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Abstract: Belief rule-base (BRB) expert system is one of recognized and fast-growing approaches in the areas of complex 

problems modeling. However, the conventional BRB has to suffer from the combinatorial explosion problem since the 

number of rules in BRB expands exponentially with the number of attributes in complex problems, although many 

alternative techniques have been looked at with the purpose of downsizing BRB. Motivated by this challenge, in this paper, 

multilayer tree structure (MTS) is introduced for the first time to define hierarchical BRB, also known as MTS-BRB. MTS- 

BRB is able to overcome the combinatorial explosion problem of the conventional BRB. Thereafter, the additional 

modeling, inferencing, and learning procedures are proposed to create a self-organized MTS-BRB expert system. To 

demonstrate the development process and benefits of the MTS-BRB expert system, case studies including benchmark 

classification datasets and research and development (R&D) project risk assessment have been done. The comparative 

results showed that, in terms of modelling effectiveness and/or prediction accuracy, MTS-BRB expert system surpasses 

various existing, as well as traditional fuzzy system-related and machine learning-related methodologies. 

Keywords: Belief rule base, multilayer tree structure, expert system, complex problems, combinatorial explosion problem 

 

1. Introduction 

Rule-based system is one kind of explainable artificial intelligence (XAI) techniques (Mendel and Bonissone, 2021). It 

applies rules to store, manage, and manipulate quantitative data and qualitative knowledge for complex problems modeling, 

where the rules usually take a form of “IF statements THEN consequents” and constitute the kernel component of the rule- 

based system, namely rule-base. Unsurprisingly, a rule-base directly affects the performance of rule-based systems, because 

the systems response is generated on the basis of the information fusion of IF-THEN rules activated from the rule-base (Sun 

1995). For this reason, the modeling of rule-base has attracted lots of attention and researches from the field of information 

sciences, decision support systems, and computer sciences (Ouyang et al., 2019). 

Fuzzy rule-base (FRB) is the first typical and popular rule-base, which makes full use of semantic language and fuzzy 

logic with fuzzy predicates (Sugeno and Yasukawa, 1993). On the basis of the FRB, various kinds of Mamdani-type and 

Takagi-Sugeno-Kang (TSK)-type fuzzy systems were proposed for complex problems modeling in the past decades (Wang 

et al., 2022; Elkano et al., 2016; Fernandez et al., 2010; Ishibuchi et al., 2005; Cordon et al., 1999) and have also been 

proven the capacity of modeling systems from data, permitting the incorporation of human knowledge, and integrating 

numerical and semantic reasoning into an explainable scheme (Pedrycz, 1996), where the well-known fuzzy systems 

include, steady-state generic algorithm for extracting fuzzy classification rule from data (SGREED) (Mansoori et al., 2008), 

fuzzy association rule-based classification method for high-dimensional problem (FARC-HD) (Alcala-Fdez et al., 2011), 

and deep convolutional fuzzy system (DCFS) (Wang, 2020). 

The FRB has an excellent performance in representing vague information. However, a real problem usually coexists 

various kinds of uncertain information (Cao et al., 2021; Aminravan et al., 2015). For example, “Project risk is high with a 
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certainty of 0.9”, where the “high” is linguistic expression of project risk, indicating vague information; the “0.9” is numeric 

expression of project risk, indicating probabilistic information. In order to improve the ability of FRB, the belief rule-base 

(BRB) was proposed by embedding belief structure into traditional fuzzy IF-THEN rules (Yang et al., 2006), and its 

corresponding model is often referred to as BRB expert system in the researches afterwards (Ahmed et al., 2022; Chang et 

al., 2021; Sachan et al., 2020; Zhou et al., 2019; Zhang et al., 2017; Chen et al., 2015). Because the BRB inherits many 

benefits from FRB, the BRB expert system has been successfully applied in handling many complex problems, such as 

consumer preference prediction (Yang et al., 2012), network security prediction (Hu et al., 2016), Datacentor PUE 

prediction (Hossain et al., 2017), hidden fault prediction (Zhou et al., 2019), thyroid nodules diagnosis (Chang et al., 2022). 

However, the conventional BRB has to suffer from the combinatorial explosion problem (AbuDahab et al., 2016; 

Chang et al., 2013;). This is because the modeling of a conventional BRB is required to cover all possible combinations of 

each assessment rating for all antecedent attributes. For example, the problem of R&D project risk assessment involves M 

risk factors with J assessment ratings, the resulting conventional BRB would have JM rules, e.g., 320=3.4 billion rules for 20 

risk factors and 3 assessment ratings. Moreover, it is evident that the size of the conventional BRB grows exponentially 

along with that of risk factors and assessment ratings (Zhou et al., 2020; Diao et al., 2022). Although many studies have 

been done (The detailed literatures can be found in Section 2.2) to improve the modeling of conventional BRB in the past 

decade, the combinatorial explosion problem of conventional BRB is still a great challenge when BRB expert system is 

applied for modeling complex problems. 

From a general survey of the existing studies detailed in Section 2.2, it seems that hierarchical BRB may provide an 

effective and feasible solution to solve the combinatorial explosion problem of BRB when modeling complex problems. 

Here, it worth noting that, apart from hierarchical BRB, the application and modeling of hierarchical FRB attract ongoing 

development in the literature, recent studies include proposing hierarchical deep rule-based classifier (Gu and Angelov, 

2020), the extraction of hierarchical TSK fuzzy systems from data (Kerr-Wilson and Pedrycz, 2020), designing granular 

fuzzy models using hierarchical approach (Pedrycz et al., 2015), and the application of hierarchical fuzzy system to traffic 

congestion prediction (Zhang et al., 2014). However, none of existing studies on hierarchical BRB and FRB clearly define a 

generic representation scheme of hierarchical rule-base, which is the basic foundation of constructing hierarchical rule-base 

from data for modeling complex problems. Moreover, owing to the visible differences between FRB and BRB in terms of 

rule representation and reasoning, these limit the use of existing hierarchical FRB modeling procedures directly to construct 

hierarchical BRB. Hence, it is necessary and valuable to study hierarchical modeling procedure for BRB. 

In order to fill the gap mentioned above, this study aims to provide a generic representation scheme of hierarchical 

BRB using multilayer tree structure (MTS), where the new BRB is referred to as MTS-BRB. On the basis of MTS, it is 

convenient to illustrate the size reduction of MTS-BRB and its ability to overcome the combinatorial explosion problem of 

conventional BRB. Furthermore, the relevant MTS-BRB modeling, inferencing and learning procedures are also proposed 

to provide the necessity elements of an expert system, including how to construct a MTS-BRB from complex problems and 

reply a given input data through the MTS-BRB? What kinds of parameters need to be trained for optimizing MTS-BRB? 

Finally, a novel expert system, called MTS-BRB expert system, is developed for complex problems modeling. 

To verify the effectiveness of the proposed MTS-BRB expert system, the research and development (R&D) projects 

risk assessment from Chinese industries and the four classification datasets from the well-known University of California, 

Irvine (UCI) database are introduced to conduct case studies. The details of how to apply the proposed MTS-BRB modeling, 
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inferencing, and learning procedures are illustrated based on the R&D projects risk assessment. Several comparative studies 

are carried out to justify excellent computing efficiency and prediction accuracy of the MTS-BRB expert system better than 

some existing BRB expert systems, typical fuzzy systems, and classical machine learning methods. 

The original contributions of this study can be summarized as follows: 

(1) MTS is used to represent the hierarchical BRB for the first time, which can be used to handle complex problems 

modeling and overcome the combinatorial explosion problem of conventional BRB. 

(2) An effective MTS-BRB modeling procedure is proposed and it allows that the complex problems can be handled by 

the self-organized hierarchical BRB, instead of human-made hierarchical BRB. 

(3) An effective MTS-BRB inferencing procedure is proposed and it provides a generic process of how to produce an 

inferential output from given input data in a hierarchical BRB for the first time. 

(4) An effective MTS-BRB learning procedure is proposed and it is able to provide optimal parameters for MTS-BRB 

expert system without restricting by limited expert knowledge in complex problems. 

The remainder of this paper is organized by: Section 2 briefly reviews the background of BRB expert system. Section 

3 gives the definition and analysis of hierarchical BRB using MTS. Section 4 proposes a MTS-BRB expert system. The 

case studies are carried out for verification in Section 5, and finally Section 6 concludes the study. 

 

2. Background of the BRB Expert System 

In this section, the relevant basics of this study, including the conventional BRB and its combinatorial explosion problem 

in Section 2.1 and the related works to overcome the problem in Section 2.2, are presented.  

2.1. Conventional BRB and its combinatorial explosion problem 

BRB is a rule base of BRB expert system and is comprised of a series of belief rules (Yang et al., 2006). Normally, the 

kth belief rule in a conventional BRB can be written as: 

},...,{

},,...,1);,{(,:
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,11

Mk

knn
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weightsattributeandweightrulewith
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where {Um; m=1,…, M} denotes a set of M antecedent attributes used in IF part; D denotes one consequent attribute used in 

THEN part; {
k

mA ; m=1,…, M} denotes a set of assessment ratings used to describe the kth (k=1,…, L) belief rule, L is a total 

number of belief rules in the BRB. Noting that 
k

mA  belongs to {Am,j; j=1,…, Jm} that is a complete set of Jm assessment 

ratings used to describe the mth antecedent attribute; {(Dn, kn, ); n=1,…, N} denotes a belief distribution in consequent 

attribute D, where kn,  is a belief degree to which the consequent Dn is believed to be true. 

To illustrate conventional BRB in details, suppose that a decision problem with M+1 attributes, denoted by U1,…, UM, 

D, is provided to construct a conventional BRB, where attribute D is associated with M attributes U1,…, UM simultaneously. 

Here, it needs to note that the data of U1,…, UM, D can be continuous and discrete data. More detailed, taking R&D project 

risk assessment (Yang et al., 2019) as the decision problem for example, the risk of a project (namely D) is determined by 

business cooperation (namely U1) and company scale (namely U2) and their data, denoted by x(U1), x(U2), and y(D), are all 

continuous data within ranges x(U1)∈[1.33, 5.0], x(U2)∈[2.0, 5.0], and y(D)∈[2.0, 5.0]. When there are three assessment 

ratings e.g., {A1,1, A1,2, A1,3}={A2,1, A2,2, A2,3}={Low, Middle, High}, provided for U1 and U2, and three consequents, e.g., 

{D1, D2, D3}={Small, Middle, High}, provided for D by domain expert, a conventional BRB can be therefore constructed 

by covering all possible combinations of each assessment rating for all antecedent attributes, as shown in Table 1. 
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Table 1. Example of a conventional BRB regarding R&D project risk assessment 

Rule 

No. 

Rule  

weight 

Business cooperation  

U1 ( 1 =0.8) 

And 
Company scale  

U2 ( 2
 =0.9) 

 Project risk D 

D1=Small D2=Middle D3=High 

R1 1 =0.9 
1

1
A  =Low ˄ 

1

2
A  =Low  1,1 =0.6 1,2 =0.3 1,3 =0.0 

R2 2
 =0.5 

2

1
A  =Low ˄ 

2

2
A  =Middle  2,1 =0.5 2,2 =0.5 2,3 =0.0 

R3 3
 =0.6 

3

1
A  =Low ˄ 

3

2
A  =High  3,1 =0.7 3,2 =0.3 3,3 =0.0 

R4 4
 =0.7 

4

1
A  =Middle ˄ 

4

2
A  =Low  4,1 =0.3 4,2 =0.5 4,3 =0.2 

R5 5
 =0.8 

5

1
A  =Middle ˄ 

5

2
A  =Middle  5,1 =0.2 5,2 =0.5 5,3 =0.3 

R6 6
 =0.4 

6

1
A  =Middle ˄ 

6

2
A  =High  6,1 =0.1 6,2 =0.9 6,3 =0.0 

R7 7
 =0.3 

7

1
A  =High ˄ 

7

2
A  =Low  7,1 =0.0 7,2 =0.3 7,3 =0.7 

R8 8
 =0.9 

8

1
A  =High ˄ 

8

2
A  =Middle  8,1 =0.0 8,2 =0.2 8,3 =0.8 

R9 9
 =1.0 

9

1
A  =High ˄ 

9

2
A  =High  9,1 =0.0 9,2 =0.1 9,3 =0.9 

From Table 1, it can be found that a belief rule such as R1 contains that when business cooperation is Low and company 

scale is Low, then 60% sure that project risk is Small and 30% is Middle. Meanwhile, some other information should be 

highlighted: 1) the weight of R1 is 0.9, indicating the importance of R1 over other rules; 2) the weight of business 

cooperation and company scale is 0.8 and 0.9, respectively, indicating the different importance of these two attributes; 3) the 

total belief degree of project risk is 60% + 30% = 90% < 100%, indicating that R1 contains 10% incomplete uncertainty. 

Here, it is worth noting that a conventional BRB has to enumerate all combinations of each assessment rating. Hence, 

when there are M antecedent attributes in a decision problem and Ji assessment ratings used for each attribute, the size of 

conventional BRB is  =

M

i iJ
1 . From this situation, the following problem can be observed: 

Problem 1 (Combinatorial explosion problem of BRB): The size of conventional BRB has exponential-relation with 

the number of antecedent attributes and/or their assessment ratings. Moreover, the size of the conventional BRB would 

grow exponentially when the number of antecedent qualities and/or assessment ratings increased. 

 

2.2. Related works to overcome the problem of conventional BRB 

The following previous investigations, which can be grouped into four categories, have been conducted in the past 

decade in an effort to solve the combinatorial explosion problem of conventional BRB:  

(1) BRB modeling with feature extraction. Feature extraction is one of the well-known techniques in machine learning 

for dimensionality reduction and its fundamental is the transformation of original data to a data set with a reduced number 

of features, which contains the most discriminatory information. In this respect, Wang et al. (2009) utilized a BRB expert 

system to predict the consumer preference of orange juices that are usually involved with many sensory attributes, while 

they extracted the first two or three principal components (PCs) from sensory attributes to avoid constructing an overlarge 

BRB. Later, Yang et al. (2012) also proposed extracting the first two or three PCs of relevant sensory attributes to construct 

BRB with an acceptable size when a BRB expert system is used for consumer preference prediction in retro-fit design of 

food and drink product. Afterwards, Yang et al. (2016) incorporated factor analysis into BRB expert system for predicting 

consumer preference of new products. They extracted a few key factors from product attributes based on both exploratory 

and confirmatory factor analysis. Recently, Cheng et al. (2020) proposed a data-driven health monitoring method for 

running gears of a high-speed train by using principal component analysis (PCA) method to extract PCs and BRB expert 
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system to perform health monitoring tasks. Zhang et al. (2021) ranked the original attributes based on eigenvalue 

decomposition and contribution rate and transformed them into attribute vectors, so the resulting BRB expert system could 

overcome the issue caused by overnumbered attributes. 

(2) BRB modeling with feature selection. Feature selection is another well-known technique in machine learning for 

dimensionality reduction. The difference between feature selection and feature extraction is that the former one is to search 

for an optimal subset of original features. In this respect, Chang et al. (2013) introduced a concept “structure learning” for 

solving combinatorial explosion challenge. They proposed four kinds of structure learning approaches using grey target 

(GT), multidimensional scaling (MDS), Isomap, and PCA. Later, some similar studies based on conditional generalized 

minimum variance (Li et al., 2017) were carried out for selecting key attributes from numerous attributes. Yang et al. (2019) 

applied information gain (IG) to calculate the weight of all attributes, which were regarded as probability to randomly select 

subset of original attributes, so that the BRB expert system can be used to evaluate project performance of R&D. Recently, 

the idea of feature selection and ensemble learning were used together to construct BRB expert system under the situation 

of lots of attributes (Yang et al., 2020). Another similar study can be found in (You et al., 2021), they proposed an ensemble 

-BRB model with the use of bagging framework to reduce the size of BRB. 

(3) Extended BRB modeling. For completely solving the combinatorial explosion problem, several extensions were 

proposed in the term of rule generation to improve the conventional BRB modeling. In this respect, Liu et al. (2013) 

proposed an extended BRB (EBRB) modeling method, which is based on the transformation of data into rules. A similar 

study was proposed in (Jiao et al., 2016). Afterwards, the EBRB modeling was extended by Yang et al. (2021) to cluster all 

rules into division domains, so that an EBRB did not have an ever-increasing size due to the increase of available data. 

Chang et al. (2019) developed a BRB modeling method under disjunctive assumption, namely DBRB modeling, whose 

essential modifies the logical relationship between attributes using disjunctive assumption to replace conjunctive 

assumption. Cao et al. (2021) proposed a new approximate belief rule with single attributes to solve the rule explosion 

problem and week extendability of BRB expert system and its effectiveness was confirmed by using a case study of the 

Lithium-ion power battery. In the viewpoint of BRB size, the above extensions break the precondition of the combinatorial 

explosion problem, so the BRB expert system has been successfully applied in the classification problems with high 

dimension (Fang et al., 2020; Gao et al., 2021; Zhuang et al., 2021). However, these new modeling methods lose the 

completeness of rule representation, which is a core characteristic of using BRB to represent expert knowledge and 

historical data. 

(4) Human-made hierarchical BRB. This kind of solution is usually based on expert knowledge to build a top-down 

structure of BRB so that all attributes can be considered in a BRB construction. In this respect, Yang et al. (2006) first 

provided a rough description of hierarchical BRB construction and its example using prior information when the BRB 

expert system is used to address complex systems with 9 attributes. Later, Yang et al. (2012) adopted the hierarchical BRB 

for quality evaluation of lemonade products, which has a three-level top-down structure of BRB according to expert 

knowledge. Zhou et al. (2015) proposed a bi-level BRB for the clinical decision support system. By considering both 

clinical data and specific domain knowledge, the second layer BRB was constructed to distinguish the overlapped and fuzzy 

information. Afterwards, He et al. (2018) proposed a reliability evaluation method based on hierarchical BRB expert system 

for the field of wireless sensor network, in which the hierarchical BRB expert system only focused on the hierarchical 

inferencing and optimization procedures in a given hierarchical BRB. Recently, Sachan et al. (2020) presented a BRB-based 
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decision-support-system to automate loan underwriting process. The hierarchical structure of BRB was given as prior 

knowledge to avoid the situation that the number of rules increases exponentially with the numbers of antecedent attributes 

and their referential values. 

From the above-mentioned four kinds of previous studies, the combinatorial explosion problem is one of the biggest 

obstacles in the BRB modeling when a BRB expert system is applied to dealing with complex system modeling problems. 

However, it seems that the hierarchical BRB can be a potential solution to address the combinatorial explosion problem, 

because a hierarchical BRB is required to cover the assessment ratings of a part of antecedent attributes, instead of all 

attributes. Hence, the present study focuses on how to develop a BRB expert system using the hierarchical BRB. 

 

3. Using MTS to Represent the Hierarchical BRB 

In this section, the definition of hierarchical BRB using MTS, called MTS-BRB, is firstly provided in Section 3.1, 

followed by the comparison of different MTS-BRBs in Section 3.2 to show the necessity of this study. 

3.1. Definition of hierarchical BRB using MTS 

On the basis of the previous studies shown in Section 2.2, the hierarchical BRB can be a potential solution to address 

the combinatorial explosion problem. However, the representation of a hierarchical BRB is still lack of a definitive scheme. 

Hence, in this subsection, the multi-layer tree structure is introduced to provide a new definition of hierarchical BRB. 

Firstly, based on the usual representation of a tree structure, there are three kinds of nodes, namely root node, internal 

node, and leaf node. Hence, the definitions of these three nodes are provided as follows: 

Definition 1: In a tree structure, the node that has no parent node is called root node. 

Definition 2: In a tree structure, the node that has no child node is called leaf node. 

Definition 3: In a tree structure, the node that has both parent node and child node is called internal node. 

Furthermore, the definition regarding the number of layers in a tree structure is provided as follows: 

Definition 4: The number of layers in a tree structure is the length of the longest path from the top internal node to the 

bottom internal nodes 

Based on Definitions 1 to 4, the conventional BRB shown in Section 2.1 can be represented as a tree structure, as shown 

in Fig. 1, where the BRB has M antecedent attributes Um (m=1,…, M) and one consequent attribute D. 

U1 U2 UM

U1={U1,U2,…, UM}

Leaf nodes

Root nodeD

Internal node

 

Fig. 1. Tree structure of conventional BRB 

From Fig. 1, it can be found that the tree structure of conventional BRB is a single-layer tree structure and has one root 

node, one internal node, and M leaf nodes, where the all M leaf nodes are the child node of the internal node. This 

corresponds to the situation that the all M antecedent attributes should be used together to construct a conventional BRB. 

Secondly, in order to avoid the above situation, the all M antecedent attributes can be packaged into multiple subsets 
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e.g., {U1,…, Um1}, {Um1+1,…, Um2}, and {Um2+1,…, UM} (1<m1<m2<M), for constructing multiple downsized sub-BRBs. 

Moreover, in the any case of the sub-BRB being still oversize, the subset of attributes can be recursively packaged into 

smaller subsets until the new sub-BRB has a desired size. As a result, all these sub-BRBs forms a hierarchical BRB and the 

relationship between subsets constructs a multi-layer tree structure. Without of loss generality, assume that the multi-layer 

tree structure is the tree structure shown in Fig. 2. 

U1={U1, U2,…, UM}

UH={Un1,…, Unk}U2={Um1, …, Umn}

Leaf nodes

Internal nodes

Root nodeD

Uk1 Ukm

Um1 Umn Un1 Unk

Uh1∩Uh2=Ø

Uk1,…,Ukm ∉ Uh; Uh⊆U1

h, h1, h2=2,..., H; h1≠h2

U2∪…∪UH∪{Uk1,…,Ukm}=U1

 

Fig. 2. Tree structure of hierarchical BRB 

From Fig. 2, it is clear that the tree structure of hierarchical BRB is a two-layer tree structure and, apart from M leaf 

nodes and one root node, it has H internal nodes, which consist of a subset of the M antecedent attributes. In this case, a new 

definition based on Definitions 1 to 4 is offered to define MTS-BRB as follows: 

Definition 5 (MTS-BRB): Assume that a tree structure of hierarchical BRB contains one root node, H internal nodes, 

and M leaf nodes, where all these nodes should meet the following requirements: 

(1) The root node, internal node, and leaf node are corresponding to consequent attribute, subset of antecedent attributes, 

and antecedent attribute, respectively, i.e., consequent attribute D is root node, subsets of antecedent attributes Uh (h=1,…, 

H) are internal nodes, and antecedent attributes Um (m=1,…, M) are leaf nodes in Fig. 2. 

(2) The internal nodes are located on two layers at least and they satisfy: 1) the top internal node includes all antecedent 

attributes, e.g., U1={U1,…, UM} in Fig. 2; 2) the internal node in a lower layer is a subset of the internal node in an upper 

layer, e.g., Uh⊆U1 (h=2,…, H) in Fig. 2. 

(3) The internal node is corresponding to sub-BRB. Taking the hth (h=1,…, H) internal node Uh as an example, assume 

that it has Nh consequents {Dh,n; n=1,…, Ns} and Mh child nodes Uh,m (m=1,…, Mh) with Jh,m assessment ratings {Ah,m,j; 

j=1,…, Jh,m}. Thus, the kth (k=1,…, Lh) belief rule in the sub-BRB for the hth internal node can be written as: 

},...,{

},,...,1);,{(,:

,1,,

,,,

,,

2

,

1,

h

h

Mhhkh

hknhnh

kh

M

khkh

kh

weightsattributeandweightrulewith

NnDisTHENAisAisAisIFR



 = h

Mh,h,2h,1
UUUU

h


      (2) 

where 
kh

mA ,
{Ah,m,j; j=1,…, Jh,m}; mh, denotes the weight of the mth child node of the hth internal node; kh,  denotes the 

weight of the kth rule in the sub-BRB for the hth internal node. The above defined tree structure of hierarchical BRB is 

called a MTS-BRB. 

Here, it is worth noting from Definition 5 that the child node is an important element in each sub-BRB and it can be 

embodied into internal nodes and/or leaf nodes. As shown in Fig. 2, the child nodes of U1 are H-1 internal nodes Uh (h=2,…, 

H) and a series of leaf nodes Uk1,···, Ukm; the child nodes of U2 are a series of leaf nodes Um1,···, Umn. 
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3.2. Size of BRBs under different numbers of attributes 

To facilitate the application of MTS-BRB, the size of different BRBs needs to be investigated. For this purpose, the 

following three examples are provided to carry out comparative studies. 

Example 1: In the case of the conventional BRB detailed in Section 2.1, when there are M antecedent attributes and 3 

assessment ratings for each attribute, the resulting BRBs has 3M rules. Furthermore, by using a certain feature selection or 

extraction technique to retain 30%, 50%, and 80% attributes, the resulting three BRBs has 30.3×M, 30.5×M, and 30.8×M rules, 

respectively, as shown in Fig. 3. 

 

Fig. 3. Comparison of conventional BRBs with feature selection or extraction 

From Fig. 3, it is clear that feature selection or extraction techniques can downsize BRB, e.g., 310=59049 rules for 10 

antecedent attributes, and only 30.8×10=6561, 30.5×10=243, and 30.3×10=27 rules while retaining 80%, 50%, and 30% attributes, 

respectively. However, the size of downsized BRB still grows exponentially along with the increase of attributes. Hence, it 

can be concluded that feature selection or extraction techniques are able to reduce the size of a BRB, but they are unable to 

be an effective approach to solve the combinatorial explosion problem.  

Example 2: From (Wang et al., 2009), the problem of consumer preferences for orange juices can be related with 9 

features, including color, bitty, citrus, marmalade, body, sweet, sour, mouthcoating, and astringent. For this problem, two 

kinds of BRBs can be constructed using the tree structure shown in Fig. 4 and Fig. 5, where Fig. 4 is corresponding to the 

conventional BRB detailed in Section 2.1, and Fig. 5 is corresponding to a MTS-BRB. 
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Fig. 4. Tree structure of conventional BRB for consumer preferences of orange juices 
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Feature set of orange juices=

{Colour, Bitty, Citrus, Marmalade, Body, Sweet, Sour, Mouthcoating, Astringent}
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Fig. 5. Tree structure of hierarchical BRB for consumer preferences of orange juices 

From Fig. 4 and Fig. 5, it is clear that the size of conventional BRB is 39=19683 rules when each feature is evaluated 

by three ratings. But there are only 35+32+32+32+32+32=288 rules in the MTS-BRB when the 9 features are packaged into 6 

subsets, i.e., color and bitty are packaged into a subset, indicating appearance, and the resulting sub-BRB has 32=9 rules, 

and the other 5 subsets regarding aroma, texture, flavor, aftertaste, and consumer preference can be also used to construct 5 

sub-BRBs with 32=9, 32=9, 32=9, 32=9, and 35=243 rules. 

Example 3: In order to give a more intuitive comparison, assume that there are M antecedent attributes and 3 assessment 

ratings for each attribute to construct the four kinds of BRBs, including the conventional BRB and the MTS-BRB with 2/3/4 

child nodes. As a result, Fig. 6 shows the number of rules and sub-BRBs in these BRBs, in which the number of child nodes 

means the maximum number of child nodes for each internal node. 

  

(a) Comparison of number of rules in the conventional BRB and MTS-BRBs 
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(b) Comparison of number of sub-BRBs in the conventional BRB and MTS-BRBs 

Fig. 6. Comparison of different BRBs with different numbers of attributes 

From Fig. 6, it is clear that the size of the MTS-BRBs with 2 (or 3 or 4) child nodes almost grows linearly along with 

the increase of attributes and the number of rules in the MTS-BRBs is far less than that in the conventional BRB, e.g., in the 

case of 10 attributes, the conventional BRB has 310=59049 rules, but MTS-BRB with 2 (or 3 or 4) child nodes has only 81, 

117, and 243 rules. This is because the all 10 attributes are used to construct a single BRB for conventional BRB, but 9 (or 5 

or 3) sub-BRBs for MTS-BRBs with 2 (or 3 or 4) child nodes, respectively. As a result, in terms of BRB size, it can be 

concluded that MTS-BRB is a preferred method for resolving the combinatorial explosion problem of BRB. This method is 

superior than feature selection and extraction methods. 

 

4. Proposed MTS-BRB Modeling, Inferencing, and Learning Procedures 

In this section, the novel procedures of MTS-BRB modeling, inferencing, and learning are proposed firstly in Sections 

4.1 to 4.3, respectively. Next, on the basis of the three procedures, the MTS-BRB expert system is developed in Section 4.4 

for modeling complex systems problems and solving the combinatorial explosion problem. 

4.1. MTS-BRB modeling procedure 

According to definition of MTS-BRB in Section 3.1, multiple subsets of antecedent attributes should be separated from 

upper internal nodes to downsize the size of sub-BRB. For this separation operation, one of the most important things is how 

to put each antecedent attribute in a right subset. Hence, in this subsection, hierarchical attribute clustering is applied to 

achieve the separation operation. However, despite that various types of clustering analyses exist in (Aggarwa and Reddy, 

2013), this study is particularly interested in hierarchical clustering analysis, because it creates clusters in a hierarchical tree 

structure similar to the three structure of MTS-BRB.  

First of all, before performing hierarchical attribute clustering, it is necessary to investigate the way of quantifying 

correlations among antecedent attributes. From the existing study (Li et al., 2020), the entropy and mutual information are 

commonly used indicators to measure interdependence information, which is one of the most significant characteristics of 

inter-relationship among antecedent attributes. To define the relationship of antecedent attributes in light of this argument, 

the entropy and mutual information are introduced as follows: 

Definition 6: Assume that a MTS-BRB has M antecedent attributes Um (m=1,…, M) and Jm assessment ratings {Am,j; 
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j=1,…, Jm} for each attribute. Based on the entropy and mutual information (MacKay, 2003), the attribute relation AR(Um, 

Un) between two attributes Um and Un (n=1,…, M) can be quantified by: 
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where Pm,n(Um is Am,i Un is Am,j) denotes the probability of Um and Un being equal to assessment ratings Am,i and An,j 

simultaneously; Pm(Um is Am,i) denotes the probability of Um being equal to assessment rating Am,i. 

Based on the MTS-BRB shown in Definition 5 and the relation defined in Definition 6, the MTS-BRB modeling 

procedure is presented in Fig. 7. Here, it should be noted that each part of tree structure can be used to construct a sub-BRB 

by using the upper-layer node as consequent attribute and the lower-layer nodes as antecedent attributes. Hence, the number 

of lower-layer nodes is directly related to the size of sub-BRB. 
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Step 1: To generate the root node and the first internal node

Step 2: To generate the remaining internal and leaf nodes

Step 3: To construct a sub-BRB for each internal node

{Um; m=1,..., M}→Uh

 

Fig. 7. Illustration of MTS-BRB modeling procedure 

From Fig. 7, three steps of the MTS-BRB modeling procedure are provided as follows: 

Step 1: To generate the root node and the first internal node of the MTS-BRB.  

Based on Definition 5, the root node and the first internal node of MTS-BRB are corresponding to consequent attribute 

and all antecedent attributes. However, due to the fact that the initial antecedent attributes sometimes contain redundant and 

irrelevant information, feature selection or extraction techniques should be used to filter initial attributes. To facilitate 

description, the consequent attribute is denoted as D and the filtered antecedent attributes are denoted as U1={U1,…, UM}. 

Step 2: To generate the remaining internal and leaf nodes of the MTS-BRB.  

In order to determine a top-down relationship among internal nodes and leaf nodes, a process of hierarchical attribute 

clustering is developed into the following two sub-steps: 

Step 2.1: To calculate attribute relations for antecedent attributes.  

Suppose that each antecedent attribute Um (m=1,…, M) has assessment ratings Am,j (j=1,…, Jm) and their utility values 

u(Am,j) (j=1,…, Jm). When a set of T input data xt=(xt,1,…, xt,M) (t=1,…, T) is given, the following belief distributions can be 
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obtained using the utility-based equivalence transformation technique: 
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Based on T×M belief distributions S(xt, Um) (t=1,…, T; m=1,…, M), attribute relation AR(Um, Un) between antecedent 

attributes Um and Un (n=1,…, M) can be obtained according to Definition 6, in which the probabilities Pm,n(Um is Am,iUn 

is Am,j) and Pm(Um is Am,i) are calculated by: 
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Step 2.2: To hierarchically cluster antecedent attributes based on attribute relations. 

Suppose that the set of antecedent attributes is denoted as Uh. According to the given number of clusters C (M≥C≥2), C 

pivot factors Pc (c=2,…, C) should be selected from Uh by 
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where Eq. (11) indicates that pivot attribute Pc has the minimum correlation to other attributes in Uh-{P1,…, Pc-1}. 

Next, each pivot attribute Pc is used to generate an attribute subset Sub-Uc, namely Sub-Uc={Pc}, and each antecedent 

attribute Um (UmUh) is thereafter assigned to these C subsets as follows: 
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where Eq. (12) indicates that antecedent attribute Um has the maximum correlation to Pc comparing to other pivot attributes. 

For each subset Sub-Uc, a new pivot attribute 
c

P  should be determined by using Eq. (13). If {
c

P ; c=1,…, C} is 

completely equal to {Pc; c=1,…, C}, the procedure of attribute clustering is finished; Otherwise, it needs to reassign each 

antecedent attribute Um (UmUh) to the C subsets Sub-Uc which are initialized by Sub-Uc={
c

P }. 
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where Eq. (13) indicates that the new pivot attribute has the maximum correlation to other attributes in Sub-Uc. 

Finally, when the number of attributes in subset Sub-Uc is |Sub-Uc|>S, the set Uh
 is replaced by the subset Sub-Uc to 

perform Step 2 for a new round of attribute clustering; Otherwise, the subset Sub-Uc is regarded as an internal node when 

|Sub-Uc|>1 and as a leaf node when |Sub-Uc|=1. Here, S denotes the number of attributes to construct a downsized BRB. 

Step 3: To construct a sub-BRB for each internal node in the MTS-BRB.  

Suppose that there are H internal nodes obtained from Step 2. H sub-BRBs with belief rules {Rh,k; k=1,…, Lh} (h=1,…, 

H) can be constructed based on Definition 5 and the three categories below: 
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(1) For the internal node whose child nodes only include leaf nodes, its sub-BRB can be constructed by covering all 

combinations of all assessment ratings of all child leaf nodes. 

(2) For the internal node whose child nodes include internal and leaf nodes, its sub-BRB is constructed by covering all 

combinations of all consequents of all child internal nodes and all assessment ratings of all child leaf nodes. 

(3) For the internal node whose child nodes only include internal nodes, its sub-BRB is constructed by covering all 

combinations of all consequents of all child internal nodes. 

For the above-mentioned MTS-BRB modeling procedure, C and S are vital thresholds. Obviously, if C and S are big, 

the resulting MTS-BRB is approximate to a conventional BRB; otherwise, MTS-BRB is composed of lots of sub-BRBs 

with a smaller size. 

4.2. MTS-BRB inferencing procedure 

When a MTS-BRB is constructed, the relevant MTS-BRB inference procedure should be proposed to guarantee that 

the BRB expert system can produce an inference result. Considering that belief structure is a powerful scheme of 

information representation, it is regarded as a carrier to transfer information from child nodes to their parent node in the 

MTS-BRB. Fig. 8 shows a process of producing an inference result f(x) for a given input data vector x={x1,…, xM} from the 

leaf nodes to the root node in a MTS-BRB. 

U1

Uh
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Root nodeD

UM

U1 Um

x1 xm

xM

S(x, Um)={(Am,j, am,j); 

j=1,..., Jm}
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j=1,..., J1}

S(x, UM)={(AM,j, aM,j); 

j=1,..., JM}
S(x, Uh)={(Dh,n, βh,n); 

n=1,..., Nh}

S(x, U1)={(D1,n, β1,n); 

n=1,..., N1}

f(x)

Leaf nodeInference category 1: 

Utility-based equivalence transformation

Inference category 1: 

Utility-based equivalence transformation

Inference category 1: 

Utility-based equivalence transformation

Inference category 2: 

ER-based rule inference

Inference category 2: 

ER-based rule inference

Inference category 3: 

Utility-based information aggragation

 

Fig. 8. Illustration of MTS-BRB inferencing procedure 

From Fig. 8, it is clear that the calculation of belief distribution used to transfer information can be divided into three 

inference categories. They are provided as follows: 

Inference category 1: Calculation of belief distribution in leaf nodes. 

For the leaf node in MTS-BRB, its input is data vectors, denoted as x={xm; m=1,…, M}. Taking the mth leaf node as an 

example, the mth input data xm can be used to calculate the belief distribution of the mth leaf node using Eqs. (7) - (8): 

},...,1);,{(),(
,, mjmjmm

JjaAUS ==x                                 (14) 

where Am,j denotes the jth assessment rating of the mth antecedent attribute; am,j denotes the belief degree of assessment 

rating Am,j; Jm is the total number of assessment ratings for the mth antecedent attribute. 

Inference category 2: Calculation of belief distribution in internal nodes. 

For the internal node in MTS-BRB, its input is the belief distribution provided by child nodes. Taking the hth internal 

node Uh as an example, assume that there are Mh child nodes Uh,m (m=1,…, Mh) and Jh,m assessment ratings Ah,m,j (j=1,…, 

Jh,m) for the mth child node, as well as Nh consequents {Dh,n; n=1,…, Nh}, the hth internal node Uh corresponds to the hth 

sub-BRB shown in Definition 5. When the input belief distribution for the mth child node is {(Ah,m, j, ah,m, j); j=1,…, Jh,m}, 
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the output of the sub- BRB can be obtained by the following two steps: 

Step 1: To calculate activation weights in the hth sub-BRB. The activation weight of the kth (k=1,…, Lh) rule in the hth 

sub-BRB is calculated by 
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where 
kh

ma ,
=ah,m,j if assessment rating 

kh

mA ,
 used in rule Rh,k is equal to assessment rating Ah,m,j of the mth child node. 

Step 2: To integrate activation rules in the hth sub-BRB. After calculating activation weights, the rule whose activation 

weight is greater than 0 should be used to generate a combined belief distribution using the ER algorithm as follows: 
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Inference category 3: Calculation of output in root node. 

For the root node in MTS-BRB, its input is the belief distribution provided by the 1st internal node U1. Assume that the 

input belief distribution of root node is S(x, U1)={(Dn, βn); n=1,…, N}. Hence, when the modeling problem is a regression 

problem and u(Dn) is the utility value of the nth consequent, the output of root node can be calculated as follows: 
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When the problem is a classification problem and Dn is the nth class, the output of root node can be calculated as follows: 

}{maxarg,)( ,...,1 nNnt tDf ===x .                                        (19) 

 

4.3. MTS-BRB learning procedure 

The parameter values of a MTS-BRB may initially be given by domain experts based on personal experiences, but 

usually fail to constitute a BRB expert system with sufficiently high performance, because it difficult or even impossible for 

experts to provide right parameter values in a complex problem. Hence, historical data need to be collected to optimally 

train these parameters. For this purpose, this subsection aims to propose a MTS-BRB learning procedure. Fig. 9 shows the 

possible parameters needed to be optimized in a MTS-BRB from the leaf nodes to the root node. 

U1

Uh

Internal node

Root nodeD

UM

U1 Um
{u(Am,j); j=1,..., Jm}

{u(A1,j); 

j=1,..., J1}

{u(AM,j); 

j=1,..., JM}

{ β1,n,k;k=1,…, L1, n=1,…, N1}

{δ1,m; m=1,…, M1}

{θ1,k; k=1,…, L1}

Leaf node

Learning category 1: 

Utility values of antecedent attributes

Learning category 1: 

Utility values of antecedent attributes

Learning category 1: 

Utility values of antecedent attributes

Learning category 2: 

Rule weights, attribute weights, belief degrees

Learning category 2: 

Rule weights, attribute weights, belief degrees

Learning category 3: 

Utility values of consequent attribute

{u(Dn); n=1,..., N}

{ βh,n,k;k=1,…, Lh, n=1,…, Nh}

{δh,m; m=1,…, Mh}

{θh,k; k=1,…, Lh}

 

Fig. 9. Illustration of MTS-BRB learning procedure 

From Fig. 9, the three learning categories can be used to group the parameters that need to be optimized in an 
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MTS-BRB: 

Learning category 1: Optimization of utility values in leaf nodes.  

For the leaf node in MTS-BRB, its utility values should be optimized. Assume that there are M antecedent attributes 

Um (m=1,…, M) having Jm assessment ratings Am,j (j=1,…, Jm) and utility values u(Am,j) (j=1,…, Jm). The constraints used in 

the MTS-BRB learning model are as follows: 
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where lbm and ubm denote the lower and upper bounds of collected input data in the mth antecedent attribute. 

Learning category 2: Optimization of weights and belief degrees in internal nodes. 

For the internal node in MTS-BRB, its rule weights, attribute weights, and belief degrees should be optimized. Assume 

there are H internal nodes, and the hth (h= 1,…, H) internal node Uh has Nh consequents Dh,n (n=1,…, Nh) and Mh child 

nodes Uh,m (m= 1,…, Mh) with Jh,m assessment ratings Ah,m,j (j=1,…, Jh,m). The constraints used in the MTS-BRB learning 

model are as follows: 

(1) The attribute weights for Mh child nodes. The attribute weight mh,  is normalized, so it is between 0 and 1, i.e.,  

HhMm hmh ,...,1;,...,1;10 , ==                                      (23) 

(2) The rule weights for Lh belief rules. The rule weight kh,  is normalized, so that it is between 0 and 1, i.e., 

HhLk hkh ,...,1;,...,1;10 , ==                                       (24) 

(3) The belief degrees for Nh consequents in Lh belief rules. The belief degree knh ,,  is between 0 and 1, i.e., 

HhLkNn hhknh ,...,1;,...,1;,...,1;10 ,, ===                                (25) 

(4) If a belief rule is complete, the total belief degree of the belief rule should be equal to 1, i.e., 
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Learning category 3: Optimization of utility values in root node. 

For the root node in the MTS-BRB, its utility values should be optimized. Assume the consequent attribute D has N 

consequents Dn (n=1,…, N) and utility values u(Dn) (n=1,…, N). The constraints used in the MTS-BRB learning model are 

as follows: 
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where lb and ub denote the lower and upper bounds of collected output data in the consequent attribute. 

Based on the above three learning categories, a MTS-BRB learning objective can be given based on T input-output 

data pairs <xt, yt> (t=1,…, T), where the objective is to minimize the error between estimated outputs and actual outputs: 
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where MAE(u(Am,j), u(Dn), δh,m, n,k, βh,n,k) denotes the mean absolute error (MAE) of the BRB expert system composed by 

the parameters u(Am,j), u(Dn), δh,m, n,k, and βh,n,k. 

4.4. Framework of MTS-BRB expert system 

When modelling complex problems and resolving the combinatorial explosion problem of conventional BRB, the MTS 

-BRB modelling, inferencing, and learning techniques offer an efficient way to use even fewer belief rules. These processes 

enable the development of a novel BRB expert system known as the MTS-BRB expert system, whose framework is 

depicted in Fig. 10. 
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Fig. 10. Generic framework of MTS-BRB expert system 

It is clear from Fig. 10 that MTS-BRB expert system consists of a MTS-BRB and its inferencing procedure, which can 

produce an inference result based on MTS-BRB for a given input data (Please see Section 3.2 for details). For constructing 

a MTS-BRB, the collected input-output data pairs of complex problems and the expert knowledge obtained from domain 

experts should be provided (Please see Section 3.1 for details). Furthermore, the MTS-BRB learning procedure can be used 

to guarantee an excellent performance of MTS-BRB expert system (Please see Section 3.3 for details). 

On the basis of above components, the advantages of MTS-BRB expert system can be summarized by comparing to 

some classic methods as follows: 

(1) MTS-BRB expert system has a complete rule representation scheme over some fuzzy systems, because the use of 

belief structure in THEN part guarantees the fuzzy, probabilistic, and incomplete uncertainties coexist in belief rules. 

(2) MTS-BRB expert system provides a cooperation scheme with attribute selection and extraction techniques, thus the 

existing techniques, e.g., PCA, MDS, and GT, can be embedded into MTS-BRB modeling procedure. 

(3) MTS-BRB expert system is based on the data collected from complex problems to self-organize sub-BRB and MTS, 

this determines the uniqueness of both sub-BRB and MTS and it is different from ensemble methods, e.g., random forest. 

 

5. Case Studies 

In this section, the background of benchmark problems is introduced in Section 5.1. Next, the process of developing a 

MTS-BRB expert system for R&D projects risk assessment is provided in Section 5.2. Finally, the comparative analysis of 

the MTS-BRB expert system with some existing studies is given in Section 5.3 and Section 5.4. 

5.1. Background of benchmark problems 

This subsection aims to introduce the background of benchmark problems sourced from R&D projects risk assessment 

and UCI classification database, where the former one is the questionnaire data collected from top managers, departmental 
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managers and project managers in Chinese industry (Yang et al., 2019); the latter one is a well-known database maintaining 

lots of classification datasets as a service to the machine learning community (Dua and Graff, 2019) 

The first benchmark problem is R&D projects risk assessment, which has 13 risk factors that may affect the success of 

each R&D project. These risk factors include: 1) project manage competency (PMC); 2) project termination quality (PTQ); 

3) formalization of portfolio management (FPM); 4) top management involvement (TMI); 5) strategic consistency (SC); 6) 

business cooperation (BC); 7) market uncertainty (MU); 8) technology uncertainty (TU); 9) company sales growth (CSG); 

10) average net profit (ANP); 11) project success rate (PS); 12) company scales (CS); and 13) the number of ongoing 

projects (NOP). Based on the 13 risk factors, a total of 169 historical data collected from 169 Chinese industries and their 

data statistics are shown in Table 2. 

Table 2. Data statistics of Chinese industries 

Name PMC PTQ FPM TMI SC BC MU TU CSG ANP PS CS NOP PP 

Minimum 1.40 1.40 1.50 1.00 1.40 1.33 1.40 1.00 1.00 1.00 1.00 2.00 3.00 2.00 

Average 3.89 3.47 3.92 3.78 3.74 3.55 3.49 3.84 3.49 3.33 3.49 4.20 3.97 3.67 

Maximum 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

Std. dev. 0.71 0.68 0.70 0.74 0.68 0.83 0.84 0.87 1.18 1.10 0.99 0.80 0.90 0.69 

The second benchmark problem is UCI classification problems and 4 commonly used datasets are used to validate the 

performance of MTS-BRB expert system. The main characteristics of these 4 datasets are summarized in Table 3, where 

“#Data” denotes the number of data, “#Attribute” denotes the number of continuous and discrete attributes, “#Continuous” 

denotes the number of continuous attributes, “#Discrete” denotes the number of discrete attributes, and “#Class” denotes the 

number of classes. Here, it is worth noting that the data of continuous attributes includes real data and the data of discrete 

attributes includes integer data and categorical data. 

Table 3. Basic information of UCI classification datasets 

Dataset #Data #Attribute #Continuous #Discrete #Class 

Appendicitis 106 7 7 0 2 

Heart 270 13 1 12 2 

Wine 178 13 13 0 3 

Cleveland 297 13 13 0 5 

 

5.2. Development process of the MTS-BRB expert system 

In this subsection, the development process of the MTS-BRB expert is provided based on R&D project risk assessment, 

including MTS-BRB modeling, learning, and inferencing procedures in Sections 5.2.1 to 5.2.3, respectively. Additionally, in 

order to justify the advantage of the proposed procedures, the conventional BRB is used as baseline for model validation. 

5.2.1. Project risk assessment with MTS-BRB modeling procedure 

To perform the MTS-BRB modeling procedure, a common feature extraction technique, namely PCA, is introduced to 

select main PCs from 13 risk facts with more than 80% accumulative contribution ratio (ACR). Table 4 shows eigenvalues, 

contribution ratio (CR), and ACR for the thirteen PCs. 
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Table 4. Eigenvalue, CR, and ACR of thirteen PCs 

Name PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 

Eigenvalue 4.937  1.566  1.494  0.902  0.812  0.645  0.607  0.482  0.395  0.359  0.289  0.283  0.231  

CR 0.380  0.120  0.115  0.069  0.062  0.050  0.047  0.037  0.030  0.028  0.022  0.022  0.018  

ACR 0.380  0.500  0.615  0.685  0.747  0.797  0.843  0.880  0.911  0.938  0.961  0.982  1.000  

From Table 4, the top seven PCs should be extracted. Clearly, the size of conventional BRB would be 313=1,594,323 

rules without PCA and 37=2,187 rules with PCA, respectively, while assuming 3 assessment ratings for each PC. Hence, it is 

necessary to construct MTS-BRB for project risk assessment. In what follows, the intermediate results of the modeling 

procedure are provided as follows: 

Step 1: Generation of a root node and the first internal node. 

According to Step 1 shown in Section 4.1, the project risk consequence (consequent attribute) D should be regarded as 

a root node and the filtered set of project risk factors (antecedent attributes) U1 obtained from PCs as the first internal node 

to construct a MTS-BRB. As a consequence, the root node is corresponding to PP, namely D=PP, and the first internal node 

is corresponding to the top seven PCs, namely U1={PC1, PC2, PC3, PC4, PC5, PC6, PC7}. 

Step 2: Calculation of factor relations for the top seven PCs.  

Based on Step 2.1 at Section 4.1, the assessment ratings of those top seven PCs should be given firstly according to the 

domain knowledge of experts and 169 input data of R&D projects can be transformed into belief distributions Afterwards, 

all belief distributions are used to calculate the attribute relation of the seven PCs based on Definition 6, the corresponding 

attribute relations are shown in Table 5. 

Table 5. Attribute relation of the top seven PCs 

Factor Relation PC1 PC2 PC3 PC4 PC5 PC6 PC7 

PC1 1.000000  0.000181  0.001933  0.000712  0.000278  0.000491 0.002949 

PC2 0.000181  1.000000  0.001028  0.002567  0.001261  0.000575 0.000928 

PC3 0.001933  0.001028  1.000000  0.002531  0.001142  0.000578 0.000186 

PC4 0.000712  0.002567  0.002531  1.000000  0.001208  0.000621 0.001204 

PC5 0.000278  0.001261  0.001142  0.001208  1.000000  0.000246 0.000587 

PC6 0.000491 0.000575 0.000578 0.000621 0.000246 1.000000  0.000091 

PC7 0.002949 0.000928 0.000186 0.001204 0.000587 0.000091 1.000000  

Step 3: Attribute clustering for internal nodes. 

Based on Step 2.2 at Section 4.1, the set of top seven PCs, namely U1={PC1, PC2, PC3, PC4, PC5, PC6, PC7} should be 

packaged into three clusters when C=3. Firstly, three pivot attribute can be selected by  
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Afterwards, the remaining four PCs are assigned to the three clusters Sub-U1, Sub-U2, and Sub-U3, which should be 

initialized using the selected three pivot attributes, namely Sub-U1={PC6}, Sub-U2={PC7}, and Sub-U3={PC3}. Taking PC1 

for example, Table 4 shows that the attribute relations among PC1, PC6, PC7, and PC3 are AR(PC1, PC6)=0.000491, AR(PC1, 

PC7)=0.002949, and AR(PC1, PC3)=0.001933, thus PC1 should be assigned to Sub-U2, namely Sub-U2={PC1, PC7}, because 
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of AR(PC1, PC7)>AR(PC1, PC3)>AR(PC1, PC6). In the same way, PC2, PC4, and PC5 are assigned to Sub-U3, namely Sub-U3 

={PC2, PC3, PC4, PC5 }. 

Next, for Sub-U1={PC6}, Sub-U2={PC1, PC7}, and Sub-U3={PC2, PC3, PC4, PC5}, three new pivot attributes should be 

selected until the three new pivot attributes are not completely equal to the three original ones. the four PCs, including PC1, 

PC2, PC3, and PC5 should be reassigned to the three new clusters Sub-U1, Sub-U2, and Sub-U3, which are initialized using 

the new pivot attribute, namely Sub-U1={PC6}, Sub-U2={PC7}, and Sub-U3={PC4}. As such, the three new clusters are 

Sub-U1={PC6}, Sub-U2={PC1, PC7}, and Sub-U3={PC2, PC3, PC4, PC5}. It is obviously that the clustering of U1 is finished 

because the new pivot clusters are completely equal to the original ones. 

Finally, when the maximum number of the attributes used to construct a downsized BRB is set as 3, namely S=3, 

Sub-U1 is regarded as a leaf node of the internal node U1, Sub-U2 is regarded as the second internal node, namely U2={PC1, 

PC7}, and the PCs in Sub-U3 are all regarded as the leaf nodes of U3 because of 3>|Sub-U3|=2>1, and Sub-U3 is regarded as 

the third internal node, namely U3={PC2, PC3, PC4, PC5}, which needs for attribute clustering again. 

After performing the above procedure, a MTS-BRB can be constructed and it is shown in Fig. 11. 

U1={PC1, PC2, PC3, PC4, PC5, PC6, PC7}

U3={PC2, PC3, PC4, PC5}PC6

PC1 PC3PC5

PC2

U2={PC1, PC7}

PC7 U4={PC2, PC4}

PC4

PP

 

Fig. 11. MTS-BRB for R&D project risk assessment 

Step 4: Construction of sub-BRBs for each internal node. 

Based on Step 3 shown in Section 4.1, all internal nodes in MTS-BRB should be used to construct sub-BRBs. When 

the number of consequents used for the internal nodes U1, U2, U3, and U4 is set as 5, 3, 3, and 3, four sub-BRBs can be 

constructed and their size is shown in Table 6, in which the sub-BRB1, sub-BRB2, sub-BRB3, and sub-BRB4 denote the 

sub-BRBs regarding U1, U2, U3, and U4; the ratio denotes number of training data per local region. 

Table 6. Size comparison of conventional BRB and MTS-BRB 

Type 
Chinese  

industries 

Four sub-BRBs in MTS-BRB 
MTS-BRB 

Conventional BRB 

Sub-BRB1 Sub-BRB2 Sub-BRB3 Sub-BRB4 Without PCA With PCA 

Size 169 27 9 27 9 72 1,594,323 2,187 

No. of local regions  - 8 4 8 4 8 8,192 128 

Ratio - 21.125 42.250 21.125 42.250 21.125 0.021 1.32 

From Table 6, the size of MTS-BRB 27+9+27+9=72 is far less than that of conventional BRBs, which has 2,187 rules 

with PCA and 1,594,323 rules without PCA. In this case, although PCA can significantly downsize a BRB, the size of 

downsized BRB is still greater than the number of Chinese industries. In comparison of the number of local regions, it is 

worth noting that the number of local regions in the MTS-BRB is obtained from the maximum one in its four sub-BRBs, so 

there are plenty of data to train the MTS-BRB, i.e., the ratio of MTS-BRB is 21.125 which is significantly greater than that 

of BRBs 0.021 and 1.32. 
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5.2.2. Project risk assessment with MTS-BRB learning procedure 

In order to obtain the optimal parameters of MTS-BRB, the collected data of Chinese industries are used to perform the 

MTS-BRB learning procedure. Hence, 169 Chinese industries are randomly divided into 2 parts: 90% industries as training 

data and 10% industries as testing data, namely 152 training data and 17 testing data.  

As shown in Fig. 1, the MTS-BRB has one root node, four internal nodes, and seven leaf nodes. Hence, based on 

Learning category 1, 2, and 3, the following BRB learning objective can be established: 
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where the constraints shown in Eq. (35) are on the seven leaf nodes, lbm and ubm denote the lower and upper bounds of the 

mth PC, M denotes the number of leaf nodes and it is M=7; the constraints shown in Eq. (36) are on the root node, lb and ub 

denote the lower and upper bounds of PP, N denotes number of consequents and it is N=5; the constraints shown in Eq. (37) 

to (38) are on the four internal nodes, Nh denotes the number of consequents in the hth internal node and they are N1=5, 

N2=3, N3=3, and N4=3, Lh denotes the number of rules in the hth internal node and they are L1=27, L2=9, L3=27, and L4=9, 

Mh denotes the number of child nodes in the hth internal node and they are M1=3, M2=2, M3=3, and M4=2, H denotes the 

number of internal node and it is H=4; T denotes the number of training data and it is T=152, f(xt) denotes the inference 

result of MTS-BRB for the given input data xt, yt denotes the actual output of the given input data xt. 

To solve the MTS-BRB learning model, the differential evolution (DE)-based learning algorithm (Yang et al., 2017) is 

introduced. Table 7 shows the corresponding results of MTS-BRB and the conventional BRB with and without PCA under 

the same learning algorithm and experimental conditions, in which NA means that the running time of learning exceeds one 

week and it has to be artificially terminated; baseline ratio is the result of MTS-BRB divided by the result of the baseline. 

Here, it is worth noting that the largest baseline ratio is considered to be the best level for MTS-BRB. 

Table 7. Comparison of conventional BRB and MTS-BRB learning 

Type MTS-BRB 
Conventional BRB  Baseline ratio 

Without PCA With PCA  Without PCA With PCA 

Learning time (HH:MM:SS) 00:05:14 NA(>>1 week) 07:21:47  NA 84.4 

No. of parameters to be trained 378 9,565,995 13,155  25,306.9 34.8 

MAE at training data 0.434341 NA 0.424851  NA 1.0 

From Table 7, it is clear that MTS-BRB learning is faster than conventional BRB learning. The main reason is that 

there are significant differences in the number of parameters that need to be trained in the learning model. For example, the 

MTS-BRB has only 378 parameters, whereas the conventional BRB without and with PCA have 9,565,995 and 13,155 

parameters, respectively, and have baseline ratios of 25,306.9 and 34.8. Additionally, the baseline ratio of the MAE between 

MTS-BRB and conventional BRB is similar at 1.0. As a result, it can be said that MTS-BRB can reach the same degree of 

javascript:;
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modelling skill as the conventional BRB with a lot less effort and learning. 

5.2.3. Project risk assessment with MTS-BRB inferencing procedure 

Continuing with the R&D project risk assessment, this subsection is to show how to produce an inference result for a 

given input data based on MTS-BRB inferencing procedure. 

Suppose a given input data is x=<xPC1=2.5565, xPC2=-0.7364, xPC3=-0.2140, xPC4=-0.7815, xPC5=1.7183, xPC6=0.2485, 

xPC7=-0.7739, y=4.25>. The procedure of producing a corresponding inference result is provided as follows: 

Firstly, for the seven leaf nodes PCm (m=1,…, 7), their belief distributions can be calculated according to Inference 

category 1. Taking xPC1=2.5565 for example, the obtained belief distribution is S(x, PC1)={(Low, 0), (Middle, 0.2330), 

(High, 0.7670)} because xPC1=2.5565 is located in the range of the referential values Middle and High. Similarly, the other 

belief distributions can be calculated. 

Secondly, for the four internal nodes, the belief distributions can be calculated by according to Inference category 2. 

Taking internal node U4 for example, Fig. 10 shows that U4 has two leaf nodes PC2 and PC4, thus the inputs of the sub- 

BRB4 are S(x, PC2) and S(x, PC4). Afterwards, the activation weights for each rule in sub-BRB4 can be calculated based on 

Step 1 shown in Section 4.2. Next, the combined belief distribution S(x, U4)={(D4,1, 0.1768), (D4,2, 0.3448), (D4,3, 0.4784)} 

can be calculated using Step 2 shown in Section 4.2. Similarity, the combined belief distribution of the other internal nodes 

can be obtained, namely, S(x, U3)={(D3,1, 0.2431), (D3,2, 0.4587), (D3,3, 0.2982)}, S(x, U2)={(D2,1, 0.1116), (D2,2, 0.1319), 

(D2,3, 0.7565)}, and S(x, U1)={(D1,1, 0.1029), (D1,2, 0.1165), (D1,3, 0.1104) , (D1,4, 0.2029) , (D1,5, 0.4673)} 

Finally, according to Inference category 3, the belief distribution of the root node equates that of the first internal node, 

namely S(x, PP)=S(x, U1). Such that, the output of MTS-BRB can be calculated using the belief distribution S(x, PP), 

namely, f(x)=4.1438. Thus, the error between f(x) and y is 4.25-4.1438=0.1062. Correspondingly, MAPE and RMSE of 

MTS-BRB for testing data are shown in Table 8, where NA means that the conventional BRB without PCA fails to produce 

inference results because of time-consuming process. 

Table 8. Performance comparison of conventional BRB and MTS-BRB 

Type MTS-BRB 
Conventional BRB  Baseline ratio 

Without PCA With PCA  Without PCA With PCA 

MAPE at testing data 9.0139 NA 10.5899  NA 1.2 

RMSE at testing data 0.4611 NA 0.4902  NA 1.1 

It is clear from Table 8 that the MAPE and RMSE of MTS-BRB are slightly better than that of the conventional BRB 

with PCA, and their baseline ratio is 1.2 and 1.1, but MTS-BRB has significant advantages in the terms of parameters and 

learning time, i.e., Table 7 shows a total of 7 hours, 21 minutes, and 47 seconds needed to obtain the conventional BRB with 

PCA, but only 5 minutes and 14 seconds for MTS-BRB. It is therefore possible to draw the conclusion that MTS-BRB is 

able to circumvent the combinatorial explosion problem of conventional BRB, resulting in a BRB expert system with fewer 

rules and lower prediction error for modelling complicated problems. 

5.3. Comparative analysis with some existing project risk assessment studies 

In order to validate the effectiveness of the proposed MTS-BRB expert system, some well-known feature selection or 

extraction techniques, existing BRB expert systems and classical methods for R&D project risk assessment are introduced 

to carry out three comparative experiments under ten-fold cross validation. 

(1) The first experiment to compare with different feature selection techniques 



23 

According to the MTS-BRB modeling procedure shown in Section 5.2.1, four MTS-BRBs can be constructed using 

four feature selection or extraction techniques. Table 9 shows the corresponding comparative results of conventional BRB 

and MTS-BRB expert systems. Additionally, in order to investigate the influence of maximum number of attributes and 

groups on MTS-BRB modeling procedure, three situations, namely, C=2 and S=2, C=2 and S=3, and C=3 and S=3, are 

considered to construct three kinds of MTS-BRBs. 

Table 9. Comparison of conventional BRB and MTS-BRB for R&D project risk assessment 

Method (No. of factors 

 used to construct BRB) 
Criteria Conventional BRB 

MTS-BRB 

(C=2, S=2) (C=2, S=3) (C=3, S=3) 

None 

(13 factors) 

MAPE NA 15.0995 15.9181 13.8296 

RMSE NA 0.6365 0.6757 0.6023 

No. of rules 1,594,323 108 126 144 

Time(HH:MM:SS) NA(>>1 week) 01:03:12 01:04:04 01:39:41 

PCA with 80% ACR 

(7 factors) 

MAPE 15.7868 12.7416 12.0333 12.8112 

RMSE 0.7087 0.5553 0.5408 0.5630 

No. of rules 2,187 54 72 72 

Time(HH:MM:SS) 130:52:30 00:34:18 00:40:29 00:55:56 

PCA with 70% ACR 

(5 factors) 

MAPE 14.0415 11.8535 11.2874 12.4961 

RMSE 0.6404 0.5319 0.5133 0.5471 

No. of rules 243 36 45 45 

Time(HH:MM:SS) 05:51:30 00:19:20 00:23:23 00:24:54 

CFS  

(5 factors) 

MAPE 12.2694 12.3123 11.9063 12.0567 

RMSE 0.5676 0.5408 0.5231 0.5156 

No. of rules 243 36 36 45 

Time(HH:MM:SS) 02:49:20 00:17:53 00:17:54 00:28:04 

FSE-RF 

(5 factors) 

MAPE 12.8208 12.3333 12.2552 12.3573 

RMSE 0.5933 0.5436 0.5298 0.5160 

No. of rules 243 36 36 45 

Time(HH:MM:SS) 02:35:00 00:17:00 00:17:04 00:25:03 

It is clear from Table 9 that the number of rules in a MTS-BRB would be increased with the increase of the maximum 

numbers of groups C and attributes S, since they allow more numbers of sub-BRBs or numbers of attributes used to 

construct sub-BRB in the MTS-BRB. But in any case, the number of rules in MTS-BRB is far less than that in conventional 

BRB. Owing to too many rules in a BRB, the BRB learning procedure is time-consuming, which has to spend more than 2 

hours. Moreover, the BRB learning procedure using PCA with 80% ACR needs 130 hours. On the other hand, the MTS- 

BRB learning procedure is more efficient, taking only 34 minutes for the PCA with 80% ACR. When comparing MAPE and 

RMSE, MTS-BRB expert systems perform better than BRB expert systems. For example, while employing PCA with 70% 

ACR, the latter's MAPE and RMSE are larger than 14 and 0.6, respectively, those of MTS-BRB expert systems are less than 

14 and 0.6. It can be seen from comparing MTS-BRB expert systems with and without feature selection or extraction 

approaches that the latter can enhance the performance of MTS-BRB expert systems by preventing the former from being 

deceptive owing to redundant factors or over-fitting due to irrelevant elements. 
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(2) The second experiment to compare with existing BRB expert systems 

In earlier research, the RS-BRB expert system and its extensions were one of the key methods for assessing the risk of 

R&D projects (Yang et al., 2019). They are also used to contrast with the MTS-BRB expert system, where RS-BRB expert 

system designates that the BRB expert system is modeled by using random subspaces; the R-RS-BRB expert system 

designates that the RS-BRB expert system is used in conjunction with the random initialization method; the AF-RS-BRB 

expert system designates that the RS-BRB expert system is used in conjunction with the average fusion combination 

method; and the WAF-RS-BRB expert system designates that the RS-BRB expert system is used in conjunction with the 

weighted average fusion combination method. Comparing several BRB expert systems in terms of MAPE, RMSE, and 

number of rules is shown in Table 10. Be aware that the MTS-BRB expert system's outputs are a representation of the worst 

and best outcomes from numerous experiments using the four feature extraction or selection procedures 

Table 10. Comparison of different BRB expert systems for R&D project risk assessment 

Criteria RS-BRB R-RS-BRB AF-RS-BRB WAF-RS-BRB MTS-BRB 

MAPE 13.73 15.85 15.01 15.05 [11.28, 12.81] 

RMSE 0.5737 0.6958 0.6257 0.6143 [0.5133, 0.5630] 

No. of rules 270 270 270 270 [36, 72] 

Table 10 makes it clear that the MTS-BRB expert system is superior to the existing BRB expert systems for assessing 

the risk associated with R&D projects. For example, the MTS-BRB expert system's worst MAPE is 12.81, which is lower 

than the MAPEs of the RS-BRB, R-RS-BRB, AF-RS-BRB, and WAF-RS-BRB expert systems. Although the worst RMSE 

of the MTS-BRB expert system is somewhat lower than that of the RS-BRB expert system, there are much fewer rules in 

the MTS-BRB expert system. 

(3) The third experiment to compare with machine learning methods 

In order to further compare with MTS-BRB expert system, the classical methods for R&D project risk assessment, 

including artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), Bayesian network (BN), 

multiple regression analysis (MRA), and two recent methods, including Micro-extended BRB (Micro-EBRB) expert system 

(Yang et al., 2021) and DCFS (Wang, 2020), are applied in comparative studies, in which the PCA is used together with 

ANFIS to avoid too many rules generated in R&D project risk assessment; the Micro-EBRB expert system has shown its 

potential in the balance of accuracy and efficiency; the DCFS is a hierarchical fuzzy system. Table 11 shows the comparison 

of MTS-BRB expert system and different methods in terms of MAPE and RMSE. 

Table 11. Comparison of MTS-BRB and existing methods for R&D project risk assessment 

Criteria ANN ANFIS BN MRA DCFS Micro-EBRB MTS-BRB 

MAPE 16.82 16.14 17.45 17.16 13.03 13.56 [11.40, 12.81] 

RMSE 0.7423 0.7401 0.6965 0.6107 0.5905 0.5861 [0.5133, 0.5630] 

It is clear from Table 11 that MTS-BRB expert system is better than four classical methods and two recent methods for 

R&D project risk assessment in Chinese industries, i.e., the worst MAPE and RMSE of MTS-BRB expert system is 12.81 

and 0.5630, which are smaller than those of ANN, ANFIS, NB, MRA, and hierarchical fuzzy system, and Micro-EBRB. 

The final ranking of these methods is MTS-BRB > DCFS > Micro-EBRB > ANFIS > ANN > MRA > BN in the terms of 

MAPE and RMSE. 

In summary, it is evident from the above three experiments that MTS-BRB expert system performs well in predicting 
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project performance from the comprehensive view of both MAPE and RMSE indicators. More importantly, MTS-BRB has 

smaller number of rules and less parameter learning time comparing to the conventional BRB, so that it is able to overcome 

the combinatorial exploration problem of conventional BRB. 

 

5.4. Comparative analysis with some existing benchmark classification studies 

In this subsection, the four benchmark datasets listed in Table 3 are used to conduct experiments for comparing with 

classical fuzzy system-based classifiers and machine learning-based classifiers, where the fuzzy system-based classifier 

include structural learning algorithm on vague environment (SLAVE) (Gonzalez and Perez, 1999), fuzzy hybrid generic- 

based machine learning algorithm (FH-GBML) (Ishibuchi, 2005), SGREED (Mansoori et al., 2008), FARC-HD (Alcala- 

Fdez et al., 2011), and DCFS (Wang, 2020); the machine learning-based classifiers include K nearest neighbor (KNN), 

native Bayesian (NB), decision tree (DT), support vector machine (SVM), ANN, and random forest (RF). Tables 12 and 13 

show the accuracy of 4 benchmark datasets related to the above classical classifiers under 10-fold cross validation. 

Table 11. Comparison of MTS-BRB expert system and fuzzy system-based classifiers 

Dataset SLAVE FH-GBML SGRED FARC-HD CFAR DCFS MTS-BRB 

Appendicitis 82.91 (7) 86.00 (3) 84.48 (5) 84.18 (6) 87.82 (2) 84.91 (4) 88.68 (1) 

Heart 71.36 (7) 75.93 (5) 73.21 (6) 84.44 (1) 82.22 (3) 80.00 (4) 82.59 (2) 

Wine 89.47 (7) 92.61 (4) 91.88 (5) 94.35 (2) 93.24 (3) 91.57 (6) 97.75 (1) 

Cleveland 48.82 (6) 53.51 (4) 51.59 (5) 55.24 (2) 53.88 (3) 41.41 (7) 56.90 (1) 

Average rank 6.75 4 5.25 2.75 2.75 5.25 1.25 

From Table 11, it is clear that the MTS-BRB expert system can obtain the best accuracy on three of four datasets and 

the second best accuracy on the other dataset, whose number is greater than other six kinds of fuzzy system-based classifiers. 

Here, it should be highlighted that DCFS is a recent representation of hierarchical fuzzy systems and FARC-HD is the fuzzy 

system aimed to solve the high-dimensional classification problems, all of them were proposed to improve the modeling 

ability of fuzzy systems when facing complex problem modeling. In the comparison of average rank, the MTS-BRB expert 

system outperforms all fuzzy system-based classifiers and the order of average rank is MTS-BRB (1.25) > FARC-HD (2.75) 

= CFAR (2.75) > FH-GBML (4) > DCFS (5.25) = SGRED (5.25) > SLAVE (6.75).  

Table 12. Comparison of MTS-BRB expert system and machine learning-based classifiers 

Dataset KNN NB DT SVM ANN RF MTS-BRB 

Appendicitis 82.08 (6) 85.85 (3) 85.85 (3) 80.19 (7) 85.85 (3) 84.91 (5) 88.68 (1) 

Heart 74.81 (6) 83.70 (1) 77.41 (5) 55.56 (7) 82.22 (3) 81.48 (4) 82.59 (2) 

Wine 97.19 (3) 96.63 (5) 92.13 (6) 44.38 (7) 97.17 (4) 98.31 (1) 97.75 (2) 

Cleveland 55.56 (4) 54.88 (5) 56.57 (2) 53.87 (6) 52.53 (7) 56.23 (3) 56.90 (1) 

Average rank 4.75 3.5 4 6.75 4.25 3.25 1.5 

From Table 12, although the accuracy of the MTS-BRB expert system is even worse than some machine learning- 

based classifiers on datasets like Heart and Wine, where the best classifier of these two datasets is NB and RF, respectively, 

it is still possible to find an acceptable accuracy. This is because, on one hand, the MTS-BRB expert system is the second 

best accuracy on Heart and Wine. On the other hand, the MTS-BRB expert system has the maximum number of the best 

accuracy over other machine learning-based classifiers. Consequently, in the comparison of average rank, the MTS-BRB 
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expert system outperforms all machine learning-based classifiers and the order of average rank is MTS-BRB (1.5) > RF 

(3.25) > NB (3.5) > DT (4) > ANN (4.25) > KNN (4.75) > SVM (6.75). 

In summary, for the comparison of fuzzy system-based and machine learning-based classifiers on some classification 

problems, the comparative results demonstrated that MTS-BRB expert system not only can be used for complex problems 

modelling, but also has desired classification accuracy better than some existing classifiers. 

 

6. Conclusions 

The conventional BRB's combinatorial explosion problem makes it difficult to incorporate expert knowledge and could 

jeopardize the interpretability of the BRB expert system. This study developed MTS to offer a novel representation scheme 

of hierarchical BRB for the first time, referred to as MTS-BRB, in order to address this issue. To build and optimize an MTS 

-BRB from data, as well as to respond to input data given to the MTS-BRB, the relevant MTS-BRB modelling, inferencing, 

and learning processes are also proposed. The key findings can be distilled into the three categories shown below: 

(1) In order to find a solution to the combinatorial explosion problem, MTS was utilized to provide a panorama for 

displaying hierarchical BRB. It was also shown that the MTS-BRB could have a reliable size while handling complex 

problems when compared to the conventional BRB. 

(2) For the dilemma in existing studies that the hierarchical BRB should be given by the expert in advance but it may 

be impossible for complex problems, a MTS-BRB modeling procedure was proposed to construct self-organized hierarchical 

BRB from the collected data of complex problems. 

(3) In order to upgrade conventional BRB expert system as MTS-BRB expert system, a MTS-BRB inferencing and a 

MTS-BRB learning procedures were further proposed to optimize the parameters of the MTS-BRB and produce inferential 

output for replying given input data using the MTS-BRB. 

(4) Five benchmark challenges regarding the risk assessment of R&D projects and UCI datasets were introduced for 

system development and comparison with the purpose of verifying the proposed MTS-BRB expert system. The outcomes 

showed that MTS-BRB expert system performance outperformed previously published studies in this area. 

For this study, it should be noted that the data used in MTS-BRB modeling procedure is mainly based on continuous 

data. Future research in this area could include the use of MTS-BRB expert system for complex problems with discrete data. 

On a similar note, this study was limited to considering only single feature extraction technique, and only using subjective 

preference to determine the size and number of sub-BRB in MTS-BRB. Both of these topics contain numerous existing 

works which could be applied to this type of expert system, improving its interpretability, efficiency, and accuracy. There 

remains significant room for further research in the area of hierarchical BRB or FRB for complex problems modeling, 

especially in relation to refining the modeling process, and exploring additional structure optimization strategies. 
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