bonding lifetimes have been calculated using two different procedures. Our findings suggest that the sulfuric acid hydrogen bond network is more labile than the methanesulfonic acid one.Postprint (author's final draft

    The Hydrogen Bond of QCD

    Full text link
    Using the Born-Oppenheimer approximation, we show that exotic resonances, X and Z, may emerge as QCD molecular objects made of colored two-quark lumps, states with heavy-light diquarks spatially separated from antidiquarks. With the same method we confirm that doubly heavy tetraquarks are stable against strong decays. Tetraquarks described here provide a new picture of exotic hadrons, as formed by the QCD analog of the hydrogen bond of molecular physics.Comment: 5 pages, 3 figures, comments and references added. Table 1 extende
    • …
    corecore