169 research outputs found

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy

    Settings-Free Hybrid Metaheuristic General Optimization Methods

    Get PDF
    Several population-based metaheuristic optimization algorithms have been proposed in the last decades, none of which are able either to outperform all existing algorithms or to solve all optimization problems according to the No Free Lunch (NFL) theorem. Many of these algorithms behave effectively, under a correct setting of the control parameter(s), when solving different engineering problems. The optimization behavior of these algorithms is boosted by applying various strategies, which include the hybridization technique and the use of chaotic maps instead of the pseudo-random number generators (PRNGs). The hybrid algorithms are suitable for a large number of engineering applications in which they behave more effectively than the thoroughbred optimization algorithms. However, they increase the difficulty of correctly setting control parameters, and sometimes they are designed to solve particular problems. This paper presents three hybridizations dubbed HYBPOP, HYBSUBPOP, and HYBIND of up to seven algorithms free of control parameters. Each hybrid proposal uses a different strategy to switch the algorithm charged with generating each new individual. These algorithms are Jaya, sine cosine algorithm (SCA), Rao’s algorithms, teaching-learning-based optimization (TLBO), and chaotic Jaya. The experimental results show that the proposed algorithms perform better than the original algorithms, which implies the optimal use of these algorithms according to the problem to be solved. One more advantage of the hybrid algorithms is that no prior process of control parameter tuning is needed.This research and APC was funded by the Spanish Ministry of Science, Innovation and Universities and the Research State Agency under Grant RTI2018-098156-B-C54 co-financed by FEDER funds, and by the Spanish Ministry of Economy and Competitiveness under Grant TIN2017-89266-R, co-financed by FEDER funds

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin

    A Constrained ICA-EMD Model for Group Level fMRI Analysis

    Get PDF
    Independent component analysis (ICA), being a data-driven method, has been shown to be a powerful tool for functional magnetic resonance imaging (fMRI) data analysis. One drawback of this multivariate approach is that it is not, in general, compatible with the analysis of group data. Various techniques have been proposed to overcome this limitation of ICA. In this paper, a novel ICA-based workflow for extracting resting-state networks from fMRI group studies is proposed. An empirical mode decomposition (EMD) is used, in a data-driven manner, to generate reference signals that can be incorporated into a constrained version of ICA (cICA), thereby eliminating the inherent ambiguities of ICA. The results of the proposed workflow are then compared to those obtained by a widely used group ICA approach for fMRI analysis. In this study, we demonstrate that intrinsic modes, extracted by EMD, are suitable to serve as references for cICA. This approach yields typical resting-state patterns that are consistent over subjects. By introducing these reference signals into the ICA, our processing pipeline yields comparable activity patterns across subjects in a mathematically transparent manner. Our approach provides a user-friendly tool to adjust the trade-off between a high similarity across subjects and preserving individual subject features of the independent components

    Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand

    Get PDF
    This article focuses on developing both statistical and machine learning approaches for forecasting hourly electricity demand in Ontario. The novelties of this study include (i) identifying essential factors that have a significant effect on electricity consumption, (ii) the execution of a Bayesian optimization algorithm (BOA) to optimize the model hyperparameters, (iii) hybridizing the BOA with the seasonal autoregressive integrated moving average with exogenous inputs (SARIMAX) and nonlinear autoregressive networks with exogenous input (NARX) for modeling separately short-term electricity demand for the first time, (iv) comparing the model’s performance using several performance indicators and computing efficiency, and (v) validation of the model performance using unseen data. Six features (viz., snow depth, cloud cover, precipitation, temperature, irradiance toa, and irradiance surface) were found to be significant. The Mean Absolute Percentage Error (MAPE) of five consecutive weekdays for all seasons in the hybrid BOA-NARX is obtained at about 3%, while a remarkable variation is observed in the hybrid BOA-SARIMAX. BOA-NARX provides an overall steady Relative Error (RE) in all seasons (1~6.56%), while BOA-SARIMAX provides unstable results (Fall: 0.73~2.98%; Summer: 8.41~14.44%). The coefficient of determination (R2) values for both models are >0.96. Overall results indicate that both models perform well; however, the hybrid BOA-NARX reveals a stable ability to handle the day-ahead electricity load forecasts

    A Review on Feature Selection Methods For Classification Tasks

    Get PDF
    Abstract: In recent years, application of feature selection methods in medical datasets has greatly increased. The challenging task in feature selection is how to obtain an optimal subset of relevant and non redundant features which will give an optimal solution without increasing the complexity of the modeling task. Thus, there is a need to make practitioners aware of feature selection methods that have been successfully applied in medical data sets and highlight future trends in this area. The findings indicate that most existing feature selection methods depend on univariate ranking that does not take into account interactions between variables, overlook stability of the selection algorithms and the methods that produce good accuracy employ more number of features. However, developing a universal method that achieves the best classification accuracy with fewer features is still an open research area

    Modeling of electricity demand forecast for power system

    Full text link
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. The emerging complex circumstances caused by economy, technology, and government policy and the requirement of low-carbon development of power grid lead to many challenges in the power system coordination and operation. However, the real-time scheduling of electricity generation needs accurate modeling of electricity demand forecasting for a range of lead times. In order to better capture the nonlinear and non-stationary characteristics and the seasonal cycles of future electricity demand data, a new concept of the integrated model is developed and successfully applied to research the forecast of electricity demand in this paper. The proposed model combines adaptive Fourier decomposition method, a new signal preprocessing technology, for extracting useful element from the original electricity demand series through filtering the noise factors. Considering the seasonal term existing in the decomposed series, it should be eliminated through the seasonal adjustment method, in which the seasonal indexes are calculated and should multiply the forecasts back to restore the final forecast. Besides, a newly proposed moth-flame optimization algorithm is used to ensure the suitable parameters of the least square support vector machine which can generate the forecasts. Finally, the case studies of Australia demonstrated the efficacy and feasibility of the proposed integrated model. Simultaneously, it can provide a better concept of modeling for electricity demand prediction over different forecasting horizons

    Binary Multi-Verse Optimization (BMVO) Approaches for Feature Selection

    Get PDF
    Multi-Verse Optimization (MVO) is one of the newest meta-heuristic optimization algorithms which imitates the theory of Multi-Verse in Physics and resembles the interaction among the various universes. In problem domains like feature selection, the solutions are often constrained to the binary values viz. 0 and 1. With regard to this, in this paper, binary versions of MVO algorithm have been proposed with two prime aims: firstly, to remove redundant and irrelevant features from the dataset and secondly, to achieve better classification accuracy. The proposed binary versions use the concept of transformation functions for the mapping of a continuous version of the MVO algorithm to its binary versions. For carrying out the experiments, 21 diverse datasets have been used to compare the Binary MVO (BMVO) with some binary versions of existing metaheuristic algorithms. It has been observed that the proposed BMVO approaches have outperformed in terms of a number of features selected and the accuracy of the classification process

    Sparse Model Selection using Information Complexity

    Get PDF
    This dissertation studies and uses the application of information complexity to statistical model selection through three different projects. Specifically, we design statistical models that incorporate sparsity features to make the models more explanatory and computationally efficient. In the first project, we propose a Sparse Bridge Regression model for variable selection when the number of variables is much greater than the number of observations if model misspecification occurs. The model is demonstrated to have excellent explanatory power in high-dimensional data analysis through numerical simulations and real-world data analysis. The second project proposes a novel hybrid modeling method that utilizes a mixture of sparse principal component regression (MIX-SPCR) to segment high-dimensional time series data. Using the MIX-SPCR model, we empirically analyze the S\&P 500 index data (from 1999 to 2019) and identify two key change points. The third project investigates the use of nonlinear features in the Sparse Kernel Factor Analysis (SKFA) method to derive the information criterion. Using a variety of wide datasets, we demonstrate the benefits of SKFA in the nonlinear representation and classification of data. The results obtained show the flexibility and the utility of information complexity in such data modeling problems
    • …
    corecore