3 research outputs found

    Hybrid-Dimensional Visualization and Interaction - Integrating 2D and 3D Visualization with Semi-Immersive Navigation Techniques

    Get PDF
    The integration of 2D visualization and navigation techniques has reached a state where the potential for improvements is relatively low. With 3D-stereoscopy-compatible technology now commonplace not only in research but also in many households, the need for better 3D visualization and navigation techniques has increased. Nevertheless, for the representation of many abstract data such as networks, 2D visualization remains the primary choice. But often such abstract data is associated with spatial data, thereby increasing the need for combining both 2D and 3D visualization and navigation techniques. Here, we discuss a new hybrid-dimensional approach integrating 2D and 3D (stereoscopic) visualization as well as navigation into a semi-immersive virtual environment. This approach is compared to classical 6DOF navigation techniques. Three scientific as well as educational applications are presented: an educational car model, a plant simulation data exploration, and a cellular model with network exploration, each of these combining spatial with associated abstract data. The software is available at: http://Cm4.CELLmicrocosmos.org

    An n-sided polygonal model to calculate the impact of cyber security events

    Full text link
    This paper presents a model to represent graphically the impact of cyber events (e.g., attacks, countermeasures) in a polygonal systems of n-sides. The approach considers information about all entities composing an information system (e.g., users, IP addresses, communication protocols, physical and logical resources, etc.). Every axis is composed of entities that contribute to the execution of the security event. Each entity has an associated weighting factor that measures its contribution using a multi-criteria methodology named CARVER. The graphical representation of cyber events is depicted as straight lines (one dimension) or polygons (two or more dimensions). Geometrical operations are used to compute the size (i.e, length, perimeter, surface area) and thus the impact of each event. As a result, it is possible to identify and compare the magnitude of cyber events. A case study with multiple security events is presented as an illustration on how the model is built and computed.Comment: 16 pages, 5 figures, 2 tables, 11th International Conference on Risks and Security of Internet and Systems, (CRiSIS 2016), Roscoff, France, September 201

    Stereoscopic space map – semi-immersive configuration of 3Dstereoscopic tours in multi-display environments

    Get PDF
    Although large-scale stereoscopic 3D environments like CAVEs are a favorable location for group presentations, the perspective projection and stereoscopic optimization usually follows a navigator-centric approach. Therefore, these presentations are usually accompanied by strong side-effects, such as motion sickness which is often caused by a disturbed stereoscopic vision. The reason is that the stereoscopic visualization is usually optimized for the only head-tracked person in the CAVE – the navigator – ignoring the needs of the real target group – the audience. To overcome this misconception, this work proposes an alternative to the head tracking-based stereoscopic effect optimization. By using an interactive virtual overview map in 3D, the pre-tour and on-tour configuration of the stereoscopic effect is provided, partly utilizing our previously published interactive projection plane approach. This Stereoscopic Space Map is visualized by the zSpace 200®, whereas the virtual world is shown on a panoramic 330° CAVE2TM. A pilot expert study with eight participants was conducted using pre-configured tours through 3D models. The comparison of the manual and automatic stereoscopic adjustment showed that the proposed approach is an appropriate alternative to the nowadays commonly used head tracking-based stereoscopic adjustment
    corecore