264 research outputs found

    Hybrid phoneme based clustering approach for audio driven facial animation

    Full text link
    We consider the problem of producing accurate facial animation corresponding to a given input speech signal. A popular technique previously used for Audio Driven Facial Animation is to build a joint audio-visual model using Active Appearance Models (AAMs) to represent possible facial variations and Hidden Markov Models (HMMs) to select the correct appearance based on the input audio. However there are several questions that remained unanswered. In particular the choice of clustering technique and the choice of the number of clusters in the HMM may have significant influence over the quality of the produced videos. We have investigated a range of clustering techniques in order to improve the quality of the HMM produced, and proposed a new structure based on using Gaussian Mixture Models (GMMs) to model each phoneme separately. We compared our approach to several alternatives using a public dataset of 300 phonetically labeled sentences spoken by a single person and found that our approach produces more accurate animation. In addition, we use a hybrid approach where the training data is phonetically labeled thus producing a model with better separation of phonemes, but test audio data is not labeled, thus making our approach for generating facial animation less laborious and fully automatic

    Audio-to-Visual Speech Conversion using Deep Neural Networks

    Get PDF
    We study the problem of mapping from acoustic to visual speech with the goal of generating accurate, perceptually natural speech animation automatically from an audio speech signal. We present a sliding window deep neural network that learns a mapping from a window of acoustic features to a window of visual features from a large audio-visual speech dataset. Overlapping visual predictions are averaged to generate continuous, smoothly varying speech animation. We outperform a baseline HMM inversion approach in both objective and subjective evaluations and perform a thorough analysis of our results

    Synthesising visual speech using dynamic visemes and deep learning architectures

    Get PDF
    This paper proposes and compares a range of methods to improve the naturalness of visual speech synthesis. A feedforward deep neural network (DNN) and many-to-one and many-to-many recurrent neural networks (RNNs) using long short-term memory (LSTM) are considered. Rather than using acoustically derived units of speech, such as phonemes, viseme representations are considered and we propose using dynamic visemes together with a deep learning framework. The input feature representation to the models is also investigated and we determine that including wide phoneme and viseme contexts is crucial for predicting realistic lip motions that are sufficiently smooth but not under-articulated. A detailed objective evaluation across a range of system configurations shows that a combined dynamic viseme-phoneme speech unit combined with a many-to-many encoder-decoder architecture models visual co-articulations effectively. Subjective preference tests reveal there to be no significant difference between animations produced using this system and using ground truth facial motion taken from the original video. Furthermore, the dynamic viseme system also outperforms significantly conventional phoneme-driven speech animation systems

    Model-based synthesis of visual speech movements from 3D video

    Get PDF
    In this paper we describe a method for the synthesis of visual speech movements using a hybrid unit selection/model-based approach. Speech lip movements are captured using a 3D stereo face capture system, and split up into phonetic units. A dynamic parameterisation of this data is constructed which maintains the relationship between lip shapes and velocities; within this parameterisation a model of how lips move is built and is used in the animation of visual speech movements from speech audio input. The mapping from audio parameters to lip movements is disambiguated by selecting only the most similar stored phonetic units to the target utterance during synthesis. By combining properties of model-based synthesis (e.g. HMMs, neural nets) with unit selection we improve the quality of our speech synthesis

    Alternative visual units for an optimized phoneme-based lipreading system

    Get PDF
    Lipreading is understanding speech from observed lip movements. An observed series of lip motions is an ordered sequence of visual lip gestures. These gestures are commonly known, but as yet are not formally defined, as `visemes’. In this article, we describe a structured approach which allows us to create speaker-dependent visemes with a fixed number of visemes within each set. We create sets of visemes for sizes two to 45. Each set of visemes is based upon clustering phonemes, thus each set has a unique phoneme-to-viseme mapping. We first present an experiment using these maps and the Resource Management Audio-Visual (RMAV) dataset which shows the effect of changing the viseme map size in speaker-dependent machine lipreading and demonstrate that word recognition with phoneme classifiers is possible. Furthermore, we show that there are intermediate units between visemes and phonemes which are better still. Second, we present a novel two-pass training scheme for phoneme classifiers. This approach uses our new intermediary visual units from our first experiment in the first pass as classifiers; before using the phoneme-to-viseme maps, we retrain these into phoneme classifiers. This method significantly improves on previous lipreading results with RMAV speakers

    Visual Speech Synthesis using Dynamic Visemes and Deep Learning Architectures

    Get PDF
    The aim of this work is to improve the naturalness of visual speech synthesis produced automatically from a linguistic input over existing methods. Firstly, the most important contribution is on the investigation of the most suitable speech units for the visual speech synthesis. We propose the use of dynamic visemes instead of phonemes or static visemes and found that dynamic visemes can generate better visual speech than either phone or static viseme units. Moreover, best performance is obtained by a combined phoneme-dynamic viseme system. Secondly, we examine the most appropriate model between hidden Markov model (HMM) and different deep learning models that include feedforward and recurrent structures consisting of one-to-one, many-to-one and many-to-many architectures. Results suggested that that frame-by-frame synthesis from deep learning approach outperforms state-based synthesis from HMM approaches and an encoder-decoder many-to-many architecture is better than the one-to-one and many-to-one architectures. Thirdly, we explore the importance of contextual features that include information at varying linguistic levels, from frame level up to the utterance level. Our findings found that frame level information is the most valuable feature, as it is able to avoid discontinuities in the visual feature sequence and produces a smooth and realistic animation output. Fourthly, we found that the two most common objective measures of correlation and root mean square error are not able to indicate realism and naturalness of human perceived quality. We introduce an alternative objective measure and show that the global variance is a better indicator of human perception of quality. Finally, we propose a novel method to convert a given text input and phoneme transcription into a dynamic viseme transcription in the case when a reference dynamic viseme sequence is not available. Subjective preference tests confirmed that our proposed method is able to produce animation, that are statistically indistinguishable from animation produced using reference data

    Comparing heterogeneous visual gestures for measuring the diversity of visual speech signals

    Get PDF
    Visual lip gestures observed whilst lipreading have a few working definitions, the most common two are: ‘the visual equivalent of a phoneme’ and ‘phonemes which are indistinguishable on the lips’. To date there is no formal definition, in part because to date we have not established a two-way relationship or mapping between visemes and phonemes. Some evidence suggests that visual speech is highly dependent upon the speaker. So here, we use a phoneme-clustering method to form new phoneme-to-viseme maps for both individual and multiple speakers. We test these phoneme to viseme maps to examine how similarly speakers talk visually and we use signed rank tests to measure the distance between individuals. We conclude that broadly speaking, speakers have the same repertoire of mouth gestures, where they differ is in the use of the gestures

    Adaptive threshold optimisation for colour-based lip segmentation in automatic lip-reading systems

    Get PDF
    A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in ful lment of the requirements for the degree of Doctor of Philosophy. Johannesburg, September 2016Having survived the ordeal of a laryngectomy, the patient must come to terms with the resulting loss of speech. With recent advances in portable computing power, automatic lip-reading (ALR) may become a viable approach to voice restoration. This thesis addresses the image processing aspect of ALR, and focuses three contributions to colour-based lip segmentation. The rst contribution concerns the colour transform to enhance the contrast between the lips and skin. This thesis presents the most comprehensive study to date by measuring the overlap between lip and skin histograms for 33 di erent colour transforms. The hue component of HSV obtains the lowest overlap of 6:15%, and results show that selecting the correct transform can increase the segmentation accuracy by up to three times. The second contribution is the development of a new lip segmentation algorithm that utilises the best colour transforms from the comparative study. The algorithm is tested on 895 images and achieves percentage overlap (OL) of 92:23% and segmentation error (SE) of 7:39 %. The third contribution focuses on the impact of the histogram threshold on the segmentation accuracy, and introduces a novel technique called Adaptive Threshold Optimisation (ATO) to select a better threshold value. The rst stage of ATO incorporates -SVR to train the lip shape model. ATO then uses feedback of shape information to validate and optimise the threshold. After applying ATO, the SE decreases from 7:65% to 6:50%, corresponding to an absolute improvement of 1:15 pp or relative improvement of 15:1%. While this thesis concerns lip segmentation in particular, ATO is a threshold selection technique that can be used in various segmentation applications.MT201

    Learning weakly supervised multimodal phoneme embeddings

    Full text link
    Recent works have explored deep architectures for learning multimodal speech representation (e.g. audio and images, articulation and audio) in a supervised way. Here we investigate the role of combining different speech modalities, i.e. audio and visual information representing the lips movements, in a weakly supervised way using Siamese networks and lexical same-different side information. In particular, we ask whether one modality can benefit from the other to provide a richer representation for phone recognition in a weakly supervised setting. We introduce mono-task and multi-task methods for merging speech and visual modalities for phone recognition. The mono-task learning consists in applying a Siamese network on the concatenation of the two modalities, while the multi-task learning receives several different combinations of modalities at train time. We show that multi-task learning enhances discriminability for visual and multimodal inputs while minimally impacting auditory inputs. Furthermore, we present a qualitative analysis of the obtained phone embeddings, and show that cross-modal visual input can improve the discriminability of phonological features which are visually discernable (rounding, open/close, labial place of articulation), resulting in representations that are closer to abstract linguistic features than those based on audio only
    • …
    corecore