19 research outputs found

    Self learning neuro-fuzzy modeling using hybrid genetic probabilistic approach for engine air/fuel ratio prediction

    Get PDF
    Machine Learning is concerned in constructing models which can learn and make predictions based on data. Rule extraction from real world data that are usually tainted with noise, ambiguity, and uncertainty, automatically requires feature selection. Neuro-Fuzzy system (NFS) which is known with its prediction performance has the difficulty in determining the proper number of rules and the number of membership functions for each rule. An enhanced hybrid Genetic Algorithm based Fuzzy Bayesian classifier (GA-FBC) was proposed to help the NFS in the rule extraction. Feature selection was performed in the rule level overcoming the problems of the FBC which depends on the frequency of the features leading to ignore the patterns of small classes. As dealing with a real world problem such as the Air/Fuel Ratio (AFR) prediction, a multi-objective problem is adopted. The GA-FBC uses mutual information entropy, which considers the relevance between feature attributes and class attributes. A fitness function is proposed to deal with multi-objective problem without weight using a new composition method. The model was compared to other learning algorithms for NFS such as Fuzzy c-means (FCM) and grid partition algorithm. Predictive accuracy and the complexity of the Fuzzy Rule Base System (FRBS) including number of rules and number of terms in each rule were taken as terms of evaluation. It was also compared to the original GA-FBC depending on the frequency not on Mutual Information (MI). Experimental results using Air/Fuel Ratio (AFR) data sets show that the new model participates in decreasing the average number of attributes in the rule and sometimes in increasing the average performance compared to other models. This work facilitates in achieving a self-generating FRBS from real data. The GA-FBC can be used as a new direction in machine learning research. This research contributes in controlling automobile emissions in helping the reduction of one of the most causes of pollution to produce greener environment

    An under-Sampled Approach for Handling Skewed Data Distribution using Cluster Disjuncts

    Get PDF
    In Data mining and Knowledge Discovery hidden and valuable knowledge from the data sources is discovered. The traditional algorithms used for knowledge discovery are bottle necked due to wide range of data sources availability. Class imbalance is a one of the problem arises due to data source which provide unequal class i.e. examples of one class in a training data set vastly outnumber examples of the other class(es). Researchers have rigorously studied several techniques to alleviate the problem of class imbalance, including resampling algorithms, and feature selection approaches to this problem. In this paper, we present a new hybrid frame work dubbed as Majority Under-sampling based on Cluster Disjunct (MAJOR_CD) for learning from skewed training data. This algorithm provides a simpler and faster alternative by using cluster disjunct concept. We conduct experiments using twelve UCI data sets from various application domains using five algorithms for comparison on six evaluation metrics. The empirical study suggests that MAJOR_CD have been believed to be effective in addressing the class imbalance problem

    Building interpretable fuzzy models for high dimensional data analysis in cancer diagnosis

    Get PDF
    Background: Analysing gene expression data from microarray technologies is a very important task in biology and medicine, and particularly in cancer diagnosis. Different from most other popular methods in high dimensional bio-medical data analysis, such as microarray gene expression or proteomics mass spectroscopy data analysis, fuzzy rule-based models can not only provide good classification results, but also easily be explained and interpreted in human understandable terms, by using fuzzy rules. However, the advantages offered by fuzzy-based techniques in microarray data analysis have not yet been fully explored in the literature. Although some recently developed fuzzy-based modeling approaches can provide satisfactory classification results, the rule bases generated by most of the reported fuzzy models for gene expression data are still too large to be easily comprehensible. Results: In this paper, we develop some Multi-Objective Evolutionary Algorithms based Interpretable Fuzzy (MOEAIF) methods for analysing high dimensional bio-medical data sets, such as microarray gene expression data and proteomics mass spectroscopy data. We mainly focus on evaluating our proposed models on microarray gene expression cancer data sets, i.e., the lung cancer data set and the colon cancer data set, but we extend our investigations to other type of cancer data set, such as the ovarian cancer data set. The experimental studies have shown that relatively simple and small fuzzy rule bases, with satisfactory classification performance, can be successfully obtained for challenging microarray gene expression datasets. Conclusions: We believe that fuzzy-based techniques, and in particular the methods proposed in this paper, can be very useful tools in dealing with high dimensional cancer data. We also argue that the potential of applying fuzzy-based techniques to microarray data analysis need to be further explored. </p

    Flexible Fuzzy Rule Bases Evolution with Swarm Intelligence for Meta-Scheduling in Grid Computing

    Get PDF
    Fuzzy rule-based systems are expert systems whose performance is strongly related to the quality of their knowledge and the associated knowledge acquisition processes and thus, the design of effective learning techniques is considered a critical and major problem of these systems. Knowledge acquisition with a swarm intelligence approach is a recent learning strategy for the evolution of fuzzy rule bases founded on swarm intelligence showing improvement over classical knowledge acquisition strategies in fuzzy rule based systems such as Pittsburgh and Michigan approaches in terms of convergence behaviour and accuracy. In this work, a generalization of this method is proposed to allow the simultaneous consideration of diversely configured knowledge bases and this way to accelerate the learning process of the original algorithm. In order to test the suggested strategy, a problem of practical importance nowadays, the design of expert meta-schedulers systems for grid computing is considered. Simulations results show the fact that the suggested adaptation improves the functionality of knowledge acquisition with a swarm intelligence approach and it reduces computational effort; at the same time it keeps the quality of the canonical strategy

    DISCOVERING FUZZY CENSORED CLASSIFICATION RULES (FCCRS): A GENETIC ALGORITHM APPROACH

    Get PDF
    ABSTRACT Classification Rules (CRs

    QCBA: Postoptimization of Quantitative Attributes in Classifiers based on Association Rules

    Full text link
    The need to prediscretize numeric attributes before they can be used in association rule learning is a source of inefficiencies in the resulting classifier. This paper describes several new rule tuning steps aiming to recover information lost in the discretization of numeric (quantitative) attributes, and a new rule pruning strategy, which further reduces the size of the classification models. We demonstrate the effectiveness of the proposed methods on postoptimization of models generated by three state-of-the-art association rule classification algorithms: Classification based on Associations (Liu, 1998), Interpretable Decision Sets (Lakkaraju et al, 2016), and Scalable Bayesian Rule Lists (Yang, 2017). Benchmarks on 22 datasets from the UCI repository show that the postoptimized models are consistently smaller -- typically by about 50% -- and have better classification performance on most datasets

    Automatic synthesis of fuzzy systems: An evolutionary overview with a genetic programming perspective

    Get PDF
    Studies in Evolutionary Fuzzy Systems (EFSs) began in the 90s and have experienced a fast development since then, with applications to areas such as pattern recognition, curve‐fitting and regression, forecasting and control. An EFS results from the combination of a Fuzzy Inference System (FIS) with an Evolutionary Algorithm (EA). This relationship can be established for multiple purposes: fine‐tuning of FIS's parameters, selection of fuzzy rules, learning a rule base or membership functions from scratch, and so forth. Each facet of this relationship creates a strand in the literature, as membership function fine‐tuning, fuzzy rule‐based learning, and so forth and the purpose here is to outline some of what has been done in each aspect. Special focus is given to Genetic Programming‐based EFSs by providing a taxonomy of the main architectures available, as well as by pointing out the gaps that still prevail in the literature. The concluding remarks address some further topics of current research and trends, such as interpretability analysis, multiobjective optimization, and synthesis of a FIS through Evolving methods

    Belief rule-base expert system with multilayer tree structure for complex problems modeling

    Get PDF
    Belief rule-base (BRB) expert system is one of recognized and fast-growing approaches in the areas of complex problems modeling. However, the conventional BRB has to suffer from the combinatorial explosion problem since the number of rules in BRB expands exponentially with the number of attributes in complex problems, although many alternative techniques have been looked at with the purpose of downsizing BRB. Motivated by this challenge, in this paper, multilayer tree structure (MTS) is introduced for the first time to define hierarchical BRB, also known as MTS-BRB. MTS- BRB is able to overcome the combinatorial explosion problem of the conventional BRB. Thereafter, the additional modeling, inferencing, and learning procedures are proposed to create a self-organized MTS-BRB expert system. To demonstrate the development process and benefits of the MTS-BRB expert system, case studies including benchmark classification datasets and research and development (R&amp;D) project risk assessment have been done. The comparative results showed that, in terms of modelling effectiveness and/or prediction accuracy, MTS-BRB expert system surpasses various existing, as well as traditional fuzzy system-related and machine learning-related methodologie
    corecore