
Visual Speech Synthesis

using Dynamic Visemes and

Deep Learning Architectures

Ausdang Thangthai

A thesis submitted for the degree of

Doctor of Philosophy

University of East Anglia

School of Computing Sciences

April 2018

©This copy of the thesis has been supplied on condition that anyone who consults it is understood

to recognise that its copyright rests with the author and that use of any information derived

therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or

extract must include full attribution.

Abstract

The aim of this work is to improve the naturalness of visual speech synthesis

produced automatically from a linguistic input over existing methods. Firstly, the

most important contribution is on the investigation of the most suitable speech units

for the visual speech synthesis. We propose the use of dynamic visemes instead of

phonemes or static visemes and found that dynamic visemes can generate better vi-

sual speech than either phone or static viseme units. Moreover, best performance is

obtained by a combined phoneme-dynamic viseme system. Secondly, we examine the

most appropriate model between hidden Markov model (HMM) and different deep

learning models that include feedforward and recurrent structures consisting of one-

to-one, many-to-one and many-to-many architectures. Results suggested that that

frame-by-frame synthesis from deep learning approach outperforms state-based syn-

thesis from HMM approaches and an encoder-decoder many-to-many architecture

is better than the one-to-one and many-to-one architectures. Thirdly, we explore

the importance of contextual features that include information at varying linguistic

levels, from frame level up to the utterance level. Our findings found that frame

level information is the most valuable feature, as it is able to avoid discontinuities in

the visual feature sequence and produces a smooth and realistic animation output.

Fourthly, we find that the two most common objective measures of correlation and

root mean square error are not able to indicate realism and naturalness of human

perceived quality. We introduce an alternative objective measure and show that

the global variance is a better indicator of human perception of quality. Finally, we

propose a novel method to convert a given text input and phoneme transcription

into a dynamic viseme transcription in the case when a reference dynamic viseme

sequence is not available. Subjective preference tests confirmed that our proposed

method is able to produce animation, that are statistically indistinguishable from

animation produced using reference data.

Acknowledgements

First and foremost I would like to thank my supervisory team, Dr. Ben Milner, Dr.

Sarah Taylor and Dr. Barry-John Theobald who is my former supervisor. Without

your excellent guidance, advice, support and encouragement, this thesis would not

have been possible.

I would also like to thank my external examiner, Dr. Hiroshi Shimodaira, and

my internal examiner, Prof. Richard Harvey for your comments and suggestions

which aim to improve the quality of this thesis.

I am grateful to the office of National Science and Technology Development

Agency (NSTDA) and the Royal Thai government for funding and allowing me to

study master and PhD at the university of East Anglia during 2012-2018. Thanks

also go to members and interns of Disney research who helping made my life in

Pittsburgh magical and wonderful for three months at the beginning of my PhD.

Last but not least, I would sincerely like to thank my family, Somsak Thangthai,

Nongluck Thangthai, and my wife, Kwanchiva Thangthai, as well as my brother,

Adisorn Thangthai, and my sister, Suluksana Thangthai, for their continued support

and unconditional love.

i

Contents

1 Introduction 1

1.1 Goal and Objectives . 3

1.2 Contributions . 3

1.3 Thesis Outline . 4

2 Overview of visual speech synthesis 6

2.1 Introduction . 6

2.2 Overview of text-to-speech (TTS) synthesis systems 7

2.3 Input to the visual speech synthesiser 8

2.3.1 Text input . 8

2.3.2 Audio speech input . 10

2.4 Output modality of the visual speech synthesiser 10

2.4.1 Audiovisual synthesis system - based on a two-phase approach 11

2.4.2 Audiovisual synthesis system - based on a single-phase approach 12

2.5 Speech units for visual speech synthesis 13

2.5.1 Phoneme units . 13

2.5.2 Static viseme units . 14

2.5.3 Dynamic viseme . 17

2.6 Approaches to visual speech synthesis 19

2.6.1 Performance-based approach 19

2.6.2 Blendshape approaches . 20

2.6.3 Model-based . 21

2.6.4 Sample-based approach . 23

2.6.5 Statistical-based . 29

ii

Contents iii

2.6.5.1 HMM-based . 30

2.6.5.2 DNN-based . 37

3 Technical background 40

3.1 Introduction . 40

3.2 Overview of HMM synthesis . 40

3.2.1 Gaussian mixture model (GMM) 41

3.2.2 Hidden Markov model (HMM) 44

3.2.3 Hidden semi-Markov model (HSMM) 46

3.2.4 Maximum likelihood parameter generation (MLPG) 47

3.3 Overview of feedforward neural networks 50

3.3.1 Training feedforward neural network using backpropagation . 57

3.3.1.1 Forward Propagation Pass 57

3.3.1.2 Backward Propagation Pass 59

3.3.1.3 Optimisation: Weight Update 62

3.4 Overview of recurrent neural networks 63

3.4.1 Unidirectional RNN architectures 65

3.4.1.1 Synchronised many-to-many 66

3.4.1.2 Many-to-one . 68

3.4.1.3 One-to-many . 69

3.4.1.4 Encoder-decoder many-to-many 70

3.4.2 Bidirectional RNN architectures 74

3.4.3 Long short term memory (LSTM) 75

3.4.4 Training LSTM-RNN using backpropagation through time (BPTT) 76

3.4.4.1 Epochwise and truncated backpropagation through

time . 79

4 Data corpora 81

4.1 Introduction . 81

4.2 Overview of KB-2k dataset . 82

4.3 Visual processing of KB-2k dataset 83

4.4 Dynamic viseme units of KB-2k dataset 88

Contents iv

4.4.1 Training part . 88

4.4.1.1 Identifying Visual Gestures 89

4.4.1.2 Clustering Visual Gestures 90

4.4.2 Testing part . 94

4.4.2.1 Determining Visual Gestures 95

4.5 Data preparation of KB-2k dataset 95

4.5.1 Feature normalisation . 95

4.5.2 Syllable segmentation . 97

4.5.3 Training/validation/testing dataset 98

5 Visual speech synthesis based on hidden Markov models 101

5.1 Introduction . 101

5.2 HMM-based visual speech synthesis 102

5.2.1 Training part . 103

5.2.1.1 Input feature extraction: contextual input 103

5.2.1.2 Output feature extraction: contextual output 108

5.2.1.3 HMM training: context dependent HMMs 109

5.2.2 Synthesis part . 111

5.3 Experiment results . 112

5.3.1 Objective tests . 112

5.3.1.1 Effect of frame rate 115

5.3.1.2 Effect of dynamic feature 116

5.3.1.3 Effect of static viseme classes 119

5.3.1.4 Effect of dynamic viseme classes 122

5.3.1.5 Effect of output normalisation 123

5.3.1.6 Effect of number of HMM states 125

5.3.1.7 Comparing phoneme, static viseme, and dynamic

viseme Units . 126

5.3.1.8 Analysis of contextual features 130

6 Visual Speech Synthesis based on Feedforward Networks 133

6.1 Introduction . 133

Contents v

6.2 DNN-based Visual Speech Synthesis 134

6.2.1 Input Feature Representation 137

6.2.1.1 Frame Level Features 137

6.2.1.2 Segment Level Features 139

6.2.1.3 Syllable, Word, Phrase and Utterance Features . . . 140

6.2.2 Output Feature Representation 142

6.2.3 Network Structure . 142

6.3 Experiment Results . 145

6.3.1 Objective Tests . 146

6.3.1.1 Effect of contextual input 146

6.3.1.2 Effect of contextual output 147

6.3.1.3 Effect of Frame Level Feature 148

6.3.1.4 Optimisation of Frame Features 150

6.3.1.5 Comparing Phoneme and Dynamic Viseme Units . . 154

7 Visual speech synthesis based on LSTM-RNN 157

7.1 Introduction . 157

7.2 Encoder-decoder LSTM-RNN visual speech synthesis 157

7.2.1 Input features representation 159

7.2.1.1 Frame level: input features 160

7.2.1.2 Segment level: input features 162

7.2.1.3 Syllable, word, phrase and utterance: input features 162

7.2.2 Visual: output features extraction 162

7.2.3 Network structure . 162

7.2.3.1 Context-truncated BPTT 163

7.2.3.2 Encoder-decoder LSTM-RNNs 164

7.3 Experimental results . 166

7.3.1 Experimental measurement 166

7.3.1.1 Objective tests . 166

7.3.1.2 Subjective tests . 167

7.3.2 Experimental training conditions 167

7.3.3 Analysis of framing method 168

Contents vi

7.3.4 Analysis of speech units . 170

7.3.5 Effect of the truncated context length (Nl and Nr) 173

7.3.6 Effect of the truncated context decoding (Nc) 176

7.3.7 Analysis of the RNN architecture on visual speech synthesis . 180

7.3.8 Subjective tests . 183

7.3.8.1 Turing tests . 185

7.3.8.2 Preference tests . 187

8 Phoneme-to-dynamic viseme visual speech synthesis 191

8.1 Introduction . 191

8.2 Traditional phonemes to dynamic visemes conversion 192

8.3 Proposed phonemes to dynamic visemes conversion 195

8.3.1 Full pipeline visual speech synthesis 196

8.4 Preference tests . 198

9 Conclusion and Future work 203

9.1 Conclusion . 203

9.1.1 What is the most appropriate unit of speech? 203

9.1.2 How can discontinuity be reduced? 204

9.1.3 What are the best input and output feature representations? . 204

9.1.4 What is the most appropriate model? 205

9.1.5 What relation in there between objective and subjective mea-

sure? . 205

9.1.6 How much training data is needed? 206

9.1.7 Can visual TTS be made practical? 206

9.2 Future Work . 207

Appendices 208

A Appendix A 209

List of Figures

2.1 A basic speech synthesis framework for either audio TTS or visual

TTS. 8

2.2 An audiovisual speech synthesis framework of the two-phase approach. 11

2.3 An audiovisual speech synthesis framework of the two-phase approach

in the use of natural speech. 12

2.4 An audiovisual speech synthesis framework of single-phase approach. 12

2.5 Examples of a lip shape in each viseme [113]. 16

2.6 The difference between the beginning of audio boundary and visual

boundary for sound “/r/”. 18

2.7 Different mouth shapes at the onset of phoneme /t/ in different word

[98]. 18

2.8 The difference between phoneme and dynamic viseme units [98]. . . . 19

2.9 An example of interpolation technique using a simple linear combi-

nation [91]. 21

2.10 Descendants of Parke’s facial model. From left to right: Baldi [16],

MASSY [35] and Kattis [8] . 22

2.11 An example of the mouth and jaw facial regions for a concatenative

visual speech synthesis (top row) and examples of synthesised output

frames (bottom row) [10]. 25

2.12 The segmentation in different facial regions for a concatenative visual

speech synthesis [21]. 25

2.13 A hybrid approach between HMM-based and unit selection approach

where the HMM-based is used to guide the search in unit selection

database approach. [114]. 28

vii

List of Figures viii

2.14 An 8-state ergodic HMM topology to represent mouthshapes [21]. . . 31

2.15 (a) Inner lip position parameters and (b) an example lip motion of a

single frame extracted from [96]. 32

2.16 Examples of 2.5D face model with appearance (top). Examples of

2.5D face model as wire-frame (middle). Example frames with differ-

ent angles (bottom). (modified from [116]) 34

2.17 An example of time-lag in singing voice speech synthesis [86]. 36

2.18 Examples of 2.5D facial image results in six different expressions[5]. . 36

2.19 Example of three different characters of speech animation (a) the

original video (b) the predicted lip animation from AAM (c) the facial

rigs that retargated from the shape model [100]. 39

3.1 An example of standard normal distribution with zero mean and unit

variance. 41

3.2 An example of the linear combination of a set of Gaussian models, as

called Gaussian mixture model. (modified from [2]) 43

3.3 An HMM topology of a left-to-right three state with no skip and a

single Gaussian output probability. 44

3.4 The exponential distribution of the implicit duration modelling and

the Gaussian distribution of the explicit duration modelling. 45

3.5 An HSMM topology of a left-to-right three state with no skip, a single

Gaussian duration probability and output probability. 46

3.6 Parameter generation with stepwise issue from HSMM [109]. 48

3.7 Parameter generation with dynamic features to overcome stepwise

issue from HSMM [109]. 50

3.8 The single-layer and multi-layer feedforward neural networks com-

pared with recurrent neural networks. 51

3.9 The form of single layer perceptron. 51

3.10 Examples of possible hyperplanes and optimal hyperplane of linear

classifier. 53

3.11 Examples of XOR problem that single layer perceptron cannot handle. 53

List of Figures ix

3.12 Examples of XOR problem that use multi layer perceptron with a

tanh activation function. 54

3.13 Multi-layer perceptron of the XOR problem. 55

3.14 Examples of XOR problem that use multi layer perceptron. 56

3.15 An illustration of forward pass. 58

3.16 An illustration of backward pass. 60

3.17 Simple feedforward and RNN architectures. 64

3.18 Synchronised many-to-many RNN architecture (adapted from [46]). . 66

3.19 Synchronised many-to-many RNN architecture with teacher forcing

(adapted from [46]). 67

3.20 Synchronised many-to-many RNN architecture with two recurrent

connections (adapted from [46]). 68

3.21 Many-to-one RNN architecture (adapted from [46]). 68

3.22 One-to-many RNN architecture (adapted from [46]). 70

3.23 Basic encoder-decoder many-to-many RNN architecture (adapted from

[46]). 71

3.24 Encoder-decoder with feedback (adapted from [46]). 72

3.25 Encoder-decoder with peek (adapted from [46]). 73

3.26 Bidirectional RNN (adapted from [46]). 74

3.27 Synchronised many-to-many RNN architecture using LSTM Memory

Cell. 76

3.28 An example of how backpropagation throughtime method uses chain

rule and applies on a loss funtion at time t (adapted from [46]). . . . 78

3.29 An example of how epochwise backpropagation looks on a sequence

of length 6. 79

3.30 An example of how truncated backpropagation looks on a sequence

of length 6 with 3 truncation steps. 80

4.1 Example images from the KB-2k dataset. 82

4.2 Example of the waveform and label file from the KB-2k dataset. The

PH pane denotes for phoneme boundary and WRD pane denotes for

word boundary. 83

List of Figures x

4.3 An example of a hand-labelled lower face image of a shape component

[98] . 84

4.4 A comparison of an unaligned (left) and aligned (right) shape land-

marks. Each cross represents the x and y coordinates of each landmark. 84

4.5 An example of two-segment AAMs. 85

4.6 The first three modes of a combined shape and appearance model at

3 standard deviations (right) and -3 standard deviations (left) from

the mean. 87

4.7 The framework of dynamic viseme training system. 89

4.8 An illustration of the gradient magnitude in AAM parameter space

(blue line) corresponds to phoneme and dynamic viseme boundaries

from the sequence “resistance thermometers”. Where the red dotted

lines with purple boxes reflect dynamic viseme boundaries and the

bottom green boxes display phonemes and its boundaries. 90

4.9 An example of selected dynamic visemes from the graph-based clus-

tering. Each viseme represents a different visual function. For exam-

ple “V29” represents lip funnel and “V36” denotes mouth stretch. . . 93

4.10 The cluster compactness as a function of the number of clusters com-

puted from the HMM supervectors extracted from the KB2K corpus. 94

4.11 The framework of dynamic viseme classifier system. 94

4.12 Examples of the range of AAM features order 1, 10, 20, and 30. . . . 96

4.13 Syllable structure for happy and rhythm. 97

4.14 Phoneme distributions in training, development, testing and special

testing sets. 100

5.1 An overview of the HMM-based visual speech synthesis system. . . . 102

5.2 An example of feature representation structure in utterance, phrase,

word, syllable, phone, and static viseme levels. 104

5.3 Examples of Quin-phone, Quin-static viseme, and Quin-dynamic viseme

context features are shown in red. 106

5.4 Distribution of the number of phones spanning over in each dynamic

viseme. 107

List of Figures xi

5.5 Examples of the extraction of phoneme in dynamic visemes are shown

in red. 107

5.6 An example part of context-dependent binary decision tree that gen-

erated from HMM-based using dynamic viseme units. 110

5.7 Two different dynamic ranges that originated from the ground-truth

and generated AAM trajectories. 114

5.8 Frames 20-30 from the ground-truth trajectories (top) and generated

trajectories (bottom), corresponding to the the first syllable of the

word choices. Both examples tend to present similar lip shapes but

the image quality from the small dynamic range trajectory (bottom)

is getting more blur and less flexible in terms of open and closed

mouth shapes than the normal dynamic range (top). 114

5.9 Cumulative variance explained by AAMs. 115

5.10 A ground-truth (black) AAM parameter trajectory compared with a

synthetic AAM parameter trajectory from static features only (blue)

and dynamic features with 3 window length (KL = KR = 1). Verti-

cal lines show phoneme boundaries. This result shows static features,

(KL = KR = 0), are not able to generate continuous trajectories.

This can only produce around five different lip images from five emit-

ting states in each phoneme. It clearly shows that the use of dynamic

features is able to reduce the discontinuities problem (red). 118

5.11 A ground-truth (black) AAM parameter trajectory compared with a

synthetic AAM parameter trajectory from dynamic features dynamic

features with 5 window length (KL = KR = 2) and 7 window length

(KL = KR = 3). Vertical lines show phoneme boundaries. This result

shows these results are jerky and not able to generate continuous

trajectories. It clearly shows that the use of dynamic features with

the window length greater or equal five is unable to produce the

smooth trajectory and propose a jerky problem. 119

5.12 The averaged correlation (top) and normaliased-RMSE (bottom) us-

ing dynamic viseme classes from 10 to 250. 123

List of Figures xii

5.13 The time varying of the first AAM shape parameter as measured

from video (black), synthesised using phones (blue) and static visemes

(green). The vertical dashed lines mark the beginning and end of each

phoneme. 128

5.14 The time varying of the first AAM shape parameter as measured from

video (black), synthesised using phones (blue) and dynamic visemes

(red). The vertical dashed lines mark the beginning and end of each

phoneme. 129

5.15 An example part of context-dependent binary decision tree that was

generated from HMM-based phoneme units. 130

5.16 The percentage of top three highest proportions of tree occupancy

for phoneme, static viseme and dynamic viseme units. Where U1, U2

and U3 denote for Quin-phone, Quin-static viseme and Quin-dynamic

viseme context, respectively. The other input features can be found

in Table 5.1. (first assumption) . 131

5.17 The percentage of top three highest proportions of dominance scores

for phoneme, static viseme and dynamic viseme units. Where U1, U2

and U3 denote for Quin-phone, Quin-static viseme and Quin-dynamic

viseme context, respectively. The other input features can be found

in Table 5.1. (second assumption) . 132

6.1 An overview of the DNN-based visual speech synthesis system. 135

6.2 An example of phonetic window context feature extraction. 138

6.3 An example of position and number of frames in phoneme and forward

phoneme span feature extraction. 139

6.4 An example of segment level feature extraction. 140

6.5 An example of segment, syllable, word, and phrase level feature ex-

traction. 141

6.6 Finalised feedforward neural network architecture for visual speech

synthesis. 144

6.7 The loss learning curve of training and validation sets during the

training process. 145

List of Figures xiii

6.8 A ground-truth (black) AAM parameter trajectory compared with

two synthetic AAM parameter trajectories from F1 (blue) and F2

(red). “F1 System” represents the input features without frame level

features. While, “F2 system” includes input features into the input

representation. Vertical lines show phoneme boundaries. 150

6.9 A ground-truth (black) AAM parameter trajectory compared with a

synthetic AAM parameter trajectory from System A (blue). System

A represents the input features with position and number of frames

in phoneme. Vertical lines show phoneme boundaries. 152

6.10 A ground-truth (black) AAM parameter trajectory compared with a

synthetic AAM parameter trajectory from System B (red). System B

represents the input features with phonetic window context features.

Vertical lines show phoneme boundaries. 153

6.11 Selected frames 26-32 from the sequence (S0524) corresponding to

the word “came”. Each row shows an equivalent lip shape video

that reconstructed from AAM parameters. Row 1 correspond to the

groundtruth parmeters. Rows 2 and 3 correspond to System A and

System B. The lip shape sequences of System A are nearly the same

images in each frame, resulting in an unrealistic lip animation. While

the synthesised lip motion of System B are closely to the groundtruth

sequences. 154

6.12 Selected frames 25-32 from the sequence (S0980) correspond to the

word “chicken”. Each row shows an equivalent lip shape video that re-

constructed from AAM parameters. Row 1 correspond to the groundtruth

parmeters. Row 2 and 3 correspond to the phoneme HMM system

and PhDV DNN system. 156

7.1 An overview of our visual speech synthesis system. 159

7.2 An example of context-truncated block with a single frame overlap.

The sequences are first partition to blocks and each block comprises

Nc length. Then, left, Nl , and right, Nr, contexts are appended. . . 163

List of Figures xiv

7.3 Our encoder-decoder many-to-many bidirectional LSTM-RNN archi-

tecture for visual speech synthesis. 165

7.4 The time varying trajectory of the first AAM parameter as measured

from video (black), synthesised using dynamic visemes (red), and

phones (blue). 171

7.5 The time varying trajectory of the first AAM parameter as measured

from video (black), synthesised using combination of dynamic visemes

and phones (red), and dynamic visemes (blue). 172

7.6 Selected frames 45-50 from the sequence (S1991) correspond to the

word “door”. Each row shows an equivalent lip shape video that

reconstructed from AAM parameters. Row 1 and 2 correspond to

the LSTM-based visual speech synthesis using dynamic viseme units

(DV LSTM) and the combination of phone and dynamic viseme units

(PhDV LSTM), respectively. The lip shape sequences are correct in

both system, but is somewhat under articulated for the use of dynamic

viseme units. 172

7.7 The time varying trajectory of the first AAM parameter as measured

from video (black), synthesised using “7-1+7” (red), and “11-1+11”

context-truncated block setting (blue). 176

7.8 Frames 32-37 from a “7−1+7” configuration (top) and a “11−1+11”

configuration (bottom), corresponding to the first syllable of the word

“purists”. Every frame shows the similar lip shape in both systems. . 176

7.9 The time varying trajectory of the first-third AAM parameters as

measured from video (black), synthesised using the two-best configu-

rations of our NN model including “7-1+7” (blue) and “7-3+7” (red).

The predicted AAM parameter of the first dimension in both config-

urations is nearly the same as ground-truth parameter. The shape of

second and third parameters is still similar, but somewhat different

magnitude. 179

7.10 The objective scores averaged for three different systems: HMM,

DNN and LSTM. 181

List of Figures xv

7.11 Selected frames 67-72 from the sequence “those who are not purists

use canned vegetables when making stew”. The frames correspond

to the word “canned” and each row shows an equivalent lip shape

video that reconstructed from AAM parameters. Row 1 correspond

for ground-truth AAM parameters. Row 2,3, and 4 correspond to the

HMM-based, DNN-based, and LSTM-based visual speech synthesis

using the combination of phone and dynamic viseme units, respectively.183

7.12 Visual speech synthesis experiment - Turing test. 185

7.13 Subjective results for realism tests with four different systems: REAL,

HMM PH, DNN PH DV and LSTM PH DV. 187

7.14 Visual speech synthesis experiment - Preference test. 188

8.1 All possible combination of phonemes paths for a sequence of phonemes

/w-er-d/ to dynamic visemes (black nodes). 193

8.2 All possible combination of phonemes paths for a sequence of phonemes

/w-er-d/ to visemes (black nodes). 194

8.3 The digram of our proposed phonemes to dynamic visemes conversion.195

8.4 An example of phoneme, visual gesture and dynamic viseme tran-

scriptions for the word “word”. 196

8.5 The framework of full pipeline synthesis. 197

8.6 AAM trajectories generated using reference (LSTM PH DV) and pre-

dicted dynamic viseme sequences (LSTM PH DV PRED), and for

comparison the reference AAM track (Groundtruth), for the phrase

“collects rare and novel”. 198

8.7 Sequence of lip images taken from animations produced using refer-

ence (LSTM PH DV) and predicted dynamic viseme sequences (LSTM PH DV PRED),

and for comparison using the reference AAM track (Groundtruth), for

the phrase “collects rare and novel”. 198

List of Figures xvi

8.8 Sequence of lip images taken from animations produced using pre-

dicted dynamic viseme sequences (LSTM PH DV PRED), and for

comparison using the reference AAM track (Groundtruth), for the

phrase “At least the wheels dug in”. The frames correspond to the

word at least shows that the animation from this system (LSTM PH DV PRED)

still generate wrong lip sequences and not flexible in terms of open/close

mouth. 201

8.9 Examples of yellow ball when capturing in different video frame rates

between 15fps and 96fps [1]. 202

List of Tables

2.1 IPA symbols for the consonants, vowels, and diphthongs used in

ARPAbet, including the equivalent ASCII symbol and sample pro-

nunciations from the CMU pronunciation dictionary. 14

2.2 Many-to-one phoneme-to-viseme mapping based on the ASCII sym-

bol in Table 2.1. 15

2.3 Examples of a many-to-one phonemes to visemes mapping. 16

4.1 A summary of AAM visual features of KB-2k corpus. 87

4.2 A summary of KB-2k corpus. 99

5.1 Contextual features for phonemes (PH), static visemes (SV) and dy-

namic visemes (DV) units at varying levels. 105

5.2 Contextual linguistic features of phoneme /ih/ in Figure 5.2 for pho-

netic (PH), static viseme (SV), and dynamic visemes (DV) units at

syllable, word, phrase, and utterance levels. 108

5.3 Statistics of the models generated after training HMMs using MDL. . 111

5.4 The global variance of the training, validation and testing set of the

original KB-2k data. 113

5.5 The averaged scores of phoneme HMM-based visual speech synthesis

in different data rate. 116

5.6 The averaged objective scores of phoneme HMM-based visual speech

synthesis in different number of window length for computing dynamic

feature. 117

5.7 A many-to-one phonemes to visemes mapping [37]. 120

xvii

List of Tables xviii

5.8 The averaged objective scores of static viseme HMM-based visual speech

synthesis in different static viseme classes. 121

5.9 The averaged objective scores of the different combination of static

viseme and phoneme units for HMM-based visual speech synthesis sys-

tem. 121

5.10 The averaged objective scores of the importance of standardisation

method on AAM visual output for phoneme HMM system and dy-

namic viseme HMM system. 124

5.11 The averaged objective scores of phoneme HMM-based visual speech

synthesis in different number HMM states. 125

5.12 The averaged objective scores of dynamic viseme HMM-based visual

speech synthesis in different number HMM states. 125

5.13 The mean (±standard deviation) scores averaged for HMM-based ap-

proach using phonemes, traditional visemes, and triphones in KB2K

corpus. 127

6.1 Contextual features for phonetic (PH) and dynamic visemes (DV)

units at varying levels. 136

6.2 Contextual linguistic features of frame 4 in Figure 6.5 for phonetic

(PH) and dynamic visemes (DV) units at syllable, word, phrase, and

utterance levels. 141

6.3 The averaged scores of phoneme DNN-based visual speech synthesis

in different data rate. 142

6.4 The combination of hyper-parameters for our preliminary tests. 143

6.5 A summary of KB2K corpus for DNN-based. 146

6.6 Objective scores for finding the suitable number of input window width

computed on the validation set. 147

6.7 Objective scores for finding the suitable number of output window

width computed on the validation set. 148

6.8 Frame level feature combinations. 151

List of Tables xix

6.9 Correlation, NRMSE, and GV performance of phonetic frame level

feature combinations on the validation set (brackets show ±standard

deviation). 151

6.10 Correlation, NRMSE, and GV performance of HMM and DNN ap-

proaches using phonemes and dynamic viseme units. 155

7.1 Contextual features for phonetic (PH) and dynamic visemes (DV)

units at varying levels. 161

7.2 Comparison between window method and timestep method. 169

7.3 Analysis of speech units. 170

7.4 The mean (±standard deviation) scores averaged for different trunca-

tion lengths with no context information in BLSTM encoder-decoder

many-to-many. 174

7.5 The mean (±standard deviation) scores averaged for different left

and right context length with a single truncation length in BLSTM

encoder-decoder many-to-many. 175

7.6 Analysis of the length of truncated with 256 length of context vector, c.177

7.7 Analysis of the length of truncated with 1024 length of context vector,

c. 178

7.8 Subjective preference scores (%) of the six combinations from four dif-

ferent systems: REAL, HMM PH, DNN PH DV and LSTM PH DV

Systems. Based on a binomial test (p-value) bold font is used to

indicate whether differences are statistically significant. 189

8.1 The objective scores results of the sample-based approach that pre-

dicting dynamic viseme sequences from the traditional phoneme to

dynamic viseme conversion [98]. 194

8.2 The objective score results of three different statistical parametric

system including HMM, DNN and LSTM System based on phoneme

units. 195

8.3 The objective scores results of LSTM System with and without ground-

truth dynamic visemes labels. 197

List of Tables xx

8.4 Result of preference test on full pipeline synthesis system. 199

A.1 A summary of frame feature extraction. 211

Chapter 1

Introduction

Visual speech synthesis or speech animation is the computer generation of a person

speaking and is widely used in the entertainment industry for animated characters in

games and films. In practice the process of creating a high quality speech animation

is time-consuming and costly to obtain, because this requires expert artists and

expensive equipment. For example, Hollywood films use motion capture technology

with camera arrays capturing an actor’s movement via sensors attached on their

body and face. On the other hands, automated systems have not been widely used

for industry applications. There are many reasons why automated systems with low

cost equipments are still not used in this area. The high expectation of the quality

for industry applications is one of the major reasons. Hence, the improvement of

automated speech animation systems is the main goal of this work.

The progress of visual speech synthesis is less evolved than audio speech synthe-

sis. Audio speech synthesis has been an active area of research in the last 20 years

and has become commonplace in various real life applications, for example, car nav-

igation and smartphones. Several techniques proposed for audio speech synthesis

and for visual speech synthesis are the same or similar. Existing automatic visual

speech synthesis systems can be classified as blendshape [16, 33], sample-based [10,

21, 35, 71, 72, 103, 105] and statistical-based [5, 56, 68, 89, 96, 99, 101, 102, 115, 122].

Blendshape approach is the simplest method for animating visual speech animation

that first defined a different static facial blendshape in each block of speech units,

for example one lip-shape in each viseme onset. Then, a various interpolation tech-

1

Chapter 1. Introduction 2

niques is applied to make a facial movement between two consecutive visemes. One

of the limitations of this approach is the ability to describe the complexity of real

facial movement. Sample-based approach involves the concatenation of pre-recorded

speech data and this is similar to the unit selection method of audio speech syn-

thesis. The major benefit of this approach is the naturalness of the output quality.

While, the major limitations of this approach are the output will look the same as

the actors face in the database and the smoothness problem generally arises between

any two consecutive units. Statistical-based method is used to overcome smooth-

ing problem that learns a model of visual speech parameters instead of storing the

original speech as in sample-based approaches and this is similar to the statistical

method of audio speech synthesis. The benefit of this method is the potential to

generate the smooth output and the ability to generate the flexible output with the

compact model that do not appear in the training data. For this reason, we take

the statistical-based approach in this thesis.

There are mainly two different types of input that can be used to drive visual

speech synthesis; i) speech-driven animation system and ii) text-driven animation

system. The former systems use an audio speech signal as an input and then gen-

erates a corresponding visual speech animation. The latter systems use text or a

sequence of speech units as an input and then predict the visual speech output. In

this thesis, we focus on the text-driven visual speech synthesis and examine suit-

able units of speech from three types of basic units: phonemes, traditional (static)

visemes and dynamic visemes.

This thesis describes a method that can be considered a novel unit, called dy-

namic viseme units [98], and incorporated into statistical-based approach which is

based on text-driven animation system. This thesis assume that natural speech is

available and needed because we would like to focus on visual only speech synthesis

system. Hence, the timing information of real speech in this thesis is derived by au-

tomatic speech recognisers or humans. Overall, we aim to answer the main research

question that ‘can we replace the conventional (audio) speech units (phonemes or

(static) visemes) and find the suitable (visual) unit by incorporating the dynamic

viseme unit into statistical-based approach to improve visual speech synthesiser?’.

1.1. Goal and Objectives 3

1.1 Goal and Objectives

Our goal is to generate a facial animation of a person speaking and to improve the

naturalness of the synthesiser from an input sequence of text over existing method.

The objective of this thesis can be summarised as follows:

• To investigate the suitable basic building block of speech units for the visual

speech synthesis.

• To incorporate dynamic viseme units of speech into hidden Markov model

(HMM)-based visual speech synthesis.

• To combine dynamic viseme and phoneme units of speech into deep neural

network (DNN)-based visual speech synthesis.

• To improve recurrent neural network long short term memory (RNN-LSTM)-

based visual speech synthesis by combining dynamic visemes and phonemes.

• To use frame level information to avoid discontinuities and to produce a smooth

and realistic visual speech output.

• To improve the method of a mapping phoneme sequence to a dynamic viseme

sequence.

• To measure the performance using both objective and subjective tests.

• To use global variance as an objective measure to predict the outcome of

subjective tests measuring realism and naturalness.

1.2 Contributions

This thesis is set to contribute to the visual speech synthesis community by achieving

the objectives that described in Section 1.1. Additionally, the following is a list of

publications arising out of this work by the author and have given contributions to

the research area:

1.3. Thesis Outline 4

1. A. Thangthai and B. Theobald. “HMM-based visual speech synthesis us-

ing dynamic visemes”. In Auditory-Visual Speech Processing, AVSP 2015,

Vienna, Austria, September 11-13, 2015, pages 88–92, 2015 [101].

2. A. Thangthai, B. Milner and S. Taylor. “Visual speech synthesis using

dynamic visemes, contextual features and DNNs”. In Interspeech 2016, 17th

Annual Conference of the International Speech Communication Association,

San Francisco, CA, USA, September 8-12, 2016, pages 2458-2462, 2016 [102].

3. A. Thangthai, B. Milner and S. Taylor. “Synthesising visual speech using

dynamic visemes and deep learning architectures”. Computer Speech & Lan-

guage. (Submitted).

1.3 Thesis Outline

We therefore organise the remainder of the thesis as follows:

Chapter 2, Overview of Visual Speech Synthesis: presents an overview of

audio and visual text to speech (TTS) and then reviews work and techniques related

to visual TTS. We also describe units of speech in a visual context.

Chapter 3, Data Corpora: presents our audiovisual speech dataset, namely

KB-2k, that is used for training and testing the models in this thesis. We also

describe the process of data preparation and data representation.

Chapter 4, Visual Speech Synthesis based on Hidden Markov Mod-

els: presents an overview of the Gaussian mixture model-hidden Markov model

(GMM-HMM). We then introduce hidden semi-Markov model (HSMM) from a syn-

thesis perspective. For the experimental section, we examine the most suitable unit

of speech for visual speech synthesis using HMMs. We also explore the effect of

the video frame rate, dynamic features, number of HMM states and visual feature

normalisation on the synthesised visual output.

Chapter 5, Visual Speech Synthesis based on Feedforward Networks:

presents an overview of feedforward networks and continues with a deep neural net-

work (DNN)-based approach for predicting visual lip motion parameters from a text

1.3. Thesis Outline 5

input. We combine both phoneme and dynamic viseme units and use their as units

of speech. We consider using more low-level (frame-based) contextual information

in the feature vector applied to the DNN which is derived from the speech unit

annotations, with the aim of producing a more realistic and smooth visual feature

trajectory.

Chapter 6, Visual Speech Synthesis based on LSTM-RNN: presents an

overview of recurrent neural networks (RNNs) in terms of structure, architecture,

training methods, and then considers long short term memory (LSTM). We describe

how to develop a visual speech synthesis system using an encoder-decoder architec-

ture with a bidirectional LSTM. In experiments, both objective and subjective tests

are carried out to evaluate the effectiveness of various configurations.

Chapter 7, Phoneme-to-dynamic viseme visual speech synthesis: iden-

tifies the practical problem of obtaining a dynamic viseme sequence from input text.

A traditional phoneme to dynamic viseme conversion is explored first and then a

new conversion method is proposed. We evaluate both objective and preference tests

of the synthesiser.

Chapter 8, Conclusion: presents a summary and comments on the research

questions related to the contributions. We also discuss further work.

Chapter 2

Overview of visual speech

synthesis

2.1 Introduction

An audio speech synthesis system (audio TTS) is the automatic generation of a syn-

thetic voice from a given text, while a visual speech synthesis system (visual TTS) is

the computer generation of a person speaking using animated graphics. Audio TTS

is well evolved and has been around for many years, while visual TTS is less evolved

and draws on techniques in audio TTS. It is obvious that there is a relationship

between audio TTS and visual TTS in many view points. The existing techniques

for synthesising a sound can be broadly categorised into model-based approaches,

unit selection approaches and statistical-based approaches. Visual synthesis also

categorises into blend-shape approaches and the same three approaches as audio

synthesis systems. Additionally, the basic architecture is shared leading to shar-

ing with the same front-end text processing module, as discussed in the following

section.

The approach that is used in commercial applications is one of the major dif-

ferences between audio TTS and visual TTS. With the development in audio TTS,

most commercial applications are based on the unit selection approach (e.g. Real-

6

2.2. Overview of text-to-speech (TTS) synthesis systems 7

Speak [18]), statistical approach (e.g. Acapela1) or hybrid approach (e.g. Google

[45], Siri [12]). Interestingly, the model-based approach (e.g. formant or articula-

tory synthesis) is not in favour as the result is generally lower quality as the models

are not sufficiently accurate. Commercial applications in visual TTS, on the other

hand, are based-on all approaches depending on the particular application. This is

not surprising because model-based approaches in audio TTS cannot produce the

acceptable speech quality, while the model synthesis approach in visual TTS can

produce high quality graphics.

The following sections give an overview of the field as a whole, including input

and output, speech units of a synthesiser, and a review of the various techniques

relating to visual speech synthesis. The discussion begins by exploring the basic

architecture for audio and visual synthesis. The individual components of the syn-

thesiser are then discussed with a focus on visual synthesis.

2.2 Overview of text-to-speech (TTS) synthesis

systems

This section aims to explore the basic work flow diagram for either audio TTS or

visual TTS. The general block diagram consists of text processing as a front-end

module and speech synthesis (audio or visual) as a back-end module, as shown in

Figure 2.1. The front-end text processing module aims to convert a given text into

linguistic features along with durations. This module roughly contains three steps;

the conversion of non standard words to standard words (e.g. 7 to seven, dr. to

doctor), the conversion of written form to sound form (e.g. yes to /y eh s/) and

the prosodic analysis (e.g. phoneme duration prediction, phrase-break prediction).

The back-end speech synthesis module aims to convert these linguistic features (e.g.

a sequence of phonemes with its durations) into acoustic speech features for audio

TTS or visual speech features for visual TTS.

1http://www.acapela-group.com

2.3. Input to the visual speech synthesiser 8

Text		
Analysis	

Speech	
Synthesis	

Text	 Audio/Visual	
Speech	

Linguis8c	
Features	

Figure 2.1: A basic speech synthesis framework for either audio TTS or visual TTS.

2.3 Input to the visual speech synthesiser

Text is typically used as an input property to the audio TTS synthesiser, but text

is not the only possible input property to visual TTS. There are different categories

of input used for generating synthetic visual speech. For example, Theobald and

Matthews [104] classified the input of a synthesiser into unit-driven synthesis and

feature-driven synthesis where units are a phonetic transcription and features are

acoustic speech features. Moreover, Mattheyses and Verhelst [70] described three

possible input types based on text, audio, and the image of a new target speaker.

This section uses input information based on Gerard Bailly and Maxime Berar and

Frederic Elisei and M. Odisio [42] that used two types of input to drive a synthesiser,

specifically text input and audio input. More details are given in the following

sections.

2.3.1 Text input

Text-driven visual TTS systems attempt to synthesise a visual speech signal from

a text input, as can be seen in Figure 2.1. Written text is taken as an input and is

transformed into visual speech in the form of a sequence of parameters as an output.

The given text is not directly used because it is hard to find relationships between

a written form and a sound or visual form. Some languages (e.g. English language)

contains lots of ambiguity, for example, the same word can be pronounced in different

ways depending on its part of speech (e.g. live to /liv/ or /laiv/). Moreover, the

English word is not an appropriate unit because it is difficult to collect or create

rules for all words. To construct a visual speech synthesis system from the input

text, this raw input has to be converted to a sequence of lower level, sub-word, units

2.3. Input to the visual speech synthesiser 9

instead (e.g. phonemes, visemes or syllables units).

It should be noted that several works in visual TTS borrow the text process-

ing module from text to audio speech synthesis (TTS) systems, for example the

MikeTalk facial model [32] used the Festival speech synthesis system [97]. This

system converts the given text input into a sequence of phoneme units and timing

information. Moreover, most visual synthesisers convert a sequence of phonemes to

visemes because visemes (visual phonemes) are more appropriate for visual speech

[37]. There have been many studies that try and identify a set of visemes from a set

of phonemes, for example a many-to-one mapping from phoneme to static lip shape

to produce the facial animation or many-to-many phoneme-to-viseme mapping. Un-

fortunately, there is still no standard set of visemes and visemes are also less well

defined than phonemes. The standard visual speech units will be discussed later in

Section 2.5. However, one phoneme or viseme with a static lip-shape was found to

be insufficient to model natural lip animations. One of the reasons is that anima-

tion requires more contextual information to address visual coarticulation problems,

where the current visual speech unit depends on the neighbour visual speech units.

It should be noted that some languages are less complex than other languages. In

the Japanese language, Tamura et al. [96] used 119 syllables as visual speech synthe-

sis units rather than phonemes or visemes units. They found that the bigger units

(e.g. syllables) were able to reduce discontinuities and produce more natural output

animation.

Due to the increasing size of audiovisual speech databases, recently, the conver-

sion of phonemes/visemes sequence and their timing information can be included in

the linguistic and prosodic information input representations as used in TTS sys-

tems. [36] reported that this richer information would reduce the effect of visual

coarticulation and improve the animation. From the emergence of machine learning

techniques, various methods have been proposed to train a statistical model between

this richer information and their corresponding visual features. Examples of learn-

ing machines are hidden Markov models (HMM) and deep neural networks (DNN).

These are given more details in Section 2.6.

2.4. Output modality of the visual speech synthesiser 10

2.3.2 Audio speech input

Audio speech-driven visual TTS systems attempt to synthesise visual speech from an

acoustic speech input. Overall, these take audio speech as an input and transform it

into a set of visual speech parameters as an output. The general idea of this approach

consists of two steps; speech feature extraction and learning of the mapping. As

for the speech feature extraction step, various types of speech features have been

used. For example, Mel-frequency Cepstrum Coefficients (MFCC) were employed by

Tamura et al. [96], by Deena et al. [23], and by Theobald et al. [106]. It is interesting

to note that the number of speech features in each work is not exactly the same

number, and depends on training data and the task. Moreover, other well-known

speech features include line spectral pairs (LSPs, [57]), line spectral frequencies

(LSFs), [27], linear predictive coding (LPC), [27], and filter-bank coefficients [50].

As for learning of the mapping step, several classification techniques have been

proposed, such as GMMs [14], HMMs [9], switching linear dynamical systems [30],

switching shared Gaussian process dynamical models [23] and DNNs [99].

It should be noted that some researchers proposed a hybrid approach between

speech-driven and text-driven. For example, [100] first converted the given audio

speech signal into a sequence of phonemes using automatic speech recognition soft-

ware (e.g. the Penn Phonetics Lab Forced Aligner [123]). Secondly, a text-driven ap-

proach was used to predict the visual speech signal from the corresponding phoneme

label. An advantage of this framework is that it can generate the animation output

from any language and any speaker, although is reliant on the accuracy of ASR.

2.4 Output modality of the visual speech synthe-

siser

This section presents the workflow of audiovisual speech synthesis systems (AVTTS)

based on a two-phase and single approach.

2.4. Output modality of the visual speech synthesiser 11

2.4.1 Audiovisual synthesis system - based on a two-phase

approach

Most traditional audiovisual TTS is a two-phase synthesis approach. The two-phase

system consists of an audio TTS system and a visual TTS system. In the first step,

a given text input is converted to a phoneme sequence and its duration and used

to synthesise the acoustic speech signal with audio TTS. Afterwards, the phoneme

sequence and its durations are used to predict the accompanying audio and video

sequence with an audio speech TTS and visual speech TTS system, respectively.

The final visual speech animation is produced by the combining the synthesised

audio and visual speech, as shown in Figure 2.2.

Linguis'c	
Features	Text	Analysis	

Visual	Synthesis	

Text	 Audiovisual	
Speech	

Audio	Synthesis	

Figure 2.2: An audiovisual speech synthesis framework of the two-phase approach.

One of the benefits of this framework is that it is easy to identify the errors in each

synthesiser. However, one drawback of using such a system is the processing time

due to the time it takes for each synthesiser to operate. Moreover, the combination

of two synthesised sequences that originate from different synthesisers can cause the

McGurk effect [74], which may degrade intelligibility because of the mismatched

between audio and visual.

In most cases, natural speech is available and needed, for example in the case

of that applications require a high quality and/or expressive audio speech signal,

as shown in Figure 2.3. It can be seen that this framework does not require a

synthesised speech signal. In this case, the phonemes or viseme sequence and their

timing information (labels) that corresponds to the natural speech is also required.

The reason is that phoneme durations of natural speech are needed to generate a

synchronous visual speech signal. Without these durations it may generate audio

2.4. Output modality of the visual speech synthesiser 12

and visual sequences that are out of sync which will introduce sound delay problems.

Afterwards, the phonemes sequence and its durations are used to predict a visual

speech signal and are then combined with natural speech forming lip-sync speech

animation.

Linguis'c	
Features	Text	Analysis	

Visual	Synthesis	

Text	
&	Labels	

Audiovisual	
Speech	

Natural	Speech	

Figure 2.3: An audiovisual speech synthesis framework of the two-phase approach

in the use of natural speech.

2.4.2 Audiovisual synthesis system - based on a single-phase

approach

Recently, research has been concerned with single-phase synthesis to generate the

highest possible coherence between the audio and visual modalities [72, 78]. In this

framework, a given text input is used to simultaneously synthesise acoustic speech

and visual speech with an audiovisual TTS system, as shown in Figure 2.4.

Text	Analysis	
Audiovisual	
Synthesis	

Text	 Audiovisual	
Speech	

Linguis7c	
Features	

Figure 2.4: An audiovisual speech synthesis framework of single-phase approach.

It is believed that a joint model is able to improve the perceived quality of the

synthesised audiovisual speech. Schabus et al. [89] also compared the results between

the use of separate HMM-based audio TTS and HMM-based visual TTS. They

concluded that the single-phase synthesiser is better than the two-phase synthesiser.

However, the major drawback of combining the two systems is the difficulty in

maximising the quality of the synthesiser. The reason for this is that the single-phase

synthesis aims to generate coherence between two modalities rather than maximising

2.5. Speech units for visual speech synthesis 13

the quality of individual modalities. Therefore, Mattheyses and Verhelst [70] pointed

out that future research should focus on how to combine the high quality outputs

of acoustic-only and visual-only synthesis.

2.5 Speech units for visual speech synthesis

In audio TTS, phonemes, or their derivatives (e.g. diphone and triphone), are used

as the speech unit. However, for visual TTS, various speech units have been applied

including phonemes, visemes and dynamic visemes units [98]. The following sections

overview these three units.

2.5.1 Phoneme units

The smallest unit of speech in a language is a phoneme which is used to distinguish

one sound from another. A sequence of phonemes forms words such as a sequence

of /s iy/ refers to “see” in the English language (using the CMU phonetic dictio-

nary). Moreover, the words “see” and “fee” are made different by changing the first

phoneme from /s/ to /f/. The particular number of phonemes varies depending on

the language and lexicon. For example, the CMU lexicon [82]comprises 39 phones

while the Unisyn lexicon [38] comprises 56 phonemes. In this thesis, we use the

Carnegie Mellon University pronunciation dictionary in the form of the ARPAbet

phoneme set. The IPA and ASCII symbol for the consonants, vowels and diph-

thongs used in the ARPAbet phoneme set consists of 41 phonemes including silence,

as shown in Table 2.1.

Clearly, the same phoneme in any word represents the same phonetic meaning

and produces a similar sound. Hence, phonemes are used as the standard unit

for various audio speech and visual speech applications such as automatic speech

recognition and speech synthesis system.

2.5. Speech units for visual speech synthesis 14

Table 2.1: IPA symbols for the consonants, vowels, and diphthongs used in ARPA-

bet, including the equivalent ASCII symbol and sample pronunciations from the

CMU pronunciation dictionary.

IPA ASCII Example Translation IPA ASCII Example Translation

a aa odd aa d k k key k iy

ae ae at ae t l l lee l iy

2 ah hut hh ah t m m me m iy

O ao ought ao t n n knee n iy

aU aw cow k aw N ng ping p ih ng

@ ax discuss d ih s k ax s oU ow oat ow t

aI ay hide hh ay d OI oy toy t oy

b b be b iy p p pee p iy

tS ch cheese ch iy z r r read r iy d

d d dee d iy s s sea s iy

D dh thee dh iy S sh she sh iy

E@ eh Ed eh d t t tea t iy

@r er hurt hh er t 8 th theta th ey t ah

e ey ate ey t U uh hood hh uh d

f f fee f iy Ú uw two t uw

g g green g r iy n v v vee v iy

h hh he hh iy w w we w iy

I ih it ih t j y yield y iy l d

i iy eat iy t z z zee z iy

Ã jh gee jh iy Z zh seizure s iy zh er

2.5.2 Static viseme units

The smallest unit of visual speech in a language is a viseme which is used to group

similar visual appearances, and was first introduced by [37]. From a visual point of

view, when a person speaks, the lips, teeth and tongue are the only visible articu-

lators, while the other places of articulation such as soft and hard palates cannot

2.5. Speech units for visual speech synthesis 15

be seen. That means some phonemes can be grouped together as they are visually

similar. For examples, the phones /p/, /b/ and /m/ are visually similar as they

have the same place of articulation but differ in the manner of articulation. Hence,

they are grouped as the same viseme.

Early approaches to visual speech animation grouped all phonemes into 10

visemes or static mouth shapes, as shown in Figure 2.5 and Table 2.2. For ex-

ample, the first static lip shape, A, is the group of phonemes that refers to an open

wide mouth with tongue and teeth visible. The process of creating speech animation

begins with mapping any sequence of phonemes to the ten visemes, such as /s iy/

to /J A/. In this process each viseme is represented by one mouth shape called a

keyframe. Finally, a sequence of mouth movements are keyframed to synchronise

with the audio speech.

Table 2.2: Many-to-one phoneme-to-viseme mapping based on the ASCII symbol

in Table 2.1.

Viseme Phoneme

A a, ae, ah, ao, aw, ay, iy

B ax

C eh, er, ey

D f, v

E l

F m, b, p

G ow, oy

H uh, uw

I w

J ch,d, dh, g, hh, jh, k, ng, r, s, sh, t, th, y, z, zh

2.5. Speech units for visual speech synthesis 16

Figure 2.5: Examples of a lip shape in each viseme [113].

It can be seen that the mapping function from phonemes to visemes is many-to-

one. Even now there is still no standard viseme set unlike the well defined phoneme

set. Instead, several studies have created their own set of visemes [9, 26, 112],

as shown in Table 2.3. These examples are specifically the consonant phoneme-to-

viseme mapping and vowel phoneme-to-viseme mapping. For example, 27 consonant

phonemes are mapped to 9 viseme groups and 17 vowel phonemes are mapped to 5

viseme groups using a decision tree in [3].

Table 2.3: Examples of a many-to-one phonemes to visemes mapping.

Classification Viseme phoneme sets

Fisher [37]
{p,b,m}{f,v}{t,d,s,z,th,dh}{w,r}{ch,sh,jh,zh} {k,g,n,l.hh,ng,y}{sil,sp}

{eh,ey,ae,aw,er,ea}{ah,ax,ay}{aa}{er,oh}{ao,ow,oy,ua}{uh,uw}{iy,ih,ia}

Dongmei [26]
{p,b,m}{f,v}{th,dh,t,d,s,z}{w,r}{ch,sh,jh,zh}{k,g,n,l,ng,h,y}{jj}

{i,ii}{e,a}{aa,o}{uh,@}{oo},{u,uu}{w-au}{o-ou}

MPEG-4 [3]
{p,b,m}{f,v}{th,dh,t,d,s,z}{k,g}{ch,sh,jh,zh}{s,z}{n,l}{r}

{ae,aw,ah,ax,ay,aa,axr}{eh,ey,er}{iy,ih}{ao,ow,oy}{uh,uw}

Bregler [10] {p,b,m}{f,v}{th,dh}{t,d,s,z}{k,g,n,l}{ch,sh,jh,zh}{w,r}{hh}{y}{ng}

Bozkurt [9]
{p,b,m}{f,v}{th,dh}{t,d,l,n,en,el}{s,z}{ch,sh,jh,zh}{g,hh,k,ng}

{ay,ah}{ey,eh,ae}{er}{ix,iy,ih,ax,axr,y}{uw,uh,w}{ao,aa,oy,ow}{aw}

2.5. Speech units for visual speech synthesis 17

Many factors contribute to the ambiguity of phoneme to viseme mapping; for in-

stance, the variation of speakers, the language complexity, and the grouping criteria

[103]. With coarticulation, the speech articulatory movements of the current speech

sound depends on the neighboring phonemes. Hence, the use of viseme independent

are replaced by context viseme dependent. Martino et al. [67] presented the use of

phonetic context of each phoneme when grouping visemes, for example the phonetic

contexts of /pu/, /upI/ and /upU/ are grouped into P2 and those of /ilU/ and /ulU/

are grouped into L4. Another interestingly from [70], they have an assumption that

one sound can be represented by numerous lip shapes and tongue movements. For

this reason, the previous ideas that aimed to group the same sound or its sound

with phone contexts into the same group of visemes cannot be trusted. Hence, [70]

proposed the use of many-to-many phoneme-to-viseme mapping instead of the map-

ping of many-to-one. Their experiment results also confirmed that many-to-many

phoneme-to-viseme is shown as effective solutions compared with many-to-one map-

ping.

2.5.3 Dynamic viseme

Taylor et al [98] reported that the set of static mouth shapes from traditional

visemes (e.g. many-to-one or many-to-many phoneme-to-viseme mapping) does not

suit visual speech processing for two reasons. Firstly, the acoustic boundaries (e.g.

phonemes or visemes) do not align with the visual boundaries. The reason is that

the visible articulators tend to move before or after the inner articulators. For ex-

ample, Figure 2.6 shows that for the sound /r/ the lips move before the sound is

made. Hence, it is wrong to represent acoustic and visual speech with the same

boundaries as phonemes and visemes.

2.5. Speech units for visual speech synthesis 18

/sil/	 /r/	 /ih/	 /z/	 /ih/	 /s/	

Visual	boundary	for	/r/	

Audio	boundary	for	/r/	

Figure 2.6: The difference between the beginning of audio boundary and visual

boundary for sound “/r/”.

Figure 2.7: Different mouth shapes at the onset of phoneme /t/ in different word

[98].

Secondly, they found that the representation of a single mouth shape for a viseme

is not true in the real speech. They also pointed out that the same phoneme can

be produced from many different lip-shapes. For example, Figure 2.7 presents dif-

ferent lip-shapes at the onset of phoneme /t/ in different words. This is because

phonemes are learnt from the audio signal and the same abstract phoneme unit

2.6. Approaches to visual speech synthesis 19

cannot distinguish one word from another but not necessary the same mouth shape.

To overcome these two limitations of traditional viseme and phoneme units,

Taylor et al. [98] defined groups of similar lip movements (gestures), called dynamic

viseme units, instead of groups of static lip shapes. These units can be considered

as a basic unit for visual speech because a set of dynamic visemes is learned au-

tomatically by clustering visual speech parameters from a database. Additionally,

the identification and clustering of the similar lip-motions are given in Section 4.4.

Clearly, the boundaries of dynamic visemes are different to phoneme and viseme

boundaries and the same abstract dynamic viseme has the same lip movements, as

shown in Figure 2.8.

Figure 2.8: The difference between phoneme and dynamic viseme units [98].

2.6 Approaches to visual speech synthesis

This section gives a review of the main techniques used for visual speech synthe-

sis. These methods can be categorised into performance-based, blendshape-based,

model-based, unit selection-based and statistical-based.

2.6.1 Performance-based approach

The performance-based approach is the commonly used in real applications, from

mid-budget to large-budget productions. For the large budget productions, motion

capture or motion tracking is used, with camera arrays recording an actor’s move-

ments via sensors that are attached on the face and/or body of the actor. These

movements are then used to retarget visual animations by professional animators.

It can be seen that this technique can generate high quality animations but it re-

2.6. Approaches to visual speech synthesis 20

quires expensive hardware. Additionally, this is a time-consuming process, as the

actor has to perform and the retargeted hand-crafted animation process needs artists

controlling and generating an animation in every key-frame.

For mid budget productions, however, they use depth cameras (e.g. Microsoft

Kinect) recording the facial movements signal instead of using motion capture.

Then, the hand crafted animation is used to generate 2D or 3D facial speech an-

imations from its signal. It clearly shows that this technique is able to produce

animations without expensive equipment. Moreover, this approach is possible to do

automatically using various techniques that will be discussed in the following sec-

tions, without any editing from experts to control and refine animations. However,

one of the major limitations of the performance-based approach is that we need the

actor back for any new animation.

2.6.2 Blendshape approaches

A blendshape approach is the most common and simplest method for animating

3D visual speech animation. This approach is inspired from the traditional hand-

drawn cartoon animations, which first draw a few important frames (keyframe) by

the primary (senior) artist. Then, the secondary (junior) artist would draw the

remaining in-between frames. In the computer animation process, after creating a

2D or 3D character model, most systems first define a different facial blendshape

in each viseme (e.g. opening mouth, round mouth) or each facial expression (e.g.

neutral, angry), for instance the 10 static blendshapes in Figure 2.5. Note that,

a blendshape can be referred to as a keyframe in animation. Then, the process

of creating speech animation begins with mapping a sequence of visemes to its

corresponding blendshape. To make a facial movement appear realistic, the in-

between blendshapes are automatically determined by a variety of interpolation

technique such as a linear and non-linear combinations. Figure 2.9. [91] illustrates

a simple linear combination between two blendshapes.

2.6. Approaches to visual speech synthesis 21

Blendshape	A	 Blendshape	AB	 Blendshape	B	

Figure 2.9: An example of interpolation technique using a simple linear combination

[91].

In the early stages, it was found that the 10 static blendshapes in Figure 2.5 could

not reliably describe the complexity of real facial movements. Several approaches

have been proposed to increase the number of blendshapes. The most popular and

widely used in both research and industry (e.g. game and movies [85]) is the facial

action coding system (FACS). The FACS was first published in 1978 by Paul Ekman

and Wallace Friesen [28] and was updated in 2002 [29]. It consists of 64 action units

(AUs) to describe facial motion for example action unit 6 and 12 for cheek raiser

and lip corner puller, respectively. The combination of these action units can form

the emotion facial action coding system (EMFACS), for instance happiness is the

combination of action unit 6 and 12. More interactive examples can be found in a

visual guidebook website2.

2.6.3 Model-based

In audio TTS, model-based approaches are referred to as formant-based auditory

speech synthesisers, which are based on a parametric representation of speech, in-

cluding both parallel and cascade resonators. In the past when the computers

were underpowered, most commercial products were based on this technique. The

DECTalk system is one example [52]. In terms of facial animation, the general

ideas of model-based approaches consists of three tasks; (i) using predefined rules

to determine appropriate sets of 2D or 3D facial parameters in each keyframe, (ii)

generating in-between parameters using blendshape approach and reconstructing

2https://imotions.com/blog/facial-action-coding-system

2.6. Approaches to visual speech synthesis 22

images (iii) combining a sequence of images with synthetic audio generated by a

separate audio text-to-speech system, e.g. MITalk, Festival, and Euler/MBROLA3.

The first parameterised facial model was proposed by Parke [80], and also created

the first 3D geometric model of the human face. Parke’s facial model is hand-crafted

by constructing the geometry of polygonal surfaces and is controlled by parameters

that link to the important facial surfaces. For example, there are a set of parameters

describing the size of the eyeball and the rotation of the jaw, which determines the

mouth opening, the length of the nose and the scaling of the face. In terms of pro-

ducing images, they applied a set of rules to deform these parameters. The major

drawback of complex rules is the final facial animation is far from the movement

of a real person. There are many descendants of Parke’s facial model that try to

improve the realism of the transitions between keyframes, such as Baldi by Cohen

and Massaro [16], MASSY by Fagel and Clemens [35], and Kattis by Beskow [8], as

shown in Figure 2.10.

Fig. 3. MASSY’s face with neutral articulator positions (no displacements)(a), with
lower jaw at maximum opening (b), and combined displacer setting (c). The six
displacers correspond to the motion parameters as described in section 2.1.

the articulation organs from it. The electromagnetic articulography (EMA) in
contrast allows the collection of exact data without such disadvantages. The
present measurements are made with the Carstens AG 100 electromagnetic

6

2.6. Approaches to Visual Speech Synthesis 21

cluding both parallel and cascade resonators. In the past when the computers

were underpowered, most commercial products were based on this technique. The

DECTalk system is one example [Hallahan, 1995]. In terms of facial animation, the

general ideas of model-based approaches consists of three tasks; (i) using predefined

rules to determine appropriate parameter sets of 2D or 3D facial model in each

keyframe, (ii) generating in-between parameters using blendshape approach and

producing images based on those parameter values, and (iii) combining a sequence

of images with synthetic audio generated by a separate audio text-to-speech system,

e.g. MITalk, Festival, and Euler/Mbrola. The first parameterised facial model was

proposed by Parke [71], and also created the first 3D geometric model of the human

face. Parkes facial model is hand-crafted by constructing the geometry of polygonal

surfaces and is controlled by parameters that link to the important facial surfaces.

For example, there are a set of parameters describing the size of the eyeball and the

rotation of the jaw, which determines the mouth opening, the length of the nose

and the scaling of the face. In terms of producing images, it applied a set of rules

to deform these parameters. The major drawback of complex rules is the final facial

animation is far from the movement of a real person. There are many descendants

of Parkes facial model that try to improve the realistic of the transitions between

keyframe, such as Baldi by Cohen and Massaro [15], MASSY by Fagel and Clemens

[30], and RULSYS by Beskow [7], as shown in Figure 2.11.

Figure 2.11: An example of descendant of Parkes facial model (images from [81]).

September 9, 2017

2 Audiovisual Speech Synthesis Background

Figure 2.12: Talking head models based directly on the model from Parke
(1974). From left to right: “Baldi” from UCSC and “August” and “Kattis”
from KTH (images from Cohen et al., 1998 and Beskow, 2003).

Cohen and Massaro (1993) to include a simple tongue representation and to
use dominance functions for addressing the problem of coarticulation, i.e.,
visible influences of neighboring phones on each other. A realistic palate,
teeth and an improved tongue model based on 3D ultrasound data were sub-
sequently added to this model (Cohen et al., 1998). Figure 2.12 (left) shows a
frame from this system’s output.10 In order to directly map acoustic features
derived from speech recordings to facial control parameters, Massaro et al.
(1999) trained an artificial neural network on a corpus of parallel acoustic
and visual parameter data. This data consisted of audio recordings of 400
isolated words for the acoustic part, and parameter sequences generated by
their rule-based system, given the phoneme sequence and temporal borders
of the audio recordings, for the visual part. Note that in this setup, no visual
recordings were used. A later study, however, used visual recorded data of
two di�erent kinds. Cohen et al. (2002) used on the one hand an optical
3D motion tracking system (Optotrack) for recording speech dynamics and
on the other hand a 3D laser scanner for creating an accurate (static) head
model. The Optotrack system recorded the motion of 19 active infrared
markers a�xed to the speaker’s face at 30 fps (left part of Figure 2.13, note
the cables required for active IR markers). The laser scanner provided a 3D
model of the speaker’s face, which was then used to reshape their generic
3D head model to resemble the speaker, using manually specified correspon-
dence points between the two head models (middle part of Figure 2.13).
Together with a photograph-based texture map, this results in a 3D head
more closely resembling the target speaker than the generic head model
(right part of Figure 2.13). Starting from the control parameter sequence
generated from the rule-based talking head, the parameter sequence was

10Example videos for UCSC’s “Baldi” at http://mambo.ucsc.edu/psl/international.
html.

38

Figure 2.10: Descendants of Parke’s facial model. From left to right: Baldi [16],

MASSY [35] and Kattis [8]

Baldi is an adapted form of Lofqvist’s articulatory gesture model [66]. The

coarticulation model represents coarticulation by overlapping of raising and falling

negative exponential functions, called dominance functions. Baldi has been imple-

3http://tcts.fpms.ac.be/synthesis/mbrola.html

2.6. Approaches to visual speech synthesis 23

mented in 20 languages4, such as Arabic, called as Badr [77]. RULSYS is a system

for rule-based audiovisual speech synthesis and its 3D talking head can be animated

based on Parke’s model and synchronised with a formant-based auditory speech

synthesiser. This synthesiser controls both audio and visual modalities using rules

which transform the given input text into 40 parameters of auditory speech and

50 visual parameters. These parameters are then used to improve the in-between

keyframe. The modular audiovisual speech synthesiser (MASSY) is a 3D parametric

audiovisual speech synthesiser. MASSY was originally implemented for German [35]

and has been extended to new languages, such as English [34] and Estonian [75].

Unlike Baldi’s work, the facial control parameters are extracted from articulatory

motion data of a human speaker by using a Carstens AG 100 electromagnetic ar-

ticulograph (EMA). From the EMA data, six articulation parameters are used in

the model, including the width of the lips, the height of the lower jaw, the height of

the lip opening independent from the height of the lower jaw, the retraction of the

lower lip, the height of the tongue tip, and the height of the tongue back. The real

target values of each facial control parameter were determined from EMA and video

recordings. After which, the dominance model (adapted from Cohen and Massaro

[16]) of six facial control parameters was generated by combining with the real target

values for each viseme.

2.6.4 Sample-based approach

Sample-based synthesis involves the concatenation of pre-recorded speech data that

corresponds to speech units. This approach generates animation for an unseen input

by selecting appropriate speech units from an existing database. In audio TTS, the

general speech data is the speech waveform, while either image or a visual feature

representation is the general speech data for visual TTS. From existing work, size

and type of speech units can be vary from small to large, for instance phonemes,

di-phone or other units (e.g. word, phrase). The major benefit of this approach is

the naturalness of the output quality. While, the limitations are that this system

4http://mambo.ucsc.edu/psl/international.html

2.6. Approaches to visual speech synthesis 24

requires a large database of visual speech and the facial output animation will look

the same as the actor’s face in the training database.

Bregler el al. [10], Video Rewrite, used context dependent triphone as a basic

speech unit. The mouth region and background region in each image are extracted

from an audiovisual database (depicted in the top row of Figure 2.11). EigenPoints

were used to specify the contour of the mouth and jaw in each image. These lip and

jaw contours are used to find the distance in adjacent frames regarding to the lip

width, lip height, inner lip height and teeth height, referred to join cost function.

Phoneme and viseme context distances are used to compute the target cost function

between the candidate and target triphone. In the synthesis stage, a given audio

speech input is transcribed to a sequence of phonemes using HMMs. After converting

phonemes to triphones, the appropriate mouth and jaw images are retrieved from

the video modelling database using a combination of target and join cost distance.

Finally, the final output video is synthesised by stitching the lips and jaw onto the

background image sequences. Their resulting synthesised output frames are shown

in the bottom row of Figure 2.11.

This “Video Rewrite” system was developed further by the AT&T Lab Research

[21]. They segmented each face image into several facial regions in Figure 2.12 in-

cluding forehead, eyes, mouth, upper-teeth, and chin with the lower-teeth if visible.

Each part learned the target cost between phoneme context dependent and its cor-

responding face region separately. The final facial animation is generated by simple

image overlay.

2.6. Approaches to visual speech synthesis 252 Audiovisual Speech Synthesis Background

Figure 2.3: Separation into mouth region and background in “Video
Rewrite”, where the border of the region warps according to the automati-
cally detected mouth and chin motions (image from Bregler et al., 1997).

Figure 2.4: Segmentation of the face into several parts for a concatenative
image-based system (image from Cosatto, 2002).

more complex segmentation of the face was applied by Cosatto and Graf
(2000) and Cosatto (2002), as shown in Figure 2.4. Their system was also
developed further by Cosatto et al. (2000) and F. J. Huang et al. (2002) to
apply the unit selection technique (cf. Section 2.1.1).

Instead of relying on the recorded data to contain every required frame, the
system of Ezzat et al. (2002) also creates new frames using image morphing.
Their system analyzes the available video data to automatically determine a
set of key frames and morphing parameters, using the principal component
analysis (Pearson, 1901; Shlens, 2014) and optical flow (Horn and Schunck,
1981) techniques. Figure 2.5 illustrates their system.4

~bregler/videorewrite/.
4Example videos for “Mary 101” are available at http://people.csail.mit.edu/

32

2.6. Approaches to Visual Speech Synthesis 24

Figure 2.12: An example of the facial animation of the stitching of the synthesised lip

images from the tri-phone context into new speaker (di↵erent background sequences)

[9].

Figure 2.13: The segmentation in di↵erent facial regions for a concatenative visual

speech synthesis [18].

Theobald [91] used shape and appearance models to generate a photo-realistic

facial animation from text. Each image is described by a set of landmark points,

called shape parameters, and a set of appearance parameters. For training, a simple

lookup table was created. For testing, a given text was converted to a phoneme

September 7, 2017

Figure 2.11: An example of the mouth and jaw facial regions for a concatenative

visual speech synthesis (top row) and examples of synthesised output frames (bottom

row) [10].

Figure 2.12: The segmentation in different facial regions for a concatenative visual

speech synthesis [21].

Instead of using the geometric lip and jaw position as visual features, Theobald

[103] used shape and appearance models to generate a photo-realistic facial anima-

tion from text. Each image is described by a set of landmark points, called shape

2.6. Approaches to visual speech synthesis 26

parameters, and a set of appearance parameters. For training, a simple lookup table

between phonemes and shape and appearance parameters was created. For testing,

a given text was converted to a phoneme sequence and its durations, and for each

phoneme, the lookup module returns shape and appearance parameters of the clos-

est phoneme and durations in the table. Note that the final facial animation was

created by applying a smoothing spline to the set of parameters in each frame, to

ensure that the output is smooth. An additional benefit of using visual features in-

stead of raw image is the ability to modify the output, for example Theobald extend

their 2D-based visual TTS to 2.5D-based visual TTS [105].

Another important question for visual speech synthesis is how to avoid the lack

of audio and visual synchrony. Instead of modelling audio and visual features sepa-

rately, some methods consider the coherence between the audio and visual streams

by joining these two features into single modality (described in Section 2.4.2) and

the audio and visual segments jointly selected from the same corpus. A first prelim-

inary work on joint audiovisual synthesis was proposed by Fagel [35]. He selected

and concatenated various speech units (chunks) from an audiovisual database in

German, beginning with a sequence of phonemes that is then split into all possible

length speech units that vary from diphones to the whole utterance. During selec-

tion, the maximum length of a chunk was limited to 12 phones. After that, the

system searched every chunk from the database and sorted the chunk sequences by

joint cost functions. Two costs are considered between two chunks; the audio join

cost and visual join cost. The audio join cost is calculated as the percentage differ-

ence between the F0 value of the final frame of first chunk and the F0 value of the

first frame of the next chunk. The visual join cost is calculated as the percentage

difference between the RGB values of the final frame of first chunk and the first

frame of next chunk.

Mattheyses et al. [71] also confirmed that mismatches between audio and visual

speech can be avoided when selecting the same segment for both modalities from

the same units in the database. Their synthesiser is extended from unit-selection

audio TTS system and uses a cost function to select the segment sequences from the

LIPS2008 audiovisual speech database [106]. The cost function consists of a target

2.6. Approaches to visual speech synthesis 27

cost function and join cost function. In the target cost function, longer units are

found based on their symbolic features. Examples of symbolic features are phonetic

context, part of speech, lexical stress, and the position in the phrase [62]. The join

cost functions indicate how smoothly two segments can be concatenated. Audio

and video join costs are used to calculate the cost between two segments. The

audio join cost calculates the percentage difference in log F0, energy, and spectrum

values between the two sides of join. The visual join cost calculates the percentage

difference in shape and appearance parameters of an AAM model, and histogram

information between two sides of join. In terms of synchronisation, they aim to find

the video join position as close as possible to the audio join position. The results

show that there is no significant difference between a separate model and a joint

model. In [71], the join cost function was improved by optimal coupling; that either

determines the cut-points based on the audio approach or determines the cut-points

based on the video approach. Subjective tests show that 12 viewers prefer the audio

approach rather than the video approach.

In 2011, Mattheyses et al., [72] improved the target cost function by increasing

the number of candidate units. They used visemes as a basic unit of synthesis instead

of phonemes. In a many-to-one phoneme-to-viseme mapping, the video data were

represented using an active appearance model (AAM). Then, AAM vectors at the

middle frame of each phoneme were gathered and the the mean visual representation

of each phone calculated. The mean vectors were clustered using hierarchical clus-

tering to determine which phonemes are visually similar to others. Unfortunately,

the highest performance was achieved by the phoneme-based synthesiser in both

objective tests and subjective tests. There are two major reasons. First, a many-to-

one phoneme-to-viseme mapping does not sufficiently describe coarticulation effects.

They suggested that a many-to-many phoneme-to-viseme mapping should be used.

Secondly, the LIP2008 database does not contain enough data to cover all possible

phonetic contexts.

Instead of using phoneme or viseme context distance in target cost function,

Wang and Soong [114] compute the target cost by measuring the Euclidean distance

between trajectory-guided and candidate PCA vectors. They proposed a hybrid ap-

2.6. Approaches to visual speech synthesis 28

proach between HMM synthesis and unit-selection synthesis which aims to combine

the best properties of HMMs and sample-based approach. Generally, this approach

used a statistical HMM-based visual speech synthesis predicting visual PCA param-

eters and then these features are used as trajectory-guided for the sample-based

approach in the next step. Then, these trajectory-guided PCA vectors were used

to find the best lip sequence from lips candidate from the prepared database in

sample-based approach, as shown in Figure 2.13. From their experiments, it clearly

see that these two step approaches can be generate the high quality output with the

improvement of the output at the boundaries.

Figure 2.13: A hybrid approach between HMM-based and unit selection approach

where the HMM-based is used to guide the search in unit selection database ap-

proach. [114].

The size of the corpus has been found to directly affect the naturalness and

the choice of speech units. Mattheyses et al. [73] investigated further the effect

of phoneme and viseme units on a larger audiovisual database of Dutch speech

(approximately 140 minutes). Their viseme units are based on a many-to-many

phoneme-to-viseme mapping. An AAM was trained to represent the mouth-region of

2.6. Approaches to visual speech synthesis 29

the video frames in terms of shape and appearance parameters. Then, each phoneme

was represented by three vectors of combined AAM parameters at 25%, 50%, and

75% of the duration of the phoneme. Multi-dimensional regression trees were used

to build a binary decision-tree based on context clustering. Each node, except leaf

nodes, had a context related question, such as R-Voiced? (Is the next phone voiced

or not?) and C-visible teeth? (Are teeth visible in the current phone?), for which

each node contains a yes or no answer. This leads to the tree-based clustering which

must be able to model the audio/visual coarticulation effects with the same phoneme

being mapped to different visemes based on its context. The results indicate that

the viseme-based approach outperforms the phoneme-based approach when using a

large database. Secondly, the many-to-many viseme mapping outperforms a many-

to-one viseme mapping in terms of a subjective test using a 5-point comparative

MOS scale.

In a recent approach, [98] argue that the phoneme and static viseme units are

not suited as units for visual TTS because boundaries of the audio and visual speech

should not be placed at the same time. This implies that it does not matter how

visemes are defined from neccesary be phonemes (e.g. many-to-many, many-to-one)

as they are still not good enough. Hence, new speech units that describe similar

lip motions are introduced in [98]. This leads to a new set of boundaries meaning

that dynamic viseme boundaries not the same as phoneme/viseme boundaries. Ad-

ditionally, all visual gestures in each dynamic viseme class represent for the same lip

motions. Hence, the median visual gesture is used to animating the speech anima-

tion in the case of dynamic visemes are available. One of the drawbacks of this unit

is the mapping process of phoneme to dynamic viseme in the case of real setting.

They found that a little relationship between phoneme and dynamic viseme leads

to incorrect lip motions in a sentence.

2.6.5 Statistical-based

The statistical-based approach is generally called a statistical parametric model be-

cause the model does not store the original speech as in sample-based approaches

but it learns a model of speech parameters instead. These speech parameters are de-

2.6. Approaches to visual speech synthesis 30

scribed by statistical (means and variances of probability density function (PDF)),

which capture the distribution of some sets of similar speech units during the training

phase. This means this approach can generate an unseen output. The major advan-

tages of this approach is the potential to modify the output speech (e.g. emotions)

and the ability to generate the output with the compact model. There are various

frameworks in the literature, for instance GMMs, a Gaussian Process Dynamical

model (GPDM) for each variable length Markov model (VLMM). Two common ap-

proaches are to use hidden Markov models (HMMs) and deep neural network (DNN)

approaches.

2.6.5.1 HMM-based

In the last 20 or so years, statistical parametric speech synthesis based on HMMs

has become the state of the art for automatic speech recognition (ASR). HMMs

have subsequently gained popularity for speech synthesis after the introduction of

temporal derivatives as constraints with the maximum likelihood solution in 1995

[110, 111], which produces a more smooth and realistic output.

In 1990 before the emergence of HMM synthesis, Cox and Simons [1990] proposed

an early HMM based visual speech synthesiser for producing a talking head over

telephone lines (videophone). With the limitation of the telephone bandwidth, this

system was designed to transmit a sequence of action units (AUs) of the Facial

Action Coding System (FACS). Hence, in training, each image frame is labelled

with the AU as visual features and the corresponding audio is represented with

quantised Mel frequency cepstral coefficients (MFCCs). Note that, 16 AUs were

used to describe the variation of mouth movements in the database. Afterwards, an

ergodic HMM topology was used to learn the mapping between mouth shapes from

AUs and audio speech from MFCCs, meaning that each HMM state represents one of

the 16 AU codes. For simplicity, Figure 2.14 shows an example of an 8-state ergodic

HMM topology. In synthesis, given an audio input, a sequence of image codes are

generated using the Viterbi algorithm. Then, mouth shape sequences are produced

using a simple lookup table. Two problems with this approach are a discontinuous

speech output (c.f. the smoothing problem) and the possibility of the wrong state

2.6. Approaches to visual speech synthesis 31

being selected.

Figure 2.14: An 8-state ergodic HMM topology to represent mouthshapes [21].

To overcome the smoothing problem, the framework for the HMM-based visual-

only speech synthesiser was adapted from the framework for a HMM-based audio

text-to-speech synthesis system, which replaces audio feature vectors with visual

feature vectors [68]. In the training phase, audio and visual features are extracted

from an audiovisual speech corpus consisting of 216 phonetically balanced Japanese

words. MFCCs and their dynamic features are used as speech features and inner lip

position parameters (shown in Figure 2.15(a)) and their dynamic features are used

as visual features. Next, 3-state HMMs with a left-to-right, no-skip topology with a

single diagonal Gaussian output distribution are used to build syllable models. Note

that Japanese syllables are categorised into 42 visual categories. In the synthesis

phase, the text processing of the text-to-speech synthesis system is used to convert

the given text into a phonetic transcription. Then a sentence HMM is constructed

by concatenating the syllable HMMs corresponding to the sequence of phonemes.

Finally, a sequence of visual speech parameters is generated from the sentence HMM

and converted into lip animations. Results show that the trajectories of the syn-

thetic visual speech generated with dynamic features are smoother and closer to

real parameters in terms of both objective and subjective tests than visual speech

generated without using dynamic features.

A speech-driven approach was proposed by Tamura et al. [96] and used ASR to

2.6. Approaches to visual speech synthesis 32

extract a sequence of syllables from a given audio signal. These syllable sequence are

then used as an input for the Masuko’s system (described above). See Figure 2.15(b)

for an example of final lip animation in both text-drive and speech-driven synthesis.

Based on their example videos, we can observe that the mouth movement is not in

synchrony with audio. This unacceptable result may originate from many factors,

such as the syllable units not being suitable for visual TTS, the over smoothing

problem because of the HMM training criterion, or the the database is not large

enough.

(a)	 (b)	

Figure 2.15: (a) Inner lip position parameters and (b) an example lip motion of a

single frame extracted from [96].

Another similar HMM system based on maximum likelihood (ML) criterion using

different geometric features was proposed by Hofer et al. [56]. With the geometric

features, they used two lip distances including the distance between the left and right

corner of the mouth and the distance between upper and lower lip to control shape of

the lips. Note that, these four landmarks were recorded from tracked markers during

captured database. Their system also consists of two steps approach as Tamura et al.

[96]; recognition and synthesis step. In the recognition step, a sequence of viseme

were produced and used as the basic speech units. For the synthesis step, a sequence

of viseme context dependent from the previous step was used to predict two smooth

trajectories. Finally, these two trajectories were used to drive the spread and open

of the lip shape. Their findings also found that viseme sets can make the difference

2.6. Approaches to visual speech synthesis 33

in terms of performance, hence the selected viseme sets is essential. Additionally,

they also confirmed that viseme units gave the highest objective scores comparing

with phoneme units. Conversely, [101] found that objective scores and inspection

AAM trajectories on HMM-based system using phoneme units and viseme units

were nearly the same in the case of text-driven synthesis. This work also examined

suitable speech units (e.g. phonemes, visemes and dynamic visemes units) for visual

TTS and found that dynamic visemes units (groups of similar speech movements)

was the best speech unit for visual TTS. More details are given in Chapter 5.

HMM synthesis is able to solve the smoothing problem by introducing dynamic

features (described above), but the maximum likelihood (ML) criterion in training

tend to generate over-smoothed mouth movements. Wang et al. [115] proposed the

use of a minimum generated trajectory error (MGE) method after initialising the

model with ML. The aim of MGE is to refine the means of the visual HMM using

the probabilistic descent (PD) algorithm. An objective evaluation shows that MGE

is able to improve visual speech trajectories which led to better mean opinion scores

in subjective test compared with ML-based.

Wang et al. [116] extended their system from 2D to 3D photo-realistic facial

animation. In fact, this is called 2.5D because there is no depth information. Their

2D-to-3D conversion method allows the system to get the benefits from both 2D

and 3D based models. In 2D-based the teeth and tongue can be seen when they

are available, but it is difficult to modify the expression. Conversely, it is easier to

deform one expression to another in a 3D-based system, but it is difficult to render

some details on inner mouth area (e.g. teeth and tongue). In data preparation, two

types of visual features are extracted from each frontal image: i) 3D face geometry

and ii) 2D face texture. As their audiovisual database does not have the 3D geometry

information, they reconstruct this feature from 2D face shape alignment by applying

the method in [58]. In training, multistream HMM synthesis with MGE is used to

train the 2D-to-3D facial model. The first stream is a 2D face texture and the second

stream is a 3D face geometry. In testing, the phone transcription is recognised from

a given audio input. Then, the context-dependent HMMs are used to predict 2D

face texture and 3D face geometry. Subsequently, the 2D face texture is mapped

2.6. Approaches to visual speech synthesis 34

Figure 2.16: Examples of 2.5D face model with appearance (top). Examples of 2.5D

face model as wire-frame (middle). Example frames with different angles (bottom).

(modified from [116])

onto the 3D face geometry forming a 3D face model, as shown in Figure 2.16.

Another visual features, namely articulatory features, provide various kinds of

visible (e.g. lips) and non-visible (e.g. tongue) articulator information. There are

several technologies have been used to capture the vocal tract shape and movement.

ElectroMagnetic articulography (EMA) and motion capture, for example, are the

process of recording the movements of objects interested (e.g. mouth and body

movements) via sensors or markers that attached on objects. This recorded infor-

mation provides highly accurate data with three degree of freedom for each sensor.

These data can be used to animate 3D facial animation directly from the input

2.6. Approaches to visual speech synthesis 35

without 2D-to-3D conversion methods. For instance [122] used Poser Pro software5

to animate 3D virtual avatar for speech-driven head and lip motions. Moreover,

one of interesting findings found that the use of HMM synthesis with these articula-

tory features are effective than prosodic features for the head motion synthesis task

because of the highly accurate of the features from EMA.

Based on the single phase approach discussed previously, Schabus et al. [89]

proposed an audiovisual speech synthesis strategy based on HMMs. They made the

assumption that both the audio and visual signals are the result of the underlying

articulation process, and should be treated as one modality. Based on this they

were able to ignore audio-visual synchronisation because the joint audiovisual model

aims for a maximal level of coherence between these two modalities. Their results

also confirm that joint modelling outperforms separate audio and visual modelling.

One of their interesting results concerns visual features. Their results showed that

visual features (6-classes of viseme questions) are useful for visual modelling because

these appear often in the context-based clustering tree for the visual stream. For

example, they also pointed out two limitations of the synthesiser. First, the output

quality of the synthesiser, especially for the auditory modality, is not acceptable.

They found that some phonemes are generated incorrectly and belong to different

phoneme classes. The main reason is the limited size of the database because only

223 utterances (approximately 11 minutes) of German speech was used in training

the model. Secondly, the audiovisual time-lag problem was found in the separated

models. They showed that the phoneme boundaries are different to the viseme

boundaries. This is the main reason why the animation results of separated models

are unnatural compared with that of joint audiovisual model.

To overcome time-lag problems, Govokhina et al. [47] proposed a phasing model

to predict the time lag between acoustic boundaries and gestural boundaries. This

idea is similar to the time lag between note timing and voice timing for an HMM-

based singing voice synthesis system [86], as shown in Figure 2.17. They proposed

to add decision tree context clustering dependent time-lag models. This time-lag

5http://poser.smithmicro.com

2.6. Approaches to visual speech synthesis 36

modelling is used to predict time-lags and state-durations after predicting the du-

ration of each musical note from the given musical score input. It follows that the

voice timing can be determined according to the note timing and can be obtained

automatically by forced alignment.

Figure 2.17: An example of time-lag in singing voice speech synthesis [86].

To apply the HMM synthesis to expressive visual speech data, Cluster Adaptive

Training (CAT) was used to model six different speech expressions consisting neutral,

angry, happy, tender, sad and fearful [5]. CAT is an extension of HMM synthesis

and each expression has its own decision tree. Figure 2.18 shows 2.5D facial image

results for the six different expressions. In this system, a new expression can formed

by any combination of input expressive weights.

Figure 2.18: Examples of 2.5D facial image results in six different expressions[5].

2.6. Approaches to visual speech synthesis 37

2.6.5.2 DNN-based

HMMs have been state of the art in (visual) speech synthesis for the past decade

and typically employ decision tree clustered context-dependent models, although a

drawback has been an over smoothed output [31]. For example, a similar problem

exits in audio speech synthesis [128] which can lead to a muffled sound being pro-

duced. The equipvalent in visual speech synthesis from HMMs tends to produce

under-articulated lip movements [101]. Deep neural network (DNN) approaches

have more recently been proposed to address these limitations and are able to learn

a better model using multiple levels of non-linear activation functions such as the

use of multi-layer perceptrons with many hidden layers and numbers of units [6].

Taylor et al. [99] developed a DNN based visual synthesiser which learns a map-

ping function from audio to visual speech. A large audiovisual database of 2,542

sentences was used in this work. The audio data was converted to MFCC acoustic

features and visual image represented by 104 AAM parameters. Due to coartic-

ulation effects and the smoothing problem, both input and output features were

represented with the sliding window approach adopted by [61]. Their findings found

that 330ms (5 frames preceding and 5 frames ahead) was the best width for the

input window and is long enough to avoid the coarticulation effects. Additionally,

an output window width of 165 ms (2 frames preceding and 2 frames ahead) was

best for visual the output and is not too small (smoothing problem) or too large

(over-smooth problem). Both objective and subjective results showed that the deep

neural network model outperformed a baseline HMM approach.

Using the same audiovisual database, [102] developed a DNN based visual syn-

thesiser which learnt the mapping function from text to visual speech. This work

explored three aspects to improve visual speech synthesis; i) speech units, ii) con-

textual features and iii) learning algorithm. For the speech units, the work explored

two speech units; phoneme and dynamic viseme units. They found that both units

gave similar results meaning that each unit can provide different unique information

to the model. This is confirmed by the improvement in performance after combining

these two units. With contextual linguistic features, an analysis of various informa-

tion from the frame level to the utterance level found that frame level context is

2.6. Approaches to visual speech synthesis 38

very important for reducing discontinuities in the output. In terms of the learning

algorithm, the work found that a DNN-based system outperforms a HMM-based

system. (more details can be found in Chapter 6)

Recurrent neural networks (RNNs) are another type of neural network designed

to process sequential data, for example, text, speech, image, etc. These were first

introduced in [83] and have been shown to outperform feedforward network in a

range of applications, such as machine translation, automatic speech recognition.

Fan et al. [36] also applied bidirectional long short term memory (LSTM) networks

to visual TTS, where the LSTM is within an RNN architecture. A given text input

was converted to a sequence of tri-phone labels, but suggested that rich information

(e.g. stress, part-of-speech) should be used if a large database is available. A given

audio input was also used to obtain phoneme state levels as this feature was found

to allow a better prediction to be made. The output animation focuses on the

lower face and represented by AAM features. Preference tests showed clearly that

the bidirectional-LSTM speech animation is significantly better showed that the

baseline HMM-based.

Some groups have also built language and speaker independent visual TTS in

different kinds of frameworks [100, 129]. [100] attempt to learn a non-linear map-

ping from a sequence of phoneme labels to mouth movements using deep neural

networks. Both phoneme input labels and AAM output features were applied us-

ing a sliding window approach (described in [99]). Their results suggested that a

feed forward approach significantly outperforms other learning approach including

dynamic visemes-based [98], HMM-based [101], LSTM-based [36] and decision tree

regression [61]. Their approach was trained with a single speaker, but is able to

generate different characters of speech animation, as shown in Figure 2.19. It is also

able to predict the AAM visual output from any content and speaking style as long

as automatic speech recognition is available. Note that the quality of the speech

animation depends on the accuracy of the recognition system. The main limitation

is that the lip animation tends to be under articulated and require post processing

to deal with this problem (scaling up the signal for example).

2.6. Approaches to visual speech synthesis 39

Figure 2.19: Example of three different characters of speech animation (a) the origi-

nal video (b) the predicted lip animation from AAM (c) the facial rigs that retargated

from the shape model [100].

Sato et al. [88] proposed a hybrid approach between HMM synthesis and DNN

synthesis. The goals of this paper are developing a small footprint synthesiser, using

auto labelling of visual features, generating photo-realistic image for the entire face.

From these goals, the two commons statistical parametric approaches were used

instead of sample-based approach as we know that sample-based approach is costly

in terms of computational and storage. The main reason of using hybrid HMM-DNN

approach because they expect to get the best performance from both properties of

HMMs and DNNs. In the first step, they used HMMs synthesis to predict visual

features from a sequence of triphone context dependent. After that, these visual

features are used to predict output pixel images from DNN models. It can be seen

that the dimension of output is very high and takes up a huge of CPU time and

memory in the case of using HMM-based. That is the main reason they attempt

to apply DNN-based in the second step. Note that, 16 action units (AUs) were

extracted automatically using Microsoft Kinect v2 and used as visual features in

this work. Their preference test showed that viewers significantly preferred the

hybrid approach more than conventional HMM-based using PCA visual features

[87]. However, the image quality of the proposed technique still need to improve

because they can spot some unclear image as the same as found in PCA approach.

Chapter 3

Technical background

3.1 Introduction

This chapter aims to overview three most popular statistical parametric approaches

for both audio and visual speech synthesis including hidden Markov models (HMMs),

deep neural networks (DNNs) and recurrent nerual network long short term mem-

ory (RNN-LSTM). This starts with an general overview of the Gaussian mixture

model-hidden Markov model (GMM-HMM). It then follows with an introduction

of a variety of HMMs from a synthesis point of view, as known as the hidden

semi-Markov model (HSMM). After that, an overview of feedforward networks is

described. Then, we explain how feedforward networks learn their representations

in the network using the backpropagation algorithm. Finally, an overview of recur-

rent neural networks (RNNs) in terms of structure, architecture, training methods,

and long short term memory (LSTM) are described.

3.2 Overview of HMM synthesis

This section aims to provide a brief introduction of HMM synthesis, of which more

details can be found in [110, 111, 120, 121]. This starts by introducing the concept

of the use of a Gaussian mixture model (GMM) to explain a data distribution.

After that, the HMM is used to overcome the limitation of modelling temporal

features in a GMM. It also shows how the basic structure of HMMs use a transition

40

3.2. Overview of HMM synthesis 41

probabilities matrix to model duration in each HMM state, This, however, does

not have the ability to control phoneme durations from explicit parameters. To

overcome this problem, new models have been proposed, called hidden semi-Markov

models (HSMM), which use explicit duration modelling to model the duration of

the HMM states instead of the transition probability matrix. Finally, we describe

how HMM synthesis treats a series of step outputs using the parameter generation

algorithm with dynamic features (delta and delta-delta) to produce a more smooth

output.

3.2.1 Gaussian mixture model (GMM)

A Gaussian mixture model can be used to represent random variables when its

distribution or the probability density function (PDF) is unknown. A Gaussian

distribution is normal and has the shape of a bell curve, as shown in Figure 3.1.

This Figure presents an example of a standard normal distribution with a mean, µ,

of zero and standard deviation, σ, of one.

-4< -3< -2< -1< 0< 1< 2< 3< 4<
0

0.1

0.2

0.3

0.4

0.5

68.2%

X	

p(x)	

Figure 3.1: An example of standard normal distribution with zero mean and unit

variance.

Both scalar and vector random variables are able to be represented with a single

or univariate Gaussian. Firstly, the PDF of a scalar random variable is defined by

p(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, (3.1)

3.2. Overview of HMM synthesis 42

where p(x) denotes the PDF of the random variable x with mean, µ, and variance,

σ2. Note that, the standard deviation is denoted σ on the square root of the variance.

An equivalent notation can be specified as

X ∼ N (µ, σ2). (3.2)

Secondly, the PDF of random vector, known as multivariate Gaussian distribu-

tion, is specified by

p(x) =
1

(2π)D/2
1

|Σ|1/2
exp{−1

2
(x− µ)TΣ−(x− µ)}, (3.3)

where p(x) denotes the PDF of the random variable x with mean vector, µ, and

covariance matrix, Σ. An equivalent notation can be specified as

X ∼ N (µ, Σ), (3.4)

As mentioned earlier, a single Gaussian can model only a normal distribution.

However, the distribution of much real-world data takes on different types of distri-

butions and is far more complex than a normal distribution. Hence, the Gaussian

mixture model (GMM) is introduced to represent multiple Gaussian distributions

as depicted in Figure 3.2. The concept of a GMM is that it represents a random

variable with a set of weighted normal distribution components. Then, the linear

combination is applied to all the components as follows;

3.2. Overview of HMM synthesis 43

Figure 3.2: An example of the linear combination of a set of Gaussian models, as

called Gaussian mixture model. (modified from [2])

p(x) =
M∑
m=1

wmN (x;µm, σ
2
m), (3.5)

where M is the number of mixture components, wm, µm and σm denote the mixture

weights, means, and variances in each Gaussian, respectively. Note that, wm is used

to ensure that the total probability is equal 1. In the literature, the use of Gaussian

mixture models is the key factor of the success of various speech applications such

as speaker recognition [81]. However, some speech applications, for example speech

synthesis and speech recognition systems, do not directly use a GMM to represent

the acoustic features. The main reason is that the GMM shows a good fit when

the time information is excluded but it is not a good model when temporal features

or time series data are included as speech is highly time-varying. That is the main

reason to use an HMM instead of a GMM. More details are given in next Section.

3.2. Overview of HMM synthesis 44

3.2.2 Hidden Markov model (HMM)

The hidden Markov model (HMM) is an effective framework that can model time-

varying features, such as speech, part-of-speech tagging, and handwriting. The

HMM is an extension of a Markov chain which is a stochastic process and uses

transition probabilities, aij, to describe a change of state i to state j in the system.

Within a state the signal is assumed to be stationary, but the linkage of states

allows a time-varying signal to be modeled. Generally, an ergodic HMM topology

allows transition from any state to any other state. However, to model speech, a

specific topology is used, namely a left-to-right HMM as shown in Figure 3.3, which

is constrained to move from left to right, or stay in the same state.

Figure 3.3: An HMM topology of a left-to-right three state with no skip and a single

Gaussian output probability.

Moreover, each state of a chain, or HMM state, is characterised by the ob-

servation data using a univariate/multivariate Gaussian mixture model, bi(ot), (as

detailed in Section 3.2.1). Clearly, an HMM is able to overcome the GMM’s limi-

tation to model the temporally changing features. This is somewhat true because

a GMM can be referred as a single state HMM. Therefore, an increasing number of

states can be thought of as increasing the number of GMMs in the state emission

PDFs which leads to a better model.

3.2. Overview of HMM synthesis 45

From this left-to-right HMM topology, the duration probability of i-th state,

pi(di), is controlled by the self-transition probabilities in each HMM state for d

times, which can be considered as implicit state duration modelling, as follows:

pi(di) = (aii)
di−1(1− aii) (3.6)

where di is the number of durations (frames) in i-th state. However, the distri-

bution of this implicit modelling becomes an exponential distribution, as shown in

Figure 3.4. This concept, however, works well for speech recognition but it is not

appropriate for synthesis point of view because the distribution of phone durations

is generally normal distribution. Moreover, in the case of maximisation problem,

the duration in each state becomes one, di = 1. In synthesis applications, therefore,

it is preferable to control the duration in each state with an explicit model, which

is Gaussian distribution for example.

0.0
1 2 3 4 5 6 7 8 d

0.1

0.2

0.3

0.4

0.5

p(
d)

Exponen'al	

Gaussian	

Figure 3.4: The exponential distribution of the implicit duration modelling and the

Gaussian distribution of the explicit duration modelling.

Another significant problem is that HMMs with the maximum-likelihood crite-

rion generate step-wise outputs which are produced a sequence of flat-line from their

mean values in each state. The next two following subsection overcome these two

problems, firstly, the incorporation of explicit duration modelling within HMMs was

proposed by [120, 127], also known as hidden semi-Markov models (more details in

Section 3.2.3). While, secondly, the use of temporal derivative constraints with the

maximum likelihood solution was proposed by [110], called parameter generation

3.2. Overview of HMM synthesis 46

algorithm (described in Section 3.2.4).

3.2.3 Hidden semi-Markov model (HSMM)

In a conventional HMM, the number of frames in each state is determined by the

transition probabilities, also known as implicit state duration modelling. However,

the general concept of the implicit duration modelling is not suitable for a synthesis

point of view. For example, the exponential distribution from the implicit models

is not appropriate for modelling the duration of phonemes as they are generally

normal distribution. Hence, in synthesis point of view, [120, 127] introduced explicit

duration modelling into the HMM framework which is known as the hidden semi-

Markov model (HSMM). In this model, the transition probabilities are replaced by a

model of explicit state duration probabilities, pi(d), which is usually modelled with

Gaussian distributions, as illustrated in Figure 3.5.

Figure 3.5: An HSMM topology of a left-to-right three state with no skip, a single

Gaussian duration probability and output probability.

In this HSMM topology, an explicit state duration is usually modeled by the

duration PDFs, pi(d), such as a single univariate Gaussian distributions specified by

3.2. Overview of HMM synthesis 47

mean µDi and variance σD2
i as:

pi(di) = N (µDi , σ
D2
i), (3.7)

where di denotes the duration in state i which is equal the mean of Gaussians in the

case of the maximum solution problem.

di = µDi . (3.8)

Note that, there were many approaches proposed the improvement of the ac-

curacy of duration prediction. For example, the use of decision tree for unseen

contexts, a combination of HMM and MLP, and so on.

While a state output can be modeled by the output PDFs, bi(ot), such as sin-

gle multivariate Gaussian distributions specified by mean vector µi and diagonal

covariance matrix Σi as:

bi(o) = N (µi, Σi), (3.9)

where o is N -dimensional of observation vector or 30-AAM output feature vector in

present work.

3.2.4 Maximum likelihood parameter generation (MLPG)

A major drawback of HMMs and HSMMs is the stepwise output because this is

based on a maximum likelihood criterion and becomes a sequence of mean vectors,

as shown in Figure 3.6. This is not the output we desire because natural speech

is smooth. So, [110] proposed the smoothing post processing module which uses

the relationships between static feature (e.g. AAM parameters) and dynamic fea-

tures (e.g., delta, delta-delta of AAMs) to generate a smoother output, namely the

maximum likelihood parameter generation algorithm.

3.2. Overview of HMM synthesis 48

Figure 3.6: Parameter generation with stepwise issue from HSMM [109].

Dynamic features are a simple and effective method used in various speech ap-

plications, to model temporal changes in the signal. For example, [40] was first

proposed to append dynamic speech spectrum onto static speech spectrum for the

propose of improving automatic speech recognition accuracy. In the case of syn-

thesis, [110] proposed the inclusion of dynamic features into the observation vector

which are captured from the rate of change of its adjacent frames. A feature vector

output at frame t, ot, comprises the N -dimensional static vector, ct (e.g., AAM pa-

rameters), and dynamic feature vectors, ∆ct, ∆
2ct (e.g., delta and delta-delta AAM

parameters, respectively), as follows:

ot = [ct, ∆ct, ∆
2ct], (3.10)

O = [o, . . . ,ot, . . . ,oT], (3.11)

ct = [c1t , c
2
t , . . . , c

N
t], (3.12)

where T is the length of the sequence (e.g., number of frames), t is the frame index,

and N is the length of the static vector (e.g., number of AAM parameters). The

delta, ∆ct, and delta-delta parameter vector, ∆2ct, can be calculated as a weighted

sum over a left and right window of size 2L + 1 frames:

∆cit =
L∑

τ=−L

w(1)(τ)cit+τ , (3.13)

∆2cit =
L∑

τ=−L

w(2)(τ)cit+τ , (3.14)

3.2. Overview of HMM synthesis 49

where −L is the width of the left window and L is the width of the right window.

With the configurations of standard HMM synthesisis, L is set to 1 which will pro-

duce a 3-frame window for computing both delta and delta-delta features. w(1)(τ)

and w(2)(τ) are the window coefficients used to compute delta and delta-delta pa-

rameters respectively, can be calculated as:

w0(i) = 1 for i = −1, 0, 1 (3.15)

w1(i) =
i

2
for i = −1, 0, 1 (3.16)

w2(i) = 3i2 − 2 for i = −1, 0, 1 (3.17)

The relationship between static feature vector sequence, c, the window properties

of the adjacent frames, W, and output feature vector sequence, O, can be arranged

in a matrix form as follows, O = Wc:

c1

4c1
42c1

c2

4c2
42c2

...

cT

4cT
42cT

=

1 0 0 0 · · · · · · 0

0 0.5 0 0 · · · · · · 0

2 −1 0 0 · · · · · · 0

0 1 0 0 · · · · · · 0

−0.5 0 0.5 0 · · · · · · 0

1 2 −1 0 · · · · · · 0
. . .

0 · · · · · · 0 0 0 1

0 · · · · · · 0 0 −0.5 0

0 · · · · · · 0 0 −1 2

c1

c2
...
...

cT

(3.18)

As mentioned, the generation of the output parameter sequence becomes a se-

quence of mean vector of the Gaussian distribution when the HMMs are trained

without the conditions (3.13) and (3.14).

Ô = argmax{N (O;µ, Σ)} (3.19)

On the other hand, the use of these conditions to form dynamic features and

train the models is able to overcome the problem of step-wise output and produce

a curved or smoothed trajectory [110]. Equations (3.13) and (3.14) show that O is

3.3. Overview of feedforward neural networks 50

a linear transform of c, therefore, Equation (3.19) can be rewritten with respect to

c as

ĉ = argmax{N (Wc;µ, Σ)} (3.20)

By setting the derivative of log normal distribution with respect to c under the

conditions (3.13) and (3.14) equals zero, as

∂logN (Wc;µ, Σ)

∂c
= 0 (3.21)

We can obtain a set of linear equations to determine c as;

ĉ = (WTΣ−W)−(WTΣ−µ) (3.22)

The illustration in Figure 3.7 also confirmed that MLPG with dynamic features is

able to overcome the problem of step-wise output and produce a curved or smoothed

trajectory, c, reflecting both means and covariance as derived in Equation (3.22).

More details can be found in [110].

Figure 3.7: Parameter generation with dynamic features to overcome stepwise issue

from HSMM [109].

3.3 Overview of feedforward neural networks

Artificial neural networks (ANNs) have been inspired by the human brain. They

have been applied to a wide range of problems such as speech synthesis [128] and

image understanding [46]. Figure 3.8 depicts three common ANN architectures

including; (i) single-layer feedforward neural network, (ii) multi-layer feedforward

3.3. Overview of feedforward neural networks 51

neural network, and (iii) recurrent neural network. More specific details about

recurrent neural networks can be found in Chapter 7. This section discusses how to

represent the feedforward networks and how they learn.

Inputs	

Outputs	

Inputs	

Hidden	Units	

Outputs	

Delay	

h(t)	

h(t-1)	
x(t)	

h(t)	

x(t)	

Single-layer	
feedforward	

Recurrent	
network	

Inputs	

Hidden	Units	

Outputs	

x(t)	

h(t)	

Mul=-layer	
feedforward	

o(t)	 o(t)	 o(t)	

Figure 3.8: The single-layer and multi-layer feedforward neural networks compared

with recurrent neural networks.

A single layer perceptron (SLP) is the main processing unit of a single-layer

feedforward network. A single-layer perceptron comprises one input layer and one

output layer. An example of a neuron in the single-layer perceptron is shown in Fig-

ure 3.9, which consists of an input vector x with D dimensions, x = [x1, x2, ..., xD],

from the input layer and a single scalar output y.

Figure 3.9: The form of single layer perceptron.

3.3. Overview of feedforward neural networks 52

A weight vector, w, w = [w1, w2, ..., wD] is then combined with x produced

output z as follow;

z = wxT + b, (3.23)

where b denote a bias which is used to specify the position of a hyperplane deci-

sion boundary. The output from the perceptron, a, is calculated by the activation

function, f ;

a = f(z), (3.24)

where f is used for limiting the amplitude of the neuron output. This is possibly

denoted as either a linear or nonlinear activation function. Examples of the linear

activation function are calculated as for example, a binary step function:

f(z) =

0 if z < 0

1 if z ≥ 0
(3.25)

or, a linear function:

f(z) = z. (3.26)

The activations of the non-linear functions can be written as, for example, a hyper-

bolic tangent function (tanh),

f(z) =
2

1 + e−2z
− 1. (3.27)

or, a rectified linear function (ReLU):

f(z) =

0 if z < 0

z if z ≥ 0
(3.28)

Taking an example of the use of single-layer perceptron with a linear function on

separating positive and negative data is shown in Figure 3.10. This shows examples

of the possible hyperplane boundaries (dotted line) and the optimal hyperplane

(solid line) of the linear classifier that aims to separate positive and negative classes.

From this figure, it can be seen that the single layer perceptron is able to handle

the simple problem in the case of linearly separable data.

3.3. Overview of feedforward neural networks 53

Figure 3.10: Examples of possible hyperplanes and optimal hyperplane of linear

classifier.

So far has been discussed the single layer perceptron. Next, we show how a

feedforward neural network implements a multi-layer perceptron from a set of single

perceptrons. The main reason for the use of a multi-layer perceptron is that the

single layer perceptron is limited because it is unable to handle a more complex

problems. It is found that a line from single-layer perceptron is not able to classify

a non-linearly seperable problem such as the example of “XOR” problem in Figure

3.11.

XOR	func)on	

X1	

X2	

1	0	

1	

Figure 3.11: Examples of XOR problem that single layer perceptron cannot handle.

3.3. Overview of feedforward neural networks 54

The XOR problem in Figure 3.11 has two binary input units, x1 and x2, that

have either 0 or 1 and returns one binary output with values in 0 and 1, depicted

with negative and positive symbols, respectively. We then also consider to model

these data with single perceptron but it cannot separate these data with one line,

as shown in Figure 3.12 (A and B). To overcome this problem, it requires to use two

lines from two single-layer perceptrons, as called multi-layer perceptron, as depicted

in Figure 3.12 (C).

X1	

X2	

XOR	func)on	

1	0	

1	

(b)	
X1	

X2	

1	

1	

(a)	
X1	

X2	

1	0	

1	

(c)	
0	

Figure 3.12: Examples of XOR problem that use multi layer perceptron with a tanh

activation function.

The use of multi-layer perceptron for the XOR problem comprises two percep-

trons in the hidden layer and one perceptron at the output layer, as shown in Figure

3.13. From this example, both hidden and output layer use step functions as the

activation function because this is sufficient to find the hyperplane boundary be-

tween “1” (positive symbol) and “0” (negative symbol) output data. After training

the network, all weight parameters in each layer are learned automatically using the

backpropagation algorithm (more details in Section 3.3.1). These weight and bias

parameters show the power of neural networks that each perceptron can learn its

appropriate function from training data. This is likely to be correct because one of

the XOR expressions may be depicted in Figure 3.11 (left) and written (in boolean

notation) as;

y = (x1 + x2) · (x̄1 · x̄2). (3.29)

Clearly, the three perceptron networks in Figure 3.13 can solve the XOR problem,

3.3. Overview of feedforward neural networks 55

as the first perceptron makes the first decision boundary (shown as Figure 3.12

(a)) and acts as “OR” function. The second perceptron makes the second decision

boundary (shown as Figure 3.12 (b)) and act as “NAND” function. Then, the third

perceptron combines the first and second perceptron together with “AND” function

(shown as Figure 3.12 (c)).

Figure 3.13: Multi-layer perceptron of the XOR problem.

However, if we would like to handle more complex problems that consist of sev-

eral positive and negative examples in Figure 3.14, this clearly requires the linear

activation function of the hidden layer to be replaced by a non-linear activation

function. The reason is that the MLP with linear activation function is not able

to find the optimal boundary that separate these data. Hence, the MLP with non-

linear activation function often uses a feedforward network for finding a non-linear

division of boundaries. A common non-linear activation function is the rectified lin-

ear unit (ReLU) [44, 63]. Additionally, it has been reported that the ReLU function

outperforms the traditional logistic sigmoid and hyperbolic tangent (tanh) functions

on various applications such as image recognition [44] and speech recognition [124].

Nair and Hinton [76] reported that there are two major benefits for that; (i) sparsity,

(ii) reducing vanishing gradients.

3.3. Overview of feedforward neural networks 56

X1	

X2	

1	0	

1	

Figure 3.14: Examples of XOR problem that use multi layer perceptron.

From the examples earlier, we use only one hidden layer but we tend to use more

than one hidden layer in practical applications, known as deep feedforward neural

networks (DNNs). So far we have shown that the multi-layer neural network can

learn automatically its appropriate function from training data using the backprop-

agation algorithm, but have not explained how the backpropagation works. Hence,

the next section presents how the algorithm learns their weights and biases from the

training examples in the context of general DNNs.

3.3. Overview of feedforward neural networks 57

3.3.1 Training feedforward neural network using backprop-

agation

In the previous section we described how to represent deep feedforward neural net-

works from single layer perceptrons. We also discussed the limitations of the single-

layer networks and showed the benefits of a multi-layer perceptron in feedforward

networks. It showed that each neuron uses weights and biases to represent their

expression for the XOR problem but it did not show how to learn the weight values.

Hence, this section explains how feedforward networks learn their weights and biases

in the network using the backpropagation algorithm.

The basic idea of backpropagation was introduced in 1988 by [84], and aims to

compute the gradient of the objective or cost function with respect to the weight

of all layers, ∇WC. This function shows how the cost is changed when adjusting

the weight parameters to make the cost smaller. The procedure of the backpropa-

gation algorithm comprises three procedures; (i) forward propagation, (ii) backward

propagation, and (iii) weight update.

3.3.1.1 Forward Propagation Pass

This step aims to compute all of the activation functions of the network, h
(l)
j , for

l = 1, 2, 3, ..., L. Where L denotes the number of layers and j refers to the jth unit

in the lth layer. For example in Figure 3.15, there are 4 layers, L = 4 for an example

of feedforward neural networks. The first layer in the network is called input layer,

and the neurons in this layer are called input neurons, xm, where m refers to the

number of input neurons. The last layer is called output layer, and the neurons

in this layer are called output neurons, on, where n refers to the number of output

neurons. The middle layers between input and output layer are called hidden layers,

and the neurons within this layer are neither input or output neurons, hlj, where

j refers to the specific hidden neuron. For example, h32 in Figure 3.15 denotes the

activation function of the 2nd unit in layer 3.

3.3. Overview of feedforward neural networks 58

Layer	1	 Layer	2	 Layer	3	 Layer	4	

a2
3

w23
4

z2
3

Figure 3.15: An illustration of forward pass.

The calculation of the forward propagation pass starts from the input layer to

the output layer, where the output from previous layer is used as the input in next

layer.

At input layer, l = 1, a given input, x, is fed as an input to the network. Note

that, the linear combination, z1j , and activation output, h1j , in each input neuron

refer to the input, xj, where j is the specific input units (1 ≤ j ≤M), as follows;

x = {x1, x2, . . . , xM}, (3.30)

h1 = {h11, h12, . . . , h1M}, (3.31)

h1j = z1j = xj (3.32)

At hidden layers, l = 2, ..., L − 1, the activation outputs in each neuron are

calculated using the weight matrix, wl, and the activation output from previous

3.3. Overview of feedforward neural networks 59

layer, hl−1. Note that, the bias parameters are omitted for simplicity. The linear

combination in Equation (3.23) can be rewritten as;

wl = {wl1, wl2, . . . , wlM}, (3.33)

zl = wlh(l−1), (3.34)

where wljk denotes to the weight parameters of the kth unit in the previous layer,

l−1th, to the jth unit in the current layer, lth. h
(l−1)
k denotes to the activation output

of the kth unit in the previous layer.

Then a non-linear function, f , in Equation (3.28) is used to compute the activa-

tion function, hlj, and can be rewritten as;

hlj = f(zlj), (3.35)

In the case of using a rectified linear unit (ReLU) as a non-linear function, it can

be written as;

hlj = max(0, zlj), (3.36)

where the hidden neuron output, hlj, becomes zero when the input is smaller than

zero, zlj < 0, and then linear with slope 1 when the input is greater than zero, zlj > 0.

At output layer, l = L, the linear combination can be computed as the same as

in the hidden layer. The use of activation function depends on the problem. In the

case of a classification problem, a softmax function is often used as the activation

function. With regression problem, a linear function often uses as the activation

function. So that the output unit, olj, can be written as follows;

zLj =
∑
k

wLjkh
(L−1)
k , (3.37)

oj = hLj = zLj , (3.38)

where the output neuron in each unit can be denoted as oj. Then, this output will

be used in the backward propagation pass in the next Section.

3.3.1.2 Backward Propagation Pass

This step aims to compute the partial derivative of the cost function, E, with respect

to a weight parameter of each unit, wljk, in the network, as denoted in ∂E
∂wljk

. The

3.3. Overview of feedforward neural networks 60

backward pass propagates the partial derivative from the Lth layer down to the 2nd

layer using the chain rule, as shown in Figure 3.16.

Layer	1	 Layer	2	 Layer	3	 Layer	4	

δ2
2

w23
4

δ1
4

δ1
3

δ2
3

δ2
3

Figure 3.16: An illustration of backward pass.

At the output layer, the cost function computes the error between the refer-

ence vector answer, y, and the activation output from the forward propagation step,

o, as

y = {y1, y2, . . . , yn}, (3.39)

o = {o1, o2, . . . , on}. (3.40)

where n is the number of output neurons, as n = 2 in Figure 3.16. The common

standard cost or error function for the regression problem is the least square error,

E, as follows;

E =
1

2
(‖ y− o ‖)2 =

1

2

∑
j

(yj − oj)2, (3.41)

where oj is the activation output at the output layer at jth unit, and yj is the

reference output of the jth unit. This expression will be used to compute the output

3.3. Overview of feedforward neural networks 61

error in each output neuron, δLj . As each neuron consists of a summation component

and an activation component, the delta error in each neuron can be defined by;

δLj =
∂E

∂oj

∂oj
∂zLj

, (3.42)

where the second term on the right,
∂oj
∂zLj

, is cancelled in the case of using linear

output as mentioned in Equation (3.38). The first term on the right, ∂E
∂oj

, measures

the change in E with respect to the output in each output unit. Note that, the

factor of
1

2
is cancelled when applying differentiation as follow;

∂El
j

∂oj
= oj − yj. (3.43)

Once the output error at the output layer, δLj , is known. The gradient of the cost

function with respect to the weight parameters of the output layer can be defined

by;
∂E

∂wLjk
=

∂zL

∂wLjk
· δLj , (3.44)

where the gradient of the linear combination of output layer, as shown in Equation

(3.37), can be derived by
∂zL

∂wLjk
= h

(L−1)
k , (3.45)

so that,
∂E

∂wLjk
= h

(L−1)
k · δLj , (3.46)

At hidden layer, l = L− 1, ..., 2, the output error in each hidden unit, δlj, can

be defined as

δlj =
∂E

∂hlj

∂hlj
∂zlj

, (3.47)

where
∂E

∂hlj
=
∑
k

w
(l+1)
jk δ

(l+1)
k . (3.48)

Once the output error at the hidden layer l in each unit j, δlj, is known, the gradient

of the cost function with respect to the weight parameters of the hidden layer can

be given by
∂E

∂wljk
=

∂zl

∂wljk
· δlj, (3.49)

3.3. Overview of feedforward neural networks 62

where,
∂zl

∂wljk
= h

(l−1)
k , (3.50)

so that,
∂E

∂wljk
= h

(l−1)
k · δlj. (3.51)

Note that the partial derivative of the cost function with respect to all weight pa-

rameters, ∂E
∂W

, will be used to optimise the new weight parameters in the next step.

3.3.1.3 Optimisation: Weight Update

This procedure aims to minimise a cost function by changing the weight parameters

in the case of knowing the gradient error in each neuron in the network from the

backward propagation pass. This minimisation of E is used in an iterative process

of gradient descent defined by

∂E

∂W
= (

∂E

∂w2
. . .

∂E

∂wL
). (3.52)

There are many gradient descent optimisation that can be used to minimise

the objective function such as stochastic gradient descent (SGD), root mean square

propagation (RMSProp), adaptive moment estimation (Adam), and so on [46]. This

chapter focuses on SGD with the network weights updated as follows:

Ŵ = W− ∝ ∗ ∂E
∂W

, (3.53)

where Ŵ is the updated tensor matrix, and ∝ is the learning rate parameter

(0 ≤∝≤ 1), which is used to control how quickly the network learns. The learning

can be too slow if ∝ is set too low, and the weights can oscillate if ∝ is set too

high. One technique that can help the SGD to learn quicker and move to the right

direction with global minima is called SGD with momentum. The momentum is

given by,

V̂ = γV+ ∝ ∗ ∂E
∂W

, (3.54)

Ŵ = W− V̂, (3.55)

where V̂ is the updated velocity matrix, which is the same size of weight parameters

and initials with all zero, with γ the momentum value. Note that, if γ is set to

3.4. Overview of recurrent neural networks 63

zero, this means the new weight parameters are updated with SGD as described in

Equation (3.53).

In batch mode, the weights are updated after all training examples have been

used to compute gradient errors. In practice, the computation time for all training

examples is likely to be prohibitively long. Hence, the use of mini-batches is used

to estimate the gradient errors instead. The number of mini-batches, mb, refers to

the number of samples in each batch, which are (not) randomly selected from the

training data. Hence, the following algorithm applies a gradient descent learning

step based on that mini-batch:

Ŵ = W− ∝
mb
∗
∑
x

∂Ex

∂Wx , (3.56)

3.4 Overview of recurrent neural networks

Recurrent neural networks (RNNs) are another type of neural network designed

to process sequential data, for example, text, speech, image, etc. They were first

introduced in [83] and have been shown to outperform feedforward network in a

range of applications, such as machine translation, automatic speech recognition,

and handwritten character recognition.

Figure 3.17 (a) shows the conventional feedforward neural network architecture.

This is compared to the RNN archtecture in Figure 3.17b with the introduction of a

feedback connection. It can be seen that the difference between the architectures is

that the RNN structure consists of the feedforward structure with cycle or recurrence

connections as a time-delay between nodes. From these recurrent structures, RNNs

have the advantage that contextual information from previous input vectors can

be memorised over timesteps, which means RNNs are can be considered as being

stateful. Conversely, traditional feedforward neural networks are stateless, as the

output at timestep t depends only on the current input at time t.

3.4. Overview of recurrent neural networks 64

Inputs	

Hidden	Units	

Outputs	

Inputs	

Hidden	Units	

Outputs	

Delay	

h(t)	

h(t-1)	
x(t)	

h(t)	

x(t)	

h(t)	

(a)	 (b)	

Figure 3.17: Simple feedforward and RNN architectures.

The goal of recurrent networks is to learn a mapping function that maps input

sequences to output sequences. For example, in the regression problem, we define

inputs and outputs as a sequence of data with time steps ranging from 1 to τ , where

τ is the length of the sequence. For such basic RNNs, we assume that both inputs,

X, and outputs, O, have the same length, as follows:

X = {x1,x2, . . . ,xτ}, (3.57)

O = {o1,o2, . . . ,oτ}. (3.58)

where each time step or frame consists of m input features, xt ∈ Rm, and n

output features, ot ∈ Rn.

xt = 〈xt1, xt2, . . . , xtm〉, (3.59)

ot = 〈ot1, ot2, . . . , otn〉, (3.60)

The use of time-delayed recurrence can be found in the forward propagation of RNNs

as follows; where the hidden state vector, ht at time t is calculated

h(t) = f(Wh(t−1) + Ux(t) + b), (3.61)

o(t) = Vh(t) + c, (3.62)

3.4. Overview of recurrent neural networks 65

where t = 1, . . . , τ ; h(t) ∈ Rk, k is the number of hidden units. Matrices W,U,

and V; are the weight parameters with; U ∈ Rk×m the weight matrix for input-to-

hidden connection, W ∈ Rk×k the parameter for hidden-to-hidden connection and

V ∈ Rn×k the hidden-to-output weight connection. RNNs share the same weight

parameter in every time step which benefits the RNNs in the case of training with

different sequence lengths. Vectors b and c are the hidden and output bias; and f

denotes the nonlinear activation function for hidden nodes. This generally uses a

logistic sigmoid function or a hyperbolic tangent function [46].

Figure 3.17 (b) and Equation (3.61) show that the new hidden state or internal

state, h, operates not only based on the input time at step t, x(t), but also on the

previous hidden state, h(t−1). That means the internal state has a relationship to

the whole past sequence of inputs up to t. In the first time step of each sequence,

the initial values of the internal state, h(0), are set to zero. After that, the output

of the RNN at time t, o(t), can be computed by equation (3.62). Given weight

parameter, V, and bias, c, the output at time t, o(t), depends only on the state

of the internal state at time t, h(t), much like a feedforward neural network. As

mentioned earlier the RNN structure is built around feedforward networks, a key

feature that distinguishes feedforward from RNNs is feedback hidden state. Hence,

we can easily transform RNNs to a feedforward structure by setting W to zero.

3.4.1 Unidirectional RNN architectures

The neural network we just described in the above section is based on the assumption

that the length of input and output sequences are equal. In practice, different tasks

may have different input and output lengths. For example, a part-of-speech (POS)

tagger requires the same length of input and output because the goal of POS tagger

is to find the POS in each single word [117]. However, some tasks represent inputs

and outputs with different lengths such as machine translation showing a different

number of words for a source and a target language [95]. Therefore, this section

will explore how RNNs handle sequential data of arbitrary length in four aspects,

namely: (i) synchronised many-to-many, (ii) many-to-one, (iii) one-to-many, and

(iv) encoder-decoder many-to-many.

3.4. Overview of recurrent neural networks 66

3.4.1.1 Synchronised many-to-many

This recurrent network’s structure is called synchronised many-to-many because it

has the same length of input sequence and output sequence, which is the same ap-

proach as described in the previous section. Figure 3.18 illustrates another common

graphical diagram, known as the unfolded or unrolled RNN, which is used to convert

a cyclic recurrent neural network representation into a multilayer feedforward neural

network by unfolding over time.

Figure 3.18: Synchronised many-to-many RNN architecture (adapted from [46]).

The time-unfolded RNN shows clearly that the full network takes an input frame

at each time step and produces an output frame at the same time step input. With

feedback mechanism, networks have the same weight matrices, U,W,V at every

time step. The activation function of the previously hidden state and the current

input act as an internal memory of the whole past sequence of inputs up to frame

t. Then, the output layer uses Equation (3.62) to compute the output values.

There have been several extensions to this RNN architecture. For example, [59]

proposed to use output-to-hidden recurrent connections instead of hidden-to-hidden

recurrent connections. They have the feedback connections from the output at one

time step to the hidden layer at the next time step. The recurrent hidden layer of

the basic RNN in Equation (3.61) is updated as follows,

h(t) = f(Ro(t−1) + Ux(t) + b), (3.63)

where o(0) = 0,R corresponds to the weight for output-to-hidden recurrence con-

nection. The other parameters use the same definition as Equation (3.61). The

3.4. Overview of recurrent neural networks 67

advantage of using output-to-hidden recurrence in training is that there is no need

to compute the previous time step first, because we can use the correct output,

from the training set, known as teacher forcing [46]. Figure 3.19 shows an exam-

ple of using reference output from the previous time step, y(t−1), when calculating

the hidden layer at time t, h(t). However, we still need to compute and feed the

predicted output, o(t−1), back to the model in the testing step.

Figure 3.19: Synchronised many-to-many RNN architecture with teacher forcing

(adapted from [46]).

In [125], the authors proposed a new output-to-output recurrence connection to

the basic hidden-to-hidden recurrence connection. That means this architecture has

two recurrences connections. The first recurrent connection, parametrised by a new

weight parameter, R, from the previous output to the current output state. The

second recurrent connection, parameterised by the same weight parameter, W, from

the past hidden to the present hidden state. Figure 3.20 shows that the forward

propagation at the hidden layer is still the same as the basic RNN in Equation

(3.62). However, the new output-to-output recurrence terms will be added to the

output layer in each time step as follow;

o(t) = Vh(t) + Ro(t−1) + c, (3.64)

where o(0) = 0,R ∈ Rn×n corresponds to the weight for output-to-output recurrence

connection, n is the number of output units. The other parameters use the same

definition as Equation (3.62). This architecture has been applied to text-to-speech

3.4. Overview of recurrent neural networks 68

synthesis, which found that the new output recurrence state improved the natural-

ness of the synthesised speech [125], as the recurrent output layer was ask to create

smooth transitions at the frame boundaries.

Figure 3.20: Synchronised many-to-many RNN architecture with two recurrent con-

nections (adapted from [46]).

3.4.1.2 Many-to-one

This recurrent network aims to learn a sequence input and produce single time step

output or fixed-size output vector. The general idea of this architecture is that it

allows the network to see and learn the whole input information in different time

steps. Then, the networks predicts a one time step output, as depicted in Figure

3.21.

Figure 3.21: Many-to-one RNN architecture (adapted from [46]).

There are many ways to prepare the training data for this architecture. In fact,

this architecture is commonly used in NLP applications, for example sentiment anal-

ysis and text generation. For the sentiment analysis task [65], RNNs can learn the

sentiment (such as positive or negative) from the paragraph or sentence. Then, the

3.4. Overview of recurrent neural networks 69

learned networks are used to predict the sentiment of a paragraph or sentence. For

the text generation task [48], this architecture predicts the next word or character

from the past word sequences. The most common approach splits the book into

blocks with a fixed-length window. Then, the next block is created by sliding this

window one character at a time. From this way, if the input sequence is set to length

N that means the RNN learns the next character (i.e. N + 1 character) from the N

preceding characters.

3.4.1.3 One-to-many

Many applications have a fixed-length input and require an output sequence. For

example, an image captioning task takes a single image as an input, X. Then, the

output, O, will be generated as a sequence of words describing the image. Figure

3.22 shows the common one-to-many architecture. Compared with the many-to-

many architecture, it seems that both architectures pass the input through a hidden

layer at every time step. The main difference is the one-to-many approach uses the

same input vector at every time step while the synchronised many-to-many uses

different inputs depending on the time step order. With a single hidden feedback

connection, applying the same input will make no difference at the output at each

time step. To overcome this problem, an extra input at each time step is added

to the network. Hence, the output at the current time step is fed to the next

hidden state. That means this architecture has two recurrent connections. The

first recurrent connection is parametrised by a new weight parameter, U, from the

previous output, o(t−1), to the current hidden state, h(t). The second recurrent

connection is parameterised by a weight parameter, W, from the previous hidden

state, h(t−1), to the current hidden state, h(t).

3.4. Overview of recurrent neural networks 70

Figure 3.22: One-to-many RNN architecture (adapted from [46]).

3.4.1.4 Encoder-decoder many-to-many

This architecture aims to map an input sequence into an output sequence. Com-

paring with synchronised many-to-many, this RNN allows the networks to learn the

different length of the input and output time steps. This architecture is useful for

many tasks, for example, machine translation where the text from the source and

target language are probably not a one-to-one mapping relationship [95]. That is

the main reason of varying input-output length.

This architecture comprises the combination of the many-to-one and one-to-many

architectures, as shown in Figure 3.23. The first part of the network is often called

an encoder. As the input sequence is mapped to a fixed-sized vector represented

by a context vector, c. The idea is to use one RNN for the encoder that aims to

summarise the input sequence to a fixed-sized vector. After that, the second part

of the network uses another RNN to generate an output sequence back from the

context vector, c, called a decoder.

3.4. Overview of recurrent neural networks 71

Figure 3.23: Basic encoder-decoder many-to-many RNN architecture (adapted from

[46]).

Figure 3.23 represents the full network of the basic encoder-decoder many-to-

many approach. The many-to-one approach is used to encode the input sequence to

the context vector representation, c. Where c is calculated by the last time step of

the RNN encoder. Then, the one-to-many approach is used to decode the context

vector, c, to the output sequence, y. For the RNN decoder the context vector, c, is

used as an initial hidden state, h(0) = c. Also, the hidden state of the decoder at

time t is computed by;

h(t) = f(Wh(t−1) + Uc + b), (3.65)

where U and W are the weight parameter of input-hidden and hidden-hidden

connection, respectively.

3.4. Overview of recurrent neural networks 72

Figure 3.24: Encoder-decoder with feedback (adapted from [46]).

Many variation of encoder-decoder RNNs have been proposed in the literature.

For example, [95] proposed an encoder-decoder with additional output-to-hidden

feedback connections, as illustrated in Figure 3.24. It shows that the encoder part is

still the same as in the basic encoder-decoder approach. The major difference can be

found in decoder part. Firstly, c, is used as initial input, y(0) = c, and initial hidden

state, h(0) = c. Also, the output of the decoder at each time step also becomes the

input to the decoder at the next time step, which is called output-hidden recurrence.

Hence, the hidden state of the decoder at time t is computed by;

h(t) = f(Wh(t−1) + Ry(t−1) + b), (3.66)

where R and W are the weight parameter of output-hidden and hidden-hidden

connection, respectively.

3.4. Overview of recurrent neural networks 73

Figure 3.25: Encoder-decoder with peek (adapted from [46]).

The next example of encoder-decoder models, proposed by [15], is called encoder-

decoder with peek. Clearly, the encoder RNN is still the same, but the main modifi-

cation is on the decoder part. It consists of three recurrence connections including:

i) hidden-to-hidden, ii) output-to-output, and iii) output-to-hidden. Hence, the

hidden state and output state at time t can be computed as follows,

h(t) = f(Wh(t−1) + Ry(t−1) + b), (3.67)

y(t) = f(Vh(t) + Sy(t−1) + Pc + c), (3.68)

where R, W, V, S, and P are the weight parameter of output-hidden, hidden-

hidden, hidden-output, output-output, and input-output connection, respectively.

The context vector, c, is used as the initial input and the initial hidden state,

h(0) = y(0) = c.

3.4. Overview of recurrent neural networks 74

3.4.2 Bidirectional RNN architectures

With standard or unidirectional RNNs, future information cannot be reached from

the current state. RNNs consider only the past context, as shown in equation

(3.61). This indicates that the hidden representation at time step t is computed

based on current input information at time t and the previous hidden state, h(t−1).

Unidirectional RNNs are well-suited for some tasks, for example text generation

because we do not know the next words and we see only the previous words. On

the contrary, many tasks are able to access and require both the past and future

contexts, such as grapheme-to-phoneme conversion, speech recognition, and text-

to-speech. To overcome these problems, bidirectional recurrent neural networks

(BRNN) were introduced by Schuster and Paliwal [90] which aim to consider both

the past context and future context.

Figure 3.26: Bidirectional RNN (adapted from [46]).

The general structure of BRNNs consists of two parallel hidden layers propagat-

ing in two directions to the same output, as shown in Figure 3.26. The first layer, a

3.4. Overview of recurrent neural networks 75

forward pass, processes the original time step input sequence. The second layer, a

backward pass, processes the reverse input sequence time step by time step. Since

there are two RNN layers, each RNN shares their parameters Uf ,Wf ,Vf for the

forward pass and Ub,Wb,Vb for the backward pass. The output vector can cre-

ated using by various options. For example, the summation of the forward and the

backwards hidden layer, o(t) = [o
(t)
f + o

(t)
b], the concatenation of these two layers,

o(t) = [o
(t)
f ,o

(t)
b], and so on.

3.4.3 Long short term memory (LSTM)

The RNNs are designed to memorise previous information to predict the present

output, as mentioned in section 3.4.1. In theory, standard RNNs should capture such

long-term dependencies. However, it has been reported that they may not had the

ability to learn these long-term dependencies in real applications [7]. For example,

language models have been successful in the case of short-term dependencies, but can

not predict a correct word in the case of a relevant word that happened several steps

apart from the current word. Hochreiter and Schmidhuber [55] and Bengio et al.

[7] found that the difficulty of learning long-term dependencies happens during the

gradient backpropagation through time. This issue is also known as the vanishing

gradients problem and the exploding gradients problem.

In order to deal with the unstable gradients problem, long short term memory

networks (LSTMs) were introduced by Hochreiter and Schmidhuber[55]. They have

been widely used in major technology companies including Microsoft [117], Baidu

[4] and Google [128] and have been found to be extremely successful in various kinds

of applications, such as winning the ICDR handwriting recognition competition in

2009 [43]. The LSTM is a recurrent neural network that uses memory blocks instead

of classical neurones. Each LSTM block contains gates that it uses to manage the

information into and out of its block. They called gates because each gate uses

a sigmoid function, which is in the range of 0-1, to make decisions about storing,

reading and writing cell memory. There are three types of gates within the LSTM,

namely: input, i, forget, f, and output gate, o. Notice that, each gate has the same

equation (as shown in equation 3.69 - 3.71), just with different input-hidden weights,

3.4. Overview of recurrent neural networks 76

U, and recurrent hidden-hidden weights, W, into the cell.

i = σ(Wih(t−1) + Uix(t)) (3.69)

f = σ(Wfh(t−1) + Ufx(t)) (3.70)

o = σ(Woh(t−1) + Uox(t)) (3.71)

g = tanh(Wgh(t−1) + Ugx(t)) (3.72)

ct = ct−1 ◦ f + g ◦ i (3.73)

ht = tanh(ct) ◦ o (3.74)

Figure 3.27: Synchronised many-to-many RNN architecture using LSTM Memory

Cell.

3.4.4 Training LSTM-RNN using backpropagation through

time (BPTT)

Backpropagation is an algorithm for minimising the cost function, which aims to

find the optimal weight and bias parameters in the network. We discussed standard

backpropagation in Section 3.3.1.2, but that technique is designed for feedforward

networks. Hence, this section will give an overview of the backpropagation through

3.4. Overview of recurrent neural networks 77

time (BPTT) training method and explain how it differs from the standard back-

propagation algorithm that uses in a feedforward network. A BPTT is a common

technique of training recurrent neural networks, while a backpropagation uses to

train feedforward neural network. Both algorithms have the same goal, which is to

optimise the weight parameters in the network. The key difference is that BPTT

begins with an unfolding process, which converts the recurrent neural network dia-

gram into a multilayer feedforward neural network over t time steps, which depends

on the sequence length. After that, the backpropagation algorithm is applied to the

unfolded RNNs, which is known as backpropagation through time.

BPTT consists of the two steps of propagation and weight update. The propa-

gation process comprising of two steps including forward propagation and backward

propagation. In the forward process of backpropagation, this aims to compute the

output values in each time step t given an input sequence, the weight parameters

and biases. The calculation of the predicted output at time t, ot, is defined as Equa-

tion (3.62). In the backward process of backpropagation, this aims to calculate the

gradients of the error with respect to the parameters. To begin with, the predicted

output at time t , ot, and the actual output at time t, yt, are used to calculate a

loss function or error function, Lt, shown in Equation (3.75):

Lt =
1

2
(‖ yt − ot ‖)2. (3.75)

The total error, L, is the calculated by the summation of error at each time step,

Lt, as follow;

L =
1

T

T∑
t=1

Lt. (3.76)

After getting the error in each output time step and the total error, we can now

process the gradients of the error with respect to the parameters. We can then

use the chain rule of differentiation as used in feedforward networks. The main

difference is that the BPTT sums up the gradient errors at each time step, while the

feedforward network is not required to do this because it has no connection between

time step.

3.4. Overview of recurrent neural networks 78

Figure 3.28: An example of how backpropagation throughtime method uses chain

rule and applies on a loss funtion at time t (adapted from [46]).

Figure 3.28 shows an example of how the BPTT method using the chain rule

algorithm finds a change in L(t) with respect to weight parameter W, called the

partial derivative of L(t) with respect to W can be shown as follow:

∂Lt

∂W
=
∂L(t)

∂o(t)

∂o(t)

∂h(t)

∂h(t)

∂W
. (3.77)

As we know that h(t) depends on W and h(t−1), so chain rule is applied again

all the way down to t = 0.

∂Lt

∂W
=

0∑
k=t

∂L(t)

∂o(t)

∂o(t)

∂h(t)

∂h(t)

∂h(k)

∂h(k)

∂W
. (3.78)

From this gradient, it can be seen that the partial derivative of Lt with respect

to W, ∂Lt

∂W
, does not depend only on the parameters at the time t, but also depends

on the parameters from the previous time step from t to 0. We can then apply this

chain rule to every time step and then sum up over all time steps as done for the

total error in Equation (3.76).

After a complete forward step and backward step in the propagation process, we

move on to the updating weight process. In this step, the gradient errors from the

3.4. Overview of recurrent neural networks 79

previous step are used by the optimisation method, which aims to minimise the loss

function by:

Ŵ = W− ∝ ∗ ∂E
∂W

, (3.79)

where Ŵ is the updated weights, 0 ≤∝≤ 1 is the learning rate parameter, which

is used to control how quickly the network learns. The learning can be too slow if

the learning rate is set too low, and the weights can oscillate if learning rate is set

too high.

3.4.4.1 Epochwise and truncated backpropagation through time

There are two different backpropagation through time (BPTT) approaches related to

the calculation of gradient errors and updating weights: epochwise BPTT and trun-

cated BPTT. The main difference between these two approaches is that epochwise

back-propagation through time computes the gradient error at all time steps in each

sentence from the start time to the end time of the sequence, denoted as L(t0,tτ),

where τ is the sequence lenght. Figure 3.29 shows how epochwise BPTT computes

the gradient errors of each time step.

Figure 3.29: An example of how epochwise backpropagation looks on a sequence of

length 6.

To do this, epochwise BPTT requires more memory because it has to save the

entire input sequence to the network, the network state, the target output and

also the gradient error of the interval [t0, tτ]. To overcome this problem, truncated

BPTT uses a fixed length ttrunc to alleviate this problem. The truncated BPTT

instead computes the error from the start time to the fixed time instead, denoted as

3.4. Overview of recurrent neural networks 80

L(t0,ttrunc). Noted that ttrunc < tτ . One additional process of truncated BPTT is it

has to propagate the network state to the next block if the current sequence has not

finished, otherwise the state is set to zero. Figure 3.30 shows how truncated BPTT

computes the same sequence of Figure 3.29 with fixed truncation to 3-time steps.

Figure 3.30: An example of how truncated backpropagation looks on a sequence of

length 6 with 3 truncation steps.

It can be seen that truncated BPTT is more practical than epochwise BPTT in

the case of a long sequence. However, one of the limitations of truncated BPTT is its

ability to get the information from both the past and future from the bidirectional

networks. As shown in Figure 3.30, the first truncation block cannot see the infor-

mation from the second block. Additionally, both approaches are based on global

sequence dependency. This makes the mini-batch training less efficient because it is

required to see and process the whole sequence in order.

Chapter 4

Data corpora

4.1 Introduction

This chapter describes the audiovisual speech dataset that was used for training

and testing the models in this work, namely KB-2k. We used the KB-2k dataset

because it is a large audiovisual speech dataset and is designed for visual speech

synthesis. There are many publicly large audiovisual dataset such as GRID [17],

TCD TIMIT[53], but they are designed for audiovisual speech recognition. The

major limitations of audiovisual speech recognition datasets are limited-domain (i.e.

for digit recognition) and/or they contain a lot of speech from different speakers but

not many examples for each speaker. Conversely, for visual speech synthesis, it is im-

portant to have a lot of recordings from a single person. Additionally, we found that

most publicly available audiovisual datasets for visual speech synthesis have limited

vocabulary and are too small for modern machine learning approaches. For example,

LIPS [106] corpus contains only 279 sentences, whereas our dataset contains 2,542

sentences. This chapter begins with the overview of the KB-2k dataset in terms of

data collection, recording conditions, acoustic data, and acoustic (phoneme) units.

Then, we describe the visual feature extraction that we use to parameterise the fa-

cial motion in KB-2k. Finally, the three additional modules regarding the new basic

units and data pre-processing are described including: (i) a novel visual units named

dynamic viseme units, (ii) visual features normalisation, and (iii) syllabification of

sound form.

81

4.2. Overview of KB-2k dataset 82

4.2 Overview of KB-2k dataset

A set of 2,542 phonetically balanced TIMIT sentences of audiovisual speech dataset

from Disney Research named KB-2k was used in this work [98]. The KB-2k dataset

contains speech from a professional male actor with clear articulation and standard

US accent. The recordings were spoken at a normal speaking rate with no emotion.

The dataset contains both frontal and side views of the actor, but only the frontal

view was used in this work. The full high definition video was captured on a Sony

DMW-EX3 professional video camera at 29.97 frames per second (fps) with 1080p

resolution according to the progressive scan mode. The recordings of the dataset

were made in the same lighting conditions. The total video length is approximately

8 hours and contains about 260,000 frames of speech. The average sentence length

is about 5 seconds. The following sentences show the shortest and longest sen-

tences: “they were shattered” and “to date the one meat showing favorable results

at sterilization doses is pork”. Figure 4.1 shows example images from the KB-2k

dataset.

Figure 4.1: Example images from the KB-2k dataset.

The acoustic speech signal was recorded at a sample rate of 48 kHz with 16 bits

per sample in the form of WAV files. Although, the natural speech is used only

for combination with the visual speech in this work. Each word was phonetically

transcribed using the Carnegie Mellon University pronunciation dictionary into the

ARPAbet phoneme set. The IPA and ASCII symbol for the consonants, vowels

4.3. Visual processing of KB-2k dataset 83

and diphthongs used in the ARPAbet phoneme set are shown in Table 2.1. Manual

annotation was carried out to obtain phonetic label boundaries after applying word

to phoneme conversion. Figure 4.2 shows an example of the waveform and label file

from the KB-2k dataset. The second and third panes show the phoneme (PH) and

word boundaries (WRD), respectively.

PH
WRD

Figure 4.2: Example of the waveform and label file from the KB-2k dataset. The PH

pane denotes for phoneme boundary and WRD pane denotes for word boundary.

4.3 Visual processing of KB-2k dataset

The visual speech parameters were extracted from the the visible speech articulators

(e.g. face) in each frame using an active appearance model (AAM) [20, 69]. Active

appearance models (AAMs) provide a low dimensional representation of the shape

and appearance of the speech articulators and they are also generative and so can

re-synthesise near photo-realistic images of faces [20, 69]. In this work, the lower face

including jaw and lips was used instead of the whole face because the other parts,

such as nose, eyes, eyebrows, can sometimes introduce noise to the AAM models.

Also, we make the assumption that they are not speech related.

The shape component, s, of the AAM is a set of facial images with the two-

dimensional vertices of a mesh. For each labelled image, the shape vector is repre-

sented by concatenating the (x, y) coordinates of each landmark.

s = {x1,x2, . . . ,xn,y1,y2, . . . ,yn, }, (4.1)

Where (xi, yi) are the x and y coordinates of the landmark i and n denotes the

4.3. Visual processing of KB-2k dataset 84

number of landmarks. This KB-2k database used 34 landmarks, n = 34, to capture

the contour of jaws, inner and outer lips, as shown in Figure 4.3.

Figure 4.3: An example of a hand-labelled lower face image of a shape component

[98]

.

Each training image was then alingned to the same translation, scale and rotation

to ensure that they represent in the same coordinate system in all images using

Procrustes analysis [22]. An illustration of unaligned and aligned shape images is

shown in Figure 4.4.

(a) (b)
Figure 4.4: A comparison of an unaligned (left) and aligned (right) shape landmarks.

Each cross represents the x and y coordinates of each landmark.

These aligned shape vector then model the variation of the shape using a linear

4.3. Visual processing of KB-2k dataset 85

model of the form:

s = s + Psbs, (4.2)

where s is a vector of (x, y) coordinates of the shape vertices. s is the mean shape

from the training data, Ps are the modes of shape variation, and bs a vector of

shape parameters that encode the shape. For KB-2k, Five modes, m = 5, were used

to capture 95% of the shape variation.

The appearance component, a, of an AAM is the pixel intensities of the image

inside the shape boundary. PCA is then applied on the shape normalised pixel

intensities, giving a compact, linear model of appearance variation of the form:

a = ā + Paba, (4.3)

where a is the resulting image. a is the mean appearance image, Pa are the modes

of appearance variation containing n eigenvectors, and ba a vector of appearance

parameters. To more compactly represent the face and to better model the non-

linear relationship between facial regions, multi-segment AAMs can be used rather

than the single-segment AAMs [107]. This technique aims to model independent

appearance components. From the KB-2k dataset, two-segment AAMs were used

with the first region containing the lower face without inner mouth, a1, and the

second region containing the inner mouth pixels, a2, as shown in Figure 4.5. Note

that, P1
a and P2

a contain n1 = 46 and n2 = 10 modes to describe 95% of the lower

face without inner mouth and inner mouth, respectively.

Figure 4.5: An example of two-segment AAMs.

4.3. Visual processing of KB-2k dataset 86

The original shape and appearance parameters, in both regions are concatenated

and normalised into the same unit scale between appearance intensity and shape

parameters as follows,

b =

Wsbs

Wab
1
a

b2
a

 , (4.4)

where bs is the vector of shape parameters that encodes the shape and b1
a and

b2
a are vectors of appearance parameters from the two multi-segment model (e.g.

inner mouth and the rest). Ws ∈ Rm×m is a diagonal weight matrix to correct the

difference in units between bs and b2
a which has the same entry on the main diagonal

and zero elsewhere. Wa ∈ Rn1×n1 denotes a diagonal weight matrix to correct the

difference in units between b1
a and b2

a which has the same entry on the main diagonal

and zero elsewhere. These two weight are calculated as follows, where σ2
bsi
, σ2

b1ai
and

σ2
b2ai

represent the variance in each dimension of the shape and appearance models,

Ws =

√√√√∑n2

i=1 σ
2
b2ai∑m

i=1 σ
2
bsi

,Wa =

√√√√∑n2

i=1 σ
2
b2ai∑n1

i=1 σ
2
b1ai

. (4.5)

To remove redundancy in the shape and appearance components of the model,

b, a third PCA to give a combined model of the shape and appearance variation,

as follows;

b = Qy, (4.6)

where Q are the eigenvectors, and y is a vector of AAM parameters controlling the

combined shape and appearance parameters. Note that, there is no mean of com-

bined parameters in this expression because the shape and appearance parameters

have zero mean. For KB-2k, the final model requires 30 modes to account of 98%

of the total variance, as shown in Table 4.1. The first three modes of variation for

a combined shape and two appearance models built from the speaker in the KB-2k

corpus are shown in Figure 4.6. It can be seen that the first mode represents the

opening and closing mouth with spreading lips, while the second mode seems to

represent the same thing with neutral lips.

4.3. Visual processing of KB-2k dataset 87

Table 4.1: A summary of AAM visual features of KB-2k corpus.

Features Values

Video data rate (fps) 29.97

Number of face pixels 2073600

Number of AAM (y) 30

Number of shape (bs) 5

Number of appearance-outer (b1
a) 46

Number of appearance-inner (b2
a) 10

Mode 1

Mode 2

Mode 3

-3 3

Figure 4.6: The first three modes of a combined shape and appearance model at 3

standard deviations (right) and -3 standard deviations (left) from the mean.

4.4. Dynamic viseme units of KB-2k dataset 88

To reconstruct an image from a given set of AAM parameters, y, it can be calculated

as follows,

s = s̄ + PsW
−1
s Qsy, (4.7)

a1 = ā1 + P1
aW

−1
a Q1

ay, (4.8)

a2 = ā2 + P2
aQ

2
ay, (4.9)

Q =

Qs

Q1
a

Q2
a

 , (4.10)

where Qs is a matrix of the first m largest eigenvectors corresponding to the

shape model, Q1
a is the next n1 eigenvectors corresponding to the first appearance

model, and Q2
a is the next n2 eigenvectors corresponding to the second appearance

model. The final image is then computed by a forward piecewise affine warping of

the two appearances to the shape landmarks.

4.4 Dynamic viseme units of KB-2k dataset

Dynamic visemes were recently introduced as units of visual speech, equivalent to the

phonemes of acoustic speech. They represent groups of similar lip-motions instead

of groups of similar acoustic sounds for phonemes or a static mouth shape for

traditional visemes. A set of dynamic visemes is learned automatically by clustering

visual speech parameters in a database. This section will describe our replication

of dynamic viseme units pioneered in Taylor et al. [98]. The framework of dynamic

viseme classifier system can be divided into two parts: training and testing. In

the training part, dynamic viseme units are learned automatically based on visual

speech parameters. In the testing part, a sequence of dynamic viseme classes is

predicted from AAMs sequences using the trained models.

4.4.1 Training part

This section describes the training part of how to build dynamic viseme units. We

focus on how to identify and cluster gesture from an audiovisual speech database,

4.4. Dynamic viseme units of KB-2k dataset 89

namely KB-2K, as shown in Figure 4.7.

Figure 4.7: The framework of dynamic viseme training system.

4.4.1.1 Identifying Visual Gestures

This section aims to identify a movement of the visible articulators in the video,

aka a visual gesture sequence. To segment gestures, the image sequences from the

training video are first projected onto an AAM to give a low-dimensional represen-

tation of the visual features. KB-2k is parameterised by a 30 dimensional AAM as

described in Section 4.3. After that, it is assumed that when a person is speaking,

the articulators slow down to reach an articulatory target and begin to accelerate

towards the next target. Hence, gesture boundaries, g, can be defined as the position

where articulators change direction. The velocity (delta) of the AAM parameters in

each dimensional are computed to find the rate of change as follow:

∆yt =
yt+1 − yt−1

2
, (4.11)

where ∆yt is a velocity vector at frame t, yt represents a vector of 30 AAM param-

eters at frame t, and 1 6 t < T , T is a total number of frames in a sequence of

y. Then, the magnitude of the velocity coefficient is computed to find the speed of

change as follow:

dmt =

√√√√M=30∑
i=1

(∆yit)
2, (4.12)

∆dmt =
dmt+1 − dmt−1

2
, (4.13)

4.4. Dynamic viseme units of KB-2k dataset 90

where dmt is the magnitude (speed) of velocity at time t, M is number of AAM

parameters, and yi is the i-th coefficient of the velocity at frame t. As an example,

Figure 4.8, shows the derivative of dm, ∆dm, on a blue line, for the utterance

“resistance thermometers”. Where ∆dm crosses from negative to positive, this

indicates a change of articulation and hence a change of dynamic viseme. These

are illustrated with red dots, and provide dynamic viseme (gesture) boudaries. The

lower tier with green boxes shows the phoneme boundaries and the upper tier with

the purple boxes mark the gesture boundaries. It can be seen that the gesture

boundaries (dynamic viseme) do not align with acoustic (phonemes) and all visual

gestures denote as g.

Frame Number
0 10 20 30 40 50 60 70

G
ra

di
en

t M
ag

ni
tu

de

-40

-20

0

20

40

60

80

 g g g g g g g g g g g g

sil r ih z ih s t ah n s th er m aa m ah d er s sil

Figure 4.8: An illustration of the gradient magnitude in AAM parameter space (blue

line) corresponds to phoneme and dynamic viseme boundaries from the sequence

“resistance thermometers”. Where the red dotted lines with purple boxes reflect

dynamic viseme boundaries and the bottom green boxes display phonemes and its

boundaries.

4.4.1.2 Clustering Visual Gestures

The segmented visual gestures from the previous section are clustered into visually

similar classes and the number of dynamic viseme classes is determined in advance.

Note that one cannot directly apply traditional clustering technique because the

sequence lengths of the gestures are different. The initialisation process is an attempt

to represent different gestures or varying length in a fixed length vector. There

4.4. Dynamic viseme units of KB-2k dataset 91

are many approaches to convert varying length representations into a fixed length

representation. For example, Hilder et al. [54] measured the similarity between

different length gestures using a dynamic time warp (DTW). In addition, hidden

Markov model (HMM) supervectors are also applied to non-equal lengths of gesture

[98]. They noted that the HMM supervector technique is better than the DTW

approach because HMM supervectors tend to generate better visual clusters.

To generate HMM supervectors [11], a three-state HMM universal background

model (UBM) is learned from all of the gestures, g, in the corpus. Each state j is

represented as a multivariate Gaussian mixture model (GMM), ζj(g), as follow:

ζj(g) =
K∑
k=1

wjkN(g;µjk,Σjk), (4.14)

where j is the HMM state, K is the number of modes, wjk is the weight of the k-th

modes in the j-th HMM state. N(g;µjk,Σjk) represents as a multivariate Gaussian

with mean, µjk, and covariance, Σjk. For a given sequence of AAM vectors for

gesture g, there are decoded into a state sequence in the UBM. According to the

state sequence, the state of the UBM are adapted by the AAM vectors that have

been allocated. Then, the variable length gestures are transformed into a fixed-

length maximum a posteriori (MAP) adapted mean vector by updating the UBM

using MAP adaptation [64];

µ̂jk =
Njk

Njk + τ
µ̄jk +

τ

Njk + τ
µjk, (4.15)

where µ̂jk represents the MAP updated mean of the j-th state and k-th mode, µjk

denotes the mean of the j-th state and k-th mixture in the UBM, and µ̄jk is the

mean of the AAM vector allocated to state j and mode k. τ is a weight that controls

the influence of the adapted data where τ is set to 10 for the MAP estimation in

this work, Njk is the occupation likelihood of the adaptation data in state j and

mode k.

Next, the HMM supervector for each gesture, Gs, is computed as the difference

between the UBM mean vectors, µj, and the MAP adapted mean vectors, µ̂j in

4.4. Dynamic viseme units of KB-2k dataset 92

each mixture k model:

Gs =

µ11−µ̂11

µ22−µ̂22

· · ·

µjk−µ̂jk

 , (4.16)

where Gs ∈ RJ×K×D, J is the number of HMM state, K is the number of mixture

and D is the number of AAM features. In this work, we created three-state hidden

Markov models with each state modeled by a single Gaussian mixture model in a

left-to-right model with no skip. Note that, these training conditions were the same

as we found in [98].

A graph-patitioning-based clustering algorithm is used to cluster all of the HMM

supervectors [60]. This continues to split the graph into two groups until it reaches

the specific number of k-clusters using a min-cut graph partitioning algorithm. It

can be computed using a traditional single-link criterion function. Taylor et al. [98]

noted that graph-based clustering is able to group similar gestures better than k-

means clustering. An example of selected dynamic visemes from the graph-based

clustering is depicted in Figure 4.9. It can be seen that “V29” represents lip fun-

nel, “V36” denotes mouth stretch. More interactive examples can be found in

http://oaom.openservice.in.th/DV/index.html.

4.4. Dynamic viseme units of KB-2k dataset 93

V2

V14

V29

V36

Figure 4.9: An example of selected dynamic visemes from the graph-based clustering.

Each viseme represents a different visual function. For example “V29” represents

lip funnel and “V36” denotes mouth stretch.

To determine how many dynamic visemes classes are required, we then do this

manually by looking at the compactness captured by the different classes of dynamic

visemes. Cluster compactness is used as a measure of clustering quality, where the

compactness is the sum of the distances of the supervectors assigned to a cluster to

the respective cluster centroid (median). Figure 4.10 shows the cluster compactness

as a function of the number of clusters between 5 and 600. It can be seen that it is

difficult to conclude which is a reasonable number of dynamic visemes. In this work,

hence, we will consider the analysis-synthesis approach. This approach determines

this empirically by testing synthesisers trained using a different number of dynamic

visemes classes, and then select the number that achieves the highest performance

on a validation set. More details are given in Section 5.3.1.4. It can be concluded

that a reasonable number of dynamic visemes is approximately 160 viseme classes .

4.4. Dynamic viseme units of KB-2k dataset 94

Number of clusters
0 50 100 150 200 250 300 350 400 450 500 550 600

C
lu

st
er

 C
om

pa
ct

ne
ss

100

150

200

250

300
Total Distance to Cluster Medians

Figure 4.10: The cluster compactness as a function of the number of clusters com-

puted from the HMM supervectors extracted from the KB2K corpus.

4.4.2 Testing part

This section describes the testing part of how to classify dynamic viseme units.

We focus on how to determine the dynamic viseme class from a sequence of AAM

parameters in the testing set, as shown in Figure 4.11.

Figure 4.11: The framework of dynamic viseme classifier system.

4.5. Data preparation of KB-2k dataset 95

4.4.2.1 Determining Visual Gestures

This section describes how to predict dynamic viseme classes from a sequence of

AAM parameters in the testing set. In the first step, a sequence of AAM parameters

are segmented into gesture sequences, and then converted to supervectors using the

same segmentation and conversion modules, as described in the training process.

Then, the k nearest neighbour algorithm is used to classify each unlabelled test

supervector into a dynamic viseme class. Generally, we can use various distance

metrics to find the distance between a test supervector, ĝ, and the supervector in

the training data, gj (1 6 j 6 M where M is number of training supervectors).

Note that the Euclidean distance is used in this work, as follows:

d
(
ĝ,gj

)
=

D∑
d=1

‖ ĝd − gjd ‖2, (4.17)

j∗ = argmin
j

d
(
ĝ,gj

)
(4.18)

where D denotes the number of element in the supervector and d(ĝ,gj) is the Eu-

clidean distance between each training supervector, gj, and the test supervector, ĝ.

We then select the j∗-th training supervector with the shortest distance. Finally the

dynamic viseme class of ĝ is simply assigned from the class of gj∗ .

4.5 Data preparation of KB-2k dataset

This section describes two additional modules of KB-2K’s preprocessing. Firstly,

feature normalisation is used to scale the AAM features into the same range. Sec-

ondly, syllable segmentation is used to find a syllable’s boundaries in the case where

the pronunciation of the words is available.

4.5.1 Feature normalisation

Since the range of each dimension of features varies widely, this would make some

methods not work efficiently. For example, it reported that a large difference in the

variance of feature dimensions is a reason of slow training and getting stuck in local

4.5. Data preparation of KB-2k dataset 96

optima during gradient descent. Therefore, the range of all features must be scaled

or normalised before training the models.

This is an important concern for our AAM features on KB-2k dataset because

the scale of each dimension is very different. Figure 4.12 shows the examples of

AAM feature order 1, 10, 20, and 30. Each box denotes the first quartile (Q1) to

the third quartile (Q3). It can be seen that, the medians of each AAM parameter

(identified by the red line within the box) are all at the similar level but they

represent with different distributions. In the case of non outliers (identified by red

signs), for example, the range of 1st parameter is approximately between -150 and

200, whilst the 30th AAM feature is between -12 and 12.

i-th AAM parameter
1 10 20 30

M
ag

ni
tu

de

-150

-100

-50

0

50

100

150

200

Figure 4.12: Examples of the range of AAM features order 1, 10, 20, and 30.

There are two common techniques used to adjust the range of parameters: fea-

ture scaling and standardisation. Feature scaling or min-max scaling aims to scale

the values of original data to the fixed range of [0, 1] or [−1, 1] with smaller standard

deviations. Feature standardisation or z-score normalisation aims to standardising

the features into z-score. The new data is centered around 0 with a standard devi-

ation to 1. Equations (4.19) and (4.20) show how to calculate feature scaling, zm,

and standardisation, zs, respectively.

zm =
y − ymin

ymax − ymin

, (4.19)

zs =
y − µ
σ

, (4.20)

4.5. Data preparation of KB-2k dataset 97

where y is the original features, µ and σ is the mean and standard deviation of

the original features, respectively.

For our visual speech synthesis application, we prefer z-score normalisation over

min-max scaling because we would like to maximise the variance rather than limiting

the output data between maximum and minimum values in the min-max scaling

method.

4.5.2 Syllable segmentation

The syllable is one of the basic units of speech, and can be used to describe a sequence

of speech sounds. Generally, every syllable has one vowel sound and the number of

vowel in a sequence equals the number of syllables. For example, “/let.@r/” has two

vowels (/e/ and /@/) and “/kæt/” has one vowel (/æ/). The syllable structure, σ,

comprises of two components: onset, O, and rime, R, as shown in Figure 4.13. The

onset is usually a consonant or cluster consonant. The right branch of the syllable

structure is rime, which consists of nucleus, N , and coda, C. Nucleus is usually

vowel and optional coda refers to the consonant that following the nucleus.

σ

O R

N

æ h

σ

O R

N

ɪ r

σ

O R

N

ə ð

σ

O R

N

i p

C

m

happy rhythm

Figure 4.13: Syllable structure for happy and rhythm.

Syllabification is the process of syllable segmentation, which comprises of two

types: syllabification of letters and syllabification of phonemes. For example, a

4.5. Data preparation of KB-2k dataset 98

syllabification of a word ”happy” is ”hap-py” which normally uses a hyphen to

separate each syllable, and a syllabification of a sequence of phonemes “/hæpi/” is

“/hæ.pi/” which normally uses a dot to divide each syllable. Figure 4.13 depicts

the syllable structure for the word “happy” and “rhythm”.

This work focuses only on the syllabification of phonemes and describes how

to identify the syllable boundaries in sound form. These syllable boundaries will

be used to represent the input features in our speech animation model (Section

7.2.1), as we have made an assumption that syllable information, such as number of

syllables in a word and the number of phonemes in a syllable, affects the way people

speak. For the syllable marker, we use simple syllabification rules including;

• finding the vowels and diphthongs (nucleus) by scanning from left to right and

form a syllable node from them.

• For each syllable node, link onsets (consonants) to the left of the nucleus

• For each syllable node, link codas (consonants) to the right of the nucleus

• For the ambiguous consonants that represent as both onset and coda;

– adding syllable marker after coda in the case of stressed nucleus and short

vowel, for example “/lev.@l/” instead of “/le.v@l/”

– adding syllable marker after nucleus in the case of unstressed nucleus and

short vowel, for example “/bI.liv/” instead of “/bIl.iv/”

– adding syllable marker after nucleus in the case of stressed nucleus and

long vowel, for example “/pli.zIN/” instead of “/pliz.IN/”

4.5.3 Training/validation/testing dataset

All subsequent experiments in this thesis are performed on the KB-2k audiovisual

speech dataset which contains 2,542 phonetically balanced utterances from TIMIT

totalling around 8 hours. We randomly partition this dataset into four parts: a

training set (80%), a validation set (10%), a testing set (10%) and a special testing

set (2%). Note that the special testing set is selected as the same 50 held-out

4.5. Data preparation of KB-2k dataset 99

utterances which were used in Taylor’s work [98] and are a subset of the testing

set. Table 4.2 summaries key characteristics of the database. We know that having

mismatched training and test sets makes it harder to improve the performance of

the synthesiser. Hence, we show the phoneme distribution of each set in Figure 4.14.

It can be seen that each set especially the development and test sets come from the

similar distributions.

Table 4.2: A summary of KB-2k corpus.

Features Training Validation Testing SpecialTesting

Total number of utterances 2,042 250 250 50

Total number of unique PH 41 41 41 41

Total number of unique SV 14 14 14 14

Total number of unique DV 160 160 160 160

Average number of PH per syllables 2.55 2.57 2.55 2.57

Average number of PH per word 3.94 3.94 3.97 3.97

Average number of syllables per word 1.54 1.53 1.55 1.54

Average number of PH per phrase 31.56 30.84 31.64 30.94

Average number of DV per phrase 15.24 15.25 14.99 14.48

Average number of syllables per phrase 12.38 11.97 12.34 12.02

Average number of words per phrase 7.97 7.84 7.95 7.74

Average number of PH per utt 35.96 36.42 34.99 33.32

Average number of syllables per utt 14.51 14.64 14.01 13.16

Average number of words per utt 9.58 9.77 9.16 8.62

Average number of phrases per utt 1.26 1.31 1.2 1.14

Average number of PH per DV 2.68 2.66 2.68 2.72

Average number of syllables per DV 1.42 1.42 1.41 1.4

Average number of words per DV 1.28 1.28 1.27 1.28

4.5. Data preparation of KB-2k dataset 100

Phoneme class
n s sil d d l t r k m z p dh w b f v hh sh g y sp ch jh th zh ah ih uh iy er eh ae aa ey ow ay uwaoaw oy

Fr
eq

ue
nc

y

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Training set

Consonant
Vowel

Phoneme class
n s sil d d l t r k m z p dh w b f v hh sh g y sp ch jh th zh ah ih uh iy er eh ae aa ey ow ay uwaoaw oy

Fr
eq

ue
nc

y

0

100

200

300

400

500

600
Validation set

Consonant
Vowel

Phoneme class
n s sil d d l t r k m z p dh w b f v hh sh g y sp ch jh th zh ah ih uh iy er eh ae aa ey ow ay uwaoaw oy

Fr
eq

ue
nc

y

0

100

200

300

400

500

600
Testing set1

Consonant
Vowel

Phoneme class
n s sil d d l t r k m z p dh w b f v hh sh g y sp ch jh th zh ah ih uh iy er eh ae aa ey ow ay uwaoaw oy

Fr
eq

ue
nc

y

0

20

40

60

80

100

120

140
Testing set2

Consonant
Vowel

Figure 4.14: Phoneme distributions in training, development, testing and special

testing sets.

Chapter 5

Visual speech synthesis based on

hidden Markov models

5.1 Introduction

Until recently, in the last 20 or so years, most automatic speech recognition systems

that have been developed are based on hidden Markov models (HMMs) [41, 51]. At

the start of that period, text to speech systems (TTS) tended to use unit selection

techniques. At this time, research into using HMMs for synthesis led to a step-wise

output of parameters which produced low quality speech. This problem is originated

from a maximum likelihood solution which always outputs the same mean values in

each state, and a step change output at state boundaries. A major improvement

was the introduction of using temporal derivative as constraints with the maximum

likelihood solution, which produces a more smooth and realistic output [110, 111].

Subsequently HMMs gained popularity for synthesis and a series of publications

and toolkits (e.g., an open source system HTS [126]) for developing speech synthesis

system have been produced.

This chapter starts with the basic structure of HMM synthesis in the visual

domain is described, for both the training and synthesis parts. Finally, an exper-

imental section focuses on the effect of video data rate, dynamic features, number

of HMM states and visual feature normalisation in terms of the synthesised visual

output. We also examine three types of basic units: phonemes, traditional (static)

101

5.2. HMM-based visual speech synthesis 102

visemes, and dynamic visemes, and aim to find the most suitable unit for visual

speech synthesis using HMMs.

5.2 HMM-based visual speech synthesis

This section describes how context-dependent labels are used to train context-

dependent HMMs and generate visual speech parameters using phoneme, static

viseme, or dynamic viseme units. Figure 5.1 shows a framework of the proposed

HMM-based visual speech synthesis system, that aims to generate a sequence of lip

shapes from a given text. Our framework can be divided into two parts: training

and testing. In the training part, context dependent HMMs are trained based on

an audiovisual speech database. In the synthesis part, the visual parameters are

generated from input text using the trained HMMs. Note that, this work was im-

plemented by HTS-toolkit [126] and it takes about three days to train on UEA’s

High Performance Compute Cluster (GRACE) 1.

Figure 5.1: An overview of the HMM-based visual speech synthesis system.

1https://rscs.uea.ac.uk/high-performance-computing

5.2. HMM-based visual speech synthesis 103

5.2.1 Training part

The training process of a HMM-based visual speech synthesiser is similar to the

training of a HMM-based audio speech synthesiser. The main difference is the

observation feature vectors for visual speech synthesisers are typically based on

visual features, for example AAM parameters, 3D facial points, or lip-shape points

from face images. However, audio TTS systems are typically based on audio features,

for example mel-generalised cepstrum or filter-bank features.

For training, the given text and face image from an audiovisual speech database

are converted to the input features, X, and output features, O, using input feature

extraction and output feature extraction. Then, both contextual input and contex-

tual output features are used to train the context-dependent HMMs. More specific

details of each module are described as follows.

5.2.1.1 Input feature extraction: contextual input

The input of this module is a sequence of words that will subsequently generating

the lip movement animation. Generally, most systems, except the latest end-to-

end speech synthesis systems convert each word (written form) to a sequence of

phonemes (sound form). The main reason for the use of written form to sound form

conversion is that the written form does not indicate how to pronounce each word

but we are able to know how to make up its sound from the sound form. Moreover,

this work will incorporate not only the sound form but also the visual form. We then

consider two additional types of the visual form: static viseme units and dynamic

viseme units.

For simplicity, we begin with the conversion of a sequence of word, w, to a

sequence of phoneme with linguistic features, l, also known as contextual labels.

This process can define as follow

l̂ = argmax`P (l|w) (5.1)

where w is the given text input and l is the contextual labeling. Ideally, this process

aims to get useful information that affects the way people speak from the text in-

put. In speech recognition, triphones are the standard contextual unit. Conversely,

5.2. HMM-based visual speech synthesis 104

quinphones with prosodic and linuguistic information are the standard contextual

information for audio and visual speech synthesis systems and are known as full

contextual features [25]. These contextual factors can be divided into 5 levels of (vi-

sual) speech unit including segment (e.g. phoneme, static viseme, dynamic viseme),

syllable, word, phrase, and utterance levels. The relationship between each level can

be represented in a tree as shown in Figure 5.2. Bigraphs are used to link items in

each level together.

																																																		Hello,	visual	synthesis.	 U2	

Hello,	 visual	synthesis.	 Phrase	

Hello	 visual	 synthesis	 Word	

hh-ax	 l-ow	 v-ih-zh	 uw	 ax-l	 s-ih-n	 th-ax	 s-ih-s	 Syllable	

hh											ax	 l										ow	 v			ih			zh	 uw	 ax						l	 s					ih				n	 th				ax	 s					ih					s	 Phone	

V6										V9	 V6									V12	 V2		V14	V5	 V13	 V9					V6	 V3	V14	V6	 V3			V9	 V3	V14	V3	 Viseme	

Figure 5.2: An example of feature representation structure in utterance, phrase,

word, syllable, phone, and static viseme levels.

From this Figure, it shows that this utterance, “Hello, visual synthesis”, has a

breath break after “Hello”. This example comprises three words: “hello”, “visual”,

and “synthesis”. The total number of syllables is 8 and we are also able to find out

the number of syllables in each word, such as the word “synthesis” has 3 syllables

(described in Section 4.5.2). This structure also shows the one-to-one mapping of

two types of segment units: phoneme and static viseme units. As mentioned, we

aim to extract the useful information from raw text input, so the full set of features

considered is summarised in Table 5.1 which shows those for phonetic units (PH),

static viseme units (SV), and for dynamic viseme units (DV).

With segment level features, Quin-phone context considers the preceding two

and succeeding two phonemes, Quin-static viseme context considers the preced-

5.2. HMM-based visual speech synthesis 105

Table 5.1: Contextual features for phonemes (PH), static visemes (SV) and dynamic

visemes (DV) units at varying levels.

Level
Sym-

bol
Feature

PH SV DV

Segment

(U1) Quin-phone context x

(U2) Quin-static viseme context x

(U3) Quin-dynamic viseme context x

(U4)
Number of phonemes in dynamic

viseme
x

(U5) Phonemes in dynamic viseme x

Syllable
(S1)

Position and number of phonemes in

syllable
x

(S2)
Position and number of static visemes

in syllable
x

(S3)
Position and number of dynamic

visemes in syllable
x

Word (W1)
Position and number of syllables in

word
x x x

Phrase
(P1)

Position and number of syllables in

phrase
x x x

(P2)
Position and number of words in

phrase
x x x

Utterance (U1)
Position of syllable, word and phrase

in utterance
x x x

5.2. HMM-based visual speech synthesis 106

ing two and succeeding two static visemes, and Quin-dynamic viseme context

considers the preceding two and succeeding two dynamic visemes. Figure 5.3 illus-

trates examples of these three type of units regarding the context features.

Input: Hello, visual synthesis

 PH: hh ax l ow sil v ih zh uw ax l s ih n th ax s ih s

 SV: V6 V9 V6 V12 V7 V2 V14 V5 V13 V9 V6 V3 V14 V6 V3 V9 V3 V14 V3

 DV: V11 V4 V2 V9 V4 V6 V1 V2

PH: {ax-l-ow+sil+v}

SV: {V13-V9-V6+V3+V14}

DV: {V4-V6-V1+V2+X}

Figure 5.3: Examples of Quin-phone, Quin-static viseme, and Quin-dynamic viseme

context features are shown in red.

Note that a dynamic viseme relates to a cluster of visual gestures, and each visual

gesture is a specific instance of a dynamic viseme (c.f. phonemes and phones). With

However, there is an issue when using dynamic viseme units in terms of how the

number of phones associated with a visual unit is defined. This issue arises because

the boundaries of the visual gestures generally do not align with the boundaries of

phonemes and each visual gesture can span multiple phones. In the KB-2k corpus

we find that approximately 80% of the gestures span two to four phones, as can be

seen in Figure 5.4.

5.2. HMM-based visual speech synthesis 107

No. of phonemes
1 2 3 4 5 6

D
yn

am
ic

 v
is

em
es

 d
is

tri
bu

tio
n

0

5

10

15

20

25

30

35

40

45

50

Figure 5.4: Distribution of the number of phones spanning over in each dynamic

viseme.

To allow for partial coverage of a phone by a dynamic viseme, we introduce

contextual labels that mark the presence of a dynamic viseme within the phone.

Specifically, if a phone is completely spanned by a dynamic viseme the customary

label is used (e.g. /p/). The following contextual labels are then added if a dy-

namic viseme is present only at the beginning (/@p/) or end (/p@/) of the phone.

Occasionally there are very short gestures identified completely within a phone, and

so the gesture covers only the mid-portion of the phone. In this instance /@p@/

is used. Figure 5.5 shows examples of the phonemes in dynamic viseme “V4” and

“V9”.

Input: Hello, visual synthesis

 PH: hh ax l ow sil v ih zh uw ax l s ih n th ax s ih s

 SV: hh ax l ow sil v ih zh uw ax l s ih n th ax s ih s

 DV: v11 v4 v2 v9 v4 v6 v1 v2

PH in DV: { l@,@ow }

PH in DV: {ih@,zh,uw,@ax}

Figure 5.5: Examples of the extraction of phoneme in dynamic visemes are shown

in red.

5.2. HMM-based visual speech synthesis 108

With the other levels of syllable, word, phrase and utterance, all features describe

the number and position (start, middle, end, and single) of one level in another

level, such as number of phonemes in syllables. According to the example in Figures

5.2 and 5.5, the linguistic features of phoneme “ih” for the word “synthesis” are

illustrated in Table 5.2.

Table 5.2: Contextual linguistic features of phoneme /ih/ in Figure 5.2 for phonetic

(PH), static viseme (SV), and dynamic visemes (DV) units at syllable, word, phrase,

and utterance levels.

Level Feature Representation

Syllable

Position of phonemes in syllable start

Number of phonemes in syllable 3

Position of dynamic visemes in syllable start

Number of dynamic visemes in syllable 2

Word
Position of syllables in word start

Number of syllables in word 3

Phrase

Position of syllables in phrase middle

Number of syllables in phrase 8

Position of words in phrase end

Number of words in phrase 2

Utterance

Position of syllables in utterance end

Position of words in utterance end

Position of phrase in utterance start

5.2.1.2 Output feature extraction: contextual output

This module aims to extract a sequence AAMs of face images into output features.

Regarding the face image, this work focuses on only the lower face movements

because these part are directly effect with speech movements and other parts, such

as eyes, eyebrows, can sometimes introduce noise to the models. Subsequently, active

appearance models (AAMs) is used to describe the shape and appearance of its lower

face (see in Section 4.3). From this algorithm, it is able to reduce a high dimensional,

5.2. HMM-based visual speech synthesis 109

1920×1080 block of pixels, into a low M-dimensional AAM parameter vector where,

for example M = 30. These AAM parameters are also used to reconstruct a near

photo-realistic animation of the face. Eventually, we use not only the static features,

but also include the dynamic features forming the contextual output before training

the HMMs synthesis system. More specific details can be found in Section 3.2.4.

5.2.1.3 HMM training: context dependent HMMs

After extracting full contextual input and contextual output features, training uses

both sets of information to train the decision tree-based context dependent HMMs.

In the case of using phoneme as a basic speech unit, firstly, a context independent

phoneme-HMM (or monophone HMM) is used to model each phoneme. Dines et al.

[25] suggests that the standard number of HMMs usually consists of 5 emitting

states with single Gaussian probability distribution function (PDF) per emitting

state. There are seven states in total because of an additional non-emitting state at

the beginning and end of each model.

There have been several studies that suggested that using monophone HMMs is

not effective. Instead, context independent HMMs are replaced by context depen-

dent HMMs. For example [92] were able to improve recognition accuracy by using

triphone models compared with monophone models. However, one of the major

problems of triphone models is sparsity of data, in that it is not possible to prepare

training data to include examples of every possible triphone context. For the KB-

2K corpus, this would require 68,921 (e.g., 413 phonemes) triphone HMMs. To deal

with this problem, many tied-parameter techniques have been proposed to cluster

HMM states that have a similar statistical distribution.

In (visual) speech synthesis, it is not only triphone models but also many contex-

tual features in cluding quinphone models with linguistic information, that are used.

Based on the increasing of these contextual features combinations, binary decision

tree-based context clustering is used to control the model complexity by clustering

HMM states and sharing the distributions (pdfs) of the visual speech features among

states in each cluster. Each node, except the leaf nodes, has a context related label

sequence, called a question. This question sets are prepared and related to input

5.2. HMM-based visual speech synthesis 110

contextual information. For example, C-Silence represents “Is the current phone si-

lence or not” and relates to “Quin-phone context”, Num syl-in-word==5 represents

“Does the current word consist of five syllables” and relates to “W1” in Table 5.1.

As a clustering scheme, this ensures that all contexts, including unseen contexts,

can be found by traversing the decision tree. An example part of binary decision

trees of dynamic viseme HMM models is shown in Figure 5.6.

C-Num_ph-in-viseme==x

Vis-LLL-Bilabial_partEnd

no

C-V97

yes

Vis-LLL-Sibilant_Consonant_partEnd

no

Vis-LL-Vowel_partStart

yes

C-V70

no

Vis-LL-Front

yes

Vis-LLL-AVowel_partEnd

no

Vis-LLL-Alveolar_partEnd

yes

Vis-LL-Approximant

no

Vis-LL-OVowel_partStart

yes

Vis-LLL-Approximant_partEnd

no

Vis-LLL-Vowel_Back_partEnd

yes

C-V73

no

C-V63

yes

C-V18

no

RR-V158

yes

Vis-LLL-silences_partMid

no

aam_s2_41

yes

Vis-LL-Front_Consonant

no

Vis-LLL-Velar_partEnd

yes

Vis-LLL-ay_partEnd

no

Vis-LLL-Vowel_Mid_partEnd

yes

Num_vis-in-phrase==x

no

RR-V14

yes

R-V157

no

Vis-LL-X

yes

Vis-LLL-Front_Consonant

no

Vis-LL-Front_Fricative

yes

Vis-LLL-r_partEnd

no

Vis-LL-er

yes

Vis-LLL-Labiodental_partEnd

no

Vis-LLL-Fricative

yes

Vis-LL-Bilabial

no

C-V145

yes

Vis-LLL-OVowel_partEnd

no

Vis-LL-silences_partStart

yes

Vis-LLL-Bilabial

no

RR-V26

yes

Vis-LLL-Front_Vowel_partEnd

no

Vis-LLL-ow_partEnd

yes

C-V138

no

C-V67

yes

C-V27

no

LL-V97

yes

Vis-LL-Front_Consonant

no

LL-V139

yes

Vis-LLL-sil

no

C-V78

yes

R-V79

no

aam_s2_166

yes

Vis-LLL-aw_partEnd

no

C-V21

yes

C-V136

no

L-V3

yes

C-V93

no

Vis-LL-Front_Fricative

yes

C-Num_ph-in-phrase==73

no

aam_s2_281

yes

Vis-LLL-Long_Vowel_partEnd

no

C-V112

yes

R-V115

no

C-V68

yes

C-V153

no

Vis-LL-Alveolar

yes

Vis-LL-Bilabial

no

aam_s2_4

yes

C-V159

no

C-V158

yes

Vis-LL-X

no

aam_s2_1

yes

Vis-LLL-Alveolar_partEnd

no

C-V40

yes

Vis-LLL-EVowel_partEnd

no

Vis-LLL-Central_Vowel_partEnd

yes

Vis-LL-Front_Consonant_partStart

no

LL-V91

yes

C-V158

no

Vis-LLL-eh_partEnd

yes

C-V36

no

Vis-LL-Vowel

yes

Vis-LL-r

no

Vis-LL-ch

yes

Vis-LL-Bilabial_partStart

no

Vis-LL-Back_Stop

yes

C-V21

no

C-V143

yes

C-V102

no

aam_s2_11

yes

aam_s2_2

no

Vis-LL-Vowel_partStart

yes

aam_s2_513

no

aam_s2_512

yes

Vis-LLL-silences_partEnd

no

C-V123

yes

Vis-LLL-silences_partEnd

no

aam_s2_247

yes

Vis-LLL-k_partEnd

no

Vis-C-X

yes

Vis-LLL-Central_partEnd

no

aam_s2_33

yes

Vis-LLL-Central_Consonant_partEnd

no

Vis-LL-Dental

yes

C-V73

no

aam_s2_39

yes

Vis-LLL-sil_partStart

no

R-V1

yes

C-V159

no

Vis-LL-Central_Consonant

yes

C-V87

no

C-V63

yes

C-V0

no

L-V40

yes

Num_vis-in-phrase==x

no

Vis-LLL-Alveolar_partEnd

yes

Vis-LL-IVowel

no

L-V132

yes

Vis-LLL-Back_Consonant_partEnd

no

C-V12

yes

Vis-LL-ih

no

Vis-LL-Vowel_Front

yes

Vis-LL-Central

no

L-V82

yes

Vis-LLL-Fricative_partEnd

no

LL-V126

yes

Vis-LL-Lateral

no

R-V24

yes

aam_s2_239

no

aam_s2_238

yes

Num_ph-in-phrase==51

no

Vis-LL-Consonant

yes

Vis-LL-ao

no

R-V41

yes

C-V106

no

aam_s2_6

yes

L-V143

no

aam_s2_22

yes

C-V49

no

Vis-LL-l

yes

Vis-LL-Front_Consonant

no

aam_s2_27

yes

C-V141

no

Vis-L-Vowel_Close

yes

Vis-L-Approximant

no

Vis-L-Vowel_partStart

yes

C-V132

no

C-V118

yes

RR-V124

no

aam_s2_500

yes

Vis-LL-Vowel

no

aam_s2_3

yes

Vis-LL-Vowel_Front_partStart

no

C-V34

yes

Vis-LLL-r

no

Vis-LL-Vowel

yes

C-V63

no

Num_vis-in-phrase==23

yes

Vis-LL-sil_partStart

no

C-V157

yes

Vis-C-ih_partStart

no

aam_s2_294

yes

Vis-L-Approximant

no

R-V40

yes

C-Num_syl-in-phrase==15

no

aam_s2_790

yes

Vis-LLL-Consonant

no

RR-V93

yes

C-V73

no

Vis-LL-Vowel_Close

yes

C-V110

no

Vis-LL-Velar

yes

Vis-LL-s_partStart

no

Vis-R-X

yes

C-V156

no

C-V123

yes

C-V61

no

LL-V158

yes

Vis-LL-r

no

Vis-LL-Vowel_Front_partStart

yes

Vis-LL-Fricative

no

Vis-LL-IVowel

yes

Vis-LL-Velar

no

aam_s2_9

yes

Vis-LL-r

no

C-Num_ph-in-phrase==18

yes

C-V24

no

Vis-LLL-Bilabial_partEnd

yes

aam_s2_316

no

aam_s2_315

yes

Vis-LL-Central_Fricative_partStart

no

Vis-LL-Front

yes

Vis-LL-Vowel_Front

no

aam_s2_35

yes

C-V156

no

Vis-L-k_partStart

yes

Num_vis-in-phrase==x

no

Vis-RRR-t_partStart

yes

C-V157

no

aam_s2_5

yes

Vis-L-y

no

aam_s2_138

yes

C-V67

no

C-V87

yes

LL-V16

no

aam_s2_691

yes

Vis-L-X

no

Vis-L-X

yes

C-V85

no

aam_s2_8

yes

C-V159

no

aam_s2_36

yes

C-V68

no

C-Num_wrd-in-viseme==2

yes

C-V18

no

R-V112

yes

C-V70

no

aam_s2_46

yes

C-V67

no

LL-V139

yes

L-V37

no

aam_s2_42

yes

C-V12

no

Vis-LL-Velar

yes

C-V12

no

Vis-LLL-Central_Fricative

yes

LL-V17

no

aam_s2_453

yes

C-V38

no

L-V84

yes

aam_s2_380

no

aam_s2_379

yes

Vis-LL-r

no

aam_s2_7

yes

aam_s2_646

no

aam_s2_645

yes

Vis-LLL-l_partEnd

no

Vis-LL-Fricative

yes

Vis-LL-IVowel

no

aam_s2_75

yes

C-V109

no

L-V149

yes

L-V48

no

aam_s2_1063

yes

C-V116

no

aam_s2_102

yes

C-V141

no

aam_s2_49

yes

C-V85

no

C-V123

yes

Vis-LLL-Sibilant_Consonant_partMid

no

LL-V27

yes

Vis-LLL-Sibilant_Consonant

no

Vis-LLL-Dental

yes

C-V158

no

Num_ph-in-phrase==34

yes

Vis-LL-OVowel_partStart

no

aam_s2_12

yes

Num_syl-in-phrase==6

no

aam_s2_347

yes

C-V112

no

aam_s2_727

yes

C-V144

no

Vis-LL-Bilabial

yes

L-V31

no

aam_s2_84

yes

C-V103

no

R-V145

yes

Vis-LL-Central_Fricative_partStart

no

Num_syl-in-phrase==1

yes

aam_s2_263

no

aam_s2_262

yes

Vis-LL-Dental

no

Vis-LL-Vowel_partStart

yes

C-V67

no

C-Num_syl-in-phrase==12

yes

Vis-LL-Front_Consonant

no

Vis-LL-Consonant

yes

C-V2

no

aam_s2_14

yes

aam_s2_416

no

aam_s2_415

yes

Vis-LL-PostAlveolar

no

LL-V90

yes

L-V103

no

aam_s2_408

yes

C-V109

no

C-V158

yes

C-V79

no

aam_s2_413

yes

Vis-LL-Dipthong_Vowel_partStart

no

Vis-LL-Vowel_Close_partStart

yes

C-V9

no

aam_s2_169

yes

Vis-LL-AVowel

no

C-V27

yes

C-V128

no

C-V64

yes

C-V57

no

Vis-LL-Back

yes

Vis-L-w_partStart

no

aam_s2_390

yes

C-V141

no

C-V63

yes

aam_s2_613

no

aam_s2_612

yes

Vis-LL-Bilabial_partStart

no

aam_s2_13

yes

C-V67

no

aam_s2_38

yes

C-V94

no

Num_ph-in-phrase==44

yes

C-V43

no

Vis-L-Back_Consonant

yes

C-V112

no

aam_s2_30

yes

aam_s2_203

no

aam_s2_202

yes

C-V40

no

LL-V122

yes

L-V150

no

aam_s2_91

yes

C-V48

no

aam_s2_19

yes

aam_s2_318

no

aam_s2_317

yes

C-V124

no

Vis-LL-Back_Consonant

yes

R-V82

no

R-V100

yes

Vis-L-X

no

Vis-LL-Central_Consonant

yes

R-V44

no

aam_s2_213

yes

aam_s2_307

no

aam_s2_306

yes

C-V143

no

L-V158

yes

C-V85

no

aam_s2_10

yes

C-V132

no

Vis-LL-Vowel_Back_partStart

yes

Vis-LL-silences_partStart

no

aam_s2_20

yes

C-V157

no

Vis-LL-Voiced_Consonant_partStart

yes

Vis-L-Vowel_Front_partStart

no

R-V157

yes

Vis-LL-Central_Consonant

no

Vis-L-iy

yes

R-V2

no

R-V103

yes

Vis-LL-Vowel_Close

no

aam_s2_26

yes

aam_s2_619

no

aam_s2_618

yes

C-V12

no

C-Num_syl-in-phrase==9

yes

Vis-LL-l

no

aam_s2_54

yes

Vis-LL-Vowel_Central

no

Vis-LL-UVowel

yes

C-V36

no

aam_s2_28

yes

aam_s2_284

no

aam_s2_283

yes

C-V71

no

C-V76

yes

C-V113

no

aam_s2_15

yes

aam_s2_31

no

Vis-C-X

yes

C-V143

no

Vis-LLL-AVowel

yes

C-V41

no

LL-V85

yes

C-V67

no

aam_s2_104

yes

Vis-LL-Front_Consonant

no

aam_s2_16

yes

aam_s2_134

no

L-V105

yes

C-V132

no

aam_s2_40

yes

RR-V143

no

aam_s2_342

yes

L-V66

no

aam_s2_157

yes

C-V123

no

aam_s2_218

yes

C-V103

no

aam_s2_17

yes

Vis-LL-Lateral

no

C-V131

yes

aam_s2_852

no

aam_s2_851

yes

C-V94

no

aam_s2_32

yes

aam_s2_871

no

aam_s2_870

yes

C-V83

no

aam_s2_18

yes

C-V103

no

C-V49

yes

LL-V20

no

LL-V57

yes

Num_vis-in-phrase==1

no

aam_s2_24

yes

C-V122

no

Vis-LL-Central_Consonant

yes

Vis-R-PostAlveolar_partStart

no

aam_s2_85

yes

aam_s2_333

no

aam_s2_332

yes

C-V66

no

Vis-LL-Central_Stop

yes

Vis-LL-Sibilant_Fricative

no

Num_vis-in-phrase==x

yes

C-V35

no

aam_s2_160

yes

C-V41

no

L-V141

yes

aam_s2_242

no

aam_s2_241

yes

C-V81

no

Vis-L-IVowel

yes

aam_s2_155

no

aam_s2_154

yes

C-V80

no

L-V148

yes

aam_s2_136

no

aam_s2_135

yes

C-V112

no

Vis-LLL-Consonant_partEnd

yes

C-V21

no

aam_s2_172

yes

Vis-LLL-Voiced_Consonant_partEnd

no

Vis-L-OVowel_partStart

yes

Vis-LL-Vowel_partStart

no

R-V32

yes

Vis-LL-Central_Stop

no

aam_s2_21

yes

Vis-LL-Sibilant_Consonant

no

aam_s2_143

yes

Vis-LL-l

no

aam_s2_25

yes

aam_s2_56

no

aam_s2_55

yes

C-V84

no

aam_s2_23

yes

C-V31

no

aam_s2_220

yes

C-V43

no

aam_s2_29

yes

C-V154

no

L-V61

yes

Vis-LL-Central_Consonant

no

C-Num_syl-in-phrase==2

yes

aam_s2_504

no

aam_s2_503

yes

C-V142

no

Num_ph-in-phrase==3

yes

C-Num_wrd-in-viseme==2

no

aam_s2_132

yes

Vis-LL-Front_Consonant_partStart

no

aam_s2_45

yes

L-V7

no

C-Num_wrd-in-phrase>=16

yes

Vis-L-Sibilant_Fricative_partStart

no

LL-V139

yes

aam_s2_837

no

aam_s2_836

yes

LL-V21

no

Vis-C-Vowel_partStart

yes

Vis-L-Sibilant_Consonant

no

L-V29

yes

L-V64

no

RR-V33

yes

Vis-LL-Alveolar

no

aam_s2_63

yes

C-V132

no

aam_s2_37

yes

C-V134

no

Num_vis-in-phrase==16

yes

aam_s2_601

no

aam_s2_600

yes

C-V59

no

RR-V106

yes

Num_ph-in-phrase==3

no

aam_s2_444

yes

C-V2

no

aam_s2_34

yes

Vis-LL-Back_Fricative

no

C-Num_wrd-in-phrase==6

yes

Vis-C-t

no

aam_s2_123

yes

Vis-LLL-silences_partEnd

no

Vis-L-w

yes

C-V85

no

aam_s2_98

yes

C-V73

no

aam_s2_271

yes

Vis-LL-Bilabial_partStart

no

aam_s2_43

yes

aam_s2_868

no

aam_s2_867

yes

C-V112

no

aam_s2_47

yes

Vis-LL-ey

no

C-V142

yes

C-V0

no

L-V54

yes

aam_s2_590

no

aam_s2_589

yes

Vis-L-l

no

aam_s2_115

yes

C-V134

no

C-Num_syl-in-phrase>=11

yes

RR-V113

no

aam_s2_164

yes

Vis-R-Front_Fricative_partStart

no

aam_s2_78

yes

C-V40

no

RR-V68

yes

C-V48

no

Num_ph-in-phrase==14

yes

Vis-C-er

no

aam_s2_389

yes

C-V52

no

aam_s2_44

yes

aam_s2_287

no

aam_s2_286

yes

Vis-L-Back_Vowel_partStart

no

Vis-LL-Dental

yes

aam_s2_171

no

aam_s2_170

yes

C-V126

no

aam_s2_76

yes

aam_s2_186

no

aam_s2_185

yes

C-V54

no

aam_s2_51

yes

aam_s2_599

no

aam_s2_598

yes

C-V105

no

aam_s2_83

yes

RR-V92

no

aam_s2_65

yes

Vis-LL-Consonant

no

RR-V82

yes

Vis-LL-Alveolar

no

R-V136

yes

aam_s2_461

no

aam_s2_460

yes

C-V85

no

aam_s2_89

yes

L-V101

no

aam_s2_182

yes

aam_s2_72

no

aam_s2_71

yes

C-V4

no

aam_s2_48

yes

C-V150

no

Num_vis-in-phrase==14

yes

C-V106

no

C-V131

yes

RR-V144

no

aam_s2_113

yes

C-V106

no

Num_vis-in-phrase==17

yes

C-V20

no

aam_s2_59

yes

Vis-LL-Vowel_partStart

no

aam_s2_50

yes

Vis-LL-PostAlveolar

no

L-V132

yes

RR-V134

no

aam_s2_129

yes

R-V9

no

R-V149

yes

C-V35

no

aam_s2_52

yes

aam_s2_426

no

LL-V124

yes

C-V87

no

aam_s2_73

yes

C-V108

no

aam_s2_53

yes

L-V84

no

aam_s2_58

yes

C-V52

no

C-V112

yes

C-V94

no

aam_s2_57

yes

aam_s2_894

no

aam_s2_893

yes

C-V102

no

aam_s2_88

yes

C-V157

no

LL-V2

yes

aam_s2_473

no

aam_s2_472

yes

C-V91

no

Num_vis-in-phrase==15

yes

Vis-LL-Vowel_Open

no

Vis-LL-Fricative

yes

Vis-LL-Long_Vowel_partStart

no

aam_s2_124

yes

C-V94

no

aam_s2_105

yes

R-V41

no

aam_s2_433

yes

C-V105

no

aam_s2_60

yes

Vis-LL-ay_partStart

no

aam_s2_190

yes

Num_ph-in-phrase==27

no

aam_s2_404

yes

L-V154

no

aam_s2_64

yes

Vis-LL-Vowel

no

aam_s2_126

yes

C-Num_ph-in-phrase==48

no

aam_s2_193

yes

Vis-L-ae_partStart

no

RR-VSIL

yes

aam_s2_313

no

aam_s2_312

yes

C-V103

no

aam_s2_61

yes

C-V131

no

aam_s2_162

yes

C-V86

no

aam_s2_149

yes

Vis-L-IVowel

no

Num_ph-in-phrase==13

yes

C-Num_wrd-in-phrase==6

no

aam_s2_445

yes

R-V54

no

aam_s2_62

yes

C-V85

no

aam_s2_259

yes

L-V40

no

aam_s2_67

yes

Vis-LL-Sibilant_Consonant_partStart

no

Vis-LL-l

yes

C-Num_ph-in-phrase==84

no

aam_s2_530

yes

Vis-L-Front_Stop

no

aam_s2_297

yes

Vis-LL-Alveolar

no

aam_s2_66

yes

aam_s2_443

no

aam_s2_442

yes

C-V97

no

aam_s2_77

yes

C-V143

no

aam_s2_79

yes

aam_s2_1047

no

aam_s2_1046

yes

R-V15

no

aam_s2_806

yes

C-V135

no

LL-V99

yes

aam_s2_101

no

aam_s2_100

yes

C-V128

no

aam_s2_69

yes

aam_s2_1032

no

aam_s2_1031

yes

Vis-LL-Vowel_Open_partStart

no

aam_s2_128

yes

aam_s2_150

no

RR-V98

yes

Vis-LL-Central_Fricative_partStart

no

C-V108

yes

C-V77

no

aam_s2_110

yes

aam_s2_770

no

aam_s2_769

yes

aam_s2_963

no

aam_s2_962

yes

aam_s2_968

no

aam_s2_967

yes

C-Num_syl-in-viseme==1

no

aam_s2_87

yes

Vis-LL-silences_partStart

no

C-Num_ph-in-phrase==49

yes

C-Num_ph-in-phrase==66

no

aam_s2_350

yes

C-V33

no

aam_s2_107

yes

aam_s2_237

no

aam_s2_236

yes

C-Num_syl-in-viseme==1

no

aam_s2_68

yes

aam_s2_552

no

aam_s2_551

yes

Vis-L-y_partStart

no

C-V136

yes

C-V130

no

aam_s2_70

yes

Vis-LLL-Vowel_Front

no

aam_s2_74

yes

aam_s2_311

no

aam_s2_310

yes

aam_s2_826

no

aam_s2_825

yes

L-V149

no

L-V129

yes

LL-V11

no

aam_s2_901

yes

Vis-L-Front

no

Vis-LL-y

yes

Vis-L-Approximant

no

Vis-C-Glottal_partStart

yes

C-V48

no

aam_s2_80

yes

Num_ph-in-phrase==76

no

C-V134

yes

R-V104

no

C-Num_syl-in-phrase==14

yes

LL-V117

no

Vis-LLL-Vowel_Close

yes

LL-V103

no

Vis-L-Front_Consonant_partStart

yes

C-V117

no

Num_vis-in-phrase==1

yes

C-V114

no

aam_s2_82

yes

Vis-LLL-Unvoiced_Plosive_partEnd

no

aam_s2_95

yes

aam_s2_463

no

aam_s2_462

yes

Vis-L-Approximant

no

aam_s2_226

yes

Vis-L-Central_Fricative_partStart

no

aam_s2_140

yes

Vis-LL-uh

no

aam_s2_775

yes

C-V85

no

aam_s2_184

yes

Num_ph-in-phrase==76

no

aam_s2_214

yes

LL-V81

no

aam_s2_723

yes

C-V123

no

aam_s2_112

yes

C-V136

no

C-V117

yes

L-V19

no

Vis-LL-Long_Vowel

yes

Vis-LLL-Vowel_partStart

no

aam_s2_81

yes

aam_s2_261

no

aam_s2_260

yes

C-Num_ph-in-phrase==7

no

aam_s2_90

yes

Vis-LL-UVowel

no

aam_s2_86

yes

C-V91

no

aam_s2_109

yes

Vis-L-ay

no

aam_s2_529

yes

aam_s2_794

no

aam_s2_793

yes

LL-V36

no

aam_s2_133

yes

Num_syl-in-phrase==5

no

aam_s2_99

yes

C-V37

no

aam_s2_494

yes

C-V122

no

aam_s2_103

yes

Num_ph-in-phrase==34

no

aam_s2_189

yes

Vis-L-Approximant

no

aam_s2_252

yes

C-V95

no

aam_s2_94

yes

aam_s2_177

no

aam_s2_176

yes

C-V35

no

aam_s2_97

yes

aam_s2_999

no

aam_s2_998

yes

Vis-LL-Vowel_Front

no

C-V91

yes

C-V73

no

LL-V129

yes

C-V157

no

aam_s2_117

yes

C-V158

no

aam_s2_156

yes

Vis-LL-Central_Fricative

no

aam_s2_341

yes

Vis-L-Unvoiced_Fricative_partStart

no

aam_s2_92

yes

Vis-LL-Sibilant_Consonant

no

aam_s2_93

yes

Vis-LLL-Back_partEnd

no

aam_s2_251

yes

LL-V77

no

aam_s2_158

yes

C-V96

no

R-V66

yes

C-V85

no

aam_s2_523

yes

Vis-LL-l

no

L-V136

yes

Vis-LLL-v_partEnd

no

aam_s2_119

yes

Vis-LLL-Vowel_Front

no

aam_s2_96

yes

Vis-LL-ay

no

aam_s2_120

yes

aam_s2_672

no

aam_s2_671

yes

RR-V44

no

aam_s2_187

yes

C-V68

no

aam_s2_704

yes

L-V72

no

aam_s2_174

yes

C-V158

no

LL-V52

yes

C-V140

no

aam_s2_122

yes

C-V74

no

Vis-RR-Front_partStart

yes

Vis-L-v

no

aam_s2_277

yes

Vis-LL-Front_Stop

no

aam_s2_406

yes

aam_s2_249

no

aam_s2_248

yes

Vis-C-X

no

aam_s2_188

yes

aam_s2_330

no

aam_s2_329

yes

C-V13

no

Num_ph-in-phrase==4

yes

aam_s2_359

no

aam_s2_358

yes

aam_s2_1121

no

aam_s2_1120

yes

C-V88

no

aam_s2_244

yes

Vis-LL-OVowel

no

aam_s2_153

yes

LL-V141

no

aam_s2_106

yes

C-V150

no

L-V152

yes

C-Num_ph-in-phrase==25

no

aam_s2_116

yes

Num_syl-in-phrase==15

no

aam_s2_478

yes

C-V153

no

aam_s2_148

yes

C-V15

no

aam_s2_125

yes

Num_vis-in-phrase==x

no

aam_s2_108

yes

aam_s2_1007

no

aam_s2_1006

yes

C-V63

no

LL-V74

yes

LL-V150

no

aam_s2_1022

yes

C-V33

no

L-V107

yes

Num_vis-in-phrase==x

no

aam_s2_137

yes

Num_ph-in-phrase==32

no

aam_s2_165

yes

C-V63

no

L-V149

yes

C-V37

no

aam_s2_118

yes

LL-V88

no

LL-V85

yes

R-V83

no

LL-V126

yes

C-V36

no

aam_s2_282

yes

C-V84

no

aam_s2_614

yes

C-V79

no

aam_s2_121

yes

aam_s2_641

no

aam_s2_640

yes

C-V151

no

RR-V154

yes

R-V35

no

aam_s2_139

yes

aam_s2_371

no

aam_s2_370

yes

C-V102

no

aam_s2_111

yes

C-V35

no

aam_s2_131

yes

R-V9

no

aam_s2_142

yes

aam_s2_1069

no

aam_s2_1068

yes

C-V73

no

aam_s2_114

yes

C-Num_wrd-in-phrase==17

no

aam_s2_163

yes

Vis-LL-Vowel_Central

no

aam_s2_141

yes

Vis-LLL-silences_partEnd

no

aam_s2_258

yes

Vis-C-ih

no

aam_s2_145

yes

Vis-R-ae_partStart

no

aam_s2_303

yes

C-V31

no

aam_s2_269

yes

C-V139

no

Num_wrd-in-phrase==1

yes

L-V87

no

aam_s2_198

yes

C-V107

no

aam_s2_161

yes

Vis-LL-Vowel_Open

no

aam_s2_337

yes

C-V122

no

Vis-L-Front_Consonant

yes

L-V135

no

aam_s2_309

yes

Vis-LL-r

no

aam_s2_336

yes

C-V116

no

aam_s2_211

yes

C-V85

no

aam_s2_175

yes

RR-V39

no

aam_s2_626

yes

C-V102

no

aam_s2_147

yes

C-V73

no

LL-V59

yes

aam_s2_788

no

aam_s2_787

yes

aam_s2_392

no

aam_s2_391

yes

L-V78

no

aam_s2_200

yes

Vis-LL-ow_partStart

no

Vis-LL-AVowel_partStart

yes

Vis-RRR-Alveolar_partStart

no

aam_s2_216

yes

Vis-LL-AVowel

no

aam_s2_208

yes

aam_s2_192

no

aam_s2_191

yes

aam_s2_127

no

C-V156

yes

aam_s2_353

no

aam_s2_352

yes

RR-V110

no

RR-V137

yes

L-V153

no

aam_s2_256

yes

aam_s2_535

no

aam_s2_534

yes

Vis-LL-Vowel_Open_partStart

no

aam_s2_130

yes

R-V68

no

R-V34

yes

C-V108

no

aam_s2_195

yes

aam_s2_914

no

aam_s2_913

yes

Vis-LLL-Unvoiced_Consonant_partEnd

no

aam_s2_456

yes

aam_s2_1030

no

aam_s2_1029

yes

Vis-LLL-l

no

aam_s2_173

yes

aam_s2_936

no

aam_s2_935

yes

Vis-LL-Lateral

no

LL-V119

yes

Vis-C-Vowel

no

aam_s2_615

yes

RR-V39

no

RR-V42

yes

L-V91

no

aam_s2_168

yes

Vis-LL-k

no

aam_s2_499

yes

Vis-L-ae_partStart

no

aam_s2_393

yes

C-V64

no

C-Num_syl-in-phrase==11

yes

L-V154

no

aam_s2_197

yes

aam_s2_268

no

aam_s2_267

yes

C-V109

no

Vis-LL-Back_Stop

yes

aam_s2_144

no

Vis-LLL-b_partEnd

yes

aam_s2_854

no

aam_s2_853

yes

Vis-LL-w

no

aam_s2_210

yes

L-V106

no

aam_s2_146

yes

C-V67

no

aam_s2_305

yes

C-V36

no

aam_s2_275

yes

C-V156

no

aam_s2_152

yes

Vis-L-Vowel_Back

no

aam_s2_412

yes

C-V143

no

aam_s2_194

yes

aam_s2_1034

no

aam_s2_1033

yes

Vis-LLL-uw_partEnd

no

aam_s2_266

yes

aam_s2_561

no

aam_s2_560

yes

C-V124

no

R-V58

yes

aam_s2_349

no

aam_s2_348

yes

L-V52

no

aam_s2_151

yes

aam_s2_875

no

aam_s2_874

yes

C-V45

no

aam_s2_179

yes

C-V94

no

C-Num_ph-in-phrase==42

yes

C-V97

no

aam_s2_159

yes

aam_s2_818

no

aam_s2_817

yes

LL-V96

no

aam_s2_265

yes

aam_s2_997

no

aam_s2_996

yes

RR-V100

no

aam_s2_228

yes

RR-V54

no

Vis-LL-AVowel_partStart

yes

Vis-L-ao_partStart

no

aam_s2_361

yes

C-Num_ph-in-phrase==38

no

aam_s2_221

yes

L-V82

no

aam_s2_362

yes

Vis-LL-Bilabial_partStart

no

Num_vis-in-phrase>=18

yes

C-V115

no

aam_s2_255

yes

L-V101

no

aam_s2_301

yes

C-V134

no

Num_vis-in-phrase==17

yes

C-V108

no

aam_s2_354

yes

Vis-C-UVowel_partStart

no

aam_s2_235

yes

aam_s2_713

no

aam_s2_712

yes

Vis-C-ay_partStart

no

Vis-L-Fricative_partStart

yes

aam_s2_519

no

aam_s2_518

yes

RR-V76

no

aam_s2_181

yes

Vis-C-Back_Consonant_partStart

no

aam_s2_744

yes

aam_s2_280

no

aam_s2_279

yes

Vis-L-Central_Fricative_partStart

no

aam_s2_339

yes

aam_s2_527

no

aam_s2_526

yes

C-V106

no

aam_s2_254

yes

Vis-L-er

no

aam_s2_340

yes

C-V59

no

aam_s2_429

yes

LL-V136

no

aam_s2_314

yes

LL-V136

no

aam_s2_178

yes

Vis-L-aw_partStart

no

aam_s2_167

yes

aam_s2_273

no

aam_s2_272

yes

C-V45

no

aam_s2_227

yes

R-VSIL

no

aam_s2_180

yes

R-V96

no

aam_s2_338

yes

aam_s2_1067

no

aam_s2_1066

yes

aam_s2_643

no

aam_s2_642

yes

C-V65

no

aam_s2_574

yes

LL-V36

no

C-V35

yes

Vis-LLL-Central_Fricative_partEnd

no

aam_s2_448

yes

Vis-LLL-Vowel_Open_partEnd

no

aam_s2_215

yes

RR-V158

no

aam_s2_295

yes

Vis-R-z_partStart

no

aam_s2_298

yes

aam_s2_420

no

aam_s2_419

yes

L-V123

no

aam_s2_276

yes

aam_s2_648

no

aam_s2_647

yes

Vis-LL-Velar

no

aam_s2_290

yes

Vis-LLL-sil

no

RR-V115

yes

R-V106

no

aam_s2_201

yes

LL-V102

no

aam_s2_183

yes

C-Num_ph-in-viseme==7

no

aam_s2_706

yes

C-V45

no

aam_s2_209

yes

aam_s2_567

no

aam_s2_566

yes

Vis-LLL-sil_partMid

no

aam_s2_369

yes

C-V117

no

aam_s2_219

yes

RR-V129

no

aam_s2_674

yes

Vis-LL-Sibilant_Fricative_partStart

no

aam_s2_225

yes

Vis-LL-Long_Vowel

no

aam_s2_264

yes

L-V105

no

aam_s2_319

yes

R-V46

no

R-V156

yes

aam_s2_1097

no

aam_s2_1096

yes

Vis-LL-s_partStart

no

aam_s2_328

yes

C-V31

no

aam_s2_709

yes

Vis-LL-Central_Consonant

no

aam_s2_326

yes

aam_s2_563

no

aam_s2_562

yes

C-V109

no

aam_s2_246

yes

C-V106

no

aam_s2_232

yes

C-V39

no

aam_s2_196

yes

aam_s2_300

no

aam_s2_299

yes

aam_s2_366

no

aam_s2_365

yes

C-V76

no

aam_s2_274

yes

C-V159

no

aam_s2_199

yes

C-V48

no

aam_s2_229

yes

L-V117

no

aam_s2_435

yes

RR-V63

no

RR-VSIL

yes

C-V42

no

aam_s2_308

yes

aam_s2_1015

no

aam_s2_1014

yes

RR-V43

no

RR-V129

yes

aam_s2_517

no

aam_s2_516

yes

R-V129

no

aam_s2_207

yes

R-V149

no

aam_s2_204

yes

R-V9

no

aam_s2_205

yes

RR-V58

no

aam_s2_206

yes

Vis-L-X

no

aam_s2_376

yes

RR-V156

no

RR-VSIL

yes

aam_s2_650

no

aam_s2_649

yes

C-V156

no

aam_s2_233

yes

RR-V145

no

Vis-R-X

yes

R-V128

no

aam_s2_278

yes

aam_s2_475

no

aam_s2_474

yes

RR-V72

no

aam_s2_335

yes

Vis-L-X

no

RR-V14

yes

aam_s2_916

no

aam_s2_915

yes

Vis-LL-Back_Fricative

no

R-V123

yes

aam_s2_681

no

aam_s2_680

yes

Vis-C-Lateral_partStart

no

Vis-L-eh_partStart

yes

aam_s2_597

no

aam_s2_596

yes

Vis-L-iy

no

aam_s2_212

yes

aam_s2_368

no

aam_s2_367

yes

Vis-C-Dental_partStart

no

Vis-C-p_partStart

yes

RR-V137

no

aam_s2_458

yes

C-V41

no

aam_s2_217

yes

Vis-LLL-Bilabial_partMid

no

C-V154

yes

C-V24

no

aam_s2_459

yes

Vis-R-s_partStart

no

aam_s2_372

yes

aam_s2_944

no

aam_s2_943

yes

C-V158

no

aam_s2_270

yes

aam_s2_995

no

aam_s2_994

yes

Vis-LLL-Dipthong_Vowel

no

aam_s2_384

yes

L-V52

no

aam_s2_922

yes

C-V123

no

aam_s2_243

yes

C-V41

no

aam_s2_222

yes

aam_s2_768

no

aam_s2_767

yes

aam_s2_224

no

aam_s2_223

yes

Vis-LL-Front_Consonant

no

aam_s2_245

yes

aam_s2_858

no

aam_s2_857

yes

RR-V89

no

C-V116

yes

aam_s2_431

no

aam_s2_430

yes

C-V30

no

aam_s2_230

yes

L-V103

no

aam_s2_240

yes

C-V61

no

aam_s2_471

yes

Vis-LL-silences_partStart

no

aam_s2_231

yes

Vis-R-Unvoiced_Fricative

no

LL-V149

yes

Vis-LL-s_partStart

no

aam_s2_363

yes

C-V47

no

aam_s2_234

yes

C-V116

no

aam_s2_291

yes

C-V56

no

Num_vis-in-phrase==2

yes

R-V2

no

aam_s2_555

yes

C-V124

no

aam_s2_659

yes

L-V20

no

aam_s2_509

yes

Vis-RR-Front_Fricative_partStart

no

aam_s2_782

yes

Vis-L-w_partStart

no

aam_s2_285

yes

C-V48

no

Vis-LL-Front_Stop

yes

Vis-L-iy

no

aam_s2_296

yes

L-V135

no

aam_s2_250

yes

aam_s2_695

no

aam_s2_694

yes

L-V146

no

LL-V32

yes

L-V154

no

aam_s2_257

yes

L-V129

no

aam_s2_253

yes

C-V63

no

L-V92

yes

aam_s2_816

no

aam_s2_815

yes

C-V122

no

aam_s2_464

yes

aam_s2_1095

no

aam_s2_1094

yes

aam_s2_382

no

aam_s2_381

yes

Vis-LL-Vowel_Close

no

aam_s2_580

yes

C-V81

no

aam_s2_403

yes

aam_s2_735

no

aam_s2_734

yes

RR-V147

no

aam_s2_710

yes

C-V100

no

aam_s2_378

yes

aam_s2_452

no

aam_s2_451

yes

C-V73

no

aam_s2_703

yes

C-V143

no

aam_s2_383

yes

L-V155

no

aam_s2_344

yes

C-V53

no

aam_s2_427

yes

C-V48

no

aam_s2_401

yes

C-V96

no

RR-V15

yes

C-V80

no

aam_s2_322

yes

aam_s2_450

no

aam_s2_449

yes

RR-V123

no

aam_s2_293

yes

R-V55

no

aam_s2_304

yes

aam_s2_506

no

aam_s2_505

yes

C-V67

no

aam_s2_540

yes

C-V6

no

C-Num_syl-in-viseme==3

yes

Vis-C-Vowel_Open_partStart

no

aam_s2_324

yes

Num_vis-in-phrase==18

no

aam_s2_425

yes

C-V84

no

aam_s2_830

yes

RR-V152

no

RR-V120

yes

RR-V111

no

aam_s2_289

yes

RR-V31

no

aam_s2_288

yes

aam_s2_633

no

aam_s2_632

yes

RR-V21

no

aam_s2_343

yes

Vis-LL-Alveolar

no

aam_s2_584

yes

C-V52

no

aam_s2_357

yes

C-V110

no

aam_s2_351

yes

aam_s2_418

no

aam_s2_417

yes

Vis-LL-ey

no

aam_s2_292

yes

C-V77

no

aam_s2_849

yes

R-V131

no

aam_s2_495

yes

R-V88

no

aam_s2_323

yes

aam_s2_356

no

aam_s2_355

yes

L-V46

no

aam_s2_327

yes

aam_s2_658

no

aam_s2_657

yes

Vis-RR-Vowel_Central_partStart

no

aam_s2_302

yes

aam_s2_774

no

aam_s2_773

yes

aam_s2_631

no

aam_s2_630

yes

C-V101

no

aam_s2_525

yes

aam_s2_532

no

aam_s2_531

yes

RR-V74

no

aam_s2_628

yes

R-V128

no

aam_s2_639

yes

LL-V142

no

aam_s2_839

yes

C-V71

no

aam_s2_873

yes

Vis-L-iy

no

aam_s2_360

yes

R-V111

no

aam_s2_334

yes

RR-V134

no

aam_s2_320

yes

L-V76

no

aam_s2_498

yes

L-V101

no

aam_s2_345

yes

C-V123

no

aam_s2_421

yes

R-V21

no

aam_s2_377

yes

aam_s2_653

no

aam_s2_652

yes

Vis-LL-ih

no

aam_s2_321

yes

RR-V5

no

Vis-L-Back_partStart

yes

aam_s2_542

no

aam_s2_541

yes

Vis-LL-Alveolar

no

aam_s2_455

yes

R-V56

no

aam_s2_325

yes

RR-V31

no

aam_s2_423

yes

R-V66

no

aam_s2_446

yes

C-V116

no

aam_s2_400

yes

R-V112

no

aam_s2_331

yes

Vis-L-IVowel

no

aam_s2_717

yes

Vis-R-Unvoiced_Fricative_partStart

no

aam_s2_489

yes

Vis-L-Lateral

no

aam_s2_522

yes

aam_s2_755

no

aam_s2_754

yes

Vis-LL-OVowel

no

R-V104

yes

aam_s2_777

no

aam_s2_776

yes

aam_s2_992

no

aam_s2_991

yes

Vis-LLL-silences

no

aam_s2_667

yes

C-V156

no

aam_s2_620

yes

RR-V67

no

aam_s2_510

yes

aam_s2_440

no

aam_s2_439

yes

RR-V126

no

aam_s2_955

yes

Vis-LL-silences

no

aam_s2_395

yes

Vis-L-silences

no

aam_s2_434

yes

C-V5

no

aam_s2_346

yes

R-V33

no

aam_s2_441

yes

aam_s2_466

no

aam_s2_465

yes

C-Num_syl-in-phrase==6

no

aam_s2_571

yes

R-V130

no

RR-V34

yes

RR-V2

no

aam_s2_398

yes

C-V134

no

aam_s2_396

yes

RR-V81

no

aam_s2_410

yes

R-V137

no

aam_s2_374

yes

aam_s2_805

no

aam_s2_804

yes

Vis-LL-Central

no

aam_s2_399

yes

aam_s2_388

no

aam_s2_387

yes

C-V122

no

aam_s2_364

yes

Num_vis-in-phrase==x

no

aam_s2_397

yes

C-V94

no

aam_s2_407

yes

aam_s2_899

no

aam_s2_898

yes

aam_s2_1119

no

aam_s2_1118

yes

C-V61

no

aam_s2_373

yes

LL-V20

no

aam_s2_609

yes

Vis-L-m_partStart

no

aam_s2_375

yes

RR-V77

no

aam_s2_484

yes

Vis-L-Front_Fricative_partStart

no

RR-V119

yes

Vis-LL-uh_partStart

no

aam_s2_795

yes

C-V3

no

aam_s2_394

yes

C-V91

no

aam_s2_716

yes

Vis-LLL-AVowel_partMid

no

Vis-L-n_partStart

yes

Vis-L-Front_Stop

no

aam_s2_402

yes

aam_s2_386

no

aam_s2_385

yes

L-V60

no

aam_s2_428

yes

R-V74

no

aam_s2_514

yes

aam_s2_961

no

aam_s2_960

yes

C-V75

no

aam_s2_414

yes

RR-V114

no

aam_s2_405

yes

L-V77

no

aam_s2_595

yes

Vis-R-Long_Vowel_partStart

no

Vis-LL-Vowel_partStart

yes

LL-V98

no

aam_s2_611

yes

aam_s2_1065

no

aam_s2_1064

yes

aam_s2_844

no

aam_s2_843

yes

RR-V30

no

Vis-C-EVowel_partStart

yes

Vis-LL-Central_Fricative

no

aam_s2_454

yes

C-V94

no

aam_s2_409

yes

C-V145

no

aam_s2_508

yes

aam_s2_731

no

aam_s2_730

yes

aam_s2_747

no

aam_s2_746

yes

RR-V140

no

aam_s2_424

yes

aam_s2_733

no

aam_s2_732

yes

LL-V95

no

aam_s2_497

yes

aam_s2_797

no

aam_s2_796

yes

C-V131

no

aam_s2_521

yes

R-V94

no

aam_s2_411

yes

RR-V129

no

Vis-LL-X

yes

C-V140

no

R-V159

yes

aam_s2_604

no

aam_s2_603

yes

aam_s2_1026

no

aam_s2_1025

yes

RR-V46

no

aam_s2_467

yes

C-V65

no

aam_s2_688

yes

C-V0

no

aam_s2_422

yes

aam_s2_892

no

aam_s2_891

yes

L-V158

no

aam_s2_565

yes

C-V48

no

aam_s2_436

yes

C-V27

no

aam_s2_438

yes

RR-V98

no

aam_s2_432

yes

LL-V34

no

aam_s2_437

yes

aam_s2_988

no

aam_s2_987

yes

aam_s2_623

no

aam_s2_622

yes

aam_s2_573

no

aam_s2_572

yes

aam_s2_1099

no

aam_s2_1098

yes

R-V144

no

aam_s2_457

yes

aam_s2_719

no

aam_s2_718

yes

Vis-LLL-l_partEnd

no

C-V33

yes

aam_s2_554

no

Vis-L-ch_partStart

yes

C-V67

no

aam_s2_485

yes

LL-V101

no

aam_s2_579

yes

Vis-RR-Unvoiced_Fricative

no

aam_s2_476

yes

R-V1

no

aam_s2_591

yes

aam_s2_491

no

aam_s2_490

yes

aam_s2_737

no

aam_s2_736

yes

C-V45

no

aam_s2_447

yes

C-V156

no

aam_s2_660

yes

C-Num_wrd-in-viseme==1

no

aam_s2_610

yes

aam_s2_751

no

aam_s2_750

yes

Vis-L-uw

no

C-Num_ph-in-phrase==81

yes

aam_s2_468

no

Vis-LL-Voiced_Consonant

yes

Vis-C-m_partStart

no

aam_s2_583

yes

aam_s2_848

no

aam_s2_847

yes

Vis-C-Vowel_Back_partStart

no

L-V106

yes

C-V124

no

aam_s2_861

yes

aam_s2_493

no

aam_s2_492

yes

RR-V146

no

RR-V134

yes

RR-V6

no

aam_s2_553

yes

aam_s2_539

no

aam_s2_538

yes

aam_s2_638

no

aam_s2_637

yes

Vis-L-uh_partStart

no

aam_s2_813

yes

L-V128

no

aam_s2_557

yes

LL-V90

no

aam_s2_543

yes

aam_s2_656

no

aam_s2_655

yes

Vis-LL-Vowel_Mid_partStart

no

aam_s2_479

yes

Vis-C-Consonant_partStart

no

Vis-L-OVowel_partStart

yes

Vis-C-Front

no

aam_s2_819

yes

aam_s2_470

no

aam_s2_469

yes

C-V118

no

aam_s2_477

yes

C-V86

no

aam_s2_520

yes

aam_s2_842

no

aam_s2_841

yes

aam_s2_594

no

aam_s2_593

yes

RR-V157

no

aam_s2_501

yes

RR-V143

no

R-VSIL

yes

R-V82

no

aam_s2_480

yes

aam_s2_722

no

aam_s2_721

yes

R-V155

no

Vis-L-X

yes

aam_s2_482

no

aam_s2_481

yes

Vis-L-Central_partStart

no

aam_s2_483

yes

aam_s2_1056

no

aam_s2_1055

yes

RR-V46

no

aam_s2_496

yes

Vis-L-AVowel_partStart

no

aam_s2_548

yes

RR-V150

no

aam_s2_486

yes

C-V100

no

aam_s2_812

yes

RR-V92

no

aam_s2_507

yes

aam_s2_488

no

aam_s2_487

yes

Vis-C-Front_Consonant_partStart

no

aam_s2_668

yes

C-Num_syl-in-phrase==10

no

aam_s2_762

yes

C-V118

no

aam_s2_564

yes

R-V147

no

aam_s2_533

yes

C-V87

no

aam_s2_621

yes

C-Num_ph-in-phrase==55

no

aam_s2_608

yes

RR-V132

no

aam_s2_669

yes

R-V110

no

aam_s2_729

yes

RR-V56

no

aam_s2_502

yes

R-V152

no

aam_s2_570

yes

R-V133

no

aam_s2_524

yes

C-V153

no

aam_s2_528

yes

Vis-LL-Sibilant_Consonant

no

aam_s2_675

yes

C-V38

no

aam_s2_511

yes

Vis-LL-Sibilant_Fricative_partStart

no

aam_s2_536

yes

C-Num_ph-in-phrase==75

no

aam_s2_515

yes

aam_s2_1115

no

aam_s2_1114

yes

Vis-LL-ay

no

aam_s2_627

yes

aam_s2_708

no

aam_s2_707

yes

aam_s2_889

no

aam_s2_888

yes

Vis-L-Central_Fricative_partStart

no

aam_s2_558

yes

aam_s2_588

no

aam_s2_587

yes

RR-VSIL

no

aam_s2_917

yes

R-V43

no

aam_s2_546

yes

L-V2

no

Num_vis-in-phrase==2

yes

Vis-LLL-Back_Consonant

no

Num_vis-in-phrase==16

yes

L-V99

no

aam_s2_578

yes

Num_vis-in-phrase==5

no

aam_s2_692

yes

aam_s2_664

no

aam_s2_663

yes

C-V21

no

aam_s2_869

yes

RR-V102

no

aam_s2_537

yes

aam_s2_959

no

aam_s2_958

yes

RR-V20

no

aam_s2_550

yes

L-V84

no

aam_s2_792

yes

LL-V105

no

aam_s2_743

yes

RR-V103

no

aam_s2_559

yes

aam_s2_545

no

aam_s2_544

yes

RR-V156

no

aam_s2_547

yes

RR-V85

no

R-V102

yes

RR-V36

no

aam_s2_549

yes

Vis-C-Front_partStart

no

aam_s2_666

yes

RR-V58

no

aam_s2_556

yes

R-V136

no

aam_s2_605

yes

aam_s2_926

no

aam_s2_925

yes

LL-V108

no

aam_s2_702

yes

RR-V27

no

aam_s2_602

yes

aam_s2_946

no

aam_s2_945

yes

RR-V140

no

aam_s2_592

yes

aam_s2_582

no

aam_s2_581

yes

LL-V12

no

aam_s2_629

yes

RR-V95

no

aam_s2_586

yes

RR-V121

no

aam_s2_824

yes

Vis-LLL-aw

no

aam_s2_654

yes

Vis-R-Bilabial_partStart

no

aam_s2_617

yes

aam_s2_569

no

aam_s2_568

yes

RR-V156

no

aam_s2_624

yes

aam_s2_1021

no

aam_s2_1020

yes

C-V100

no

aam_s2_575

yes

C-V49

no

aam_s2_576

yes

L-V30

no

aam_s2_577

yes

aam_s2_823

no

aam_s2_822

yes

Vis-RR-ih_partStart

no

aam_s2_683

yes

Vis-L-X

no

aam_s2_971

yes

aam_s2_725

no

aam_s2_724

yes

Vis-C-Front_partStart

no

aam_s2_780

yes

aam_s2_585

no

Vis-L-Central_Fricative_partStart

yes

Vis-R-Back_Consonant_partStart

no

aam_s2_634

yes

RR-V68

no

aam_s2_698

yes

Vis-C-Bilabial

no

aam_s2_699

yes

R-V158

no

aam_s2_625

yes

C-V100

no

aam_s2_665

yes

RR-V137

no

aam_s2_679

yes

RR-V140

no

aam_s2_606

yes

R-V159

no

aam_s2_607

yes

RR-V119

no

aam_s2_738

yes

LL-V58

no

aam_s2_720

yes

aam_s2_970

no

aam_s2_969

yes

aam_s2_1036

no

aam_s2_1035

yes

aam_s2_772

no

aam_s2_771

yes

Vis-LL-Plosive

no

aam_s2_814

yes

C-Num_syl-in-phrase==24

no

aam_s2_616

yes

aam_s2_903

no

aam_s2_902

yes

L-V126

no

aam_s2_644

yes

Vis-C-ah_partStart

no

aam_s2_678

yes

C-V109

no

aam_s2_662

yes

R-V129

no

aam_s2_651

yes

Vis-LLL-silences_partMid

no

aam_s2_661

yes

C-V146

no

aam_s2_696

yes

R-V44

no

aam_s2_753

yes

Vis-C-z

no

aam_s2_689

yes

C-V19

no

aam_s2_670

yes

aam_s2_924

no

aam_s2_923

yes

Vis-LL-Approximant

no

aam_s2_682

yes

aam_s2_636

no

aam_s2_635

yes

Vis-C-m_partStart

no

aam_s2_761

yes

Vis-C-m

no

aam_s2_835

yes

Vis-LL-X

no

Vis-LL-w_partStart

yes

aam_s2_1117

no

aam_s2_1116

yes

Vis-LL-l

no

aam_s2_763

yes

aam_s2_1051

no

aam_s2_1050

yes

RR-V128

no

aam_s2_766

yes

aam_s2_911

no

aam_s2_910

yes

LL-V96

no

aam_s2_786

yes

R-V149

no

RR-V31

yes

aam_s2_1111

no

aam_s2_1110

yes

aam_s2_980

no

aam_s2_979

yes

aam_s2_1085

no

aam_s2_1084

yes

aam_s2_896

no

aam_s2_895

yes

Vis-L-Dipthong_Closing_partStart

no

aam_s2_673

yes

C-V45

no

aam_s2_726

yes

aam_s2_832

no

aam_s2_831

yes

aam_s2_866

no

aam_s2_865

yes

C-V41

no

aam_s2_693

yes

R-V44

no

RR-V65

yes

aam_s2_677

no

aam_s2_676

yes

aam_s2_803

no

aam_s2_802

yes

RR-V68

no

aam_s2_697

yes

aam_s2_990

no

aam_s2_989

yes

C-Num_wrd-in-phrase==16

no

aam_s2_728

yes

R-V116

no

aam_s2_687

yes

RR-V74

no

R-V115

yes

RR-V45

no

aam_s2_684

yes

aam_s2_686

no

aam_s2_685

yes

aam_s2_1109

no

aam_s2_1108

yes

RR-V19

no

aam_s2_705

yes

C-V49

no

aam_s2_764

yes

RR-V144

no

aam_s2_690

yes

Vis-L-Voiced_Consonant

no

aam_s2_745

yes

aam_s2_860

no

aam_s2_859

yes

L-V149

no

aam_s2_948

yes

L-V3

no

aam_s2_752

yes

RR-V67

no

aam_s2_791

yes

R-V30

no

aam_s2_739

yes

R-V141

no

aam_s2_711

yes

C-V154

no

aam_s2_700

yes

C-V71

no

aam_s2_701

yes

aam_s2_834

no

aam_s2_833

yes

aam_s2_846

no

aam_s2_845

yes

aam_s2_1058

no

aam_s2_1057

yes

C-V100

no

aam_s2_741

yes

Vis-LL-Nasal_partStart

no

aam_s2_756

yes

aam_s2_984

no

aam_s2_983

yes

aam_s2_957

no

aam_s2_956

yes

aam_s2_1017

no

aam_s2_1016

yes

RR-V15

no

RR-V154

yes

R-V58

no

R-V8

yes

aam_s2_715

no

aam_s2_714

yes

C-V83

no

aam_s2_800

yes

R-V13

no

aam_s2_954

yes

aam_s2_881

no

aam_s2_880

yes

aam_s2_934

no

aam_s2_933

yes

aam_s2_749

no

aam_s2_748

yes

aam_s2_966

no

aam_s2_965

yes

R-V36

no

aam_s2_781

yes

RR-V159

no

aam_s2_789

yes

aam_s2_1093

no

aam_s2_1092

yes

R-V140

no

aam_s2_740

yes

Vis-LL-ey_partStart

no

aam_s2_785

yes

C-V96

no

aam_s2_742

yes

aam_s2_856

no

aam_s2_855

yes

C-V109

no

aam_s2_921

yes

aam_s2_1107

no

aam_s2_1106

yes

R-V58

no

aam_s2_978

yes

aam_s2_799

no

aam_s2_798

yes

Vis-C-Lateral

no

aam_s2_801

yes

RR-V84

no

R-V11

yes

RR-V34

no

aam_s2_757

yes

aam_s2_1062

no

aam_s2_1061

yes

R-V68

no

aam_s2_758

yes

RR-V102

no

Vis-LL-OVowel_partStart

yes

RR-V36

no

aam_s2_759

yes

aam_s2_1013

no

aam_s2_1012

yes

RR-V44

no

aam_s2_760

yes

R-V141

no

aam_s2_947

yes

aam_s2_877

no

aam_s2_876

yes

aam_s2_1079

no

aam_s2_1078

yes

RR-V156

no

aam_s2_1100

yes

Vis-C-v_partStart

no

aam_s2_765

yes

C-V141

no

aam_s2_912

yes

Vis-C-Front_Vowel_partStart

no

Vis-LL-ae_partStart

yes

aam_s2_940

no

aam_s2_939

yes

R-V118

no

aam_s2_950

yes

aam_s2_779

no

aam_s2_778

yes

Vis-C-Nasal_partStart

no

aam_s2_904

yes

aam_s2_1049

no

aam_s2_1048

yes

aam_s2_784

no

aam_s2_783

yes

RR-V73

no

aam_s2_850

yes

C-V125

no

aam_s2_885

yes

R-V100

no

aam_s2_897

yes

aam_s2_1072

no

aam_s2_1071

yes

R-V142

no

aam_s2_838

yes

aam_s2_1113

no

aam_s2_1112

yes

RR-V116

no

aam_s2_884

yes

aam_s2_986

no

aam_s2_985

yes

R-V134

no

aam_s2_811

yes

aam_s2_887

no

aam_s2_886

yes

C-V123

no

aam_s2_829

yes

RR-V154

no

aam_s2_807

yes

RR-V80

no

aam_s2_808

yes

aam_s2_810

no

aam_s2_809

yes

R-V104

no

aam_s2_890

yes

aam_s2_982

no

aam_s2_981

yes

aam_s2_1019

no

aam_s2_1018

yes

aam_s2_1011

no

aam_s2_1010

yes

aam_s2_821

no

aam_s2_820

yes

aam_s2_828

no

aam_s2_827

yes

Vis-L-ch

no

aam_s2_879

yes

aam_s2_1125

no

aam_s2_1124

yes

C-V123

no

aam_s2_840

yes

LL-V15

no

aam_s2_1003

yes

aam_s2_1002

no

aam_s2_1001

yes

L-V41

no

aam_s2_872

yes

C-V134

no

R-V154

yes

RR-V119

no

R-V72

yes

RR-V77

no

aam_s2_862

yes

aam_s2_864

no

aam_s2_863

yes

Vis-LL-Vowel_Front

no

aam_s2_918

yes

C-V92

no

aam_s2_938

yes

Vis-C-eh_partStart

no

aam_s2_878

yes

aam_s2_883

no

aam_s2_882

yes

C-V102

no

aam_s2_900

yes

R-V8

no

aam_s2_953

yes

aam_s2_906

no

aam_s2_905

yes

Vis-LL-Vowel_Open_partStart

no

aam_s2_941

yes

aam_s2_1127

no

aam_s2_1126

yes

aam_s2_1083

no

aam_s2_1082

yes

aam_s2_1081

no

aam_s2_1080

yes

aam_s2_932

no

aam_s2_931

yes

RR-V157

no

aam_s2_909

yes

aam_s2_908

no

aam_s2_907

yes

RR-V69

no

aam_s2_937

yes

aam_s2_1009

no

aam_s2_1008

yes

aam_s2_1060

no

aam_s2_1059

yes

aam_s2_920

no

aam_s2_919

yes

L-V144

no

aam_s2_1128

yes

C-V104

no

aam_s2_1070

yes

aam_s2_928

no

aam_s2_927

yes

aam_s2_930

no

aam_s2_929

yes

Vis-LL-Alveolar_partStart

no

aam_s2_993

yes

aam_s2_1005

no

aam_s2_1004

yes

RR-V99

no

aam_s2_942

yes

RR-V36

no

aam_s2_949

yes

aam_s2_1087

no

aam_s2_1086

yes

R-V36

no

aam_s2_1052

yes

RR-V45

no

aam_s2_972

yes

aam_s2_952

no

aam_s2_951

yes

aam_s2_1091

no

aam_s2_1090

yes

aam_s2_1045

no

aam_s2_1044

yes

R-V141

no

aam_s2_964

yes

aam_s2_1028

no

aam_s2_1027

yes

aam_s2_1073

no

Num_wrd-in-phrase==15

yes

RR-V141

no

aam_s2_973

yes

Vis-L-Long_Vowel_partStart

no

aam_s2_974

yes

RR-V88

no

aam_s2_975

yes

aam_s2_977

no

aam_s2_976

yes

Vis-L-uw

no

aam_s2_1037

yes

Vis-LL-Vowel_Open_partStart

no

aam_s2_1000

yes

aam_s2_1043

no

aam_s2_1042

yes

aam_s2_1089

no

aam_s2_1088

yes

aam_s2_1024

no

aam_s2_1023

yes

R-V137

no

R-VSIL

yes

aam_s2_1039

no

aam_s2_1038

yes

aam_s2_1041

no

aam_s2_1040

yes

aam_s2_1054

no

aam_s2_1053

yes

aam_s2_1103

no

LL-V107

yes

aam_s2_1123

no

aam_s2_1122

yes

C-Num_syl-in-phrase==13

no

aam_s2_1074

yes

RR-V140

no

aam_s2_1075

yes

aam_s2_1077

no

aam_s2_1076

yes

aam_s2_1102

no

aam_s2_1101

yes

aam_s2_1105

no

aam_s2_1104

yes

aam_s2_1130

no

aam_s2_1129

yes

Figure 5.6: An example part of context-dependent binary decision tree that gener-

ated from HMM-based using dynamic viseme units.

Speech recognition uses Minimum Description length (MDL) criterion to control

the tree growth [93]. Note that, the MDL was applied to audio TTS and incorporated

into HTS toolkit by [119]. In the process of decision tree construction, the MDL

is used to make a decision whether splitting or stopping the current node. As

mentioned, the context-dependent decision trees are constructed by each individual

states. The statistical of the generated models is shown in Table 5.3. Overall, it

can be seen that the depths of the decision tree from dynamic viseme units are

deeper that that from phoneme and static viseme units. This is not surprisingly

result because number of dynamic visemes is greater than that of other two units.

Moreover, the most distribution of dynamic viseme units was originated from state

5. This means more than 95 percent of the total number of 39,534 full-context

models can be grouped into 1839 clusters.

5.2. HMM-based visual speech synthesis 111

Table 5.3: Statistics of the models generated after training HMMs using MDL.

Features PH SV DV

Number of contexts in training
Including silence 69,391 68,638 39,534

Excluding silence 68,184 67,767 37,444

Number of leaf nodes

State 1 543 462 1,129

State 2 723 542 831

State 3 984 944 926

State 4 533 487 961

State 5 438 410 1,839

Total 3,217 2,895 5,686

5.2.2 Synthesis part

This section describes how to generate the lip movement animation from the input

text. In a real-world application, this part comprises two main systems including the

text-to-speech (TTS) system and a text-to-visual speech system. Firstly, the TTS

system is used to convert the written form to the acoustic form and then predict the

phone durations forming the mono phone labels. After that, the synthesised speech

is generated based on these labels. Secondly, the visual text to speech system also

uses the same labels to predict the visual features and then reconstructs a sequence

of lip images. Finally, the lip movement animation is created by combining lip image

synchrony sequences and synthesised speech from the TTS system.

However, this work focuses on visual-only synthesis. It is assumed that mono

phone labels are available and natural speech is used instead of synthesised speech in

the process of generating the lip movement animation. From the synthesis parts in

Figure 5.1, the input text and mono phone labels are converted into full contextual

input features (as described in Section 5.2.1.1). Then, the stepwise AAM parameters

of static and delta and delta-delta derivative are predicted from the trained decision

tree based context HMMs. Next, the parameter generation algorithm, as described

in Section 3.2.4, is used to generate a sequence of smoothed AAM outputs. Finally,

these outputs are reconstructed into the lip images and combined with the natural

5.3. Experiment results 112

speech to form the lip movement animation.

5.3 Experiment results

This section aims to perform an evaluation of the synthesised visual speech consid-

ering three different kinds of objective scores including correlation, normalised root

means square error, and global variance. Experiments are performed on the KB-2k

audiovisual speech dataset, as described in Chapter 4. To make a fair comparison,

then, we adopt the same 2,042 training sentences and synthesise lip animation from

the 50 held-out sentences (Training and SpecialTesting data set as described in Sec-

tion 4.5.3), which were used in the previous work such as the unit-selection system

in [99].

5.3.1 Objective tests

In objective evaluation, the error between the predicted visual AAM features and

the groundtruth AAM parameters is measured using three objective metrics: (i)

correlation, (ii) normalised root mean square error (NRMSE), and (iii) global vari-

ance (GV). Note that, most visual speech synthesisers commonly measure error

objectively by correlation and RMSE. A positive or negative correlation in terms

of visual speech synthesis relates to audio and visual synchronisation. For example,

the same AAM visual trajectory with shift in time (small correlation) leads to the

lack of audio and visual synchrony. Most of the case RMSE requires to consider

with correlation because it does not guarantee that the low RMSE is better than

the high RMSE. For example, the work from Theobald [103] found that the high

RMSE with positive correlation from smoothed data showed better animation com-

pared with the small RMSE with negative correlation. Additionally, we consider

using normalised-RMSE instead of RMSE to confirm that the entire vector has the

same unit and scale of the features [104].

We also propose the global variance (GV) of the visual features as one of our

objective tests. GV could be used to guide and select the best model in the case of

correlation and normalised-RMSE methods report the similar scores. This metric is

5.3. Experiment results 113

inspired by work in the speech synthesis community that found the dynamic range

of the acoustic features degraded the sound quality. From this concept, we assume

that the range is possibly linked to the under and over articulation of lip movement

animations and this is the main reason to use raw data instead of normalised data

as used in RMSE metric. Table 5.4 shows the GV of the training, validation and

testing set of the original data.

Table 5.4: The global variance of the training, validation and testing set of the

original KB-2k data.

Training set Validation set Testing set

GV 1461.03(±384.35) 1477.94(±457.65) 1477.82(±378.94)

Figure 5.7 illustrates an example of the first AAM parameter between ground-

truth (normal dynamic range in black) and generated (small dynamic range in red)

trajectories for the utterance: “students choices of ideal educational goals are not

arbitrary or whimsical”. After that, we also investigate the effect of normal and

low dynamic range into the lip movement animation for the word “chooses”, as

depicted in Figure 5.8. It can be seen that the image quality from the small dynamic

range trajectory (bottom) is getting more blured and less flexible in terms of open

and closed mouth shaped compared with the normal dynamic range (top). That

means the global variance of the AAM features is related to the naturalness of the

synthesised lip animation in terms of over- and/or under-articulation. The animation

results of normal and small dynamic range can be seen in supplementary video.

5.3. Experiment results 114

Frame Numbers
0 20 40 60 80 100 120 140 160

1-
st

 A
AM

 P
ar

am
et

er

-200

-150

-100

-50

0

50

100

150
S0032: students choices of ideal educational goals are not arbitrary or whimsical

Ground-truth: normal dynamic range
Generated: small dynamic range

Figure 5.7: Two different dynamic ranges that originated from the ground-truth and

generated AAM trajectories.

020 022 024 026 028 030

Ground-truth

Generated

Figure 5.8: Frames 20-30 from the ground-truth trajectories (top) and generated

trajectories (bottom), corresponding to the the first syllable of the word choices.

Both examples tend to present similar lip shapes but the image quality from the

small dynamic range trajectory (bottom) is getting more blur and less flexible in

terms of open and closed mouth shapes than the normal dynamic range (top).

The correlation, NRMSE, and GV measures are calculated as follows:

Correlation =
1

D ×N

D∑
d=1

N∑
j=1

(yjd − µd)(o
j
d − µ̂d)

σdσ̂d
, (5.2)

NRMSE =
1

D

D∑
d=1

√
1
N

∑N
j=1(y

j
d − o

j
d)

2

ymax,d − ymin,d
, (5.3)

GV =
1

D ×N

D∑
d=1

N∑
j=1

(ojd − µ̂d)
2, (5.4)

5.3. Experiment results 115

where yj is the D-dimensional ground-truth AAM vector, oj is the D-dimensional

synthesised AAM vector, N is the number of vectors in each sentence. µd and µ̂d are

the respective mean of the dth dimension of y and o across the frames from 1 to N ,

and µd and µ̂d are the respective variance of the dth dimension of y and o across the

frames form 1 to N . ymax,d and ymin,d are the maximum and minimum value from

the D-dimensional ground-truth AAM vectors, respectively. Cootes et al. [19] and

Theobald [103] reported that it is not necessary to capture 95% of the total variation

when building speech animation. Theobald found that the first few parameters at

70-85% of the total variation are able to retain the most important variation in

terms of synthesis. Note that, for evaluation proposed this work sets the number

of D to 5 which retains approximately 80% of the variation that they explain, as

shown in Figure 5.9.

Number of AAM parameters
0 5 10 15 20 25 30

C
um

ul
at

iv
e

va
ria

nc
e

ex
pl

ai
ne

d

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.9: Cumulative variance explained by AAMs.

5.3.1.1 Effect of frame rate

This experiment aims to investigate the effect of the AAM’s frame rate to find out a

suitable value for HMM-based visual speech synthesis. Most audiovisual speech ap-

plications (e.g., audiovisual speech recognition) upsample the visual data to match

the audio data frame rate. For example, the video rate at 50fps was upsampled to

200fps in audiovisual speech synthesis [23]. It is, however, interesting to know which

data rate is the best number for visual speech synthesis using HMMs. The training

conditions in this experiment follow the standard HMM-based speech synthesis from

5.3. Experiment results 116

the HTS toolkit [126] with five emitting states, no skips and single component Gaus-

sians with a diagonal covariance matrix used to model context dependent phoneme

HMMs.

Our preliminary work found that the original video rate of 29.97fps is insufficient

for training the HMMs because it does not have enough vectors for some short-

duration phonemes. We found that the duration in each phoneme must be longer

than approximately 150ms for the five emitting state HMMs. Unfortunately, the

average of phoneme duration of KB-2k is 95 ms and nearly 85% of phonemes have a

duration less than 150ms. To overcome this problem, the AAM parameters are first

upsampled from 30fps (original video rate) to 100fps or 200fps using cubic spline

interpolation. Note that, linear interpolation function is not recommended because

this may cause zero 2nd-order derivative which we do not learn anything about the

slope of the features.

Table 5.5 presents the averaged objective scores of data rate at 100fps and 200fps.

It shows that the data rate at 100fps outperforms the data rate at 200fps in two-

third of the objective scores including correlation and normalised RMSE. Moreover,

with the inspecting the prediction videos, we found that the lip animation from the

frame rate of 100fps appear natural and better than that of 200fps. Hence, it can

be conclude that 100fps is a suitable frame rate for HMM visual speech synthesis

and this rate will be used for the remaining experiments in this chapter.

Table 5.5: The averaged scores of phoneme HMM-based visual speech synthesis in

different data rate.

Data rate Correlation NRMSE GV

30fps - - -

100fps 0.77(±0.09) 9.93(±2.24) 794.53(±168.01)

200fps 0.75(±0.08) 10.31(±2.07) 889.96(±177.95)

5.3.1.2 Effect of dynamic feature

This experiment aims to investigate the effect of the width of the window used

while computing the dynamic features in each frame (described in Section 5.2.1.2).

5.3. Experiment results 117

The hypothesis is that the longer window might be beneficial in a different way

for visual speech. Based on the standard HMM-based speech synthesis from HTS

[126], most systems use three-frames window to calculate delta and delta-delta (e.g.,

KL = KR = 1 in Equation (3.13)).

To explore the benefits of different window widths for dynamic coefficients for

HMM-based visual speech synthesis, we varied the window width from 1 to 9 via

KL and KR settings. HMMs with 5-states, left-to-right with no-skip topology with

a single diagonal Gaussian output distribution were used to build all phone context

dependent models. The averaged results (mean standard deviation) of correlation,

normalised-RMSE, and GV in terms of AAM parameters are shown in Table 5.6.

Table 5.6: The averaged objective scores of phoneme HMM-based visual speech

synthesis in different number of window length for computing dynamic feature.

KL KR Total Width Correlation NRMSE GV

0 0 1-frame 0.70(±0.08) 11.12(±2.06) 987.97(±158.97)

1 1 3-frame 0.77(±0.09) 9.93(±2.24) 794.53(±168.01)

2 2 5-frame 0.76(±0.09) 10.20(±2.22) 866.30(±151.39)

3 3 7-frame 0.74(±0.09) 10.35(±2.16) 867.97(±153.94)

4 4 9-frame 0.74(±0.08) 10.47(±2.20) 866.87(±147.78)

From this table, the first configuration “(1-frame)” sets KL and KR to 0 that

yields to the use only static features. It shows that this setting (KL = KR = 0)

reports the worst scores compared with the others settings in terms of correlation

and NRMSE scores. Note that, a large GV does not use to indicate the best setting

in this case because this score corresponds to random signals. Additionally, it can

be confirmed by the inspection of the time-varying trajectory of the predicted AAM

(blue) compared with the ground-truth AAM (black) in Figure 5.10. Note that,

the five piecewise trajectories in each phone (blue) are not appropriate for visual

animations because these will lead to get the same lip image in each HMM state.

However, this is not surprisingly results because this appears to have suffered from

one of the HMM synthesis drawbacks where the same HMM state is produced the

same outputs. It clearly shows that the use of dynamic features (KL = KR = 1) is

5.3. Experiment results 118

able to reduce the discontinuities problem (red).

Figure 5.11 illustrates the inspection of the time-varying trajectory of the dy-

namic features with 5 window length (KL = KR = 2) and 7 window length

(KL = KR = 3). It shows that both results are jerky and not able to generate

continuous trajectories. It clearly shows that the use of dynamic features with the

window length greater or equal five is unable to produce the smooth trajectory and

propose a jerky problem.

Frame Number
0 20 40 60 80 100 120

AA
M

 P
ar

am
et

er

-50

0

50

100

150
S0524: 1-AAM parameter

Groundtruth
KL=KL=0
KL=KR=1

Figure 5.10: A ground-truth (black) AAM parameter trajectory compared with a

synthetic AAM parameter trajectory from static features only (blue) and dynamic

features with 3 window length (KL = KR = 1). Vertical lines show phoneme

boundaries. This result shows static features, (KL = KR = 0), are not able to

generate continuous trajectories. This can only produce around five different lip

images from five emitting states in each phoneme. It clearly shows that the use of

dynamic features is able to reduce the discontinuities problem (red).

5.3. Experiment results 119

Frame Number
0 20 40 60 80 100 120

AA
M

 P
ar

am
et

er

-50

0

50

100

150
S0524: 1-AAM parameter

Groundtruth
KL=KL=2
KL=KR=3

Figure 5.11: A ground-truth (black) AAM parameter trajectory compared with a

synthetic AAM parameter trajectory from dynamic features dynamic features with

5 window length (KL = KR = 2) and 7 window length (KL = KR = 3). Vertical

lines show phoneme boundaries. This result shows these results are jerky and not

able to generate continuous trajectories. It clearly shows that the use of dynamic

features with the window length greater or equal five is unable to produce the smooth

trajectory and propose a jerky problem.

5.3.1.3 Effect of static viseme classes

Many existing visual synthesisers use (static) visemes as the visual speech unit.

Visemes or visual phonemes are the basic unit of mouth movement [37]. From a

visual point of view, some phonemes cannot be visually distinguished because they

have the same place of articulation. For example, the phonemes /p, b, m/ are

visually similar and represent the same viseme class.

There are many viseme classifications in the literature, because there is still

no standard set of visemes and that visemes are less well defined than phonemes.

Traditionally, most researchers define visemes as groups of phonemes and they are

mapped using either a many-to-one phoneme-to-viseme mapping or a many-to-many

phoneme-to-viseme mapping. The differences in each classification are the choice of

the different groups of phonemes in each viseme. For example, the most common

viseme classification are: MPEG-4 [79] mapped 43 phonemes to 14 visemes groups,

or 5 consonant visemes groups from Fisher [37], .

5.3. Experiment results 120

In this experiment, we wish to determine if a HMM-based synthesiser based on

visual phonemes (called static visemes) is able to synthesise visual speech better

than equivalent synthesisers trained using phoneme units. Hence, our experiment

uses the most common viseme groups from Fisher [37]; specifically, (i) consonant

phoneme-to-viseme mapping and vowel phoneme-to-viseme mapping. In particular,

They mapped 26 consonant phonemes to 7 visemes groups and mapped 17 vowel

phonemes to 7 visemes groups using a decision tree, as shown in Table 5.7.

Table 5.7: A many-to-one phonemes to visemes mapping [37].

Visemes Consonant phones Visemes Vowel phones

V1 /p,b,m/ V8 /eh,ey,ae,aw,er/

V2 /f,v/ V9 /ah,ax,ay/

V3 /t,d,s,z,th,dh/ V10 /aa/

V4 /w,r/ V11 /er/

V5 /ch,sh,zh,jh/ V12 /ao,ow,oy/

V6 /k,g,n,l,hh,ng,y/ V13 /uh,uw/

V7 /sil,sp/ V14 /iy,ih/

Three components including input features, output features, and HMM configu-

rations are prepared to train the static viseme HMM-based system for visual speech

synthesis. With input features, the full contextual input of static viseme units (SV)

is summarised in Table 5.1 which includes features for static viseme (segment), syl-

lable, word, phrase, and utterance. For output features, 30 AAM features and their

delta and delta-delta at 29.97 fps (original frame rate) are upsampled to 100 fps, as

shown from the promising results from the previous experiment. From the standard

HTS training conditions [45], five emitting states, no skips with single component

Gaussians with a diagonal covariance matrix are considered in this experiment.

The first three different HMM synthesis systems were used to determine the

effect of static viseme classes: (System A) HMM-based using 7 groups of vowel

viseme classes and 26 consonant phonemes, (System B) HMM-based using 7 group

of consonant viseme classes and 17 vowel phonemes, and (System C) HMM-based

using both 7 groups of consonant and 7 vowel viseme classes.

5.3. Experiment results 121

Table 5.8: The averaged objective scores of static viseme HMM-based visual speech

synthesis in different static viseme classes.

System Vowel units Consonant units Correlation NRMSE GV

A 7 visemes 26 phonemes 0.76(±0.08) 10.26(±2.23) 747.23(±134.95)

B 17 phonemes 7 visemes 0.76(±0.09) 10.09(±2.26) 803.51(±173.60)

C 7 visemes 7 visemes 0.74(±0.09) 10.49(±2.21) 764.99(±161.17)

From the results in Table 5.8, it can be seen that there are not significant dif-

ference among the three systems. Based on the average results, however, the better

performance is indicated by high correlation and GV values and low NRMSE. Hence,

the performance of the group of consonant visemes (System B) is slightly better

than that of the group of vowel visemes (System A) because System B has the low

NRMSE and high GV comparing with System A. This suggest that the individual

vowel phonemes is very important for the synthesisers because System A grouped

17 vowel into 7 classes while System B used all of the vowel phonemes. This is also

confirmed by the worst results in System C which used only the 14 viseme classees.

These results suggest that the phonetic information of both consonant and vowel

from phonemes is important.

Table 5.9: The averaged objective scores of the different combination of static

viseme and phoneme units for HMM-based visual speech synthesis system.

System Correlation NRMSE GV

PH HMM 0.77(±0.09) 9.93(±2.24) 794.53(±168.01)

System D 0.77(±0.09) 10.01(±2.25) 812.38(±170.06)

System E 0.77(±0.09) 9.98(±2.21) 804.51(±170.46)

System F 0.77(±0.09) 10.04(±2.25) 812.10(±171.60)

Hence, we are interested in incorporating static viseme units (SV) into phoneme

units (PH) in three different systems: (System D) uses phoneme units and vowel

viseme units, (System E) uses phoneme units and consonant viseme units, and

(System F) uses phoneme units and a combination of consonant and vowel viseme

units. From these three systems we are able to use the phonetic information from

5.3. Experiment results 122

phonemes and use viseme classes as additional visual information. As expected,

the combined PH+SV units (System D-F) achieved better objective scores than SV

units (System A-C). Unfortunately, the results of combined PH+SV systems did not

bring in the improvement compared with baseline PH HMM system. This indicates

that the group of consonant and vowel phonemes (static visemes) did not utilise the

additional visual information. Thus, this is the main reason to introduce the use of

dynamic viseme units in the next experiment.

5.3.1.4 Effect of dynamic viseme classes

The previous experiment showed that the use of static viseme units for HMM-based

visual synthesis does not bring in the benefits of visual information from the groups

of visually similar phonemes. This is not surprising as traditional static visemes

are not visually similar. Hence, these are the main reason to use dynamic visemes

that are learnt independently of acoustic speech, and provide a library of visible

articulator movements [98]. A set of dynamic visemes is the first thing that we are

concerned with when using dynamic viseme units.

This experiment aims to find a suitable number of dynamic viseme classes for

HMM-based visual speech synthesis. As mentioned in Section 4.4.1.2, the cluster

compactness is used to measure clustering quality and to determine the required

number of dynamic visemes. However, this measurement does not directly tell us

about how good the synthesised speech is. Hence, the number of dynamic visemes

is varied between 10 and 250 to represent a basic unit for HMM-based visual speech

synthesis. In a training step, the full contextual input of dynamic viseme units

(DV) is extracted from each dynamic viseme (segment), syllable, word, phrase, and

utterance features in Table 5.1. For output features, the AAM static and dynamic

features, with an original frame rate of 29.97 fps, are upsampled to 100 fps. From

the standard HTS training conditions [45], five emitting states, no skips with a

single component Gaussian with a diagonal covariance matrix are considered in this

experiment.

5.3. Experiment results 123

Number of dynamic visemes
0 50 100 150 200 250

C
or

re
la

tio
n

0.74

0.76

0.78

0.8

0.82

0.84 training
testing

Number of dynamic visemes
0 50 100 150 200 250

N
or

m
al

is
ed

-R
M

SE

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

10.5 training
testing

Figure 5.12: The averaged correlation (top) and normaliased-RMSE (bottom) using

dynamic viseme classes from 10 to 250.

From this figure, both training and testing sets have the same trend of results

which the predicted AAM features improve when increasing the number of dynamic

visemes. However, after 180 classes the correlation and normalised RMSE begin to

deteriorate. Eventually, the appropriate number of visemes is about 140-180, which

is close to the number as determined by Taylor et al. [98] at 150 classes.

5.3.1.5 Effect of output normalisation

As we know, the process of normalising input and output features in each dimension

into the same range is necessary for neural networks [63]. With the HMM-based

visual speech synthesis framework, most systems have used the raw data with no

normalisation. Hence, the purpose of this experiment is to examine a suitable data

encoding. We are not interested to find out the effect of this transforming process

5.3. Experiment results 124

to the input data because the input values for HMM-based framework do not affect

to the performance. For instance, one system specifies the stress value with “1” and

another system specifies a stressed value with “1.5”. In the process of building full

context model, it does not matter how they denote the stress value. Both systems

are still able to refer to the same model and get the same mean and variance.

There are various options of transforming the dynamic range of the output data,

such as scaling and standardisation (described in Section 4.5.1). This work applied

the zero normalisation (z-score normalisation) method to the AAM output param-

eters. Then, the transformed data in each dimension could represent the data into

a common scale with a mean of zero and unit standard deviation. After that, these

data were used to train the phoneme HMM-based and dynamic viseme HMM-based

for visual speech synthesis systems.

Table 5.10: The averaged objective scores of the importance of standardisation

method on AAM visual output for phoneme HMM system and dynamic viseme HMM

system.

Correlation NRMSE GV

PH
norm 0.77(±0.09) 10.12(±2.33) 744.86(±159.13)

unnorm 0.77(±0.09) 9.93(±2.24) 794.53(±168.01)

DV
norm 0.80(±0.08) 9.34(±1.94) 881.69(±171.07)

unnorm 0.80(±0.07) 9.05(±1.86) 942.62(±197.33)

The averaged results in both phoneme (PH) and dynamic viseme (DV) system

are shown in Table 5.10. Where “unnorm” denotes the raw AAM data and “norm”

denotes for z-score normalised AAM data. Clearly, the unnorm data has slightly

better results than the norm data in both systems. The difference in results might

be originated in the process of re-transforming the normalised data back to the

raw data space. Overall, it can be concluded that standardisation had no effect on

performance for HMM-based visual speech synthesis framework.

5.3. Experiment results 125

5.3.1.6 Effect of number of HMM states

The aim of this experiment is to find out a suitable number of HMM states in

both phoneme HMM-based and dynamic viseme HMM-based systems. The training

conditions of this experiment followed the standard settings from HTS (as described

in 5.2.1.3) except the number of HMM emitting states which was varied from 1 to

9.

Table 5.11: The averaged objective scores of phoneme HMM-based visual speech

synthesis in different number HMM states.

Unit # of HMM states Correlation NRMSE GV

PH

1 0.72(±0.10) 10.79(±2.33) 672.78(±160.96)

3 0.78(±0.08) 9.92(±2.24) 819.18(±179.62)

5 0.77(±0.09) 9.93(±2.24) 794.53(±168.01)

7 0.68(±0.13) 11.28(±2.27) 645.01(±148.72)

9 0.34(±0.19) 14.21(±2.11) 191.78(±58.51)

Table 5.12: The averaged objective scores of dynamic viseme HMM-based visual

speech synthesis in different number HMM states.

Unit # of HMM states Correlation NRMSE GV

DV

1 0.65(±0.09) 11.32(±1.83) 628.22(±177.94)

3 0.78(±0.07) 9.45(±1.85) 897.98(±192.06)

5 0.80(±0.07) 9.05(±1.86) 942.62(±197.33)

7 0.80(±0.07) 9.19(±1.80) 936.48(±204.13)

9 0.79(±0.08) 9.36(±1.95) 910.07(±204.60)

Generally, the longer unit may lead to the complex trajectories, then the more

HMM states is essential to fit the complex trajectories. The averaged objective

score results in Table 5.11 and 5.12 indicate that the smallest number of HMM

states, nState=1, is not able to represent the complex visual trajectories in both

phoneme and dynamic viseme. An interesting result shows that the appropriate

number of HMM states in both units is different. The optimal number of HMM

5.3. Experiment results 126

states is 3 for phoneme units and 5 for dynamic viseme units. We found that the

averaged phoneme durations (≈ 95ms) is shorter than the averaged dynamic viseme

durations (≈ 180ms). Hence, this is the important reason that the number of HMM

states for dynamic visemes units is larger than that for phoneme units.

5.3.1.7 Comparing phoneme, static viseme, and dynamic viseme Units

This experiment aims to find the best unit for HMM-based visual speech synthe-

sis. We compare three approaches for synthesising AAM visual speech parameters:

one that uses phone units as a basic unit, one that uses consonant viseme (static

viseme) units as a basic unit, and another one uses dynamic viseme as a basic unit.

Three HMM-based synthesisers using phones, static visemes, and dynamic viseme

units were trained under the same training conditions and tested under the same

testing set and measured in the same metrics. For the visual parameterisation, 30-

dimensional AAM features were used for the KB2K audiovisual speech corpus which

their delta and delta-delta coefficients were appended. These static and dynamic

visual parameters are then upsampled from 29.97 fps to 100 fps. With phone and

static viseme units, they are modelled using a left-to-right five state(three emitting),

no skip HMM with a single component Gaussian with a diagonal covariance matrix.

With dynamic viseme units, while, is modelled using a left-to-right seven states (five

emitting), no skip HMM with a single component Gaussian with a diagonal covari-

ance matrix. The full context label representation in Table 5.2 and the prepared

question set are used to construct the decision tree based context clustering.

For testing, the ground-truth of the phone, static viseme, and dynamic-viseme

transcriptions are used in this experiment because we would like to observe the best

performance of our synthesiser from the perfect input. we measure the correlation,

normalised root mean square error (NRMSE), and global variance (GV) between

the generated AAM feature vectors and the corresponding original features.

The objective results are summarised in Table 5.13 as the mean (and standard

deviation). We first compared our HMM-based approach in three different units

with the baseline system from [98] that using unit selection approach with dynamic

viseme units. It clearly shows that our HMM systems outperform baseline sys-

5.3. Experiment results 127

tem especially correlation results. These might be originated from an insufficient

dynamic viseme library that represent one lip-motion in each dynamic viseme. Re-

garding to HMM-based approach with three different units, the results suggest that

the use of dynamic viseme units is better than the use of phone and/or static viseme

units. In Figure 5.13, it demonstrates time-varying parameter sequences generated

using the phoneme and static viseme HMMs compared with the ground-truth equiv-

alent measured directly from the video. Clearly, both results (blue and green) were

nearly the same and still not close to the ground-truth trajectories (black). While,

the comparison between phoneme HMM and dynamic viseme HMM were shown in

Figure 5.14. It can be seen that dynamic-viseme trajectories were closer to original

than the phone unit. This can be concluded that dynamic viseme is the best unit

for visual speech synthesis HMM systems as same as the previous application of

dynamic visemes to synthesis used a sample-based approach by [98]. We refer to

the supplementary video for animation results.

Table 5.13: The mean (±standard deviation) scores averaged for HMM-based ap-

proach using phonemes, traditional visemes, and triphones in KB2K corpus.

Systems Unit Correlation NRMSE GV

Unit-sel[98] DV 0.63(±0.07) 10.56(±1.42) 1781.70(±354.53)

HMM PH 0.78(±0.08) 9.92(±2.24) 819.18(±179.62)

HMM SV 0.76(±0.08) 10.10(±2.23) 828.27(±190.63)

HMM DV 0.80(±0.07) 9.05(±1.86) 942.62(±197.33)

5.3. Experiment results 128

Frame Numbers
20 30 40 50 60 70 80

AA
M

 P
ar

am
et

er

-50

0

50

100

150
S2075: 1-AAM parameters

Ground-truth PH SV

Frame Numbers
10 20 30 40 50 60 70 80

AA
M

 P
ar

am
et

er

-50

0

50

100

150

S2232: 1-AAM parameters
Ground-truth PH SV

Figure 5.13: The time varying of the first AAM shape parameter as measured from

video (black), synthesised using phones (blue) and static visemes (green). The

vertical dashed lines mark the beginning and end of each phoneme.

5.3. Experiment results 129

Frame Numbers
20 30 40 50 60 70 80

AA
M

 P
ar

am
et

er

-50

0

50

100

150
S2075: 1-AAM parameters

Ground-truth PH DV

Frame Numbers
10 20 30 40 50 60 70 80

AA
M

 P
ar

am
et

er

-50

0

50

100

150

200
S2232: 1-AAM parameters

Ground-truth PH DV

Figure 5.14: The time varying of the first AAM shape parameter as measured from

video (black), synthesised using phones (blue) and dynamic visemes (red). The

vertical dashed lines mark the beginning and end of each phoneme.

From the inspection of lip movements videos, the dynamic viseme sequences

tended to have better articulation (in terms of mouth opening and audio/visual

synchronisation for example) than phoneme and static viseme models. This is illus-

trated in Figure 5.14, where the overall trajectory of the AAM parameter exhibits

greater variance, as shown in Table 5.13 and similar shape comparing with the

ground-truth (this parameter largely controls mouth opening/closing). These re-

sults also confirm that dynamic viseme units are an effective unit compared with

phoneme and static visemes in terms of representation accuracy and feasibility of

mapping, as described in Section 4.4. With representation accuracy, each dynamic

viseme can ensure that a movement of the visible articulators starts from the begin-

5.3. Experiment results 130

ning of one articulation towards the next target. Whilst the beginning and ending

of phoneme and static viseme units are generally random because they start and

end with the boundaries of similar acoustic sounds. With the feasibility of mapping

in the case of training and synthesising, it is easy to model and map a dynamic

viseme to a sequence of AAMs because the same dynamic viseme represents similar

lip-motion.

5.3.1.8 Analysis of contextual features

We aim to analyse the importance of each input contextual feature in Table 5.1. The

context-dependent binary decision trees that were generated in the HMM training

process are used to explore in this experiment. An example of binary decision trees

of dynamic viseme HMMs is shown in Figure 5.15.

C-silences

C-Front_Consonant

no

R-Syllable_Tone_X

yes

C-Sibilant_Consonant

no

C-Front_Fricative

yes

R-Front_Consonant

no

L-Sibilant_Consonant

yes

C-Long_Vowel

no

C-Alveolar

yes

C-Semi_Consonant

no

C-Unvoiced_Consonant

yes

C-AVowel

no

C-aa

yes

C-sh

no

R-Front_Consonant

yes

R-Front_Consonant

no

C-aw

yes

C-Front

no

R-Bilabial

yes

C-ey

no

C-Dipthong_Closing

yes

C-ay

no

R-Syllable_Tone_5

yes

C-m

no

R-er

yes

R-Bilabial

no

L-Vowel_Front

yes

L-Front_Consonant

no

L-Alveolar

yes

R-Front_Fricative

no

C-ow

yes

R-r

no

R-Vowel_Front

yes

R-silences

no

R-Bilabial

yes

C-ao

no

R-Front_Consonant

yes

R-l

no

L-Central_Consonant

yes

R-Front_Consonant

no

L-Front_Consonant

yes

L-Alveolar

no

R-Fricative

yes

C-r

no

L-Front_Fricative

yes

L-Back_Consonant

no

L-l

yes

R-Sibilant_Consonant

no

L-Vowel_Front

yes

C-OVowel

no

C-Vowel_Mid

yes

R-Vowel_Front

no

R-Vowel

yes

R-Vowel_Close

no

aam_s4_12

yes

C-Dental

no

L-Central_Fricative

yes

R-Vowel

no

C-Word_Num-Syls-Curr==1

yes

R-Alveolar

no

C-s

yes

R-w

no

aam_s4_9

yes

R-Front_Consonant

no

L-Front_Consonant

yes

L-Bilabial

no

aam_s4_109

yes

R-Central_Consonant

no

R-Approximant

yes

L-Central_Stop

no

L-s

yes

R-Syllable_Tone_0

no

R-Front_Fricative

yes

L-PostAlveolar

no

R-Syllable_Tone_0

yes

C-Dipthong_Vowel

no

C-Unvoiced_Consonant

yes

R-Back_Fricative

no

L-Dental

yes

L-Back_Consonant

no

R-silences

yes

LL-sil

no

L-Front_Consonant

yes

L-Front_Consonant

no

R-Front_Fricative

yes

R-t

no

L-Labiodental

yes

L-Sibilant_Consonant

no

C-oy

yes

L-silences

no

R-er

yes

L-Fricative

no

L-PostAlveolar

yes

R-s

no

L-Fricative

yes

C-er

no

L-Fricative

yes

L-r

no

L-Central_Fricative

yes

C-Vowel_Front

no

L-Alveolar

yes

L-Central_Fricative

no

aam_s4_2

yes

R-w

no

C-eh

yes

L-Alveolar

no

L-Central_Consonant

yes

R-Alveolar

no

R-IVowel

yes

R-Front

no

R-OVowel

yes

R-IVowel

no

C-eh

yes

C-eh

no

C-eh

yes

C-Phrase_Num-Words==16

no

L-Vowel_Front

yes

L-Central_Fricative

no

aam_s4_3

yes

L-Bilabial

no

RR-Approximant

yes

L-Central

no

L-Lateral

yes

R-Syllable_Tone_0

no

R-Vowel

yes

C-uw

no

R-Central_Fricative

yes

L-r

no

R-Vowel

yes

R-Syllable_Tone_5

no

L-Vowel

yes

R-sil

no

L-Front_Consonant

yes

R-PostAlveolar

no

LL-uh

yes

C-r

no

C-oy

yes

C-l

no

R-k

yes

R-AVowel

no

C-Lateral

yes

RR-Front_Consonant

no

L-PostAlveolar

yes

L-n

no

C-Word_Num-Syls==1

yes

C-Phrase_Num-Syls==3

no

L-PostAlveolar

yes

C-ah

no

C-l

yes

L-silences

no

LL-ow

yes

L-Central

no

R-silences

yes

L-Labiodental

no

L-Labiodental

yes

C-Vowel_Mid

no

R-Vowel_Close

yes

aam_s4_7

no

aam_s4_6

yes

L-Syllable_Tone_X

no

L-Syllable_Tone_X

yes

L-Syllable_Tone_X

no

L-Back_Consonant

yes

C-Central_Consonant

no

C-eh

yes

R-Central_Fricative

no

C-ow

yes

L-Sibilant_Consonant

no

aam_s4_23

yes

RR-Syllable_Tone_X

no

L-uh

yes

L-Glottal

no

L-m

yes

L-Back_Stop

no

R-Unvoiced_Consonant

yes

RR-er

no

R-Vowel_Open

yes

RR-aw

no

R-Fricative

yes

R-r

no

C-Word_Num-Syls-Curr==1

yes

C-Central_Consonant

no

R-Vowel_Back

yes

L-AVowel

no

C-Plosive

yes

LL-er

no

L-Central_Fricative

yes

L-Voiced_Consonant

no

R-Front_Fricative

yes

R-Bilabial

no

aam_s4_32

yes

R-Vowel_Front

no

aam_s4_1

yes

LL-z

no

aam_s4_19

yes

R-Long_Vowel

no

L-Back_Vowel

yes

aam_s4_225

no

L-AVowel

yes

C-Central_Consonant

no

LL-eh

yes

aam_s4_141

no

aam_s4_140

yes

L-Fricative

no

L-PostAlveolar

yes

L-Fricative

no

LL-Front_Stop

yes

aam_s4_87

no

aam_s4_86

yes

R-AVowel

no

RR-silences

yes

R-r

no

RR-r

yes

C-Phrase_Num-Words-Curr==10

no

aam_s4_48

yes

L-Nasal

no

LL-Vowel_Front

yes

LL-ih

no

LL-n

yes

R-Unvoiced_Fricative

no

R-Alveolar

yes

RR-Vowel

no

L-silences

yes

R-Sibilant_Consonant

no

aam_s4_16

yes

R-Vowel_Close

no

aam_s4_15

yes

C-l

no

L-Velar

yes

aam_s4_124

no

aam_s4_123

yes

C-eh

no

L-AVowel

yes

C-Dipthong_Vowel

no

aam_s4_99

yes

L-Approximant

no

LL-n

yes

C-er

no

C-Phr_Num-Syls==Begin

yes

C-Voiced_Consonant

no

R-Lateral

yes

aam_s4_22

no

C-Voiced_Consonant

yes

R-EVowel

no

R-UVowel

yes

L-aw

no

C-l

yes

L-Alveolar

no

aam_s4_18

yes

R-r

no

aam_s4_38

yes

R-Central_Fricative

no

aam_s4_4

yes

R-r

no

R-Lateral

yes

R-r

no

R-AVowel

yes

aam_s4_21

no

aam_s4_20

yes

R-Central_Consonant

no

L-sil

yes

L-ey

no

aam_s4_36

yes

L-Vowel_Front

no

aam_s4_26

yes

L-Sibilant_Consonant

no

L-Vowel_Open

yes

R-Unvoiced_Consonant

no

C-Phrase_Num-Syls-Curr==7

yes

L-Voiced_Fricative

no

R-g

yes

C-OVowel

no

C-Phrase_Num-Words==3

yes

C-l

no

C-l

yes

R-r

no

C-Central_Stop

yes

RR-Front_Fricative

no

C-Phrase_Num-Words-Curr==7

yes

R-sil

no

C-Phr_Num-Vis==Mid

yes

L-r

no

L-r

yes

L-m

no

aam_s4_25

yes

R-sil

no

C-Phrase_Num-Words-Curr>=10

yes

L-Vowel_Open

no

R-Vowel_Close

yes

aam_s4_37

no

R-Vowel

yes

L-Voiced_Plosive

no

LL-Bilabial

yes

RR-ay

no

aam_s4_44

yes

L-Central_Fricative

no

aam_s4_46

yes

R-Vowel_Front

no

RR-dh

yes

LL-k

no

L-oy

yes

L-Alveolar

no

C-Phrase_Num-Syls-Curr==18

yes

L-Central_Fricative

no

C-Lateral

yes

aam_s4_73

no

aam_s4_72

yes

C-Central_Consonant

no

aam_s4_31

yes

L-Sibilant_Consonant

no

C-Phrase_Num-Syls-Curr==4

yes

aam_s4_573

no

aam_s4_572

yes

C-Word_Num-Syls==Begin

no

L-l

yes

L-ch

no

aam_s4_370

yes

L-ay

no

C-Phrase_Num-Syls-Curr==5

yes

RR-silences

no

aam_s4_210

yes

C-Central_Stop

no

aam_s4_5

yes

R-Vowel_Back

no

aam_s4_45

yes

L-Vowel_Mid

no

LL-UVowel

yes

LL-Syllable_Tone_X

no

LL-Vowel_Close

yes

C-Phr_Num-Wrds==End

no

aam_s4_446

yes

R-Vowel

no

aam_s4_11

yes

L-Bilabial

no

L-Bilabial

yes

R-Vowel_Mid

no

aam_s4_14

yes

R-r

no

R-Back_Vowel

yes

RR-Front_Consonant

no

C-Central_Stop

yes

aam_s4_240

no

aam_s4_239

yes

R-OVowel

no

aam_s4_10

yes

C-l

no

aam_s4_190

yes

L-Approximant

no

aam_s4_17

yes

aam_s4_813

no

aam_s4_812

yes

L-Front_Consonant

no

L-silences

yes

aam_s4_714

no

RR-z

yes

R-PostAlveolar

no

C-Phrase_Num-Words-Curr==5

yes

C-s

no

C-Phr_Num-Syl==End

yes

C-ah

no

aam_s4_30

yes

R-Syllable_Tone_0

no

R-Labiodental

yes

R-Syllable_Tone_5

no

R-silences

yes

L-Back_Fricative

no

aam_s4_8

yes

L-r

no

aam_s4_397

yes

L-Alveolar

no

aam_s4_35

yes

L-Central_Fricative

no

R-Central_Fricative

yes

aam_s4_673

no

aam_s4_672

yes

RR-Central_Consonant

no

C-Phrase_Num-Words-Curr>=15

yes

C-Phrase_Num-Words==3

no

RR-Lateral

yes

RR-Vowel_Front

no

aam_s4_39

yes

R-Back

no

aam_s4_158

yes

C-eh

no

L-Sibilant_Consonant

yes

L-Fricative

no

aam_s4_47

yes

R-Central_Consonant

no

R-l

yes

aam_s4_915

no

aam_s4_914

yes

R-Back_Fricative

no

L-Bilabial

yes

R-Front_Fricative

no

C-Phrase_Num-Words>=16

yes

aam_s4_76

no

L-er

yes

L-ow

no

aam_s4_13

yes

L-Unvoiced_Consonant

no

L-Velar

yes

L-Back_Stop

no

R-UVowel

yes

C-Central_Vowel

no

C-Central_Consonant

yes

R-Alveolar

no

aam_s4_34

yes

LL-Sibilant_Affricate

no

L-n

yes

L-Bilabial

no

aam_s4_155

yes

R-Fricative

no

aam_s4_29

yes

R-AVowel

no

aam_s4_137

yes

C-Back_Vowel

no

aam_s4_96

yes

aam_s4_271

no

C-eh

yes

LL-ay

no

R-Plosive

yes

aam_s4_543

no

aam_s4_542

yes

R-Vowel_Central

no

R-uw

yes

aam_s4_75

no

aam_s4_74

yes

R-sil

no

C-Phrase_Num-Syls-Curr==5

yes

aam_s4_424

no

aam_s4_423

yes

R-er

no

aam_s4_49

yes

aam_s4_114

no

aam_s4_113

yes

L-sil

no

R-Sibilant_Fricative

yes

L-Central

no

R-r

yes

R-PostAlveolar

no

L-Central_Fricative

yes

RR-Central_Fricative

no

aam_s4_106

yes

L-Central

no

C-Phr_Num-Vis==Begin

yes

R-r

no

R-s

yes

R-Lateral

no

C-Phrase_Num-Syls-Curr==21

yes

L-Back_Consonant

no

LL-v

yes

L-m

no

L-n

yes

R-Front_Consonant

no

L-Glottal

yes

L-Plosive

no

RR-sil

yes

L-Front_Consonant

no

C-Phrase_Num-Syls-Curr==12

yes

C-Phr_Num-Syl==Begin

no

aam_s4_401

yes

aam_s4_270

no

aam_s4_269

yes

L-Consonant

no

R-uw

yes

L-aa

no

LL-ih

yes

LL-Consonant

no

aam_s4_57

yes

L-r

no

R-Back_Stop

yes

C-Phrase_Num-Words>=19

no

aam_s4_130

yes

R-Vowel_Back

no

aam_s4_42

yes

aam_s4_316

no

aam_s4_315

yes

R-dh

no

L-Sibilant_Consonant

yes

aam_s4_71

no

aam_s4_70

yes

aam_s4_312

no

aam_s4_311

yes

R-Lateral

no

aam_s4_77

yes

aam_s4_360

no

aam_s4_359

yes

L-AVowel

no

aam_s4_280

yes

C-Word_Num-Syls-Curr==1

no

aam_s4_104

yes

R-Vowel_Front

no

aam_s4_206

yes

L-ow

no

aam_s4_33

yes

aam_s4_116

no

aam_s4_115

yes

RR-Syllable_Tone_X

no

R-Lateral

yes

C-Phrase_Num-Words-Curr==11

no

aam_s4_299

yes

R-Back_Stop

no

aam_s4_24

yes

aam_s4_648

no

RR-Syllable_Tone_5

yes

L-Central

no

L-Front_Consonant

yes

R-Front

no

aam_s4_193

yes

aam_s4_81

no

aam_s4_80

yes

LL-Semi_Consonant

no

R-Fricative

yes

RR-Vowel_Front

no

RR-Vowel_Mid

yes

aam_s4_571

no

aam_s4_570

yes

aam_s4_272

no

L-Approximant

yes

R-Long_Vowel

no

R-Long_Vowel

yes

L-Vowel

no

aam_s4_69

yes

L-AVowel

no

aam_s4_28

yes

LL-Back_Fricative

no

aam_s4_233

yes

R-Bilabial

no

L-z

yes

R-Plosive

no

aam_s4_307

yes

R-Sibilant_Fricative

no

aam_s4_27

yes

R-Central_Consonant

no

L-IVowel

yes

L-ow

no

aam_s4_177

yes

aam_s4_449

no

aam_s4_448

yes

aam_s4_95

no

R-silences

yes

aam_s4_347

no

aam_s4_346

yes

R-l

no

C-Phr_Num-Syls==End

yes

C-Phrase_Num-Syls-Curr==22

no

aam_s4_441

yes

L-Central

no

L-iy

yes

RR-Bilabial

no

L-aw

yes

L-Front_Consonant

no

C-Phrase_Num-Syls-Curr>=11

yes

C-Word_Num-Syls-Curr==1

no

aam_s4_51

yes

R-Central

no

C-Phrase_Num-Syls-Curr==16

yes

C-Phrase_Num-Words-Curr==14

no

aam_s4_289

yes

RR-Short_Vowel

no

aam_s4_129

yes

aam_s4_78

no

RR-f

yes

L-Front_Consonant

no

L-Back_Stop

yes

L-Front

no

LL-Fricative

yes

R-n

no

L-Sibilant_Consonant

yes

L-Labiodental

no

aam_s4_62

yes

R-sil

no

R-Dental

yes

L-eh

no

C-Alveolar

yes

aam_s4_379

no

aam_s4_378

yes

C-Lateral

no

aam_s4_64

yes

C-Plosive

no

C-Lateral

yes

aam_s4_632

no

aam_s4_631

yes

aam_s4_742

no

aam_s4_741

yes

aam_s4_66

no

aam_s4_65

yes

aam_s4_341

no

aam_s4_340

yes

R-OVowel

no

aam_s4_92

yes

C-Front_Vowel

no

C-Lateral

yes

aam_s4_172

no

aam_s4_171

yes

aam_s4_261

no

aam_s4_260

yes

aam_s4_344

no

aam_s4_343

yes

C-Unvoiced_Consonant

no

aam_s4_41

yes

aam_s4_215

no

aam_s4_214

yes

RR-th

no

R-ah

yes

aam_s4_238

no

aam_s4_237

yes

R-w

no

RR-iy

yes

C-Phrase_Num-Syls-Curr==25

no

aam_s4_189

yes

aam_s4_197

no

aam_s4_196

yes

aam_s4_945

no

aam_s4_944

yes

C-Word_Num-Syls==Begin

no

aam_s4_330

yes

aam_s4_456

no

aam_s4_455

yes

RR-Syllable_Tone_X

no

C-Phrase_Num-Words-Curr>=10

yes

aam_s4_929

no

aam_s4_928

yes

R-Sibilant_Fricative

no

LL-eh

yes

LL-z

no

L-Central_Stop

yes

RR-Syllable_Tone_0

no

C-Phrase_Num-Syls-Curr==6

yes

aam_s4_628

no

aam_s4_627

yes

LL-w

no

LL-Fricative

yes

LL-Nasal

no

aam_s4_185

yes

RR-Palatal

no

aam_s4_122

yes

aam_s4_780

no

aam_s4_779

yes

C-Central_Consonant

no

aam_s4_63

yes

aam_s4_521

no

aam_s4_520

yes

aam_s4_516

no

aam_s4_515

yes

aam_s4_569

no

aam_s4_568

yes

C-Phrase_Num-Syls==2

no

C-Phrase_Num-Words>=9

yes

C-Phrase_Num-Syls-Curr==19

no

aam_s4_800

yes

C-Unvoiced_Consonant

no

aam_s4_128

yes

LL-ow

no

R-l

yes

R-l

no

C-Phr_Num-Vis==Begin

yes

RR-Lateral

no

aam_s4_249

yes

aam_s4_957

no

aam_s4_956

yes

aam_s4_485

no

aam_s4_484

yes

L-Central

no

aam_s4_43

yes

L-sil

no

aam_s4_91

yes

aam_s4_68

no

aam_s4_67

yes

L-iy

no

aam_s4_54

yes

LL-Plosive

no

aam_s4_105

yes

L-Alveolar

no

L-Dental

yes

R-Voiced_Consonant

no

R-Back_Fricative

yes

RR-aw

no

aam_s4_148

yes

RR-Vowel_Close

no

aam_s4_40

yes

R-Approximant

no

aam_s4_255

yes

R-Central_Fricative

no

L-Central_Fricative

yes

L-l

no

aam_s4_100

yes

aam_s4_704

no

aam_s4_703

yes

L-Lateral

no

LL-ay

yes

R-Syllable_Tone_5

no

aam_s4_59

yes

aam_s4_711

no

aam_s4_710

yes

L-Vowel_Front

no

R-OVowel

yes

L-silences

no

aam_s4_90

yes

R-Alveolar

no

aam_s4_119

yes

R-Dental

no

R-r

yes

L-Vowel_Back

no

aam_s4_58

yes

aam_s4_201

no

C-Phrase_Num-Words>=14

yes

L-m

no

aam_s4_135

yes

RR-ah

no

RR-uw

yes

aam_s4_970

no

aam_s4_969

yes

R-hh

no

LL-ey

yes

C-Alveolar

no

aam_s4_682

yes

L-l

no

C-Phrase_Num-Words-Curr>=13

yes

LL-Central_Stop

no

LL-Vowel_Front

yes

L-Lateral

no

LL-Long_Vowel

yes

R-OVowel

no

aam_s4_50

yes

L-uw

no

aam_s4_180

yes

aam_s4_153

no

L-l

yes

aam_s4_118

no

aam_s4_117

yes

aam_s4_79

no

R-Syllable_Tone_5

yes

R-Nasal

no

C-Phrase_Num-Words-Curr>=11

yes

R-Approximant

no

aam_s4_305

yes

L-silences

no

L-k

yes

L-Long_Vowel

no

C-Phr_Num-Vis==End

yes

aam_s4_55

no

C-Vowel_Mid

yes

R-Back_Fricative

no

aam_s4_856

yes

aam_s4_174

no

aam_s4_173

yes

aam_s4_53

no

aam_s4_52

yes

L-Central_Consonant

no

LL-s

yes

L-Labiodental

no

L-Lateral

yes

LL-Lateral

no

aam_s4_304

yes

C-ow

no

aam_s4_56

yes

aam_s4_662

no

aam_s4_661

yes

L-Sibilant_Consonant

no

aam_s4_60

yes

LL-Back_Consonant

no

aam_s4_504

yes

LL-Front_Consonant

no

aam_s4_296

yes

L-Back

no

aam_s4_217

yes

LL-iy

no

LL-s

yes

L-Front

no

LL-uw

yes

R-Bilabial

no

aam_s4_660

yes

aam_s4_834

no

aam_s4_833

yes

L-l

no

aam_s4_242

yes

R-Long_Vowel

no

aam_s4_82

yes

aam_s4_176

no

aam_s4_175

yes

RR-ay

no

C-Phrase_Num-Syls-Curr==5

yes

R-Vowel_Front

no

aam_s4_132

yes

aam_s4_907

no

aam_s4_906

yes

L-Sibilant_Consonant

no

aam_s4_61

yes

aam_s4_98

no

aam_s4_97

yes

aam_s4_247

no

aam_s4_246

yes

RR-y

no

C-Word_Num-Syls==1

yes

aam_s4_145

no

aam_s4_144

yes

R-k

no

RR-ey

yes

C-oy

no

C-r

yes

C-Vowel_Close

no

aam_s4_85

yes

aam_s4_179

no

aam_s4_178

yes

aam_s4_94

no

aam_s4_93

yes

aam_s4_420

no

aam_s4_419

yes

L-uw

no

R-Consonant

yes

R-g

no

C-Phrase_Num-Syls-Curr==18

yes

R-Affricative

no

aam_s4_517

yes

R-Nasal

no

L-g

yes

aam_s4_443

no

C-Word_Num-Syls==2

yes

L-Central_Consonant

no

L-Fricative

yes

L-Back_Stop

no

C-Phrase_Num-Syls-Curr==12

yes

L-Back_Fricative

no

L-Central_Stop

yes

aam_s4_303

no

aam_s4_302

yes

aam_s4_530

no

aam_s4_529

yes

R-ih

no

L-Back

yes

RR-ch

no

aam_s4_154

yes

R-l

no

LL-Glottal

yes

LL-n

no

RR-Vowel_Close

yes

L-Back_Fricative

no

R-Syllable_Tone_5

yes

aam_s4_143

no

aam_s4_142

yes

aam_s4_170

no

aam_s4_169

yes

C-Front_Vowel

no

aam_s4_102

yes

C-Word_Num-Syls-Curr==1

no

aam_s4_103

yes

R-Sibilant_Consonant

no

C-Phrase_Num-Syls-Curr==4

yes

aam_s4_108

no

aam_s4_107

yes

LL-Sibilant_Affricate

no

aam_s4_373

yes

RR-Approximant

no

R-aa

yes

L-s

no

aam_s4_393

yes

aam_s4_83

no

LL-z

yes

aam_s4_791

no

aam_s4_790

yes

LL-sh

no

aam_s4_125

yes

L-Bilabial

no

aam_s4_84

yes

aam_s4_136

no

LL-uw

yes

aam_s4_858

no

aam_s4_857

yes

L-k

no

R-Back_Vowel

yes

aam_s4_89

no

aam_s4_88

yes

RR-z

no

aam_s4_192

yes

L-Central

no

aam_s4_226

yes

aam_s4_453

no

aam_s4_452

yes

C-Phrase_Num-Syls>=15

no

R-Syllable_Tone_5

yes

R-Consonant

no

aam_s4_101

yes

L-uw

no

LL-ih

yes

LL-ey

no

LL-er

yes

aam_s4_183

no

aam_s4_182

yes

R-n

no

aam_s4_209

yes

RR-er

no

LL-ih

yes

aam_s4_205

no

aam_s4_204

yes

aam_s4_287

no

aam_s4_286

yes

L-Back_Stop

no

aam_s4_138

yes

LL-n

no

L-jh

yes

LL-Bilabial

no

aam_s4_162

yes

LL-sh

no

LL-Dental

yes

LL-Fricative

no

RR-aw

yes

L-Unvoiced_Consonant

no

LL-t

yes

aam_s4_229

no

aam_s4_228

yes

aam_s4_231

no

aam_s4_230

yes

L-k

no

aam_s4_121

yes

aam_s4_706

no

aam_s4_705

yes

L-k

no

R-Plosive

yes

C-Phrase_Num-Words==9

no

aam_s4_400

yes

L-t

no

aam_s4_371

yes

C-Lateral

no

aam_s4_585

yes

L-Unvoiced_Consonant

no

L-Velar

yes

aam_s4_665

no

aam_s4_664

yes

aam_s4_398

no

L-Velar

yes

aam_s4_111

no

aam_s4_110

yes

R-Alveolar

no

aam_s4_288

yes

L-ay

no

RR-Fricative

yes

LL-ay

no

aam_s4_133

yes

aam_s4_334

no

L-t

yes

R-IVowel

no

L-n

yes

aam_s4_224

no

aam_s4_223

yes

R-eh

no

aam_s4_112

yes

LL-UVowel

no

aam_s4_342

yes

aam_s4_252

no

aam_s4_251

yes

aam_s4_277

no

aam_s4_276

yes

aam_s4_687

no

aam_s4_686

yes

R-Bilabial

no

aam_s4_131

yes

L-Voiced_Fricative

no

RR-Nasal

yes

aam_s4_519

no

aam_s4_518

yes

aam_s4_669

no

aam_s4_668

yes

R-ow

no

RR-k

yes

LL-th

no

aam_s4_327

yes

RR-ey

no

C-Phrase_Num-Words==16

yes

aam_s4_127

no

aam_s4_126

yes

RR-er

no

aam_s4_120

yes

aam_s4_721

no

aam_s4_720

yes

RR-r

no

aam_s4_187

yes

aam_s4_879

no

aam_s4_878

yes

L-Approximant

no

C-Phrase_Num-Words==9

yes

aam_s4_309

no

aam_s4_308

yes

RR-b

no

aam_s4_314

yes

aam_s4_972

no

aam_s4_971

yes

C-Phrase_Num-Syls-Curr==14

no

L-hh

yes

C-Phrase_Num-Words==14

no

aam_s4_248

yes

LL-Voiced_Fricative

no

L-Front_Stop

yes

aam_s4_235

no

aam_s4_234

yes

L-Back_Consonant

no

L-Fricative

yes

LL-Short_Vowel

no

C-Word_Num-Syls==1

yes

LL-Short_Vowel

no

aam_s4_150

yes

L-OVowel

no

LL-Voiced_Plosive

yes

aam_s4_301

no

aam_s4_300

yes

aam_s4_461

no

aam_s4_460

yes

aam_s4_815

no

aam_s4_814

yes

L-uw

no

C-Phrase_Num-Words-Curr==1

yes

LL-Plosive

no

LL-Back

yes

LL-r

no

aam_s4_146

yes

R-Consonant

no

aam_s4_345

yes

C-Phr_Num-Syls==End

no

aam_s4_437

yes

aam_s4_953

no

aam_s4_952

yes

C-Phrase_Num-Words==4

no

C-Phrase_Num-Words==6

yes

RR-r

no

aam_s4_444

yes

L-Sibilant_Fricative

no

aam_s4_151

yes

aam_s4_184

no

RR-Syllable_Tone_X

yes

aam_s4_259

no

aam_s4_258

yes

L-Alveolar

no

aam_s4_475

yes

R-Vowel_Mid

no

aam_s4_208

yes

L-Central

no

aam_s4_250

yes

aam_s4_889

no

aam_s4_888

yes

LL-Back

no

aam_s4_149

yes

LL-Glottal

no

LL-g

yes

LL-Dental

no

aam_s4_364

yes

LL-y

no

aam_s4_134

yes

L-Central

no

aam_s4_211

yes

L-b

no

aam_s4_329

yes

RR-Syllable_Tone_X

no

aam_s4_610

yes

aam_s4_478

no

aam_s4_477

yes

RR-ah

no

aam_s4_139

yes

LL-Back_Vowel

no

aam_s4_473

yes

R-ey

no

aam_s4_236

yes

C-ah

no

aam_s4_241

yes

L-Central_Stop

no

LL-ae

yes

aam_s4_617

no

aam_s4_616

yes

aam_s4_939

no

aam_s4_938

yes

RR-th

no

LL-Syllable_Tone_0

yes

L-Front_Consonant

no

aam_s4_282

yes

aam_s4_291

no

aam_s4_290

yes

L-Bilabial

no

LL-Central_Vowel

yes

LL-Nasal

no

aam_s4_467

yes

aam_s4_147

no

L-Labiodental

yes

aam_s4_409

no

aam_s4_408

yes

RR-ow

no

R-Syllable_Tone_0

yes

LL-ih

no

aam_s4_212

yes

RR-iy

no

aam_s4_326

yes

RR-Short_Vowel

no

aam_s4_168

yes

LL-ey

no

LL-k

yes

L-n

no

L-n

yes

aam_s4_850

no

aam_s4_849

yes

L-Syllable_Tone_X

no

L-n

yes

RR-ah

no

aam_s4_152

yes

aam_s4_263

no

aam_s4_262

yes

aam_s4_436

no

aam_s4_435

yes

LL-Bilabial

no

aam_s4_156

yes

aam_s4_377

no

aam_s4_376

yes

R-PostAlveolar

no

aam_s4_254

yes

aam_s4_941

no

aam_s4_940

yes

aam_s4_221

no

aam_s4_220

yes

aam_s4_864

no

aam_s4_863

yes

C-Phrase_Num-Syls==14

no

LL-v

yes

aam_s4_366

no

aam_s4_365

yes

RR-v

no

R-Consonant

yes

LL-aa

no

aam_s4_157

yes

aam_s4_768

no

aam_s4_767

yes

R-aa

no

aam_s4_227

yes

LL-er

no

aam_s4_283

yes

L-sh

no

aam_s4_202

yes

RR-n

no

RR-l

yes

aam_s4_161

no

aam_s4_160

yes

RR-Glottal

no

aam_s4_159

yes

aam_s4_832

no

aam_s4_831

yes

LL-er

no

aam_s4_163

yes

LL-Back_Vowel

no

aam_s4_275

yes

aam_s4_362

no

aam_s4_361

yes

aam_s4_165

no

aam_s4_164

yes

LL-ow

no

aam_s4_405

yes

LL-Palatal

no

aam_s4_186

yes

LL-er

no

aam_s4_181

yes

L-k

no

aam_s4_166

yes

LL-Front_Vowel

no

aam_s4_567

yes

L-th

no

aam_s4_167

yes

LL-EVowel

no

aam_s4_216

yes

LL-OVowel

no

LL-Vowel_Front

yes

aam_s4_332

no

aam_s4_331

yes

L-oy

no

aam_s4_191

yes

aam_s4_188

no

L-l

yes

R-Dipthong_Vowel

no

aam_s4_351

yes

aam_s4_607

no

aam_s4_606

yes

aam_s4_293

no

aam_s4_292

yes

L-ch

no

aam_s4_199

yes

C-Phrase_Num-Words>=12

no

aam_s4_198

yes

aam_s4_592

no

aam_s4_591

yes

RR-ay

no

L-d

yes

aam_s4_557

no

aam_s4_556

yes

LL-Long_Vowel

no

aam_s4_207

yes

LL-Approximant

no

aam_s4_415

yes

LL-Front_Consonant

no

aam_s4_203

yes

LL-ih

no

aam_s4_317

yes

L-Back_Stop

no

aam_s4_353

yes

L-Sibilant_Consonant

no

aam_s4_352

yes

aam_s4_479

no

LL-r

yes

aam_s4_560

no

aam_s4_559

yes

L-Consonant

no

aam_s4_372

yes

LL-Unvoiced_Plosive

no

RR-z

yes

R-g

no

aam_s4_200

yes

aam_s4_429

no

aam_s4_428

yes

aam_s4_195

no

aam_s4_194

yes

LL-eh

no

aam_s4_222

yes

aam_s4_245

no

aam_s4_244

yes

aam_s4_644

no

aam_s4_643

yes

aam_s4_615

no

aam_s4_614

yes

R-Back_Stop

no

aam_s4_324

yes

aam_s4_974

no

aam_s4_973

yes

RR-Lateral

no

aam_s4_356

yes

L-r

no

aam_s4_416

yes

R-uh

no

RR-ah

yes

aam_s4_919

no

aam_s4_918

yes

aam_s4_483

no

aam_s4_482

yes

LL-Voiced_Consonant

no

aam_s4_333

yes

aam_s4_257

no

aam_s4_256

yes

L-Vowel_Front

no

aam_s4_279

yes

aam_s4_495

no

aam_s4_494

yes

LL-AVowel

no

LL-AVowel

yes

R-AVowel

no

aam_s4_213

yes

L-n

no

RR-ow

yes

RR-ae

no

aam_s4_622

yes

LL-Back_Consonant

no

aam_s4_266

yes

RR-IVowel

no

R-Lateral

yes

C-Word_Num-Syls==2

no

R-Syllable_Tone_0

yes

LL-Lateral

no

aam_s4_243

yes

C-Phrase_Num-Words==15

no

RR-s

yes

aam_s4_425

no

C-Phrase_Num-Syls-Curr==8

yes

L-Voiced_Plosive

no

aam_s4_232

yes

aam_s4_471

no

aam_s4_470

yes

aam_s4_434

no

aam_s4_433

yes

LL-ih

no

aam_s4_355

yes

L-Approximant

no

LL-Front_Vowel

yes

aam_s4_935

no

aam_s4_934

yes

R-Central_Fricative

no

R-Short_Vowel

yes

C-Phr_Num-Syls==End

no

C-Phrase_Num-Words==16

yes

aam_s4_219

no

aam_s4_218

yes

RR-silences

no

aam_s4_531

yes

C-Phrase_Num-Syls==6

no

C-Phrase_Num-Words==12

yes

LL-Nasal

no

aam_s4_430

yes

aam_s4_481

no

aam_s4_480

yes

L-g

no

aam_s4_491

yes

R-k

no

aam_s4_698

yes

RR-ih

no

aam_s4_264

yes

LL-Plosive

no

aam_s4_253

yes

R-sil

no

LL-oy

yes

RR-ih

no

aam_s4_348

yes

LL-ey

no

aam_s4_278

yes

C-Phrase_Num-Words-Curr==2

no

aam_s4_310

yes

LL-Vowel_Back

no

R-Consonant

yes

L-AVowel

no

aam_s4_540

yes

aam_s4_320

no

aam_s4_319

yes

aam_s4_754

no

aam_s4_753

yes

L-Vowel

no

C-Phrase_Num-Syls-Curr==17

yes

aam_s4_562

no

aam_s4_561

yes

aam_s4_295

no

aam_s4_294

yes

aam_s4_549

no

aam_s4_548

yes

LL-ae

no

aam_s4_534

yes

L-PostAlveolar

no

L-Bilabial

yes

L-Long_Vowel

no

aam_s4_618

yes

RR-ao

no

aam_s4_281

yes

R-t

no

aam_s4_507

yes

L-Fricative

no

aam_s4_417

yes

aam_s4_385

no

aam_s4_384

yes

aam_s4_402

no

C-Phrase_Num-Syls-Curr==10

yes

R-Voiced_Fricative

no

aam_s4_298

yes

aam_s4_637

no

aam_s4_636

yes

L-sil

no

aam_s4_733

yes

LL-Velar

no

aam_s4_544

yes

aam_s4_590

no

aam_s4_589

yes

LL-Syllable_Tone_X

no

aam_s4_386

yes

R-Lateral

no

aam_s4_685

yes

aam_s4_522

no

LL-AVowel

yes

LL-ae

no

aam_s4_747

yes

R-ae

no

aam_s4_363

yes

aam_s4_639

no

aam_s4_638

yes

aam_s4_898

no

aam_s4_897

yes

R-r

no

aam_s4_547

yes

aam_s4_887

no

aam_s4_886

yes

C-Phrase_Num-Words-Curr==10

no

aam_s4_584

yes

aam_s4_439

no

aam_s4_438

yes

RR-er

no

aam_s4_265

yes

L-oy

no

aam_s4_337

yes

aam_s4_268

no

aam_s4_267

yes

aam_s4_684

no

aam_s4_683

yes

aam_s4_274

no

aam_s4_273

yes

LL-d

no

LL-uw

yes

LL-Unvoiced_Plosive

no

RR-Central_Vowel

yes

LL-iy

no

aam_s4_328

yes

LL-v

no

R-dh

yes

R-l

no

aam_s4_513

yes

RR-Central_Stop

no

aam_s4_613

yes

aam_s4_382

no

aam_s4_381

yes

aam_s4_323

no

aam_s4_322

yes

C-Phrase_Num-Words>=9

no

aam_s4_871

yes

LL-Voiced_Fricative

no

aam_s4_514

yes

aam_s4_758

no

aam_s4_757

yes

aam_s4_870

no

aam_s4_869

yes

LL-EVowel

no

aam_s4_469

yes

LL-k

no

aam_s4_297

yes

aam_s4_976

no

aam_s4_975

yes

aam_s4_923

no

aam_s4_922

yes

LL-Central_Stop

no

aam_s4_284

yes

L-ch

no

aam_s4_285

yes

L-Affricative

no

aam_s4_383

yes

aam_s4_756

no

aam_s4_755

yes

aam_s4_723

no

aam_s4_722

yes

L-uw

no

aam_s4_403

yes

LL-Unvoiced_Consonant

no

aam_s4_369

yes

aam_s4_388

no

aam_s4_387

yes

R-l

no

aam_s4_496

yes

LL-b

no

aam_s4_413

yes

aam_s4_553

no

L-Vowel

yes

aam_s4_843

no

aam_s4_842

yes

RR-sil

no

aam_s4_306

yes

RR-Vowel_Close

no

aam_s4_489

yes

aam_s4_762

no

aam_s4_761

yes

LL-Central_Vowel

no

aam_s4_440

yes

R-sil

no

aam_s4_325

yes

LL-ah

no

aam_s4_313

yes

LL-IVowel

no

aam_s4_321

yes

R-Sibilant_Consonant

no

aam_s4_421

yes

C-Phrase_Num-Words>=10

no

aam_s4_318

yes

LL-Lateral

no

aam_s4_391

yes

aam_s4_466

no

aam_s4_465

yes

aam_s4_493

no

aam_s4_492

yes

aam_s4_599

no

aam_s4_598

yes

R-z

no

aam_s4_811

yes

LL-Short_Vowel

no

aam_s4_354

yes

LL-Central_Vowel

no

aam_s4_497

yes

L-Vowel_Front

no

aam_s4_380

yes

aam_s4_358

no

aam_s4_357

yes

L-p

no

aam_s4_474

yes

LL-w

no

aam_s4_697

yes

LL-s

no

aam_s4_399

yes

LL-Long_Vowel

no

aam_s4_717

yes

RR-Vowel_Close

no

aam_s4_335

yes

aam_s4_675

no

aam_s4_674

yes

RR-sil

no

aam_s4_336

yes

aam_s4_671

no

aam_s4_670

yes

R-silences

no

aam_s4_962

yes

aam_s4_432

no

LL-Voiced_Fricative

yes

aam_s4_339

no

aam_s4_338

yes

LL-Lateral

no

aam_s4_462

yes

aam_s4_652

no

aam_s4_651

yes

RR-f

no

LL-t

yes

aam_s4_427

no

aam_s4_426

yes

aam_s4_350

no

aam_s4_349

yes

R-Vowel_Close

no

aam_s4_565

yes

LL-s

no

C-Phr_Num-Wrds==End

yes

aam_s4_626

no

aam_s4_625

yes

aam_s4_764

no

aam_s4_763

yes

L-Front_Vowel

no

aam_s4_846

yes

RR-d

no

aam_s4_818

yes

RR-Syllable_Tone_X

no

aam_s4_392

yes

R-ow

no

aam_s4_538

yes

aam_s4_612

no

aam_s4_611

yes

RR-ow

no

aam_s4_404

yes

LL-Approximant

no

aam_s4_524

yes

aam_s4_793

no

aam_s4_792

yes

LL-EVowel

no

aam_s4_367

yes

aam_s4_546

no

aam_s4_545

yes

LL-r

no

aam_s4_368

yes

LL-Consonant

no

aam_s4_412

yes

R-k

no

aam_s4_510

yes

aam_s4_650

no

aam_s4_649

yes

LL-Plosive

no

aam_s4_422

yes

aam_s4_770

no

aam_s4_769

yes

RR-Sibilant_Consonant

no

RR-sh

yes

aam_s4_503

no

aam_s4_502

yes

aam_s4_901

no

R-Voiced_Consonant

yes

LL-ey

no

aam_s4_454

yes

aam_s4_806

no

aam_s4_805

yes

RR-uh

no

RR-Unvoiced_Fricative

yes

aam_s4_375

no

aam_s4_374

yes

aam_s4_799

no

aam_s4_798

yes

aam_s4_642

no

aam_s4_641

yes

LL-Front_Vowel

no

aam_s4_414

yes

aam_s4_396

no

aam_s4_395

yes

aam_s4_390

no

aam_s4_389

yes

aam_s4_883

no

aam_s4_882

yes

RR-w

no

aam_s4_458

yes

aam_s4_735

no

aam_s4_734

yes

aam_s4_855

no

aam_s4_854

yes

R-Dipthong_Closing

no

aam_s4_394

yes

aam_s4_595

no

aam_s4_594

yes

aam_s4_488

no

aam_s4_487

yes

L-Glottal

no

aam_s4_655

yes

aam_s4_817

no

aam_s4_816

yes

aam_s4_795

no

aam_s4_794

yes

R-Syllable_Tone_0

no

C-Phrase_Num-Syls-Curr==22

yes

aam_s4_667

no

aam_s4_666

yes

aam_s4_984

no

aam_s4_983

yes

aam_s4_725

no

aam_s4_724

yes

L-ow

no

aam_s4_608

yes

RR-ay

no

aam_s4_550

yes

aam_s4_407

no

aam_s4_406

yes

LL-ay

no

aam_s4_442

yes

aam_s4_411

no

aam_s4_410

yes

LL-ah

no

aam_s4_525

yes

aam_s4_978

no

aam_s4_977

yes

L-m

no

aam_s4_783

yes

LL-p

no

aam_s4_541

yes

R-Front_Consonant

no

aam_s4_640

yes

LL-Velar

no

C-Phrase_Num-Syls-Curr==9

yes

aam_s4_634

no

aam_s4_633

yes

LL-sh

no

aam_s4_418

yes

aam_s4_609

no

C-Phr_Num-Syl==End

yes

L-Short_Vowel

no

aam_s4_472

yes

RR-eh

no

aam_s4_445

yes

RR-ch

no

aam_s4_490

yes

LL-ah

no

aam_s4_457

yes

C-Phrase_Num-Words-Curr==7

no

aam_s4_587

yes

RR-ah

no

aam_s4_431

yes

LL-OVowel

no

aam_s4_523

yes

aam_s4_787

no

aam_s4_786

yes

aam_s4_509

no

aam_s4_508

yes

aam_s4_499

no

aam_s4_498

yes

aam_s4_980

no

aam_s4_979

yes

RR-ey

no

aam_s4_463

yes

aam_s4_776

no

aam_s4_775

yes

aam_s4_868

no

aam_s4_867

yes

aam_s4_943

no

aam_s4_942

yes

aam_s4_582

no

aam_s4_581

yes

RR-Dipthong_Vowel

no

aam_s4_505

yes

LL-g

no

aam_s4_506

yes

L-Nasal

no

aam_s4_535

yes

C-Phrase_Num-Words-Curr>=16

no

aam_s4_447

yes

LL-Back_Consonant

no

aam_s4_709

yes

LL-ay

no

RR-ih

yes

aam_s4_450

no

RR-ah

yes

aam_s4_552

no

aam_s4_551

yes

aam_s4_451

no

LL-Plosive

yes

aam_s4_896

no

aam_s4_895

yes

aam_s4_841

no

aam_s4_840

yes

aam_s4_866

no

aam_s4_865

yes

LL-Alveolar

no

aam_s4_537

yes

LL-g

no

aam_s4_459

yes

aam_s4_657

no

aam_s4_656

yes

L-Voiced_Plosive

no

aam_s4_486

yes

LL-Nasal

no

aam_s4_464

yes

aam_s4_533

no

aam_s4_532

yes

LL-Central

no

aam_s4_468

yes

aam_s4_564

no

L-Lateral

yes

LL-r

no

aam_s4_476

yes

RR-uw

no

aam_s4_588

yes

aam_s4_708

no

aam_s4_707

yes

LL-Bilabial

no

aam_s4_693

yes

aam_s4_527

no

aam_s4_526

yes

aam_s4_931

no

aam_s4_930

yes

aam_s4_501

no

aam_s4_500

yes

L-k

no

LL-Vowel_Mid

yes

aam_s4_782

no

aam_s4_781

yes

RR-Central_Vowel

no

aam_s4_528

yes

LL-Long_Vowel

no

aam_s4_699

yes

C-Phrase_Num-Syls==6

no

aam_s4_745

yes

LL-iy

no

C-Phrase_Num-Syls-Curr==12

yes

L-p

no

C-Phr_Num-Vis==Begin

yes

aam_s4_837

no

aam_s4_836

yes

aam_s4_713

no

aam_s4_712

yes

RR-uw

no

aam_s4_536

yes

C-Phrase_Num-Syls-Curr==18

no

aam_s4_583

yes

C-Phrase_Num-Syls-Curr==18

no

aam_s4_692

yes

aam_s4_982

no

aam_s4_981

yes

aam_s4_558

no

C-Phrase_Num-Syls-Curr==15

yes

R-Alveolar

no

aam_s4_663

yes

C-Phrase_Num-Syls-Curr==15

no

aam_s4_736

yes

aam_s4_512

no

aam_s4_511

yes

aam_s4_853

no

aam_s4_852

yes

aam_s4_830

no

aam_s4_829

yes

aam_s4_731

no

aam_s4_730

yes

aam_s4_576

no

aam_s4_575

yes

RR-Dipthong_Closing

no

aam_s4_566

yes

aam_s4_629

no

RR-iy

yes

aam_s4_624

no

aam_s4_623

yes

aam_s4_959

no

aam_s4_958

yes

R-Unvoiced_Consonant

no

C-Phrase_Num-Words==12

yes

aam_s4_659

no

aam_s4_658

yes

aam_s4_862

no

aam_s4_861

yes

RR-Front_Vowel

no

aam_s4_539

yes

LL-r

no

aam_s4_563

yes

LL-sil

no

aam_s4_604

yes

aam_s4_597

no

aam_s4_596

yes

aam_s4_927

no

aam_s4_926

yes

LL-n

no

aam_s4_635

yes

aam_s4_603

no

aam_s4_602

yes

aam_s4_740

no

aam_s4_739

yes

aam_s4_751

no

aam_s4_750

yes

aam_s4_555

no

aam_s4_554

yes

aam_s4_601

no

aam_s4_600

yes

LL-Long_Vowel

no

aam_s4_593

yes

R-Front_Stop

no

aam_s4_577

yes

aam_s4_700

no

LL-Front_Vowel

yes

L-Voiced_Plosive

no

aam_s4_574

yes

aam_s4_744

no

aam_s4_743

yes

RR-ih

no

RR-ih

yes

aam_s4_578

no

L-Unvoiced_Consonant

yes

aam_s4_580

no

aam_s4_579

yes

aam_s4_727

no

aam_s4_726

yes

C-Phrase_Num-Syls==4

no

aam_s4_771

yes

R-UVowel

no

aam_s4_586

yes

R-EVowel

no

aam_s4_752

yes

C-Phrase_Num-Words-Curr==10

no

aam_s4_851

yes

aam_s4_785

no

aam_s4_784

yes

aam_s4_654

no

aam_s4_653

yes

L-Central

no

aam_s4_835

yes

LL-ey

no

aam_s4_645

yes

LL-n

no

aam_s4_605

yes

aam_s4_955

no

aam_s4_954

yes

aam_s4_964

no

aam_s4_963

yes

aam_s4_951

no

aam_s4_950

yes

aam_s4_702

no

aam_s4_701

yes

aam_s4_691

no

RR-Plosive

yes

aam_s4_774

no

LL-Central_Vowel

yes

aam_s4_900

no

aam_s4_899

yes

L-ow

no

aam_s4_619

yes

LL-sp

no

C-Phrase_Num-Syls-Curr==17

yes

aam_s4_881

no

aam_s4_880

yes

aam_s4_621

no

aam_s4_620

yes

aam_s4_925

no

aam_s4_924

yes

L-ow

no

aam_s4_630

yes

aam_s4_789

no

aam_s4_788

yes

aam_s4_766

no

aam_s4_765

yes

aam_s4_913

no

aam_s4_912

yes

aam_s4_894

no

aam_s4_893

yes

C-ch

no

aam_s4_688

yes

aam_s4_647

no

aam_s4_646

yes

aam_s4_949

no

aam_s4_948

yes

aam_s4_911

no

aam_s4_910

yes

aam_s4_822

no

aam_s4_821

yes

aam_s4_797

no

aam_s4_796

yes

aam_s4_729

no

aam_s4_728

yes

R-silences

no

aam_s4_696

yes

L-Vowel

no

aam_s4_676

yes

aam_s4_678

no

aam_s4_677

yes

aam_s4_679

no

RR-AVowel

yes

aam_s4_681

no

aam_s4_680

yes

aam_s4_825

no

aam_s4_824

yes

aam_s4_760

no

aam_s4_759

yes

aam_s4_690

no

aam_s4_689

yes

aam_s4_778

no

aam_s4_777

yes

C-Phrase_Num-Syls==11

no

aam_s4_823

yes

aam_s4_695

no

aam_s4_694

yes

aam_s4_905

no

aam_s4_904

yes

aam_s4_804

no

aam_s4_803

yes

LL-Front_Fricative

no

aam_s4_826

yes

aam_s4_885

no

aam_s4_884

yes

aam_s4_810

no

aam_s4_809

yes

aam_s4_966

no

aam_s4_965

yes

aam_s4_716

no

aam_s4_715

yes

aam_s4_719

no

aam_s4_718

yes

LL-er

no

RR-z

yes

RR-d

no

aam_s4_732

yes

aam_s4_808

no

aam_s4_807

yes

aam_s4_877

no

aam_s4_876

yes

aam_s4_738

no

aam_s4_737

yes

LL-Nasal

no

aam_s4_746

yes

aam_s4_947

no

aam_s4_946

yes

aam_s4_749

no

aam_s4_748

yes

aam_s4_875

no

aam_s4_874

yes

aam_s4_773

no

aam_s4_772

yes

aam_s4_845

no

aam_s4_844

yes

aam_s4_909

no

aam_s4_908

yes

aam_s4_933

no

aam_s4_932

yes

aam_s4_839

no

aam_s4_838

yes

aam_s4_802

no

aam_s4_801

yes

aam_s4_921

no

aam_s4_920

yes

aam_s4_820

no

aam_s4_819

yes

aam_s4_961

no

aam_s4_960

yes

aam_s4_828

no

aam_s4_827

yes

aam_s4_890

no

LL-Central_Vowel

yes

aam_s4_848

no

aam_s4_847

yes

aam_s4_917

no

aam_s4_916

yes

aam_s4_860

no

aam_s4_859

yes

aam_s4_873

no

aam_s4_872

yes

LL-k

no

RR-n

yes

aam_s4_937

no

aam_s4_936

yes

aam_s4_892

no

aam_s4_891

yes

aam_s4_903

no

aam_s4_902

yes

aam_s4_968

no

aam_s4_967

yes

Figure 5.15: An example part of context-dependent binary decision tree that was

generated from HMM-based phoneme units.

There are two assumptions used in this experiments. In the first assumption,

we assume that the questions in the decision trees are essential. Hence, we analyse

the contribution of each input contextual features by counting the number of the

question that appears in the binary decision trees. Note that we found that each

state has the same proportion, so we report only the total results for all states. Figure

5.3. Experiment results 131

5.16 shows top three highest proportions of all states for HMM-based phoneme,

static viseme and dynamic viseme units. It can be seen that the most important

input feature in each unit is quin-phone context (U1), quin-static viseme context

(U2) or quin-dynamic viseme context (U3). Position and number of syllables in

phrase (P1) and Position and number of phonemes,static viseme in syllable are

the second and third highest proportions of tree occupancy in phonemes and static

viseme units, respectively. Another interesting result in the case of using dynamic

visemes as speech units, found that phonemes in dynamic viseme (U5) information

is the second highest proportion. This concludes that phonetic information is still

important even in dynamic visemes speech units. This additional information is the

reason why dynamic visemes are the best unit and leads to the best system in Table

5.13.

Phonemes

Static Visemes

Dynamic Visemes

0% 25% 50% 75% 100%

U1 (94%)

U2 (91%)

U3 (73%)

P1 (3%)
 S1
 (2%)

P1 (4%)
 S2
 (2%)

U5 (19%) P1
(6%)

Figure 5.16: The percentage of top three highest proportions of tree occupancy for

phoneme, static viseme and dynamic viseme units. Where U1, U2 and U3 denote

for Quin-phone, Quin-static viseme and Quin-dynamic viseme context, respectively.

The other input features can be found in Table 5.1. (first assumption)

5.3. Experiment results 132

Phonemes

Static Visemes

Dynamic Visemes

0% 25% 50% 75% 100%

U1 (93%)

U2 (91%)

U3 (68%)

S1(3%)
 P1
(2%)

U5 (23%) P1
(7%)

S1(4%)
 P1
(3%)

Figure 5.17: The percentage of top three highest proportions of dominance scores

for phoneme, static viseme and dynamic viseme units. Where U1, U2 and U3 denote

for Quin-phone, Quin-static viseme and Quin-dynamic viseme context, respectively.

The other input features can be found in Table 5.1. (second assumption)

In the second assumption, we know that the decision tree is constructed from the

root node to the leaf node and each node splits based on the minimal description

length criterion. That means the depth of questions relates to the importance of the

features because the question that appears near the root node is more important

than the one further away. Hence, we compute a dominance score based on the

reciprocal distance from the root node to the question node, as shown in Figure

5.17. It can be seen that the most important input level feature is quin-phone,

static viseme or dynamic viseme feature. The second proportions of dominance

scores in dynamic viseme units is phonemes in dynamic viseme (U5), which is the

same as the result in previous assumption. This also indicates that both information

is important for visual speech synthesis. It can be concluded that dynamic viseme

information from U3 relates to visual information and phoneme in dynamic viseme

information from U5 relates to audio information. Overall, these two assumptions

result in the same trend and segment level is the most important for predicting lip

movements from the full contextual input.

Chapter 6

Visual Speech Synthesis based on

Feedforward Networks

6.1 Introduction

HMMs have been state of the art in (visual) speech synthesis for the past decade

and typically employ decision tree clustered context-dependent models, although

a drawback has been an oversmoothed output [31]. For example, a similar prob-

lem exits in audio speech synthesis [128] which can lead to a muffled sound being

produced. The equipvalent in visual speech synthesis from HMMs tends to produce

under-articulated lip movements [101]. Deep neural network (DNN) approaches have

more recently been proposed to address these limitations in audio speech synthe-

siser and are able to learn a better model from multiple levels of non-linear transfer

functions such as the use of multi-layer perceptrons with many hidden layers and

numbers of units [6].

This chapter starts with an overview of a DNN-based approach for predicting

visual lip motion parameters from a text input and aims to improve the resulting

naturalness of the animation over the HMM-based system [102]. Firstly, from the

text input, two kinds of speech units are considered. The first decomposes the in-

put text into phonetic units. Although phonemes have been used widely in speech

processing they have been shown to be suboptimal as visual speech units [73]. In-

stead, dynamic visemes (described in Section 4.4) are proposed as speech units and

133

6.2. DNN-based Visual Speech Synthesis 134

their performance compared to using phonetic units. In a third system, we com-

bine both phoneme and dynamic viseme units. Secondly, we consider using more

low-level (frame-based) contextual information in the feature vector applied to the

DNN which is derived from the speech unit annotations, with the aim of producing

a more realistic and smooth visual feature trajectory. These include the phonetic

and dynamic viseme window context, the position and number of frames in phoneme

and dynamic viseme, the forward phoneme span and the question of acoustic class

(described in Section 6.2.1).

6.2 DNN-based Visual Speech Synthesis

This section describes how to incorporate DNNs into a visual speech synthesis sys-

tem. Our proposed method focuses only on transforming text to visual features

suitable for visual speech synthesis, and is based on a feed-forward neural network

with a number of hidden layers. Our framework can be divided into two parts: train-

ing and synthesis, as illustrated in Figure 6.1. In the training part, the DNNs are

trained based on an audiovisual-speech database. In the synthesis part, the visual

active appearance model (AAM) parameters are generated from the models. Note

that, this work was implemented by Keras 1 and it takes about 6 hours to train on

UEA’s High Performance Compute Cluster (GRACE) 2.

1https://keras.io
2https://rscs.uea.ac.uk/high-performance-computing

6.2. DNN-based Visual Speech Synthesis 135

Figure 6.1: An overview of the DNN-based visual speech synthesis system.

For the training part, the given text and face image are converted to input

features, x, and output features, y, using input feature extraction and output feature

extraction (as discussed in the section below). The input and output features are

time-aligned frame-by-frame. Then, in each hidden and output unit in the DNN

training, a nonlinear activation function including a sigmoid, a hyperbolic tangent

(tanh) and rectifier (ReLU) function is used to map all inputs from the previous layer

to the next layer. Commonly, the activation function is controlled by connection

weights and biases which are initialised by a uniform distribution function or a

pre-training algorithm. The goal of training is to find an optimal set of weight

parameters using the backpropagation algorithm, as described in Section 3.3.1. For

neural network regression purposes, a nonlinear activation function is used for hidden

layers while a linear activation function is adopted in the output layer.

In DNN synthesis, the input text is first converted into a sequence of features and

the output sequence of visual active appearance model (AAM) features are predicted

using forward propagation from the set of trained weights and biases. To avoid the

over smoothing problem, DNN synthesis generates a sequence of visual parameters

by using an arithmetic mean of its sequences instead of using parameter generation

algorithm with dynamic features as in HMM-based synthesis. The output AAM

features are then used to reconstruct the lip images, as described in Section 4.3.

6.2. DNN-based Visual Speech Synthesis 136

Table 6.1: Contextual features for phonetic (PH) and dynamic visemes (DV) units

at varying levels.

Level Feature
PH DV

Frame

Phonetic window context x

Position and number of frames in

phoneme
x

Forward phoneme span x

Acoustic class x

Dynamic viseme window context x

Position and number of frames in

dynamic viseme
x

Forward dynamic viseme span x

Segment

Quin-phone context x

Quin-dynamic viseme context x

Number of phonemes in dynamic

viseme
x

Syllable

Position and number of phonemes in

syllable
x

Position and number of dynamic

visemes in syllable
x

Word
Position and number of syllables in

word
x x

Phrase

Position and number of syllables in

phrase
x x

Position and number of words in

phrase
x x

Utterance
Position of syllable, word and phrase

in utterance
x x

6.2. DNN-based Visual Speech Synthesis 137

6.2.1 Input Feature Representation

Feature extraction begins with the input text in both the training and synthesis

parts. In a real world application, the input text is converted into either a time-

aligned phoneme or dynamic viseme label sequence. The former can be generated

automatically from, for example, automatic speech recognition system or from hu-

man annotation or from text to speech system and the latter can be learned au-

tomatically from the video as described in Section 4.4 or converted from phoneme

sequences [99]. In this present work, we assume that we know the phoneme transcrip-

tion and dynamic viseme transcription because we would like to proof the concept

of the use of perfect input and determine the upper bound performance of the vi-

sual synthesis system. Hence the text-to-speech system and phoneme-to-dynamic

viseme conversion are not required. To transform the sequence of phonemes and/or

dynamic viseme units into a time sequence of visual features as required for visual

synthesis, contextual labels at the phonetic/dynamic viseme and linguistic levels are

extracted and used to create a suitable input feature vector. For HMM synthesis

of visual vectors this level of contextual labelling is sufficient but for input into a

DNN, to create smooth trajectories, it is necessary to include frame-level features.

In practice many contextual factors affect the way people speak which includes the

number of syllables in the current word, the phoneme/dynamic viseme context and

the part-of-speech [73, 128]. We consider a number of such factors in our features

and extract information at the frame, segment, syllable, word, phrase and utterance

level. The importance of these is examined in Section 6.3.1.4 in terms of their effect

on the synthesised visual features. The full set of features considered is summarised

in Table 6.1 which shows those for phonetic units (PH) and for dynamic viseme

units (DV).

6.2.1.1 Frame Level Features

This frame level features are essential and required for DNN because DNN is based

on frame by frame synthesis framework. We consider a number of such factors in

our features as shown in Table 6.1. Considering the Phonetic window context

in Table 6.1, frame level phonetic context is included for the t frames preceding

6.2. DNN-based Visual Speech Synthesis 138

and ahead of the current phoneme which form the 2t + 1 (K) dimensional per

frame. After that, the conversion of phoneme symbol to binary format is applied

using one-hot representation. This is known as one-hot because this is a zero vector

except for a “1” at each phoneme individually. The size of the one-hot vector is

the number of phonemes, p = 41. Hence, the total dimensionality of phonetic

window context features is the K× 41 dimensional binary features. To simplify,

Figure 6.2 shows how to extract the phonetic window context for the 2 frames

preceding and ahead of the current phoneme, i.e. K = 5, of the word “Interspeech”

at frame 15 and 18. From this Figure, a one-hot of /t/ and /er/ is “0, ..., 1, ..., 0”

and “0, ..., 0, ..., 1”,respectively. The total dimensionality of phonetic window context

features in each frame is the 5× 41 = 205 dimensional binary features.

With phonetic frame context

Input: Interspeech � � �phone: /ih n t er s p iy ch/

Frame: 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

 Token: n n t t er er er er er er s s p p p iy iy iy iy

{t-t-er+er+er}
{0,...,1,...,0, 0,...,1,...,0, 0,...,0,...,1, 0,...,0,...,1, 0,...,0,...,1}

{er-er-er+er+er}
{0,...,0,...,1, 0,...,0,...,1, 0,...,0,...,1, 0,...,0,...,1, 0,...,0,...,1}

With frame features (phonetic window context)
The best width of phonetic window context = 330ms [Kim et al., 2015]

p=41 p=41 p=41 p=41 p=41

Figure 6.2: An example of phonetic window context feature extraction.

The position feature has three binary elements that correspond to whether the

centre frame is at the start (1,0,0), middle (0,1,0) or end (0,0,1) of the current

phoneme, while number indicates how many frames are in the phoneme [128]. The

forward phoneme span indicates for how many frames the current phoneme is

present before changing to another phoneme [61]. An example of these three features:

position, number of frames in phoneme and forward phoneme span are shown in

Figure 6.3. At frame 24, the current frame is at the middle of the phoneme /p/ and

there are three frames in this phoneme and it has one frame left before changing to

another phoneme.

6.2. DNN-based Visual Speech Synthesis 139

With phonetic frame context

Input: Interspeech � � �phone: /ih n t er s p iy ch/

Frame: 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

 Token: n n t t er er er er er er s s p p p iy iy iy iy

{start}{6}{5}
{0,0,1}{6}{5}

{middle}{6}{2}
{0,1,0}{6}{2}

With frame features (phonetic window context)
The best width of phonetic window context = 330ms [Kim et al., 2015]

{middle}{3}{1}
{0,1,0}{3}{1}

{end}{4}{1}
{0,0,1}{4}{1}

Figure 6.3: An example of position and number of frames in phoneme and forward

phoneme span feature extraction.

Acoustic class is represented by a 57-D binary feature where each element is

a response to 57 questions such as ‘Is the phoneme voiced? ’ or ‘Is the phoneme

nasalised? ’, which are taken from the contextual questions in HTS [126]. All pre-

pared questions are given in Appendix A. The acoustic class vector is a zero vector,

except the position that correspond to the question and phoneme. For example, a

“1” is assigned to the position 12, 17, 20, 31, 34, 40 of acoustic class vector because

these indices correspond to the question with phoneme /t/.

The final column of Table 6.1 shows a similar set of features defined for dynamic

viseme units. These form longer binary features given that 160 dynamic visemes are

used as opposed to 41 phonemes and no equivalent acoustic class feature exists as

the units are visually-derived.

6.2.1.2 Segment Level Features

We define a segment as being five phonemes or five dynamic visemes in duration,

centred about the middle unit, as following the standard setup from HMM system.

Segments typically have an average duration about 95 ms and 183 ms for a phone and

a dynamic viseme, respectively. The five phonemes in the segment are represented

by the same one-hot method as used in the frame level features, which form a 41

× 5 dimensional vector. Quin-phoneme context binary features indicate the

6.2. DNN-based Visual Speech Synthesis 140

current, two preceding and two following phonemes. Similarly, Quin-dynamic

viseme context is a 160 × 5 dimensional feature that indicates the five DVs in

the segment. Phonemes in DV is a numeric feature representing the number of

phonemes in the dynamic viseme. An example of segment level feature extraction

is depicted in Figure 6.4 including “Quin-phoneme context”,“Quin-dynamic viseme

context”, and “Phonemes in DV” .

With frame level features

Input: Interspeech � � �phone: /ih n t er s p iy ch/

Frame: 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

 Token: n n t t er er er er er er s s p p p iy iy iy iy

 DV: v5 v5 v5 v1 v1 v1 v1 v1 v1 v1 v4 v4 v4 v4 v4 v4 v6 v6 v6

{x-v5-v1+v4+v6},{n-t-er+s+p},2

With frame features (phonetic window context)

{v5-v1-v4+v6+x},{er-s-p+iy+x},3

Figure 6.4: An example of segment level feature extraction.

6.2.1.3 Syllable, Word, Phrase and Utterance Features

The syllable level features of number and position indicate how many phonemes

or DVs are in the current syllable and the current position (start, middle, end, and

single) within the syllable. At the word, phrase and utterance levels the number and

position features indicate similar information but are no longer unique to phonemes

or DVs. According to Figure 6.5, this shows the utterance structure of “Hello,

world”. This structure represents a relationship between a set of items such as

a syllable, word, phrase, while these relationship between each items is used to

extract the syllable, word, phrase and utterance features, for example, at frame 4

the features are as Table 6.2.

6.2. DNN-based Visual Speech Synthesis 141
With frame level features

Input: Hello, world � �phone: /h e l ou w er l d/

 Frame: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Segment: h h e e e e l l ou ou sp w w er er er er l d d d d

 Syllable: h-e l-ou sp w-er-l-d

 Word: h-e-l-ou sp w-er-l-d

 Phrase: h-e-l-ou sp w-er-l-d

 DV: v1v1 v1 v1 v1 v2 v2 v2 v2 v3 v3 v3 v4 v4 v4 v4 v5 v5 v5 v5 v5 v5

With frame features (phonetic window context)
Figure 6.5: An example of segment, syllable, word, and phrase level feature extrac-

tion.

Table 6.2: Contextual linguistic features of frame 4 in Figure 6.5 for phonetic (PH)

and dynamic visemes (DV) units at syllable, word, phrase, and utterance levels.

Level Feature Representation

Syllable

Position of phonemes in syllable middle

Number of phonemes in syllable 4

Position of dynamic visemes in syllable end

Number of dynamic visemes in syllable 5

Word
Position of syllables in word start

Number of syllables in word 2

Phrase

Position of syllables in phrase start

Number of syllables in phrase 2

Position of words in phrase start

Number of words in phrase 1

Utterance

Position of syllables in utterance start

Position of words in utterance start

Position of phrase in utterance start

6.2. DNN-based Visual Speech Synthesis 142

6.2.2 Output Feature Representation

As described in Section 4.3, a high dimensional, 1920×1080 block of pixels is trans-

formed into a compact dimensional using active appearance model (AAM). In this

work, AAM is used to track and parameterise the lower facial region in each frame

of the video [20, 69]. From a set of 34 2-D vertices that define a mesh demarcating

the contours of the lips, jaw and nostrils a 30-D AAM vector, O, is extracted. More-

over, our experiments in the HMM-based system (Section 5.3.1.1) found that visual

frame rates at 100 fps obtained the highest accuracy and the original frame rates

of 29.97fps is insufficient for training. In this chapter, we examined the suitable

number of visual frame rate for DNN-based system between 29.97fps and 100fps,

as shown in Table 6.3. Note that, the input window of 367ms gives an equivalent

window width of K = 11 and K = 37 frames when this window is applied to the

frame rate at 29.97fps and 100fps, respectively. It can be seen that 29.97fps is a

suitable frame rate for DNN visual speech synthesis and this frame rate will be used

for all subsequent testing in this chapter. We refer to the supplementary video for

animation results.

Table 6.3: The averaged scores of phoneme DNN-based visual speech synthesis in

different data rate.

Data rate Correlation NRMSE GV

29.97fps 0.87(0.05) 5.42(1.29) 1268.73(224.00)

100fps 0.86(0.05) 5.84(1.29) 1047.52(198.12)

6.2.3 Network Structure

This section describes our feedforward neural network structure. With DNN train-

ing, the scaling method was applied to numerical input features and output features

as described in Section 4.5.1. The input features were then normalised to the range

[0.01 0.99] using the min-max scaling method. Then, we applied min-max scaling

and mean-variance normalisation to the output visual features to find the best scal-

ing method for AAM parameters. A suitable network topology was chosen by using

combinations of hyper-parameter as shown in Table 6.4. The different numbers of

6.2. DNN-based Visual Speech Synthesis 143

hidden layers (1-6) and numbers of nodes (128-4000) were used in our preliminary

work on the validation data. The two common activation functions, a rectified linear

unit activation function (ReLU) and hyperbolic tangent activation function (tanh),

were also used to examine the best non-linear activation function for the hidden

layers. A linear function was used for the output layer. The stochastic gradient

descent (SGD) algorithm with mini-batch and momentum (as described in Section

3.3.1.3) was used to optimise the weights of the network. To avoid the problem of

overfitting, dropout was varied between 0.1-0.9 and applied to hidden layers [94].

The maximum number of epochs was set to 150. However, the training process is

then stopped early in the case the validation loss does not improve.

Table 6.4: The combination of hyper-parameters for our preliminary tests.

Hyper-parameters value

Number of hidden layers 1,2,3,4,5,6

Number of units 128,256,512,1024,2048,3000,4000

Activation function for hidden layer ReLU, tanh

Activation function for output layer linear

Number of learning rate 0.000001-0.1

Number of momentum 0.5,0.7,0.9

Number of epochs 150

Input scaling method min-max scailing

Output scaling method min-max scailing, z-score normalisation

Optimisation SGD with minibatch

Number of minibatch 100

6.2. DNN-based Visual Speech Synthesis 144

Figure 6.6: Finalised feedforward neural network architecture for visual speech syn-

thesis.

The preliminary work on the validation set found that the best model comes

from the feedforward network with three hidden layers each consisting of 3000 units.

A rectified linear unit activation function was used for hidden layers and a linear

activation function was employed at the output layer, as shown in Figure 6.6. Tests

also found that a rectified linear unit activation function is slightly better than a

hyperbolic tangent activation function. Mini-batch stochastic gradient descent was

used and the size of mini-batch set to 100; learning rate and momentum were fixed

to 0.1 and 0.9, respectively. The weights of the DNN were initialized randomly with

no pretraining using Glorot uniform function [44]. The maximum number of epochs

was set to 150. 50% dropout and early stopping were also applied to avoid over-

fitting on hidden units. Figure 6.7 illustrates the loss learning curve of training and

validation sets during the training process that shows 74 is the maximum number

of epochs for this setting.

6.3. Experiment Results 145

Figure 6.7: The loss learning curve of training and validation sets during the training

process.

6.3 Experiment Results

This section aims to perform an analysis of the synthesised visual speech considering

both objective evaluation and subjective evaluation. Experiments are performed on

the KB-2k audiovisual speech dataset, as described in Chapter 4. We then partition

this dataset into: a training set (80%), a validation set (10%), a testing set (10%), as

described in Section 4.5.3. Table 6.5 summaries significant features of the dataset.

As there is no standard unit for visual speech processing, we aim to find a suitable

unit for visual speech synthesis using hidden Markov models (HMMs). Two kinds

of speech units are considered in our experiments and include phoneme units and

dynamic visemes units. We also consider the low-level (frame-based) contextual

information in the input and output features vector, with the aim of producing a

more realistic and smooth visual feature trajectory. Moreover, we also analyse the

frame level features, with the aim of finding the most influential features.

6.3. Experiment Results 146

Table 6.5: A summary of KB2K corpus for DNN-based.

Features Training Validation Testing

AAM dimensionality 30 30 30

Number of unique phones 41 41 41

Number of unique dynamic visemes 160 160 160

Number of utterances 2,042 250 250

Number of frames 214,151 26,553 25,394

6.3.1 Objective Tests

For objective evaluations, we compare the first five coefficients of the predicted

visual AAM features with the groundtruth AAM parameters using the same three

objective metrics: (i) correlation, (ii) normalised-RMSE (NRMSE), and (iii) global

variance (GV), as described in Section 5.3.1. Note that correlation and RMSE are

common objective evaluation techniques for visual speech synthesis. In this work,

we also propose a global variance measure because the variance of the AAM features

is related to the naturalness of the synthesised lip animation in terms of over- and/or

under-articulation.

6.3.1.1 Effect of contextual input

To include contextual information, and improve the resulting predicted visual con-

tour, a sliding window is used so that frame level information preceding and ahead

of the current frame is included. The width of the input window needs to be wide

enough to capture a useful context information and avoid the effect of visual coar-

ticulation problem. [61] reported that a satisfactory window width of K = 11 frames

applied to 29.97 frame-per-second (fps) data which equates to a width of 367 ms.

Our findings in Table 6.6 observed the performance over the validation set for vari-

ous number of the input window between 100ms and 567ms. Clearly, the correlation

results in each configuration are nearly the same and the NRMSE results have de-

creased when increasing the width of the window, and GV have gone up and gone

down after setting the window more than 367 ms. From the inspection of lip ani-

6.3. Experiment Results 147

mation, it can be observed that the small NRMSE from the larger context window

tends to generate under articulated lip animation. Hence, it can be concluded that

a input window of 367ms is the satisfactory value which corresponds to the highest

correlation and GV with an acceptable NRMSE.

Table 6.6: Objective scores for finding the suitable number of input window width

computed on the validation set.

Window length Correlation NRMSE GV

100ms 0.84(±0.05) 6.14(±1.56) 1127.61(±206.19)

167ms 0.85(±0.05) 5.98(±1.44) 1184.78(±209.54)

234ms 0.86(±0.05) 5.82(±1.39) 1159.01(±209.75)

300ms 0.86(±0.05) 5.76(±1.30) 1242.53(±224.21)

367ms 0.86(±0.05) 5.72(±1.29) 1255.02(±214.73)

434ms 0.86(±0.05) 5.70(±1.29) 1185.67(±207.27)

500ms 0.86(±0.05) 5.68(±1.25) 1164.43(±206.14)

567ms 0.86(±0.05) 5.64(±1.24) 1152.21(±204.93)

The input window of 367ms gives an equivalent window width of K = 11 frames

(5 preceding and 5 ahead) and K = 37 frames (18 preceding and 18 ahead) when

this window is applied to the orignal video rate at 29.97fps and the upsampled

video rate at 100fps, respectively. In our preliminary work, we observe that the

appropriate number of data rate for DNN-based system is 29.97fps which is used for

all subsequent testing.

6.3.1.2 Effect of contextual output

The motivation for this experiment is intended to determine the suitable number of

output window as we observed the number of input window in Section 6.2.1. Ideally,

the output window must large enough to avoid discontinuous and over-smoothing

of features. The input window of 360ms (described in Section 6.2.1.1) is used to

capture the input context and then used to find out the best number of output

window width, as shown in Table 6.7. We observe that an output window of 100ms is

6.3. Experiment Results 148

the appropriate number that use to capture the smoothness of the output according

to the highest correlation and GV. Note that, the output window of 100ms gives an

equivalent window width of Kout = 3 frames when applied to the orignal video rate

at 29.97fps. This means the same tth frame may be prepared and predicted Kout

times, which form a vector of AAM parameters (30 AAMs per facial image) times

the output window length, 30 × 3 = 90 dimensional vector. In the synthesis part,

the final output in each frame could be averaged using the frame-wise mean.

Table 6.7: Objective scores for finding the suitable number of output window width

computed on the validation set.

Window length Correlation NRMSE GV

33ms 0.86(±0.05) 5.72(±1.29) 1255.02(±214.73)

100ms 0.87(±0.05) 5.42(±1.29) 1268.73(±224.00)

167ms 0.88(±0.04) 5.32(±1.25) 1234.91(±219.14)

234ms 0.88(±0.05) 5.28(±1.27) 1218.99(±220.73)

300ms 0.88(±0.05) 5.29(±1.24) 1193.93(±217.31)

6.3.1.3 Effect of Frame Level Feature

Since the HMM-based system, as described in Section 5, makes state predictions,

the frame level features are not necessary. However the DNN system makes frame-

level predictions, and so frame level features should be of benefit to the predicted

AAM parameters.

To investigate the effect of frame level feature on phone units (PH), we compared

two settings regarding the frame level feature and the features from the other levels,

as defined in Table 6.1. The first setting, System F1, represents the input features

without frame level features, but includes feature for segment, syllable, word, phrase,

and utterance (more details in Table 6.1). The second setting, System F2, uses all

features which combines the features in the first setting with frame level feature.

The blue line in Figure 6.8 shows one limitation of “F1 System”, that repre-

sents the input features without frame level features. It shows that “F1” cannot

generate smooth AAM parameter for the utterance “If dark came they would lose

6.3. Experiment Results 149

her”. In this experiment the model generates one output per phoneme, resulting in

the step trajectory at each phoneme boundary and becomes an unrealistic output.

Two conventional ways to overcome this problem in the (visual) speech synthesis

system exist. Firstly, the smoothing process is considered using the speech param-

eter generation algorithm (MLPG) with dynamic features [128]. Secondly, more

advanced neural network architectures were used to smooth predicted visual speech

output, for example unidirectional LSTM with RNN output [125] and bidirectional

LSTM-RNN [36]. Later work in Chapter 7, considers this approach.

Our preliminary work found that the smoothing MLPG with dynamic features is

able to avoid discontinuous visual lip trajectories, but introduces under smoothing

trajectories. Hence, we investigate an alternative way of avoiding discontinuous

AAM features by including frame level information as one of the inputs into the

DNN. The red line in Figure 6.8 (System F2) indicates the importance of the frame

level information for DNN-based systems which is now able to avoid discontinuities

in the visual feature sequence and produce a smooth and more realistic output. It

can be claimed that the use of frame level features overcomes the step trajectories

problem. The animation results of System F1 and System F2 can be found in

supplementary video.

6.3. Experiment Results 150

Frame Number
10 20 30 40 50 60 70 80 90 100

AA
M

 C
oe

ffi
ci

en
t

-50

0

50

100

150 Groundtruth
 Without frame level features (F1)
 With frame level features (F2)

Figure 6.8: A ground-truth (black) AAM parameter trajectory compared with two

synthetic AAM parameter trajectories from F1 (blue) and F2 (red). “F1 System”

represents the input features without frame level features. While, “F2 system”

includes input features into the input representation. Vertical lines show phoneme

boundaries.

6.3.1.4 Optimisation of Frame Features

The previous experiment has shown that the frame level features are very important

for DNN-based systems. However, we do not know the contribution of each feature

in the frame level. This next experiment analyses the effect on prediction accuracy

of the four different frame level features. Seven frame level feature combinations

with features for segment, syllable, word, phrase and utterance (as defined in Table

6.1) are defined and summarised in Table 6.8.

System A-C were used to find the most influencial feature in the frame level

feature. System A is inspired by [36] and [128]. In [36], the phoneme state is

obtained from forced alignment of audio speech, then used its state combining with

the number of frames in its corresponding phoneme to distinguish the input features

in each frame. In our experiment, however, we consider classifying this feature

into three categories: start, middle, and end [128]. This based on their coarse

position within the current frame in the current phoneme instead of using phoneme

state HMM. Moreover, we also include the number of current frames into the input

features. System A uses only the the frame position and number features in each

6.3. Experiment Results 151

phoneme. System B uses only the phonetic window context and system C uses only

the acoustic class of the phonetic window context. System D combines System B

and C and adds the forward span phoneme feature. System E represents all features

excluding the acoustic feature. System F combines the features in System A and B

and adds the acoustic feature. System G includes all features.

Table 6.8: Frame level feature combinations.

Input feature for phone units (PH) A B C D E F G

Position and number of frames in phoneme x x x x

Phonetic window context of k frame x x x x x

Acoustic class of frame level feature x x x x

Forward phoneme span x x x

Segment, syllable, word, phrase,
x x x x x x x

utterance feature level

Table 6.9: Correlation, NRMSE, and GV performance of phonetic frame level

feature combinations on the validation set (brackets show ±standard deviation).

Correlation NRMSE GV

System A 0.73(±0.07) 10.54(±2.14) 802.89(±162.42)

System B 0.80(±0.07) 9.53(±2.19) 920.22(±174.20)

System C 0.73(±0.08) 10.61(±2.16) 840.36(±174.40)

System D 0.81(±0.07) 9.45(±2.12) 922.10(±189.92)

System E 0.79(±0.07) 9.65(±2.24) 955.86(±190.35)

System F 0.81(±0.07) 9.31(±2.22) 952.40(±183.90)

System G 0.81(±0.07) 9.26(±2.22) 964.55(±200.50)

Table 6.9 confirmed that the phonetic window context feature in System B makes

the most significant contribution to the continuous AAM output. Hence, we believe

that the combination of System B with other frame level features (e.g. System D-G)

will give the better results. Table 6.8 presents correlation, RMSE, and GV results

of the seven systems which shows that including all frame level features gives the

6.3. Experiment Results 152

best performance (System G). The difference between Systems A and B and System

B and C are shown to be large and is confirmed when looking at AAM coefficients

as discussed earlier. The objective scores of Systems D, E, and F shows a slight

improvement when comparing with the best (System G. To conclude, the results

from System A-I indicate that the most influential feature is the phonetic context

feature and the most second influential feature is acoustic class. The acoustic class

is the most second influential feature because the objective scores for System E

dropped while System D and F were nearly the same as using all features (System

G). Moreover, the combination of all features is useful and needed, and results in

the best scores when all features are considered (System C).

Firstly, the use of the specific number of current frames and position of the frame

in the phoneme (System A) does not help the model to distinguish the differences

between each frame. The features are not able to generate smooth AAM trajectories

and produces an unrealistic lip animation, as shown in Figure 6.9. The difference

between System A and the previous experiment is that System A produces approx-

imately three different lip images per phoneme depending on the current position of

frame, while the previous experiment predicts a single output in each phoneme.

Frame numbers
10 20 30 40 50 60 70 80 90 100

AA
M

 P
ar

am
et

er

-50

0

50

100

150 Groundtruth
 System A

Figure 6.9: A ground-truth (black) AAM parameter trajectory compared with a

synthetic AAM parameter trajectory from System A (blue). System A represents

the input features with position and number of frames in phoneme. Vertical lines

show phoneme boundaries.

6.3. Experiment Results 153

System B is inspired by [61], in which they include contexual frame level informa-

tion into the input features instead of using just knowledge of the central phoneme.

A sliding window is used so that frame level information preceding and ahead of the

current frame is included. In this experiment, we set the width of the window, K,

to 330 ms, which reported as a satisfactory value from [61]. In this work the visual

frame rate is 100 fps which gives an equivalent window width of K = 33 frames

(16 preceding and 16 ahead). Figure 6.10 illustrates an example AAM trajectory

between ground-truth and System B compared to System A, it shows that the AAM

trajectory contour changed from being discontinuous into continuous by including

phonetic window context. This can be confirmed by viewing the selected frames

26-32 from sequence S0524 in the KB-2k dataset that the lip sequences of System

B were closely related to that of the groundtruth AAM parameters, as illustrated

in Figure 6.11.

Frame Numbers
5 10 15 20 25 30

AA
M

 P
ar

am
et

er

-50

0

50

100

150 Groundtruth
System B

Figure 6.10: A ground-truth (black) AAM parameter trajectory compared with a

synthetic AAM parameter trajectory from System B (red). System B represents the

input features with phonetic window context features. Vertical lines show phoneme

boundaries.

6.3. Experiment Results 154

System A

System B

Groundtruth

2726 3028 29 31 32

Figure 6.11: Selected frames 26-32 from the sequence (S0524) corresponding to the

word “came”. Each row shows an equivalent lip shape video that reconstructed

from AAM parameters. Row 1 correspond to the groundtruth parmeters. Rows 2

and 3 correspond to System A and System B. The lip shape sequences of System

A are nearly the same images in each frame, resulting in an unrealistic lip anima-

tion. While the synthesised lip motion of System B are closely to the groundtruth

sequences.

6.3.1.5 Comparing Phoneme and Dynamic Viseme Units

An investigation is now made into the effect of using either phonetic units or dynamic

viseme units to find the most suitable unit for visual speech synthesis. For the

phoneme based system all PH features shown in Table 6.1 are included while for

the dynamic viseme system all DV features are included. A third configuration

was also tested which combines the phonetic and dynamic viseme unit features and

includes all features shown in Table 6.1. For comparison, a baseline HMM synthesis

system was created which used five-state hidden semi-Markov models with each

state modeled by a single Gaussian with diagonal covariance. Quinphone HMMs

were created using decision tree clustering that considered phoneme, syllable, word,

phrase and utterance level questions.

6.3. Experiment Results 155

Table 6.10: Correlation, NRMSE, and GV performance of HMM and DNN ap-

proaches using phonemes and dynamic viseme units.

Correlation NRMSE GV

Phoneme HMM (±Baseline) 0.75(±0.08) 10.31(±2.07) 889.96(±177.95)

Phoneme DNN 0.81(±0.07) 9.26(±2.22) 964.55(±200.50)

Dynamic-viseme DNN 0.80(±0.06) 8.82(±1.26) 1093.12(±232.51)

Phoneme + DV DNN 0.87(±0.05) 7.35(±1.31) 1209.38(±233.24)

Table 6.10 shows correlation, NRMSE, and GV for the phoneme, DV and com-

bined phomeme-DV systems using DNNs and the phoneme-based HMM system.

The results show good improvement over the baseline HMM system regarding a

phoneme DNN system. Moreover, both the phoneme DNN and DV DNN systems

outperform the HMM synthesis approach. A more realistic and smooth visual fea-

ture trajectory can be found when combining phoneme and DV features which we

attribute to their complementary information, one relating to acoustics and the

other to visual information. This leads to an improvement of the resulting natu-

ralness of the lip animation. Figure 6.12 illustrates an example inspection video

which shows that the combination of phoneme and dynamic viseme units in frame-

by-frame synthesis is able to reduce the lack of audio/video synchrony. It can be

seen that the reconstructed lip shape video from the DNN system and groundtruth

have the same lip shape at each time step, while the lip shape from HMM system

happens later than it should. For example, the word “chicken” starts at frame 25

for the groudtruth video, but pronunciation of this word starts at frame 27 in HMM

system. With the under-articulation problem, the lip motion of HMM system ap-

pear correct, but is somewhat under articulated. We refer to the supplementary

video for animation results.

6.3. Experiment Results 156

Groundtruth

PhHMM System

DNN System

2726 28 29 30 31 3225

Figure 6.12: Selected frames 25-32 from the sequence (S0980) correspond to the

word “chicken”. Each row shows an equivalent lip shape video that reconstructed

from AAM parameters. Row 1 correspond to the groundtruth parmeters. Row 2

and 3 correspond to the phoneme HMM system and PhDV DNN system.

Chapter 7

Visual speech synthesis based on

LSTM-RNN

7.1 Introduction

The aims of this chapter are to overview and develop a sequence to sequence method

of statistical parametric visual speech synthesis using a bidirectional LSTM-RNN.

It begins with an overview of visual speech synthesis system using an encoder-

decoder architecture with a bidirectional LSTM. In experiments, both objective and

subjective tests are carried out to evaluate the effectiveness of various configurations.

Our experiments focus on how the overall quality of the synthesised visual speech is

improved by comparing with a baseline HMM-based system (described in Chapter

5) and DNN-based system (described in Chapter 6).

7.2 Encoder-decoder LSTM-RNN visual speech

synthesis

The proposed method of transforming text to lip animation, which is based on an

encoder-decoder RNN structure using an LSTM with a number of hidden layers is

shown in Figure 7.1. A text input is first converted to a sequence of contextual

features which comprises a combination of binary features for categorical contexts

157

7.2. Encoder-decoder LSTM-RNN visual speech synthesis 158

(e.g. phonetic labels) and numerical features to represent values (e.g. a number of

phonemes in a syllable). Specific details of the input features are given in Section

7.2.1. The output features are visual features (specifically active appearance model

(AAM) features), and more details can be found in Section 7.2.2. Note that, this

work was implemented by Keras and it takes about 16 hours to train on UEA’s High

Performance Compute Cluster (GRACE).

For training the neural network model part, the input and output sequences are

first converted to context-truncated blocks, more details can be found in Section

7.2.3.1. After that, the encoder-decoder RNN architecture is used with the LSTM-

RNNs to train the neural network model from all blocks from the encoder layer to

the decoder layer. The goal of training the neural network (NN) model is to find

an optimal set of weight and bias parameters, and this uses the context-truncated

backpropagation through time algorithm. For neural network regression purposes

as we aim to predict the AAM parameters as an output, a linear activation function

is adopted in the output layer.

For the lip animation synthesis part, the input text is first converted into a

sequence of features and the output sequence of visual features computed using

forward propagation from the set of trained weights and biases. The output features

comprise a sequence of AAM visual features corresponding to each frame. Finally,

a rendering module re-synthesises a lip animation using the smoothed static AAM

parameters [69].

7.2. Encoder-decoder LSTM-RNN visual speech synthesis 159

Figure 7.1: An overview of our visual speech synthesis system.

The next sections explain three major modules in Figure 7.1 including input

feature extraction, output feature extraction, and LSTM-RNN trainig and predicting

modules.

7.2.1 Input features representation

This section describes how input features in each time step are represented. Feature

extraction begins with either a time-aligned phoneme sequence or a dynamic viseme

sequence that can be generated automatically from, for example, HMM decoding

or from human annotation. To transform this sequence of speech units into a time

sequence of visual features as required for visual synthesis, contextual labels at the

phonetic/dynamic viseme and linguistic levels are extracted and used to create a

suitable feature vector. For HMM synthesis of visual vectors this level of contextual

labelling is sufficient but for input into a neural network (NN), to create smooth

trajectories, it is necessary to include frame-level features. In practice, many con-

textual factors affect the way people speak and include the number of syllables in

the current word, the phoneme/dynamic viseme context and the part-of-speech. We

7.2. Encoder-decoder LSTM-RNN visual speech synthesis 160

consider a number of such factors in our features and extract information at the

frame, segment, syllable, word, phrase and utterance level. The importance of these

on the synthesised visual features is examined in Section 7.2.3.1. The full set of

features considered is summarised in Table 7.1 which shows those for phonetic units

(PH) and for dynamic viseme units (DV).

7.2.1.1 Frame level: input features

As we know so far from the feedforward structure, the use of sliding window frame

level information preceding and ahead of the current frame significantly improves

the performance of visual speech synthesis. However, one of the limitations of feed-

forward networks is that the output at time t depends only on the input at that

time step. That is the main reason for including contextual sliding frame informa-

tion into the input for each frame. In this chapter, the contextual information is not

needed in the input features because our structure is based on RNNs, which have

the ability to access information from the previous time steps input. Therefore, we

use only the current phoneme and dynamic viseme in each frame.

Considering the frame level features in Table 7.1, the centre phoneme feature

is a 41-D binary feature that indicates the phonetic class of the current frame. The

position feature has three binary elements that correspond to whether the current

frame is at the start, middle or end of the current phoneme, while number indicates

how many frames are in the phoneme [128]. The forward phoneme span indicates

how many frames of the current phoneme are present before changing to another

phoneme [61]. Acoustic class is represented by a 57-D binary feature where each

element is a response to questions such as ‘Is the current phoneme voiced? ’ or ‘Is

the current phoneme nasalised? ’, which are taken from the contextual questions in

HTS [126], more details can be found in Appendix A. The final column of Table 7.1

shows a similar set of features defined for dynamic viseme units. These form longer

binary features given that 160 dynamic visemes are used as opposed to 41 phonemes

and no equivalent acoustic class feature exists as the units are visually-derived.

7.2. Encoder-decoder LSTM-RNN visual speech synthesis 161

Table 7.1: Contextual features for phonetic (PH) and dynamic visemes (DV) units

at varying levels.

Level Feature
PH DV

Frame

Current phoneme x

Position and number of frames in

phoneme
x

Forward phoneme span x

Acoustic class x

Current dynamic viseme x

Position and number of frames in

dynamic viseme
x

Forward dynamic viseme span x

Segment

Quin-phone context x

Quin-dynamic viseme context x

Number of phonemes in dynamic

viseme
x

Syllable

Position and number of phonemes in

syllable
x

Position and number of dynamic

visemes in syllable
x

Word
Position and number of syllables in

word
x x

Phrase

Position and number of syllables in

phrase
x x

Position and number of words in

phrase
x x

Utterance
Position of syllable, word and phrase

in utterance
x x

7.2. Encoder-decoder LSTM-RNN visual speech synthesis 162

7.2.1.2 Segment level: input features

We define a segment as being five phonemes or five dynamic visemes in duration,

centred about the middle unit, as preliminary tests found this to give best perfor-

mance. The five phonemes in the segment are represented by the 41 × 5 dimensional

Quin-phone context binary feature that indicates the current, two preceding and

two following phonemes. Similarly, Quin-dynamic viseme context is a 160 × 5

dimensional feature that indicates the five DVs in the segment. Phonemes in DV

is a numeric feature representing the number of phonemes in the dynamic viseme.

7.2.1.3 Syllable, word, phrase and utterance: input features

The syllable level features of number and position indicate how many phonemes or

DVs are in the current syllable and the current position (start, middle or end) within

the syllable. At the word, phrase and utterance levels the number and position

features indicate similar information but are no longer unique to phonemes or DVs.

7.2.2 Visual: output features extraction

An active appearance model (AAM) is used to track and parameterise the facial

region in each frame of the video [20, 69]. From a set of 34 2-D vertices that define a

mesh demarcating the contours of the lips, jaw and nostrils a 30-D AAM vector, y,

is extracted. More details are given in Section 4.3. The preliminary tests in previous

chapter about feedforward neural network examined visual frame rates of between

30 fps and 100 fps and established highest accuracy was with 30 fps which is used

for all subsequent testing. Specific details are given in Section 4.4.

7.2.3 Network structure

As described earlier in Section 3.4.1, there are four different types of RNN architec-

tures that can be applied to sequence to sequence tasks. We also pointed out the

drawbacks of the basic BPTT training method in Section 3.4.4.1. Therefore, this

section examines the effect of the type of RNN architecture and the BPTT training

method that we propose in this work.

7.2. Encoder-decoder LSTM-RNN visual speech synthesis 163

7.2.3.1 Context-truncated BPTT

This section explains the benefits of a context-truncated BPTT algorithm over two

traditional RNN training algorithms: epochwise BPTT and truncated BPTT. As

mentioned earlier, the limitation of the two RNN training methods is that they re-

quire utterance level processing (described in subsection 3.4.4.1). With epochwise

BPTT, back-propagation error and weights are updated after seeing the whole se-

quence. The resulting latency is a problem because RNNs require a training sample

sequence from the start to the end. That means this method cannot be processed

in parallel and requires large amount of memory for long sequences. To avoid mem-

ory problems, the truncated BPPT uses a fixed number of time steps to reduce the

storage aspect. Setting the amount of truncation is difficult because if set too short

the performance will likely be worse than the epochwise BPTT. Additionally, the

parallel issue of the truncated BPTT method still exists because the next truncated

examples need to wait for the memory output from the previous state in the case of

an unfinished sequence.

Figure 7.2: An example of context-truncated block with a single frame overlap. The

sequences are first partition to blocks and each block comprises Nc length. Then,

left, Nl , and right, Nr, contexts are appended.

Our approach to this problem is inspired by Chen et al. [13], as shown in Figure

7.2. For the sake of simplicity, this figure assumes that there is one phoneme symbol

as an input feature per frame. The general idea of this approach combines aspects of

epochwise BPTT with truncated BPTT. The first idea is to process local dependency

7.2. Encoder-decoder LSTM-RNN visual speech synthesis 164

instead of global dependency. Hence, each sequence is split into fixed of length,

Nc, called a truncated block. Then, if each block acts as the local dependency,

the epochwise BPTT can then be applied to each block. With this approach, the

performance is not acceptable because the information at the beginning and ending

of each block is lost. Due to the lost or incomplete information in each block, more

information is added to the beginning and end of the truncated blocks, which we now

refer to as a context-truncated block. The left contextual frame has length, Nl, and

the right contextual frame has length, Nr. These are appended to each truncated

block. The appended frame is used to avoid the incomplete information, hence there

is no output. Moreover, empty frames are appended to the first truncated block and

last truncated block for blocks shorter than Nc. From this appended idea, each block

has no need to preserve the network state to the next block as with the truncated

BPTT method and can be made as efficient as in mini-batch training as classical

feedforward networks.

The truncated block can be split into context-truncated with or without overlap.

We believe that the overlapping method might benefit the training process due to

increasing data augmentation. With testing, if overlapping is applied, the same

tth frame may be generated Nt times, as denoted by {yt1, ..,ytNt}. Hence, the final

output could be averaged by an arithmetic mean (eq. 7.1) as follow:

yt =
1

Nt

Nt∑
i=1

yti (7.1)

7.2.3.2 Encoder-decoder LSTM-RNNs

This work first proposes an encoder-decoder many-to-many bidirectional LSTM-

RNN architecture for visual speech synthesis, which aims to generate lip move-

ments from a text input. This encoder-decoder architecture is suited to the context-

truncated BPTT because of the mismatched input and output time steps that orig-

inate from appended left and right contextual frame into the truncated block.

7.2. Encoder-decoder LSTM-RNN visual speech synthesis 165

Figure 7.3: Our encoder-decoder many-to-many bidirectional LSTM-RNN architec-

ture for visual speech synthesis.

Our network structure consists of the combination of two many-to-one architec-

tures (encoder) and a one-to-many architecture (decoder), as illustrated in Figure

7.3. We aim to use one encoder to summarise the forward part of the input sequence,

and another encoder to summarise the backward part of the input sequence. This

is similar to the bidirectional technique that is described in Section 3.4.2. The main

difference is this technique can access all time steps in both the forward and back-

ward encoders, but the bidirectional technique in Section 3.4.2 is able to access the

whole sequence in forward encoder and only one time step in the backward encoder.

After getting the summarised context vector, c, for the cascade of the forward and

backward encoder, we then use the LSTM-RNN many-to-one to generate the out-

put sequence. Our work uses the basic encoder to provide the context vector as an

initial hidden state and input for all time steps of the decoder part. The number of

output time steps depends on the number of truncated blocks, Nc, which is shown

7.3. Experimental results 166

as three-time steps in the example of Figure 7.3.

7.3 Experimental results

This section aims to evaluate the overall quality of the synthesised visual speech

considering both objective tests and subjective tests. We first investigate the effec-

tiveness of various configurations of LSTM-RNN system, for example the effect of

the phone unit and dynamic viseme units. Then, we also investigate the best model

for visual speech synthesis by comparing with a baseline HMM-based system and a

DNN-based system. Finally, we also analyse where does the performance come from

and what LSTM actually learn.

7.3.1 Experimental measurement

This section describes how the quality of a visual speech synthesiser is evaluated.

Generally, the evaluation of visual speech synthesis can be classified into two types;

objective tests and subjective tests. Both tests will be considered in this work.

7.3.1.1 Objective tests

The goal of objective tests for a visual speech synthesiser is to measure the distance

between the synthesised and the ground-truth AAM visual features. Compared

to subjective tests, objective testing methods are less time consuming and easy

to perform because these can be computed automatically and repeatedly. Note

that objective tests only indicate how far synthesised visual speech is from the real

visual speech. They cannot indicate the realism, naturalness or intelligibility of a lip

animation. Most visual speech synthesisers uses root mean squared error (RMSE)

or correlation as an objective score. This work will use another additional objective

measure, namely the global variance (GV). More specific details can be found in

Section 5.3.1.

7.3. Experimental results 167

7.3.1.2 Subjective tests

Subjective tests measure a viewer’s opinion of quality. Subjective tests can be di-

vided into three types: intelligibility, naturalness and realism of the lip animations

[24]. The task of the naturalness and realism tests are generally used for subjective

evaluation. These tests ask viewers to compare the quality of synthesised lip anima-

tions in each system and focus on the how much the synthesised video is similar to

the natural video. On the other hand, the task of the intelligibility test uses humans

to lip-read the synthesised video and many studies reported that the performance

of this approach has not been effective. So that, the tests in this work focus on

two common approaches in visual speech synthesis testing; namely, (i) Turing test

(realism) and (ii) A/B test (naturalness). With Turing test, this will ask viewers

to watch video and choose whether they consider the lip motion real or synthe-

sised. With A/B test, this will ask viewers to watch pairs of lip animations played

side-by-side and to select the sequence that they found most natural.

7.3.2 Experimental training conditions

Three types of neural networks including one-to-one (feedforward), many-to-one us-

ing LSTM, and our proposed encoder-decoder many-to-many approaches are used

in this experiment. For the feedforward network, the model contains three hidden

layers and 3000 units per layer, which came from the best configuration from chapter

6. A rectified linear unit (ReLU) activation function is used for hidden layers and

a linear activation function is employed at the output layer. Mini-batch stochas-

tic gradient descent is used as the optimizer in the feedforward network since it

achieves the best performance compared to other optimization methods. The size

of mini-batch is set to 128; a learning rate and momentum were fixed to 0.3 and 0.9,

respectively. The maximum number of epochs was set to 140. 55% dropout is also

applied to avoid overfitting on both hidden and recurrent units.

For the many-to-one architecture using long short term memory (LSTM), the

model contains three hidden layers and 256 units per layer. A linear activation func-

tion is employed at the output layer. RMSprop [22], which generates its parameter

7.3. Experimental results 168

updates using a momentum on the rescaled gradient, is used as the optimizer in our

experiment since it achieves the best performance compared to other optimization

methods. We utilized early stopping with patience 15 to avoid over-fitting. The size

of mini-batch is set to 128; a learning rate and momentum were fixed to 0.0003 and

0.9, respectively. The maximum number of epochs was set to 140. 55% dropout is

also applied to avoid overfitting on hidden units.

For our encoder-decoder many-to-many architecture using LSTM, the model

contains three hidden layers in both the encoder and decoder parts, and 256 units

per layer. The other settings are set to the same configurations as the many-to-one

approach.

7.3.3 Analysis of framing method

This experiment aims to explore the appropriate framing method of the input fea-

tures for the RNN structure. In the feedforward network, a fixed stack of input

features of the prior and next time steps is used as the contextual input features

in each time step, namely the window method. The key is that there is no con-

nection between each time step for the feedforward network structure. In the RNN

structure, on the other hand, there is a connection between current time step and

prior time step. The context information from the neighbouring frames would be

excluded from the current frame, but would be provided in the form of recurrent

structure instead, called time step method.

Three types of RNN architectures using two different framing methods were

conducted in this experiment; (i) one-to-one, (ii) one-to-many, and (iii) encoder-

decoder many-to-many, as shown in Table 7.2. The training conditions can be

found in section 7.3.2. There is no result for one-to-one architecture using the time

step method because of structure’s limitation. To make a fair comparison, both

window and time step methods must be trained with the same features. In the case

of window method, the input features in each frame are append from the neighbour

frames. Note that, this window method suits for one-to-one architecture because

input representation of the current frame in this architecture can not access the

information from the neighbour frames, as shown in Figure 3.17(a). In the case of

7.3. Experimental results 169

timestep method, however, the input features in each frame are represented by the

features of the current frame. Moreover, this timestep method suits for recurrent

structure (for example many-to-one and many-to-many) because this structure is

able to access the previous information from the recurrent step, as shown in Figure

3.17(b). Note that the width of the contextual information for both methods has

to be determined in advanced and needs to be wide enough to include articulation

movements but short enough to avoid over-smoothing of features. Related studies

have reported a window width of 340ms which is a satisfactory value [99]. This time

corresponds to an 11-frame window when applied to 30 frame-per-second (fps) data,

and comprises 5 preceding, 5 ahead, and the current frame.

Table 7.2: Comparison between window method and timestep method.

Correlation RMSE GV

One-to-one: Feedforward
Window 0.87(±0.05) 6.54(±1.34) 987.29(±202.74)

Timestep - - -

Many-to-one: LSTM
Window 0.86(±0.04) 6.42(±1.19) 1203.18(±241.03)

Timestep 0.86(±0.05) 6.32(±1.24) 1262.35(±245.07)

Many-to-many: LSTM
Window 0.86(±0.04) 6.45(±1.21) 1463.36(±279.33)

Timestep 0.87(±0.05) 6.23(±1.21) 1493.52(±284.12)

From Table 7.2, it would suggest that the use of time step method outperforms

the use of window method in both many-to-one and many-to-many architecture

using LSTM-RNN. It can be seen that a large lift in performance originates from

the improvement of GV and RMSE. Hence, the following experiments will use time

step method to represent the input features vectors through out this chapter. An

important reason of making the better NN model when using time step method is

that the structure of input data makes a lot more sense which represents one features

vector based on their time step. This could make the network easy to desire about

keeping, deleting, and outputting the useful information in each time step.

7.3. Experimental results 170

7.3.4 Analysis of speech units

So far, the combination of phoneme and dynamic viseme units is the most effective

unit for visual speech synthesis using feedforward network. This experiment aims

to ensure that the combination of phoneme and dynamic viseme units is still the

most appropriate units for visual speech synthesis using an encoder-decoder LSTM-

RNNs architecture. An investigation is now made into the effect of using either

phonetic units or dynamic viseme units. For the phoneme based system all PH

features shown in Table 7.1 are included while for the dynamic viseme system all

DV features are included. A third configuration, PhDV, was also explored which

combines the phonetic and dynamic viseme unit features and includes all features

shown in Table 7.1.

Table 7.3: Analysis of speech units.

System Correlation RMSE GV

Phone-only (Ph LSTM) 0.82(±0.07) 7.56(±1.89) 1243.10(±247.11)

Dynamic viseme-only (DV LSTM) 0.83(±0.05) 6.93(±1.24) 1386.63(±293.73)

Phoneme-DV (PhDV LSTM) 0.87(±0.05) 6.23(±1.21) 1493.52(±284.12)

Table 7.3 shows the mean (±standard deviation) of the correlation, RMSE, and

GV for the phoneme, DV and combined phomeme-DV systems using the encoder-

decoder many-to-many LSTM approach. We refer to the supplementary video for

animation results. First of all, Table 7.3 shows that the use of dynamic viseme units

to the models outperforms phone models in all metrics. It can be concluded that the

well defined visual units, formed by dynamic viseme, is the key point of improving

the resultant. Furthermore, the PhDV system in the last row of Table 7.3 shows the

big improvement in terms of better correlated, low rmse, and large GV comparing

with Ph- or Dv-only system. This is very interesting result because it is confirmed

that both information is useful for generating people’s lip movement. The advantage

of combining phoneme and DV is likely to getting acoustic information from phone

units and providing extra information about visual from dynamic viseme units in

the same model. That is the reason to use both information representing as the unit

of visual speech synthesis instead of forcing to choose only one unit as we have done

7.3. Experimental results 171

in HMM system.

As mentioned earlier, one of the limitations of using phoneme units is that the

visual movements sometimes happen before or after the sound. This leads to the

perceived quality because humans are very sensitive to the coherence between audio

and visual signals. Figure 7.4 shows example time-varying of the first AAM parame-

ter sequences generated using the phone-based (blue) and DV-based (red) compared

with the ground-truth (black) equivalent measured directly from the video. Frames

38-50 correspond to the phrase “the outer door”. It can be seen that phone tra-

jectory and dynamic-viseme trajectory have the similar shape but different timing.

This leads to an audiovisual lack of synchrony. It can be confirmed by the inspection

of the side-by-side video outputs, which shows that the lip shape from phone units

starts and ends before it should.

Frame Number
0 10 20 30 40 50 60 70

M
ag

ni
tu

de

-100

-50

0

50

100

150

200
S1991: 1-AAM Coefficient

Groundtruth
Phone
Dynamic viseme

Figure 7.4: The time varying trajectory of the first AAM parameter as measured

from video (black), synthesised using dynamic visemes (red), and phones (blue).

Even though dynamic viseme units are able to reduce the audiovisual lack of syn-

chrony, they sometimes introduce over-smoothing. From this problem, the visual

video output sometimes produces a too smooth or wrong lip motion that can ap-

pear to under or over articulate. To alleviate this problem, combining phoneme and

DV features further improves performance which we attribute to their complemen-

tary information, one relating to acoustics and the other to visual information. To

illustrate this, Figure 7.5 shows the first AAM parameter for ground-truth, dynamic-

7.3. Experimental results 172

viseme, and combination of phone and dynamic-viseme sequence. This corresponds

to the phrase “then he heard the outer door closing”.

Frame Number
0 10 20 30 40 50 60 70

M
ag

ni
tu

de

-100

-50

0

50

100

150

200
S1991: 1-AAM Coefficient

Groundtruth
Dynamic viseme
Phone+Dynamic viseme

Figure 7.5: The time varying trajectory of the first AAM parameter as measured

from video (black), synthesised using combination of dynamic visemes and phones

(red), and dynamic visemes (blue).

PhDV LSTM

DV LSTM

045 046 047 048 049 050

Figure 7.6: Selected frames 45-50 from the sequence (S1991) correspond to the word

“door”. Each row shows an equivalent lip shape video that reconstructed from AAM

parameters. Row 1 and 2 correspond to the LSTM-based visual speech synthesis

using dynamic viseme units (DV LSTM) and the combination of phone and dynamic

viseme units (PhDV LSTM), respectively. The lip shape sequences are correct in

both system, but is somewhat under articulated for the use of dynamic viseme units.

Frames 45-50 from Figure 7.5 correspond to the word “door”. Analysis showed

that the shape of dynamic-viseme output (blue) is similar to the shape of combi-

7.3. Experimental results 173

nation of phone and dynamic-viseme output (red) with somewhat different magni-

tude. From this contour, the inspection of the visual difference between DV-based

(top) and PhDV-based (bottom) synthesiser can be found in Figure 7.6. The re-

constructed images from the similar contours but with different magnitudes showed

similar lip shapes. However, the major difference is that the generated mouth shapes

from dynamic-viseme (top) are not flexible as the mouth does not open much as it

should, resulting in the teeth not being clearly seen, which called under articulation

problem.

7.3.5 Effect of the truncated context length (Nl and Nr)

This test investigates the effect of the length of the left, Nr and right context-

truncated block, Nr. According to this, we assume that contextual information is

very important for visual speech synthesis because it is well-known that the move-

ment of the articulators does not depend only on the current sound but also on

the neighbouring sounds. Hence, all speech and visual speech applications, e.g.

speech synthesis and visual speech synthesis, consider their adjacent context when

predicting the current sound.

A preliminary study in Table 7.4 was carried out to examine how contextual infor-

mation affects the performance of visual speech synthesis using the LSTM encoder-

decoder. Each configuration in Table 7.4 represents a truncated of length Nc with

Nl left context and Nr context frames as “Nl−Nc+Nr”. When excluding contextual

information, Nl and Nr are set to 0. The meaning of 0 − 3 + 0 is that this block

comprises three input and three output frames without left or right context frames.

As expected, the objective scores when including contexts, 6− 1 + 6, is better than

the others that exclude context configurations. These imply that the output lip

shape in each frame is influenced by the input information before and after it. The

next experiment explores a suitable number of left, Nl, and right contextual frames,

Nr, of the context-truncated block.

7.3. Experimental results 174

Table 7.4: The mean (±standard deviation) scores averaged for different truncation

lengths with no context information in BLSTM encoder-decoder many-to-many.

Nl −Nc +Nr Correlation RMSE GV

(0− 1 + 0) 0.86(±0.05) 6.61(±1.37) 1411.66(±254.00)

(0− 3 + 0) 0.86(±0.05) 6.51(±1.37) 1420.80(±258.18)

(0− 7 + 0) 0.87(±0.05) 6.29(±1.26) 1375.71(±250.64)

(0− 15 + 0) 0.87(±0.04) 6.29(±1.23) 1383.79(±259.10)

(0− 23 + 0) 0.87(±0.04) 6.20(±1.24) 1389.16(±272.07)

(6-1+6) 0.88(±0.04) 6.18(±1.21) 1482.47(±285.58)

In Table 7.5, we assume that the truncated block, Nc, is fixed to 1, and the

size of the contextual frames was varied from 0 to 11. Table 7.5 shows the effect of

contextual configurations in BLSTM many-to-many and encoder-decoder BLSTM.

An example of (5-1+5) configuration can be interpreted that we aim to predict one

time step output after looking the previous five time steps and the next five time

steps. It is seen that the small number of appending contexts from 1 to 4 cannot

capture the salient coarticulation effects and causes an unacceptable degradation to

the synthesised visual speech. This implies that this information is not enough. Also,

it is observed in the correlation results that it cannot distinguish the performance

in each configuration, as reported the same amount of errors. The best GV and

RMSE error is obtained by “7 − 1 + 7” and “11 − 1 + 11” in terms of averaged

results, respectively. From these results, the window duration is about 495-695ms,

and is longer than [61, 99] (340ms) and [39] (183ms). This is one of the benefits

of the LSTM-RNN structure in terms of the ability of capturing such long-term

dependencies.

7.3. Experimental results 175

Table 7.5: The mean (±standard deviation) scores averaged for different left and

right context length with a single truncation length in BLSTM encoder-decoder

many-to-many.

Nl −Nc +Nr Correlation RMSE GV

33ms (0− 1 + 0) 0.86(±0.05) 6.61(±1.37) 1411.66(±254.00)

100ms (1− 1 + 1) 0.86(±0.05) 6.50(±1.36) 1438.84(±272.17)

165ms (2− 1 + 2) 0.87(±0.05) 6.41(±1.28) 1478.10(±264.68)

230ms (3− 1 + 3) 0.87(±0.05) 6.32(±1.31) 1451.99(±267.69)

300ms (4− 1 + 4) 0.87(±0.05) 6.30(±1.31) 1489.16(±278.96)

360ms (5− 1 + 5) 0.87(±0.04) 6.19(±1.24) 1483.60(±286.63)

430ms (6− 1 + 6) 0.88(±0.04) 6.18(±1.21) 1482.47(±285.58)

495ms (7− 1 + 7) 0.88(±0.04) 6.15(±1.22) 1503.54(±293.04)

560ms (8− 1 + 8) 0.88(±0.04) 6.13(±1.20) 1494.30(±286.20)

630ms (9− 1 + 9) 0.88(±0.04) 6.15(±1.18) 1492.28(±278.62)

695ms (10− 1 + 10) 0.88(±0.04) 6.09(±1.15) 1483.14(±288.42)

760ms (11− 1 + 11) 0.88(±0.04) 6.08(±1.15) 1491.07(±290.55)

In fact, it is difficult to claim that the “7 − 1 + 7” configuration is better than

the “11 − 1 + 11” or other configurations. Analysis in Figure 7.7 shows that the

observed trajectory of “7 − 1 + 7” (blue) is likely to be close to the ground-truth

trajectory (black) and the trajectory of “11 − 1 + 11” (red) of the word ”purists”

at frames 32-37 has a different shape when comparing with the ground-truth. From

this difference, it interesting to note that the overall lip shapes are still the same,

as shown the reconstructed lip images in Figure 7.8. They tend to open the mouth

in the same degree as it should be. The difference in lip shape can be seen at frame

35, where the teeth are not visible when using 11-1+11 setting (top). This shows

that the small errors in a single frame from this settings lead to the similar output

video sequence. However, we would choose “7-1+7” as the best setting and using

7 as the number of left and right context length in the next experiment, because

we found that the higher GV tends to create the better animation (as described in

Section 5.3.1).

7.3. Experimental results 176

Frame number
10 20 30 40 50 60 70 80 90

M
ag

ni
tu

de

-100

-50

0

50

100

150

200

S0135: 1-AAM parameters
 Groundtruth
 11-1+11
 7-1+7

Figure 7.7: The time varying trajectory of the first AAM parameter as mea-

sured from video (black), synthesised using “7-1+7” (red), and “11-1+11” context-

truncated block setting (blue).

032 033 034 035 036 037

7-1+7

11-1+11

Figure 7.8: Frames 32-37 from a “7− 1 + 7” configuration (top) and a “11− 1 + 11”

configuration (bottom), corresponding to the first syllable of the word “purists”.

Every frame shows the similar lip shape in both systems.

7.3.6 Effect of the truncated context decoding (Nc)

Based on the previous experiment, we know that “7” is the best number of left,

Nl, and right, Nr, contextual frame for a truncated block. In this experiment, we

examine the length of a truncated block, Nc, that is varied from 1 to 9, as shown

in Table 7.6. It observed that there is no difference in terms of correlation results

as we found in previous experiment. However, the RMSE error and GV are able to

reflect difference in the performance of each configuration. From these results, the

7.3. Experimental results 177

wider truncation block (i.e. larger Nc) tends to generate the lower RMSE and GV.

Generally, we expect to get a smaller RMSE, but the RMSE scores in Table 7.6 does

not correspond to better animation, because this always leads to under articulated

problem.

Table 7.6: Analysis of the length of truncated with 256 length of context vector, c.

Nl −Nc +Nr Correlation RMSE GV

7− 1 + 7 0.88(±0.04) 6.15(±1.22) 1503.54(±293.04)

7− 3 + 7 0.88(±0.05) 6.07(±1.25) 1424.44(±266.16)

7− 5 + 7 0.88(±0.05) 6.06(±1.23) 1410.25(±266.51)

7− 7 + 7 0.88(±0.05) 6.04(±1.23) 1408.24(±272.96)

7− 9 + 7 0.88(±0.04) 6.01(±1.19) 1409.22(±270.52)

As we mentioned in Section 7.2.3.2, the limitation of the basic encoder-decoder

architecture is the size of context vector, c, as this architecture aim to encode all

input information to a fixed-sized vector, then generate or decode the output based

on that vector. We can conclude that the length of our context vector is too small

for the larger context outputs. Therefore, the size of context vector is increased from

256 to 1024. As expected, Table 7.7 shows the improvement in terms of both RMSE

and GV. We found that we should not choose Nc larger than 3 because the larger

Nc causes smoother output from the averaged. Again, it is difficult to choose the

best configuration between “7-1+7” and “7-3+7” because their output is very close.

However,inspection of side-by-side videos and visual trajectories we found that “7-

3+7” is a better configuration because the output is smoother than “7-1+7” with

no under articulation problem, as shown in Figure 7.9.

7.3. Experimental results 178

Table 7.7: Analysis of the length of truncated with 1024 length of context vector, c.

Nl −Nc +Nr Correlation RMSE GV

7− 1 + 7 0.88(±0.04) 6.13(±1.22) 1496.54(±280.77)

7− 3 + 7 0.88(±0.04) 6.02(±1.24) 1457.32(±272.54)

7− 5 + 7 0.88(±0.04) 5.99(±1.23) 1420.47(±266.46)

7− 7 + 7 0.88(±0.04) 6.06(±1.24) 1422.13(±271.64)

7− 9 + 7 0.88(±0.04) 5.98(±1.22) 1443.91(±267.73)

7.3. Experimental results 179

Frame number
0 10 20 30 40 50 60

M
ag

ni
tu

de

-100

-50

0

50

100

150
S0882: 1-AAM parameters

Ground-truth
7-1+7
7-3+7

Frame number
0 10 20 30 40 50 60

M
ag

ni
tu

de

-100

-50

0

50
S0882: 2-AAM parameters

Ground-truth
7-1+7
7-3+7

Frame number
0 10 20 30 40 50 60

M
ag

ni
tu

de

-40

-20

0

20

40

60

80
S0882: 3-AAM parameters

Ground-truth
7-1+7
7-3+7

Figure 7.9: The time varying trajectory of the first-third AAM parameters as mea-

sured from video (black), synthesised using the two-best configurations of our NN

model including “7-1+7” (blue) and “7-3+7” (red). The predicted AAM parameter

of the first dimension in both configurations is nearly the same as ground-truth pa-

rameter. The shape of second and third parameters is still similar, but somewhat

different magnitude.

7.3. Experimental results 180

7.3.7 Analysis of the RNN architecture on visual speech

synthesis

This experiment summarises how the overall performance of the synthesised visual

speech is improved by our LSTM-based approach, which uses an encoder-decoder

many-to-many architecture (described in Section 7.2.3.2). There are two common

problems that are concerned with our visual speech synthesis system; visual speech

modeling and over smoothed articulation. With the visual model, this problem orig-

inated from the misshaped and mistimed estimation of the visual speech parameter

trajectories. For under articulation, this problem exits when the model predicts the

correct shape but the magnitude is too small. Hence, the ultimate goal of our pro-

posed LSTM is to learn the dynamic visual model and synthesise a flexible output.

For comparison, two systems including a baseline phoneme HMM synthesis sys-

tem (HMM; described in Chapter 5) and a feedforward neural network synthesis

system (DNN; described in Chapter 6) were compared with the proposed LSTM

synthesis system (LSTM). In our LSTM system, the left and right context, Nl and

Nr, were set to 7 and the truncation block, Nc, was set to 3, due to its best per-

formance in previous experiments. The training configurations for the HMM, DNN

and LSTM system are described in Section 5.2.1.3, 6.2.3, and 7.3.2, respectively.

The averaged results for all three systems with different numbers of training

utterances, which were varied as; 100, 300, 500, 800, 1000, 1200, 1500, 1800, 2000

and 2042, are presented in Figure 7.10. Note that, we evaluate all appraoches on

the KB-2k 250 held out test utterances. We first consider the effect of the amount

of training data for each approach. It can be seen that the performance is increased

as the number of training utterances is increased all three approaches. These results

also confirm that the number of training utterances is very important and more

training data leads to a better predictor. Moreover, acceptable results are originated

from the training data with at least 1000-1200 utterances. This amount of data

relates to the same number of speech synthesis data such as the 1200 phonetically

balanced utterances in CMU-ARCTIC. We refer to the supplementary video for

animation results.

7.3. Experimental results 181

Number of training utterances
100 300 500 800 1000 1200 1500 1800 2000 2042

C
or

re
la

tio
n

0.6

0.65

0.7

0.75

0.8

0.85

0.9 HMM MLP LSTM

Number of training utterances
100 300 500 800 1000 1200 1500 1800 2000 2042

N
or

m
al

is
ed

 R
M

SE

3

4

5

6

7

8

9

10
HMM MLP LSTM

Number of training utterances
100 300 500 800 1000 1200 1500 1800 2000 2042

G
lo

ba
l v

ar
ia

nc
e

200

400

600

800

1000

1200

1400

1600 HMM MLP LSTM

Figure 7.10: The objective scores averaged for three different systems: HMM, DNN

and LSTM.

Clearly, the deep neural network approach in both DNN and LSTM approach

consistently outperforms the state of the art HMM system in terms of correlation,

RMSE, and GV. Note that using only correlation and normalised-RMSE measure-

ments achieve almost the same performance on DNN and LSTM system. However,

7.3. Experimental results 182

the GV measure gives an indication of which approach produces the best predictor

in terms of articulation. Findings suggest our proposed LSTM system is the most

preferred overall as shown the larger gap on GV scores. From these results there are

several reasons that the performance of our proposed encoder-decoder using LSTM

is better than the baseline HMM-based and DNN-based synthesis system. Firstly,

the framing time step method has the benefit of using one set of features in its time

step that makes learning the method easier. Compared with the HMM and DNN,

both systems incorporate contextual frames in one set of features, which possibly

makes it difficult to model the input features. Specific detail were discussed in Sec-

tion 7.3.3. Secondly, the combination of the audio unit (phones) and visual unit

(dynamic visemes) is the key of improving the synchronisation of audio and visual.

The investigation in Section 7.3.4 showed that the synthesised lip motion from this

combination can overcome the under articulation problem. Thirdly, the ability of

learning long range dependencies from the LSTM structure is one of the reasons

for the improved synthesis. Specific details are given in Section 7.3.5. Fourthly,

another important problem for visual speech synthesis is under articulation of syn-

thesised lip animation. For this problem, the model is able to predict the correct lip

movements, but they lack sufficient articulation. Error from correlation and RMSE

objective scores were not able to reflect this problem, which become apparent with

subjective tests. In this work, we believe that the GV object metric is able to reflect

the articulation of animation. Figure 7.11 illustrates the articulation of lip anima-

tion from LSTM-based compared with original, HMM-based, and DNN-based. We

refer to the supplementary video for animation results.

7.3. Experimental results 183

067 068 069 070 071 072

Ground-truth

HMM-based

DNN-based

LSTM-based

Figure 7.11: Selected frames 67-72 from the sequence “those who are not purists

use canned vegetables when making stew”. The frames correspond to the word

“canned” and each row shows an equivalent lip shape video that reconstructed from

AAM parameters. Row 1 correspond for ground-truth AAM parameters. Row 2,3,

and 4 correspond to the HMM-based, DNN-based, and LSTM-based visual speech

synthesis using the combination of phone and dynamic viseme units, respectively.

7.3.8 Subjective tests

All previous experiments evaluated the quantity of the visual speech synthesis system

using objective tests. This section measures the quality of each system using sub-

jective tests. These tests are conducted by humans who were asked to evaluate the

quality of the lip animations. Compared to subjective tests, objective testing meth-

ods are less time consuming and can be done automatically, but they are not able

to confirm the quality of the lip animation. They also have no guarantee that better

objective scores will generate the better videos. For example, [103] reported that

the high error scores from a smoothing method showed better animation compared

with no-smoothing method. These experiments aim to evaluate the quality of lip an-

imations in terms of realism and naturalness. Two subjective tests were conducted

in a sequential sequence; a Turing test to measure realism followed by a preference

7.3. Experimental results 184

test to compare naturalness. Regarding to the subjects who evaluate in this test,

we have an assumption that this application should not only specific to US English

speakers because this application should use by everyone who understand English

language. From this concept, a total of 30 UK English speakers and non-native

viewers who study abroad took part in the tests. There were recruited online and

took the test over the Internet using a web browser (http://oaom.openservice.in.th).

To evaluate the statistical significance of the realism and preference tests, a

binomial test at the 1% significance level, α = 0.01, was conducted [49]. Note that,

the binomial test is used in all subsequent subjective tests because there are only two

possible answers in each test. For example, the outcome of Turing test corresponds

to “real” or “synthesised” and the outcome of preference test corresponds to “system

A” or “System B”. With the binomial process, we first define null hypothesis (H0)

and alternative hypothesis (H1) as follows:

H0 : p = 1
2

(“The judgements are not biased to either an A or B category”)

H1 : p > 1
2

(“The judgements are more likely to favour an A category”)

If, for example, a subject watches N = 15 animations and they prefer “A” 13

times (C = 13). It is likely that humans are more likely to favour “A”. So in this

case we then calculate the probability (p-value) that the number of humans choosing

“A” 13 times or more than 13 times out of 15 judgements, as follows:

p− value = P (X = 13) + P (X = 14) + P (X = 15). (7.2)

where,

P (X = C) =

 N

C

× pC × (1− p)N−C (7.3)

 N

C

 =
N !

C!(N − C)!
where N ! = 1× 2× . . .×N (7.4)

so that,

p− value = 0.0037 (7.5)

With the calculation of the p-value=0.0037 with our significance level at 0.01,

we reject the null hypothesis and we conclude that subjects prefer significantly the

animation from the “A” category.

7.3. Experimental results 185

7.3.8.1 Turing tests

The Turing test or realism test aims to measure how realistic the synthesised lip

animation is. In this test, each video was shown to viewers and then they were

asked to rate with a simple question “Is this lip motion real or synthesised?”, as

shown in Figure 7.12. Viewers were told to ignore image and audio quality and

make a choice based on only the mouth movements and the audiovisual coherence.

They could watch the videos as many times as they required before assigning their

feedback that reflects the synchronisation between acoustic speech and lip movement

and whether they think the lip motion is real or synthesised.

Figure 7.12: Visual speech synthesis experiment - Turing test.

Four systems were involved in this test; HMM PH, DNN PH DV, LSTM PH DV

and REAL. The first system was a baseline phoneme HMM synthesis system (HMM PH),

as described in Chapter 5. The second system was a feedforward system (DNN PH DV),

as described in Chapter 6. The third system was a bidirectional-LSTM encoder-

decoder system (LSTM PH DV), as described in Chapter 7. Finally, the real video

(REAL) means the video was generated from the ground-truth AAM parameters.

The videos were randomly chosen from the 250 testing utterances that were not

7.3. Experimental results 186

included in the training data. These videos are shown to viewers in a random order

and a single-video at a time. Each participant evaluates 10 sentences from the

four different systems, giving 40 videos in total. The first four answers from each

participant were not counted for familiarisation reasons. From this omission, the

remaining 36 answers from each participant were used to count the number of real

and synthesised rated videos for each system.

We measure the statistical significance of the test result using a binomial test

at the 1% significance level, α = 0.01 (as described in Section 7.3.8). To test the

hypothesis in each system we first define the null hypothesis (H0) that humans’

choice is not biased towards “Real” or “Synthesised” category (p = 1
2
). We then

compute the probability and compare with our significance level to confirm it H0 is

true. Notice that H0 is accepted if the probability is greater than the significance

level.

Results of the realism tests, with the percentages were shown in brackets, are il-

lustrated in Figure 7.13. It shows that subjects perceived that the lip motion videos

from REAL is the best system in terms of realism at 68.66%, with a significance

level of p-level = 8.5e−10. More than 50% of the time, participants perceived the

animations as real in DNN and LSTM neural networks structures. This suggests

these two approaches are generally considered acceptable for by subjects. However,

we find that only the lip motion videos from our LSTM PH DV system are signifi-

cantly real with a p-level = 9.8e−8 and show more realistic animation than from the

HMM PH DV and DNN PH DV systems. It is interesting to note that the synthe-

sised videos from the LSTM PH DV system achieve nearly the same performance

as the ground-truth videos from the REAL system which was perceived as real 69%

of the time as opposed to 66% of the LSTM PH DV system. These results mean

that our LSTM PH DV system is the most competitive method and even humans

in this test confuse the synthetic videos from this approach with the REAL system.

7.3. Experimental results 187

HMM_PH

DNN_PH_DV

LSTM_PH_DV

REAL

0 10 20 30 40 50 60 70 80 90 100

Real (54.41%)

Real (66.30%)

Real (68.66%)

Real (45.49%)

Synthesised (31.34%)

Synthesised (33.70%)

Synthesised (54.51%)

Synthesised (45.59%)

*
*

Figure 7.13: Subjective results for realism tests with four different systems: REAL,

HMM PH, DNN PH DV and LSTM PH DV.

7.3.8.2 Preference tests

The preference test or AB test aims to compare the naturalness of two systems at one

time. Two system videos were played simultaneously as side-by-side videos. They

were shown to viewers and asked a simple question ”Tell us which on looks more

natural”. Subjects were free to replay the sequences as many times as required.

Then, viewers were forced to choose one answer from a binary choice: “Left” or

“Right”, as shown in Figure 7.14.

In this test the animations were generated by AAM sequences from 4 differ-

ent systems the same as in the Turing tests: REAL, HMM PH, DNN PH DV,

LSTM PH DV. From these four systems, 6 different combinations can be made:

1. HMM PH vs. DNN PH DV

2. HMM PH vs. LSTM PH DV

3. HMM PH DV vs. REAL

4. DNN PH DV vs. LSTM PH DV

5. DNN PH DV vs. REAL

6. LSTM PH DV vs. REAL

7.3. Experimental results 188

Figure 7.14: Visual speech synthesis experiment - Preference test.

For the test, each combination uses four sentences that were randomly selected

from the 250 sentence testing data. That means each viewer watches 24 side-by-

side videos in total. The videos were played also simultaneously with the left-right

order of the presentation randomized and the order that the sequences were played

randomized.

Note that this test is shown to participants after they finished the Turing test,

hence, the same 30 viewers take part in this forced-choice test. The preference scores

of AB tests are shown in Table 7.8, along with the statistical significance using a

binomial test at the 1% significance level, α = 0.01. To test the hypothesis, we first

assume that the videos from any paired-system are comparable, (p = 1
2
). Hence, a

probability of the binomial test is used to find whether or not there is a significant

difference between system A and system B in each paired-system. More details can

be found in Section 7.3.8.

7.3. Experimental results 189

Table 7.8: Subjective preference scores (%) of the six combinations from four differ-

ent systems: REAL, HMM PH, DNN PH DV and LSTM PH DV Systems. Based

on a binomial test (p-value) bold font is used to indicate whether differences are

statistically significant.

System A System B Percentage p-value

REAL HMM PH 83.47/16.53 2.03e-14

REAL DNN PH DV 75.63/24.37 1.33e-8

REAL LSTM PH DV 52.99/47.01 1.1297

HMM PH DNN PH DV 34.71/65.29 9.67e-4

HMM PH LSTM PH DV 20.49/79.51 2.20e-11

DNN PH DV LSTM PH DV 29.75/70.25 8.15e-6

The percentage results of AB tests are shown in Table 7.8 with their correspond-

ing p-values. Each p-value is used to determine if two systems are statistically

different, where numbers with bold font indicate a significant difference between a

pair of systems. Unsurprisingly, it can be seen that the REAL system is the best

approach and significantly more natural than the DNN PH DV and HMM PH but

not significantly more natural than LSTM PH DV Systems. We found that there

is no significant preference between REAL System and LSTM PH DV. This means

that the animated lip movements from “LSTM PH DV System” is comparable to

that of a ground-truth lip animation. Comparing the basic deep learning approach

(DNN PH DV) with the basic Hidden Markov model approach (HMM PH System),

we see that 65% of participants found the DNN-based animations significantly more

natural than HMM-based animations. These results also confirmed the findings

in the realism tests that the LSTM PH DV significantly outperforms the phoneme

HMM-based system and the combination of phoneme and dynamic viseme units on

the DNN-based system. We refer to the supplementary video for animation results.

Several viewers reported that some of the animations (in the LSTM PH DV

system) have realistic articulation in terms of open and closed mouth animation,

nearly the same as REAL system does. That is a reason why they found that it was

difficult to make a decision in some paired-video tests (the LSTM PH DV and REAL

7.3. Experimental results 190

systems). They also pointed that in some of the paired-videos it was easy to spot the

differences between them. That is because one of them (presumably the HMM PH

system) tended to lack audio-visual synchrony and to be under articulated in terms

of mouth opening, as discussed in Section 7.3.7. Another feedback was that some

of the videos were under-smoothed (presumably the DNN PH DV system) but they

are still far from the flexible dynamic lip motion videos, as indicated global variance

in this point in Section 7.3.3.

Chapter 8

Phoneme-to-dynamic viseme

visual speech synthesis

8.1 Introduction

The work in the previous chapter demonstrated that a sequence to sequence method

of visual speech synthesis using an encoder-decoder bidirectional LSTM-RNN is the

best statistical parametric algorithm compared with HMM-based and DNN-based.

Furthermore, we also found that using dynamic viseme information is better than

phoneme and static viseme systems in all three statistical parametric algorithms

including; HMM-based in Chapter 5, DNN-based in Chapter 6 and LSTM-based

in Chapter 7. However, we have assumed that the dynamic viseme information in

these three previous chapters was available because we aim to find the upper-bound

of the system.

In a real setting there would be no ground-truth dynamic viseme transcription

available, and consequently an input phoneme string would need to be mapped

into a corresponding dynamic viseme input sequence. We initially used an existing

phoneme-to-dynamic-viseme mapping method but found results to be unacceptable.

We therefore developed a new phoneme-to-dynamic-viseme mapping method.

The rest of this chapter is structed as follows; firstly we overview and discuss

why the traditional phoneme-to-dynamic viseme conversion method by Taylor et al.

[98] does not produce reasonable results. We then propose a new dynamic viseme

191

8.2. Traditional phonemes to dynamic visemes conversion 192

conversion in Section 8.3, followed by experiments that examine the number of

dynamic viseme classes. Finally, we present the results of a subjective preference

test and discuss the significance of this result.

8.2 Traditional phonemes to dynamic visemes con-

version

A ground-truth dynamic viseme transcription was assumed in all previous experi-

ments since the goal was to find the most suitable units for visual speech synthesis.

It can be found that dynamic visemes units are the reasonable units as they are true

visual unit of speech. However, in a real setting there would be no ground-truth

dynamic viseme transcription available, and consequently an input phoneme string

would need to be mapped to the corresponding dynamic viseme input. The follow-

ing section reviews the existing method and our proposed method for phoneme-to-

dynamic viseme mapping.

From the traditional approach by Taylor et al. [98], a sequence of dynamic

visemes is mapped from a given input sequence of phonemes. To find this map-

ping, a dynamic viseme look-up table is built which contains a unique string of

phonemes and their possible dynamic visemes candidates, for example /w-er/ ∈

{V30, V12, V20, V66}, /w/ ∈ {V23, V66} and /w-er-d/ ∈ {V98, V20, V12}. This

look-up table is used to generate all possible sequences of dynamic visemes from

given phoneme sequences. For example, a given phoneme string /w-er-d/ for the

word “word” can be generated all possible combination of phonemes, as illustrated

in Figure 8.1, where black circled indicate dynamic viseme nodes.

8.2. Traditional phonemes to dynamic visemes conversion 193

Figure 8.1: All possible combination of phonemes paths for a sequence of phonemes

/w-er-d/ to dynamic visemes (black nodes).

To find the best dynamic viseme sequences, all possible combinations of dynamic

viseme candidates that could have been generated from the phoneme string need to

be considered. A cost function, ci, is used to compute the quality of each dynamic

viseme mapping, as follows;

ci = α(−Pr(Vi|PH)) + β(ts(Vi, PH)) + γ(d(Vi)), (8.1)

where Vi denotes the ith candidate viseme. The first term in Equation (8.1)

represents the probability of viseme, Vi, given the phoneme string, PH. The second

term, ts, represents the closest relationship between Vi and PH in terms of durations.

The final term, γ, is used to control the smoothness at the boundaries in AAM space.

α, β, γ are used to control the weights in each term. The total costs of each part

through the trellis are the calculated and that with lowest cost is selected as the

dynanmic viseme sequence. This is shown a red path in Figure 8.2. Regarding

dynamic viseme time alignment, phoneme durations are used to assign a time to

each viseme in the sequence. This consists of two cases; i) when the viseme and

phoneme boundaries are exactly the same place, and ii) when the viseme boundary

is half of its phoneme boundary. Figure 8.2 presents an example of dynamic viseme

segmentation.

8.2. Traditional phonemes to dynamic visemes conversion 194

Figure 8.2: All possible combination of phonemes paths for a sequence of phonemes

/w-er-d/ to visemes (black nodes).

From this mapping technique, there are two major drawbacks. Firstly, it is

difficult to find the right sequence of dynamic visemes, as there is a many-to-many

phoneme-to-dynamic viseme mapping. In particular, the same sequence of phonemes

can map to different sequences of dynamic visemes. Secondly, dynamic viseme

boundaries depend on phoneme boundaries. This is not true and would lead to

audio-visual synchronisation problems as discuss in Section 2.5.3. These two major

drawbacks are then confirmed by the unacceptable objective scores results of the

baseline system using sample-based approach as shown in Table 8.1.

Table 8.1: The objective scores results of the sample-based approach that pre-

dicting dynamic viseme sequences from the traditional phoneme to dynamic viseme

conversion [98].

System Unit Correlation NRMSE GV

Unit-sel[98] DV PRED 0.44(±0.13) 14.64(±2.07) 1053.85(±246.83)

8.3. Proposed phonemes to dynamic visemes conversion 195

8.3 Proposed phonemes to dynamic visemes con-

version

To improve the quality of the dynamic viseme sequence and to avoid problems from

the traditional approach, we propose that the mapping process should be done in the

same manner as the process of creating dynamic visemes. In this section we propose

a novel method that maps a sequence of dynamic visemes from AAM parameters

rather than phonemes, as illustrated in Figure 8.3.

Figure 8.3: The digram of our proposed phonemes to dynamic visemes conversion.

To find a sequence of AAM parameters from a given text and phoneme transcrip-

tion in a real setting, our proposed method in Figure 8.3 is introduced LSTM PH

AAM predictor into the system and used this predictor to predict the AAM pa-

rameters. Note that, we adopted an encoder-decoder bidirectional LSTM based on

phoneme units (PH-LSTM System) because this predictor has been shown to be

very effective at sequence modelling, as confirmed by the results in Table 8.2. It

can be seen that the correlation and NRMSE of the DNN PH and LSTM PH Sys-

tems are no significant difference. In this case, we choose LSTM PH System over

DNN PH System because of the major difference in GV results.

Table 8.2: The objective score results of three different statistical parametric system

including HMM, DNN and LSTM System based on phoneme units.

System Unit Correlation NRMSE GV

HMM PH 0.78(±0.08) 8.17(±1.88) 849.22(±165.91)

DNN PH 0.83(±0.06) 7.43(±1.84) 992.09(±196.22)

LSTM PH 0.82(±0.07) 7.53(±1.90) 1240.97(±245.56)

To find a sequence of dynamic visemes from AAMs, we use the same manner

as the process of creating dynamic visemes, as described in Section 4.4.2.1. Firstly,

8.3. Proposed phonemes to dynamic visemes conversion 196

AAMs are segmented into visual gestures using “Identifying Visual Gesture” (as

illustrated at “G tier” in Figure 8.4). Secondly, each visual gesture, g, is mapped to

supervectors and subsequently the dynamic viseme class using the 1-nearest neigh-

bour between the supervector of the predicted and trained dynamic viseme (as

illustrated at “DV tier” in Figure 8.4). An example of phoneme, visual gesture and

dynamic viseme labels for the word “word” is shown in Figure 8.4. It can be seen

that our approach gives dynamic viseme boundaries that are not necessary aligned

to phoneme boundaries. This leads to our approach overcome the boundary problem

of the traditional approach.

Figure 8.4: An example of phoneme, visual gesture and dynamic viseme transcrip-

tions for the word “word”.

So far, dynamic viseme labels have been available. Using the direct mapping ap-

proach it is possible to predict a sequence of AAMs from DVs. However this was not

considered as we found that a simple one dynamic viseme to one lip motion results

in poor animations. More importantly, we now use the model that we proposed in

the previous chapter.

8.3.1 Full pipeline visual speech synthesis

This section describes our full pipeline diagram of visual speech synthesis in the case

of reference dynamic viseme sequence is not available, as depicted in Figure 8.5. We

proposed a novel method that maps a given text input and phoneme transcription

into dynamic transcription, as described in the previous section. Consequently, these

predicted dynamic viseme transcriptions are used to extract input features in the

DV input feature extraction module and then the main predictor, LSTM PH DV

model, is used to generate a sequence of AAMs as an output using both phoneme

8.3. Proposed phonemes to dynamic visemes conversion 197

information and predicted dynamic viseme information. Finally, the AAMs in each

frame are reconstructed and formed lip motions.

Figure 8.5: The framework of full pipeline synthesis.

The objective score results in Table 8.3 show that the errors from the predicted

dynamic viseme sequences are slightly higher in terms of RMSE and lower in terms

of correlation comparing with the ground-truth dynamic viseme sequences. Surpris-

ingly, with the inspection of lip motion outputs, the synthesiser is still able to do

a reasonable job at reproducing AAM parameters using predicted dynamic viseme

units and groud-truth phoneme units. We refer to the supplementary video for

animation results.

Table 8.3: The objective scores results of LSTM System with and without ground-

truth dynamic visemes labels.

System Unit Correlation NRMSE GV

LSTM PH 0.82(±0.07) 7.53(±1.90) 1240.97(±245.56)

LSTM PH DV PRED 0.80(±0.07) 7.98(±1.94) 1425.82(±255.84)

LSTM PH DV 0.88(±0.05) 6.07(±1.27) 1478.21(±268.81)

To explore the effect of predicting dynamic viseme sequences, Figure 8.6 de-

picted AAM tracks generated using the reference (LSTM PH DV) and predicted

(LSTM PH DV PRED) dynamic viseme sequences along with the original track

for the phrase “collects rare and novel”. The AAM track from the reference dy-

namic viseme sequence to the original shows it to follow more closely than using

the predicted sequence although the underlying structure is clearly captured. Com-

paring the inspection animations in Figure 8.7, using the reference and predicted

dynamic visemes look more similar although it is interesting to observe the slight

over-articulation of the word “rare”. More experiments about preference tests can

be found in Section 8.4.

8.4. Preference tests 198

Frame Number
0 10 20 30 40 50 60 70 80

M
ag

ni
tu

de

-100

-50

0

50

100

150
S0623: 1-AAM parameters

 Groundtruth
 LSTM_PH_DV_PRED
 LSTM_PH_DV

Figure 8.6: AAM trajectories generated using reference (LSTM PH DV) and pre-

dicted dynamic viseme sequences (LSTM PH DV PRED), and for comparison the

reference AAM track (Groundtruth), for the phrase “collects rare and novel”.

LSTM_PH_DV_PRED

LSTM_PH_DV

col lects rare and no vel

Groundtruth

Figure 8.7: Sequence of lip images taken from animations produced using reference

(LSTM PH DV) and predicted dynamic viseme sequences (LSTM PH DV PRED),

and for comparison using the reference AAM track (Groundtruth), for the phrase

“collects rare and novel”.

8.4 Preference tests

The aim of the preference tests is to determine the best approach if no refer-

ence DV sequence is available. Two comparisons are made, the first comparison

8.4. Preference tests 199

a system using predicted DV sequence to a phoneme LSTM system (LSTM PH vs.

LSTM PH DV PRED). The second test compares using the predicted DV sequence

against the reference to see the different (LSTM PH DV vs. LSTM PH DV PRED).

Side-by-side videos were shown to viewers and asked a simple question ”Tell us which

on looks more natural”. They were allowed to watch the sequences as many times

as needed. Then, viewers made their decision based on a binary choice: “Left” or

“Right”.

In this test the animations were generated by AAM sequences from three differ-

ent systems: LSTM PH, LSTM PH DV and LSTM PH DV PRED. Our goal was

to compare the systems when ground-truth DV labels are available (LSTM PH DV)

and not available (LSTM PH DV PRED). Moreover, we also compared the LSTM PH DV

System to an LSTM system using only phoneme-based speech units (LSTM PH)

without the DV speech units. Each combination comprised four sentences that were

randomly selected from the 250 sentences testing data. Also, each pair could evalu-

ated by at least 10 subjects. Note that, this test is evaluated under a binomial test

with α = 0.01 by the same 30 participants that completed the Turing and preference

tests in Section 7.3.8.

Table 8.4: Result of preference test on full pipeline synthesis system.

System A System B Percentage p-value

LSTM PH LSTM PH DV PRED 31.67/68.33 6.43e-05

LSTM PH DV LSTM PH DV PRED 56.30/43.70 0.3079

Table 8.4 shows that the combined phoneme units and predicted dynamic viseme

LSTM (LSTM PH DV PRED) system is significantly preferred to the LSTM system

using only Phonemes units (LSTM PH), as participants chose LSTM PH DV PRED

at about 68% with p-values=6.43e-05. This is somewhat interesting result because

the objective scores especially correlation and NRMSE of LSTM PH are better than

LSTM PH DV PRED System. This result suggests that GV result can be used to

indicate the quality of the synthesiser, and the similar result was reported in the

work from Toda and Tokuda [108]. They found that an increasing dynamic range is

able to enhance quality of synthesised speech. Another interesting result is a pair-

8.4. Preference tests 200

wise comparison between LSTM System with and without ground-truth dynamic

visemes labels. It shows that there is no clear preference of LSTM PH DV System

over LSTM PH DV PRED System with p-values=0.3079. Therefore, it can be con-

cluded that our dynamic viseme conversion approach is able to produce reasonable

animation results. We refer to the supplementary video for animation results.

Even though acceptable results have been achieved, this system still has two

major limitations which are audiovisual intonation and photo-realism. The first

limitation is related to the mismatch between audio and visual intonation, which

means lip animation outputs do not sync with rhythms and melodies (intensity,

pitch accent, expression) of acoustic speech. We found that the use of textual in-

formation only is not able to produce animations related to the right rhythm and

melody of acoustic speech because the same sentence can be uttered in different

patterns. Typically, pitch accent can be put in different positions in the sentence for

example “i LOVE you”, “I love you”, “i love YOU”. Then, the different pitch ac-

cent position from the acoustic speech will be produce the difference lip animations.

Figure 8.8 shows a sequence of lip images taken from animations produced using

this system (LSTM PH DV PRED) compared with the use of reference AAM track

(Groundtruth). It can be seen that the animation from this system still generates

wrong lip sequences or is not flexible in terms of open/close mouth which are origi-

nated from the mismatch between audio and visual intonation as discussed earlier.

To overcome this problem, the inclusion of acoustic information as one of the input

features could solve this problem, as we can include the right intonation for both

acoustic speech and visual speech into the output animations.

8.4. Preference tests 201

Groundtruth

LSTM_PH_DV_PRED

at least wheelsthe dug in

Figure 8.8: Sequence of lip images taken from animations produced using predicted

dynamic viseme sequences (LSTM PH DV PRED), and for comparison using the

reference AAM track (Groundtruth), for the phrase “At least the wheels dug in”.

The frames correspond to the word at least shows that the animation from this

system (LSTM PH DV PRED) still generate wrong lip sequences and not flexible

in terms of open/close mouth.

The second limitation is related to the output quality. Some viewers comment

that the quality of the output animations, especially information inside the mouth

(teeth and tongue), is degraded. This suggests that the dimensionality reduction

of AAMs cannot generate a high quality output. The hybrid approach between

statistical-based and sample-based approach [114] is one of the interesting solutions

for this problem. Additionally, we also found that the degradation inside the mouth

still happens even in the original video. Figure 8.9 shows yellow balls when captured

at different video frame rates from low to high. It shows that the yellow ball of the

low video frame rate between 15-60fps have more motion blur, while the high video

frame rate at 96fps is able to reduce motion blur. This means the common video

frame rate of the audiovisual database (for example 29.97fps for KB-2k [98], 50fps

for LIPS [106]) might not good enough for visual speech synthesis systems. We

suggest that the use of high video frame rate at 100 or 200fps is one of the possible

solutions, as we found that there is no degradation of images when capturing videos

with the high video frame rate.

8.4. Preference tests 202

Figure 8.9: Examples of yellow ball when capturing in different video frame rates

between 15fps and 96fps [1].

Chapter 9

Conclusion and Future work

9.1 Conclusion

This thesis has described three basic statistical parametric visual speech synthesis

approaches including HMM-based, DNN-based, encoder-decoder LSTM-based syn-

thesis to generate lip animations from a textual input. We concluded this work by

considering seven research questions that have arisen.

9.1.1 What is the most appropriate unit of speech?

We have investigated what the most appropriate basic building block units of speech

are. As mentioned in Section 2.5.1, phonemes are the basic units of speech for various

acoustic speech applications (e.g. audio TTS and ASR system). However, there is no

standard basic building block of visual speech compared with that of acoustic speech.

A many-to-one phoneme-to-viseme mapping, namely static visemes, is assumed to

be the basis of visual speech units, but they are not a good unit for many reasons

as we described in Section 2.5.3, primaily that the same phoneme can have different

lip-shapes. Hence, we incorporated visual speech units from [98], namely dynamic

visemes units, which represent a group of similar lip movements instead of a static

lip shapes. The experiments based on HMM synthesis in Section 5.3.1.7, a DNN

synthesis in Section 6.3.1.5 and an LSTM synthesis in Section 7.3.4 confirmed that

the use of phonemes or static visemes is less suitable for visual speech synthesis than

dynamic visemes. Using dynamic visemes as the basic building block units of visual

203

9.1. Conclusion 204

speech is able to bring the benefits of visual information from the groups of similar

visual appearances and shows a big improvement in terms of objective scores.

9.1.2 How can discontinuity be reduced?

The next issue we addressed was the frame-wise problem and we focused on how can

discontinuities be avoided to produce a smooth and realistic visual speech signal.

For HMM-based synthesis, we have used the same framework as audio HMM synthe-

sis which used the relationships between static and dynamic features to generate a

smoother output with the maximum likelihood parameter generation algorithm [111]

(described in Section 3.2.4). For DNN-based and encoder-decoder LSTM-based, our

preliminary work from Section 6.3.1.3 and the findings from [118] reported that the

post-processing MLPG algorithm is able to avoid step-wise trajectories, but this

technique introduces the over smoothing problem. Hence, we proposed an alterna-

tive way to deal with the frame-wise problem for DNN and LSTM architecture. The

use of frame context features have been proposed in Section 6.3.1.4 and we show

that these features are able to solve the step-wise problem and also do not introduce

over smoothing as much as MLPG algorithm does.

9.1.3 What are the best input and output feature represen-

tations?

For this issue, we further analysed how much does the performance improve ac-

cording to the input and output feature representations. So far we know that the

dynamic viseme is the most suitable unit of speech for visual speech synthesis. Re-

lated to this, we further examine other useful linguistic features that we divide into

five levels of hierachy including segment, syllable, word, phrase and utterance. We

found that all features make some contribution to the model. Interestingly, the

findings in Section 6.3.1.5 suggest that the combining two building block of speech

units: phonemes and dynamic visemes units gives a substantial increase in perfor-

mance. It can be concluded that information relating to acoustics can be extracted

from phonemes and the information of visual speech can be extracted from dynamic

9.1. Conclusion 205

visemes. Moreover, our findings also show that the improvement of the model does

not only come from the input representation but also output representation. The

traditional output representation for ASR and audio TTS often used dynamic fea-

tures to learn temporal changes in speech signals [40]. In Section 6.2.2 and 7.3.6, we

found that the sliding window of the raw output for the neural network approach

also improves smoothness with a window length of three.

9.1.4 What is the most appropriate model?

Next, we have evaluated how much does the performance increase according to

three common machine learning techniques: HMM-based, DNN-based and encoder-

decoder LSTM-based synthesis systems. Note that these three systems all use the

same input and output representations. The objective scores have shown that the

encoder-decoder LSTM architecture is the best learning technique (as reported in

Section 7.3.7) and the second best is DNN-based architecture. Similar findings

from [36, 118] and the subjective results in Section 7.3.8 also confirmed that our

encoder-decoder LSTM architecture is significantly close to original as the viewers

cannot identify the difference between the reconstructed lip images from the AAM

ground-truth parameters and that from the predicted AMM parameters (described

in 7.3.8.1). It can be concluded that frame-by-frame synthesis outperforms state-

based synthesis and the advanced encoder-decoder LSTM architecture is better that

the normal feedforward neural network architecture.

9.1.5 What relation in there between objective and subjec-

tive measure?

We are also interested into how to use objective measures to indicate the perceived

quality of the animation from the human subjects. As we know the objective mea-

sures can be computed automatically and repeated, but they only estimate the

quantity from the distance between each point of the ground-truth and synthesised.

While the subjective measures are time consuming and require a human’s opinion,

they do indicate the quality of the lip animations. This work included global vari-

9.1. Conclusion 206

ance (GV) as an additional objective measure along with two common objective

measures: correlation and RMSE. Interestingly, we found that the GV results are

better predictor of realism and naturalness of humans’ perceived quality, as shown

in Section 7.3.8.

9.1.6 How much training data is needed?

Another interesting issue is how much training data is required to train a realistic

visual TTS based on statistical parametric approaches. This issue is a common

question in various applications. In the case of our visual TTS application, one of the

limitations is the size of audiovisual database. As mentioned earlier, most publicly

available audiovisual databases for visual speech synthesis have limited vocabulary

and are too small. In our experiments in Section 7.3.7, we first found the common

results that the more training data gives to better performance. Another interesting

result shows that the modern neural network learning approaches can learn a better

model compared with HMM-based approach when trained with the same amount

of training data. It clearly shows that the satisfactory number of training data is

about 1000-1200 utterances. This finding is similar to the standard training data of

audio TTS (e.g CMUARCTIC).

9.1.7 Can visual TTS be made practical?

The final issue is focused on how much the accuracy decrease according to the ab-

sence of dynamic viseme sequences. The earlier results are assumed that dynamic

viseme transcriptions are available. We also proposed a novel technique to map dy-

namic visemes from phoneme sequences, as described in Section 8.3. Our preference

test reflects that our proposed dynamic viseme conversion method is able to pro-

duce the better animations compared with a baseline phoneme LSTM system, and

found no significant difference between animations generated by the ground-truth

and predicted dynamic visemes sequences.

9.2. Future Work 207

9.2 Future Work

So far, this thesis has shown that it is possible to create smooth visual parameter

outputs and to improve co-articulation for neutral speech. We are interested in three

areas in the future. Firstly, we are interested on creating a new facial animation by

adding new audiovisual database. As mentioned earlier, the output of this thesis is

based on male single speaker but our proposed framework is able to extend to the

new speaker by using the same method that explained in this thesis, as follows;

• Extracting AAM visual parameters as described in Section 4.3.

• Learning dynamic viseme units as described in Section 4.4.

• Representing input and output features for encoder-decoder LSTM-RNN ar-

chitecture as described in Section 7.2.

• Modelling the network for encoder-decoder LSTM-RNN architecture as de-

scribed in Section 7.2.3.2.

• Tuning the hyperparameters of the network including a learning rate, momen-

tum, dropout, minibatch size as described in Section 7.3.2.

• Training LSTM PH and LSTM PH DV system as described in Section 7.3.4.

• Building the final system as described in Section 8.3.1.

Secondly, we would like to focus on expressive speech with various emotion ex-

pressions. There have been various successful scenarios for these, for example, we

have to prepare a new audiovisual speech database that contains these kinds of

emotion expressions and apply model adaptation or model interpolation techniques.

However, we are interested to take the concept from Shaw [91] which takes neutral

speech and a target type of emotion as an input and generates expressive speech as

an output.

Thirdly, we are also interested on advanced deep learning architectures. Another

idea we aim to combine all separate modules including text-to-neutral visual speech

and neutral visual speech to expressive visual speech into a single end-to-end model.

This will benefit from new advanced techniques from deep learning methods.

Appendices

208

Appendix A

Appendix A

The following table is a set of phonetic questions that uses in this work. These

questions are modified from the questions of the acoustic-only TTS system and

selected only the phonetic question from the original set of contextual questions in

HTS [126].

ID Question Descriptions

1 Is the phoneme vowel? /eh,ih,uw,ah,ax,ao,ey,ay,ow,ea,ua,iy,

ae,uh,oh,er,aa,oy,aw,ia/

2 Is the phoneme consonant? /p,k,th,sh,d,d,v,z,m,w,y,jh,hh,t,f,

s,b,g,dh,zh,n,r,l,ch,ny/

3 Is the phoneme plosive? /b,d,g,k,p,t/

4 Is the phoneme affricative? /ch,jh/

5 Is the phoneme nasal? /m,n,ng/

6 Is the phoneme fricative? /f,v,th,dh,s,z,sh,zh,hh/

7 Is the phoneme approximant? /w,r,y/

8 Is the phoneme lateral? /l/

9 Is the phoneme bilabial? /p,b,m/

10 Is the phoneme labiodental? /f,v/

11 Is the phoneme dental? /th,dh/

12 Is the phoneme alveolar? /t,d,n,s,z,l/

13 Is the phoneme postalveolar? /ch,jh,sh,zh,r/

209

Chapter A. Appendix A 210

14 Is the phoneme palatal? /y/

15 Is the phoneme velar? /k,g,ng,w/

16 Is the phoneme glottal? /hh/

17 Is the phoneme unvoiced consonant? /p,f,th,t,s,ch,sh,k,hh/

18 Is the phoneme voiced consonant? /b,m,v,dh,d,n,z,l,jh,zh,r,y,g,ng,w/

19 Is the phoneme voiced plosive? /b,d,g/

20 Is the phoneme unvoiced plosive? /p,t,k/

21 Is the phoneme voiced fricative? /v,dh,z,zh/

22 Is the phoneme unvoiced fricative? /f,th,s,sh,hh/

23 Is the phoneme semi consonant? /y,w/

24 Is the phoneme sibilant consonant? /ch,jh,s,z,sh,zh/

25 Is the phoneme sibilant affricate? /ch,jh/

26 Is the phoneme sibilant fricative? /s,z,sh,zh/

27 Is the phoneme front vowel? /iy,ih,en,ae/

28 Is the phoneme central vowel? /er,ax,ah/

29 Is the phoneme back vowel? /uw,uh,ao,aa,oh/

30 Is the phoneme front consonant? /b,f,m,p,v,w/

31 Is the phoneme central consonant? /d,dh,dx,l,n,r,s,t,th,z,zh/

32 Is the phoneme back consonant? /ch,g,hh,jh,k,ng,sh,y/

33 Is the phoneme front stop? /b,p/

34 Is the phoneme central stop? /d,t/

35 Is the phoneme back stop? /g,k/

36 Is the phoneme front fricative? /f,v/

37 Is the phoneme central fricative? /dh,s,th,z/

38 Is the phoneme back fricative? /ch,jh,sh,zh/

39 Is the phoneme front? /b,f,m,p,v,w,iy,ih,en,ae/

40 Is the phoneme central? /d,dh,dx,l,n,r,s,t,th,z,zh,er,ax,ah/

41 Is the phoneme back? /ch,g,hh,jh,k,ng,sh,y,uw,uh,ao,aa,oh/

42 Is the phoneme long vowel? /iy,er,uw,ao,aa/

43 Is the phoneme short vowel? /ih,eh,ae,ax,ah,uh,oh/

Chapter A. Appendix A 211

44 Is the phoneme vowel close? /iy,ih,uw,uh/

45 Is the phoneme vowel mid? /eh,er,ax,ao/

46 Is the phoneme vowel open? /ae,ah,aa,oh/

47 Is the phoneme vowel front? /iy,ih,eh,ae/

48 Is the phoneme vowel central? /er,ax,ah/

49 Is the phoneme vowel back? /uw,uh,ao,aa,oh/

50 Is the phoneme dipthong vowel? /ey,ay,oy,ow,aw,ia,ua,ea/

51 Is the phoneme dipthong closing? /ey,ay,oy,ow,aw/

52 Is the phoneme dipthong centring? /ia,ua,ea/

53 Is the phoneme IVowel? /ih,iy,ia/

54 Is the phoneme EVowel? /eh,ey,er/

55 Is the phoneme AVowel? /ay,ae,aa,aw,ao/

56 Is the phoneme OVowel? /ao,ow,oy,oh/

57 Is the phoneme UVowel? /ah,ax,ua,uh,uw/

Table A.1: A summary of frame feature extraction.

Bibliography

[1] 96 - 60 - 48 - 30 - 24 - 15 FPS Comparison. https://www.reddit.com/r/

pcmasterrace/comments/3728sz/96_60_48_30_24_15_fps_comparison/.

Accessed: 2018-02-14.

[2] Expectation Maximization, EM. http://sens.tistory.com/304. Accessed:

2018-01-1.

[3] Gabriel Antunes Abrantes and Fernando Pereira. MPEG-4 facial animation

technology: survey, implementation, and results. Circuits and Systems for

Video Technology, IEEE Transactions on, 9(2):290–305, mar 1999. ISSN 1051-

8215. doi: 10.1109/76.752096.

[4] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper,

Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Di-

amos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher Fougner, Tony Han,

Awni Y. Hannun, Billy Jun, Patrick LeGresley, Libby Lin, Sharan Narang, An-

drew Y. Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh,

David Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong Wang,

Bo Xiao, Dani Yogatama, Jun Zhan, and Zhenyao Zhu. Deep speech 2: End-

to-end speech recognition in english and mandarin. CoRR, abs/1512.02595,

2015. URL http://arxiv.org/abs/1512.02595.

[5] Robert Anderson, Bjorn Stenger, Vincent Wan, and Roberto Cipolla. Ex-

pressive visual text-to-speech using active appearance models. In 2013 IEEE

Conference on Computer Vision and Pattern Recognition, pages 3382–3389,

June 2013. doi: 10.1109/CVPR.2013.434.

212

https://www.reddit.com/r/pcmasterrace/comments/3728sz/96_60_48_30_24_15_fps_comparison/
https://www.reddit.com/r/pcmasterrace/comments/3728sz/96_60_48_30_24_15_fps_comparison/
http://sens.tistory.com/304
http://arxiv.org/abs/1512.02595

BIBLIOGRAPHY 213

[6] Yoshua Bengio. Learning deep architectures for ai. Found. Trends Mach.

Learn., 2(1):1–127, January 2009. ISSN 1935-8237. doi: 10.1561/2200000006.

URL http://dx.doi.org/10.1561/2200000006.

[7] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term

dependencies with gradient descent is difficult. Trans. Neur. Netw., 5(2):

157–166, March 1994. ISSN 1045-9227. doi: 10.1109/72.279181. URL

http://dx.doi.org/10.1109/72.279181.

[8] Jonas Beskow. Talking heads communication, articulation and animation.

TMH-QPSR, 37(2):053–056, 1996.

[9] Elif Bozkurt, Cigdem Eroglu Erdem, Engin Erzin, Tanju Erdem, and Mehmet

Ozkan. Comparison of phoneme and viseme based acoustic units for speech

driven realistic lip animation. In 2007 3DTV Conference, pages 1–4, May

2007. doi: 10.1109/3DTV.2007.4379417.

[10] Christoph Bregler, Michele Covell, and Malcolm Slaney. Video rewrite: driving

visual speech with audio. In Proceedings of the 24th annual conference on

Computer graphics and interactive techniques, SIGGRAPH ’97, pages 353–

360, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

ISBN 0-89791-896-7. doi: 10.1145/258734.258880. URL http://dx.doi.org/

10.1145/258734.258880.

[11] W. M. Campbell, D. E. Sturim, and D. A. Reynolds. Support vector ma-

chines using gmm supervectors for speaker verification. IEEE Signal Process-

ing Letters, 13(5):308–311, May 2006. ISSN 1070-9908. doi: 10.1109/LSP.

2006.870086.

[12] Tim Capes, Paul Coles, Alistair Conkie, Ladan Golipour, Abie Hadjitarkhani,

Qiong Hu, Nancy Huddleston, Melvyn Hunt, Jiangchuan Li, Matthias Neer-

acher, Kishore Prahallad, Tuomo Raitio, Ramya Rasipuram, Greg Townsend,

Becci Williamson, David Winarsky, Zhizheng Wu, and Hepeng Zhang. Siri on-

device deep learning-guided unit selection text-to-speech system. In Proc. In-

http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1145/258734.258880
http://dx.doi.org/10.1145/258734.258880

BIBLIOGRAPHY 214

terspeech 2017, pages 4011–4015, 2017. doi: 10.21437/Interspeech.2017-1798.

URL http://dx.doi.org/10.21437/Interspeech.2017-1798.

[13] Kai Chen, Zhi-Jie Yan, and Qiang Huo. Training deep bidi-

rectional LSTM acoustic model for LVCSR by a context-

sensitive-chunk BPTT approach. September 2015. URL

https://www.microsoft.com/en-us/research/publication/

training-deep-bidirectional-lstm-acoustic-model-lvcsr-context-sensitive-chunk-bptt-approach/.

[14] Tsuhan Chen. Audiovisual speech processing. IEEE Signal Processing Maga-

zine, 18(1):9–21, Jan 2001. ISSN 1053-5888. doi: 10.1109/79.911195.

[15] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. CoRR,

abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.1078.

[16] Michael M. Cohen and Dominic W. Massaro. Modeling coarticulation in syn-

thetic visual speech. In Models and Techniques in Computer Animation, pages

139–156. Springer-Verlag, 1993.

[17] Martin Cooke, Jon Barker, Stuart Cunningham, and Xu Shao. An audio-visual

corpus for speech perception and automatic speech recognition. Acoustical

Society of America Journal, 120:2421, 2006. doi: 10.1121/1.2229005.

[18] Geert Coorman, Justin Fackrell, Peter Rutten, and Bert van Coile. Segment

selection in the l & h realspeak laboratory tts system. In In Proceedings of the

Intl. Conf. on Spoken Language Processing, pages 395–398, 2000.

[19] Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. Active ap-

pearance models. In Proc. Fifth European Conf. Computer Vision., volume 2,

pages 484–498, 1998.

[20] Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. Active

appearance models. IEEE Trans. Pattern Anal. Mach. Intell., 23(6):681–685,

http://dx.doi.org/10.21437/Interspeech.2017-1798
https://www.microsoft.com/en-us/research/publication/training-deep-bidirectional-lstm-acoustic-model-lvcsr-context-sensitive-chunk-bptt-approach/
https://www.microsoft.com/en-us/research/publication/training-deep-bidirectional-lstm-acoustic-model-lvcsr-context-sensitive-chunk-bptt-approach/
http://arxiv.org/abs/1406.1078

BIBLIOGRAPHY 215

Jun 2001. ISSN 0162-8828. doi: 10.1109/34.927467. URL http://dx.doi.

org/10.1109/34.927467.

[21] Eric Cosatto. Sample-Based Talking-Head Synthesis. PhD thesis, Signal Pro-

cessing Laboratory, Swiss Federal Institute of Technology, 2002.

[22] Michael A. A. Cox and Trevor F. Cox. Multidimensional Scaling, pages 315–

347. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-

33037-0. doi: 10.1007/978-3-540-33037-0 14. URL https://doi.org/10.

1007/978-3-540-33037-0_14.

[23] Salil Deena, Shaobo Hou, and Aphrodite Galata. Visual speech synthesis

by modelling coarticulation dynamics using a non-parametric switching state-

space model. In ICMI-MLMI, page 29, 2010.

[24] Salil Prashant Deena. Visual speech synthesis by learning joint probabilistic

models of audio and video. PhD thesis, School of Computing Sciences, The

University of Manchester, 2012.

[25] John Dines, Junichi Yamagishi, and Simon King. Measuring the gap between

HMM-based ASR and TTS. Selected Topics in Signal Processing, IEEE Jour-

nal of, 4(6):1046–1058, Dec 2010. ISSN 1932-4553. doi: 10.1109/JSTSP.2010.

2079315.

[26] Jiang Dongmei, Xie Lei, Zhao Rongchun, Werner Verhelst, Ilse Ravyse, and

Hichem Sahli. Acoustic viseme modelling for speech driven animation: a case

study. In IEEE Benelux Workshop on MPC, December 2002.

[27] Yangzhou Du and Xueyin Lin. Realistic mouth synthesis based on shape

appearance dependence mapping. Pattern Recognition Letters, 23(14):1875–

1885, 2002.

[28] Paul Ekman and Wallace V. Friesen. Facial Action Coding System: A Tech-

nique for the Measurement of Facial Movement. Consulting Psychologists

Press, Palo Alto, 1978.

http://dx.doi.org/10.1109/34.927467
http://dx.doi.org/10.1109/34.927467
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1007/978-3-540-33037-0_14

BIBLIOGRAPHY 216

[29] Paul Ekman, Wallace V. Friesen, and Joseph C. Hager. Facial Action Coding

System: The Manual on CD ROM. A Human Face, Salt Lake City, Palo Alto,

2002.

[30] Gwenn Englebienne, Tim Cootes, and Magnus Rattray. A proba-

bilistic model for generating realistic lip movements from speech. In

J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Ad-

vances in Neural Information Processing Systems 20, pages 401–408.

Curran Associates, Inc., 2008. URL http://papers.nips.cc/paper/

3287-a-probabilistic-model-for-generating-realistic-lip-movements-from-speech.

pdf.

[31] Saher Esmeir, Shaul Markovitch, and Claude Sammut. Anytime learning of

decision trees. Journal of Machine Learning Research, 8:2007.

[32] Tony Ezzat and Tomaso Poggio. Miketalk: A talking facial display based on

morphing visemes. In Proceedings of the Computer Animation Conference,

pages 96–102, 1998.

[33] Tony Ezzat, Gadi Geiger, and Tomaso Poggio. Trainable videorealistic speech

animation. In Proceedings of the 29th Annual Conference on Computer Graph-

ics and Interactive Techniques, SIGGRAPH ’02, pages 388–398, New York,

NY, USA, 2002. ACM. ISBN 1-58113-521-1. doi: 10.1145/566570.566594.

URL http://doi.acm.org/10.1145/566570.566594.

[34] Sascha Fagel. MASSY speaks english: adaptation and evaluation of a talk-

ing head. In INTERSPEECH 2008, 9th Annual Conference of the Interna-

tional Speech Communication Association, Brisbane, Australia, September 22-

26, 2008, page 2324, 2008. URL http://www.isca-speech.org/archive/

interspeech_2008/i08_2324.html.

[35] Sascha Fagel and Caroline Clemens. An articulation model for audiovi-

sual speech synthesisdetermination, adjustment, evaluation. Speech Com-

munication, 44(14):141 – 154, 2004. ISSN 0167-6393. doi: http://dx.doi.

org/10.1016/j.specom.2004.10.006. URL http://www.sciencedirect.com/

http://papers.nips.cc/paper/3287-a-probabilistic-model-for-generating-realistic-lip-movements-from-speech.pdf
http://papers.nips.cc/paper/3287-a-probabilistic-model-for-generating-realistic-lip-movements-from-speech.pdf
http://papers.nips.cc/paper/3287-a-probabilistic-model-for-generating-realistic-lip-movements-from-speech.pdf
http://doi.acm.org/10.1145/566570.566594
http://www.isca-speech.org/archive/interspeech_2008/i08_2324.html
http://www.isca-speech.org/archive/interspeech_2008/i08_2324.html
http://www.sciencedirect.com/science/article/pii/S0167639304001128
http://www.sciencedirect.com/science/article/pii/S0167639304001128

BIBLIOGRAPHY 217

science/article/pii/S0167639304001128. Special Issue on Audio Visual

speech processing.

[36] Bo Fan, Lei Xie, Shan Yang, Lijuan Wang, and Frank K. Soong. A

deep bidirectional LSTM approach for video-realistic talking head. Mul-

timedia Tools and Applications, 75(9):5287–5309, 2016. ISSN 1573-

7721. doi: 10.1007/s11042-015-2944-3. URL http://dx.doi.org/10.1007/

s11042-015-2944-3.

[37] Cletus G. Fisher. Confusions among visually perceived consonants. Journal

of Speech and Hearing Research, 11:796–804, 1968.

[38] Susan Fitt and Stephen Isard. Synthesis of regional english using a keyword

lexicon. International Speech Communication Association, 1999.

[39] Shengli Fu, Ricardo Gutierrez-Osuna, Anna Esposito, Praveen K. Kakumanu,

and Oscar N. Garcia. Audio/visual mapping with cross-modal hidden Markov

models. IEEE Transactions on Multimedia, 7(2):243–252, April 2005. ISSN

1520-9210. doi: 10.1109/TMM.2005.843341.

[40] Sadaoki Furui. Speaker-independent isolated word recognition based on em-

phasized spectral dynamics. In ICASSP ’86. IEEE International Conference

on Acoustics, Speech, and Signal Processing, volume 11, pages 1991–1994, Apr

1986. doi: 10.1109/ICASSP.1986.1168654.

[41] Mark Gales and Steve Young. The application of hidden markov models

in speech recognition. Found. Trends Signal Process., 1(3):195–304, January

2007. ISSN 1932-8346. doi: 10.1561/2000000004. URL http://dx.doi.org/

10.1561/2000000004.

[42] Gerard Bailly and Maxime Berar and Frederic Elisei and M. Odisio. Au-

diovisual speech synthesis. International Journal of Speech Technology, 6:

331–346, 2003. ISSN 1381-2416. doi: 10.1023/A:1025700715107. URL

http://dx.doi.org/10.1023/A%3A1025700715107.

http://www.sciencedirect.com/science/article/pii/S0167639304001128
http://www.sciencedirect.com/science/article/pii/S0167639304001128
http://dx.doi.org/10.1007/s11042-015-2944-3
http://dx.doi.org/10.1007/s11042-015-2944-3
http://dx.doi.org/10.1561/2000000004
http://dx.doi.org/10.1561/2000000004
http://dx.doi.org/10.1023/A%3A1025700715107

BIBLIOGRAPHY 218

[43] Felix A. Gers and Jurgen Schmidhuber. LSTM recurrent networks learn simple

context-free and context-sensitive languages. IEEE Transactions on Neural

Networks, 12(6):1333–1340, Nov 2001. ISSN 1045-9227. doi: 10.1109/72.

963769.

[44] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier

neural networks. In Geoffrey J. Gordon and David B. Dunson, editors, Pro-

ceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics (AISTATS-11), volume 15, pages 315–323. Journal of Machine

Learning Research - Workshop and Conference Proceedings, 2011. URL http:

//www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf.

[45] Xavi Gonzalvo, Siamak Tazari, Chun an Chan, Markus Becker, Alexan-

der Gutkin, and Hanna Silen. Recent advances in google real-time HMM-

driven unit selection synthesizer. In Interspeech 2016, pages 2238–2242, 2016.

doi: 10.21437/Interspeech.2016-264. URL http://dx.doi.org/10.21437/

Interspeech.2016-264.

[46] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[47] Oxana Govokhina, Gérard Bailly, Gaspard Breton, and Paul Bagshaw. TDA:

A new trainable trajectory formation system for facial animation. In Inter-

speech, pages 2474–2477, Pittsburgh, United States, September 2006. URL

https://hal.archives-ouvertes.fr/hal-00366489.

[48] Alex Graves. Generating sequences with recurrent neural networks. CoRR,

abs/1308.0850, 2013. URL http://arxiv.org/abs/1308.0850.

[49] F.J. Gravetter and L.B. Wallnau. Statistics for the Behavioral Sciences.

Available Titles Aplia Series. Wadsworth, 2009. ISBN 9780495602200. URL

https://books.google.co.uk/books?id=wWFmkwxSUfUC.

[50] R. Gutierrez-Osuna, P. K. Kakumanu, A. Esposito, O. N. Garcia, A. Bo-

jorquez, J. L. Castillo, and I. Rudomin. Speech-driven facial animation with

http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf
http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf
http://dx.doi.org/10.21437/Interspeech.2016-264
http://dx.doi.org/10.21437/Interspeech.2016-264
https://hal.archives-ouvertes.fr/hal-00366489
http://arxiv.org/abs/1308.0850
https://books.google.co.uk/books?id=wWFmkwxSUfUC

BIBLIOGRAPHY 219

realistic dynamics. Trans. Multi., 7(1):33–42, February 2005. ISSN 1520-9210.

doi: 10.1109/TMM.2004.840611. URL http://dx.doi.org/10.1109/TMM.

2004.840611.

[51] Thomas Hain, Philip C. Woodland, Gunnar Evermann, Mark J. F. Gales,

Xunying Liu, Gareth L. Moore, Dan Povey, and Lan Wang. Automatic tran-

scription of conversational telephone speech. IEEE Transactions on Speech

and Audio Processing, 13(6):1173–1185, Nov 2005. ISSN 1063-6676. doi:

10.1109/TSA.2005.852999.

[52] William I. Hallahan. Dectalk software: Text-to-speech technology and imple-

mentation. Digital Technical Journal, 7, 1995.

[53] Naomi Harte and Eoin Gillen. TCD-TIMIT: An audio-visual corpus of con-

tinuous speech. IEEE Transactions on Multimedia, 17(5):603–615, May 2015.

ISSN 1520-9210. doi: 10.1109/TMM.2015.2407694.

[54] Sarah Hilder, Barry-John Theobald, and Richard Harvey. In pursuit of

visemes. In AVSP, pages 8–2, 2010.

[55] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-

ral Comput., 9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.

1162/neco.1997.9.8.1735. URL http://dx.doi.org/10.1162/neco.1997.9.

8.1735.

[56] Gregor Hofer, Junichi Yamagishi, and Hiroshi Shimodaira. Speech-driven lip

motion generation with a trajectory HMM. In Interspeech-2008, pages 2314–

2317, 2008.

[57] Chao-Kuei Hsieh and Yung-Chang Chen. Partial linear regression for audio-

driven talking head application. In Multimedia and Expo, 2005. ICME 2005.

IEEE International Conference on, pages 281 –284, july 2005. doi: 10.1109/

ICME.2005.1521415.

[58] Yuxiao Hu, Dalong Jiang, Shuicheng Yan, Lei Zhang, and Hongjiang Zhang.

Automatic 3d reconstruction for face recognition. In In Proceedings of the

http://dx.doi.org/10.1109/TMM.2004.840611
http://dx.doi.org/10.1109/TMM.2004.840611
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

BIBLIOGRAPHY 220

IEEE International Conference on Automatic Face and Gesture Recognition,

pages 843–848, 2004.

[59] Michael I. Jordan. Chapter 25 - serial order: A parallel distributed pro-

cessing approach. In John W. Donahoe and Vivian Packard Dorsel, editors,

Neural-Network Models of CognitionBiobehavioral Foundations, volume 121 of

Advances in Psychology, pages 471 – 495. North-Holland, 1997. doi: http://

doi.org/10.1016/S0166-4115(97)80111-2. URL http://www.sciencedirect.

com/science/article/pii/S0166411597801112.

[60] George Karypis. CLUTO - A Clustering Toolkit. In Technical Report. Uni-

versity of Minnesota, Department of Computer Science, Min- neapolis, 2002.

[61] Taehwan Kim, Yisong Yue, Sarah Taylor, and Iain Matthews. A decision tree

framework for spatiotemporal sequence prediction. In Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’15, pages 577–586, New York, NY, USA, 2015. ACM. ISBN

978-1-4503-3664-2. doi: 10.1145/2783258.2783356. URL http://doi.acm.

org/10.1145/2783258.2783356.

[62] Lukas Latacz, Yuk On Kong, Wesley Mattheyses, and Werner Verhelst. An

overview of the vub entry for the 2008 blizzard challenge. In Proc. Blizzard

Challenge 2008, 2008.

[63] Yann LeCun, Leon Bottou, Genevieve B. Orr, and Klaus Robert Müller. Ef-

ficient BackProp, pages 9–50. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 1998. ISBN 978-3-540-49430-0. doi: 10.1007/3-540-49430-8 2. URL

http://dx.doi.org/10.1007/3-540-49430-8_2.

[64] Howard Lei and Nikki Mirghafori. Word-conditioned HMM supervectors for

speaker recognition. In in Proc. of Interspeech, 2007.

[65] Dan Li and Jiang Qian. Text sentiment analysis based on long short-

term memory. In 2016 First IEEE International Conference on Computer

Communication and the Internet (ICCCI), pages 471–475, Oct 2016. doi:

10.1109/CCI.2016.7778967.

http://www.sciencedirect.com/science/article/pii/S0166411597801112
http://www.sciencedirect.com/science/article/pii/S0166411597801112
http://doi.acm.org/10.1145/2783258.2783356
http://doi.acm.org/10.1145/2783258.2783356
http://dx.doi.org/10.1007/3-540-49430-8_2

BIBLIOGRAPHY 221

[66] Anders Lofqvist. Speech as audible gestures. Speech Production and Speech

Modelling, 55:289–322, 1990. doi: 10.1007/978-94-009-2037-8 12. URL http:

//dx.doi.org/10.1007/978-94-009-2037-8_12.

[67] Jos Mario De Martino, Lo Pini Magalhes, and Fbio Violaro. Facial an-

imation based on context-dependent visemes. Computers & Graphics, 30

(6):971 – 980, 2006. ISSN 0097-8493. doi: http://dx.doi.org/10.1016/j.cag.

2006.08.017. URL http://www.sciencedirect.com/science/article/pii/

S0097849306001518.

[68] Takashi Masuko, Takao Kobayashi, Masatsune Tamurat, Jun Masubuchi, and

Keiichi Tokuda. Text-to-visual speech synthesis based on parameter generation

from HMM. In Acoustics, Speech and Signal Processing, 1998. Proceedings of

the 1998 IEEE International Conference on, volume 6, pages 3745–3748 vol.6,

May 1998. doi: 10.1109/ICASSP.1998.679698.

[69] Iain Matthews and Simon Baker. Active appearance models revisited. Inter-

national Journal of Computer Vision, 60(2):135 – 164, November 2004.

[70] Wesley Mattheyses and Werner Verhelst. Audiovisual speech synthesis: An

overview of the state-of-the-art. Speech Commun., 66(C):182–217, February

2015. ISSN 0167-6393. doi: 10.1016/j.specom.2014.11.001. URL http://dx.

doi.org/10.1016/j.specom.2014.11.001.

[71] Wesley Mattheyses, Lukas Latacz, and Werner Verhelst. On the importance

of audiovisual coherence for the perceived quality of synthesized visual speech.

EURASIP J. Audio Speech Music Process., 2009:1:1–1:12, January 2009. ISSN

1687-4714. doi: 10.1155/2009/169819. URL http://dx.doi.org/10.1155/

2009/169819.

[72] Wesley Mattheyses, Lukas Latacz, and Werner Verhelst. Automatic viseme

clustering for audiovisual speech synthesis. In INTERSPEECH, pages 2173–

2176, 2011.

[73] Wesley Mattheyses, Lukas Latacz, and Werner Verhelst. Comprehensive

http://dx.doi.org/10.1007/978-94-009-2037-8_12
http://dx.doi.org/10.1007/978-94-009-2037-8_12
http://www.sciencedirect.com/science/article/pii/S0097849306001518
http://www.sciencedirect.com/science/article/pii/S0097849306001518
http://dx.doi.org/10.1016/j.specom.2014.11.001
http://dx.doi.org/10.1016/j.specom.2014.11.001
http://dx.doi.org/10.1155/2009/169819
http://dx.doi.org/10.1155/2009/169819

BIBLIOGRAPHY 222

many-to-many phoneme-to-viseme mapping and its application for con-

catenative visual speech synthesis. Speech Communication, 55(78):857 –

876, 2013. ISSN 0167-6393. doi: http://dx.doi.org/10.1016/j.specom.

2013.02.005. URL http://www.sciencedirect.com/science/article/pii/

S0167639313000319.

[74] Harry McGurck and John MacDonald. Hearing lips and seeing

voices. Nature, 264(246-248), 1976. URL http://www.nature.

com/nature/journal/v264/n5588/abs/264746a0.html;jsessionid=

18B8F4F4E09E98C54D5410A41B4F3D4A.

[75] Einar Meister, Rainer Metsvahi, and Sascha Fagel. Evaluation of the es-

tonian audiovisual speech synthesis. In Human Language Technologies -

The Baltic Perspective - Proceedings of the Sixth International Conference

Baltic HLT 2014, Kaunas, Lithuania, September 26-27, 2014, pages 11–18,

2014. doi: 10.3233/978-1-61499-442-8-11. URL https://doi.org/10.3233/

978-1-61499-442-8-11.

[76] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted

boltzmann machines. In Johannes Frnkranz and Thorsten Joachims, edi-

tors, Proceedings of the 27th International Conference on Machine Learning

(ICML-10), pages 807–814. Omnipress, 2010. URL http://www.icml2010.

org/papers/432.pdf.

[77] Slim Ouni, Michael M. Cohen, and Dominic W. Massaro. Training baldi to be

multilingual: A case study for an arabic badr. Speech Communication, 45(2):

115 – 137, 2005. ISSN 0167-6393. doi: http://dx.doi.org/10.1016/j.specom.

2004.11.008. URL http://www.sciencedirect.com/science/article/pii/

S0167639304001463.

[78] Slim Ouni, Vincent Colotte, Utpala Musti, Asterios Toutios, Brigitte Wrobel-

Dautcourt, Marie-Odile Berger, and Caroline Lavecchia. Acoustic-visual syn-

thesis technique using bimodal unit-selection. EURASIP Journal on Au-

http://www.sciencedirect.com/science/article/pii/S0167639313000319
http://www.sciencedirect.com/science/article/pii/S0167639313000319
http://www.nature.com/nature/journal/v264/n5588/abs/264746a0.html;jsessionid=18B8F4F4E09E98C54D5410A41B4F3D4A
http://www.nature.com/nature/journal/v264/n5588/abs/264746a0.html;jsessionid=18B8F4F4E09E98C54D5410A41B4F3D4A
http://www.nature.com/nature/journal/v264/n5588/abs/264746a0.html;jsessionid=18B8F4F4E09E98C54D5410A41B4F3D4A
https://doi.org/10.3233/978-1-61499-442-8-11
https://doi.org/10.3233/978-1-61499-442-8-11
http://www.icml2010.org/papers/432.pdf
http://www.icml2010.org/papers/432.pdf
http://www.sciencedirect.com/science/article/pii/S0167639304001463
http://www.sciencedirect.com/science/article/pii/S0167639304001463

BIBLIOGRAPHY 223

dio, Speech, and Music Processing, (2013:16), June 2013. doi: 10.1186/

1687-4722-2013-16. URL https://hal.inria.fr/hal-00835854.

[79] Igor S. Pandzic and Robert Forchheimer, editors. MPEG-4 Facial Animation:

The Standard, Implementation and Applications. John Wiley & Sons, Inc.,

New York, NY, USA, 2003. ISBN 0470854626.

[80] Frederick I. Parke. Computer generated animation of faces. In Proceedings

of the ACM annual conference - Volume 1, ACM ’72, pages 451–457, 1972.

doi: 10.1145/800193.569955. URL http://doi.acm.org/10.1145/800193.

569955.

[81] Douglas A. Reynolds and Richard C. Rose. Robust text-independent speaker

identification using gaussian mixture speaker models. IEEE Transactions on

Speech and Audio Processing, 3(1):72–83, Jan 1995. ISSN 1063-6676. doi:

10.1109/89.365379.

[82] Alex Rudnicky. The CMU pronunciation dictionary, release 0.7 a, 2007. URL

http://www.speech.cs.cmu.edu/cgi-bin/cmudict, 2007.

[83] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Parallel

distributed processing: Explorations in the microstructure of cognition, vol.

1. chapter Learning Internal Representations by Error Propagation, pages

318–362. MIT Press, Cambridge, MA, USA, 1986. ISBN 0-262-68053-X. URL

http://dl.acm.org/citation.cfm?id=104279.104293.

[84] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Neuro-

computing: Foundations of research. chapter Learning Representations by

Back-propagating Errors, pages 696–699. MIT Press, Cambridge, MA, USA,

1988. ISBN 0-262-01097-6. URL http://dl.acm.org/citation.cfm?id=

65669.104451.

[85] Mark Sagar. Facial performance capture and expressive translation for king

kong. In ACM SIGGRAPH 2006 Sketches, SIGGRAPH ’06, New York, NY,

USA, 2006. ACM. ISBN 1-59593-364-6. doi: 10.1145/1179849.1179882. URL

http://doi.acm.org/10.1145/1179849.1179882.

https://hal.inria.fr/hal-00835854
http://doi.acm.org/10.1145/800193.569955
http://doi.acm.org/10.1145/800193.569955
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=65669.104451
http://dl.acm.org/citation.cfm?id=65669.104451
http://doi.acm.org/10.1145/1179849.1179882

BIBLIOGRAPHY 224

[86] Keijiro Saino, Heiga Zen, Yoshihiko Nankaku, Akinobu Lee, and Keiichi

Tokuda. An HMM-based singing voice synthesis system. In Ninth Inter-

national Conference on Spoken Language Processing, 2006.

[87] Shinji Sako, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi, and Tadashi

Kitamura. HMM-based text-to-audio-visual speech synthesis. In International

Conference on Spoken Language Processing (ICSLP 2000), 2000.

[88] Kazuki Sato, Takashi Nose, and Akinori Ito. HMM-based photo-realistic

talking face synthesis using facial expression parameter mapping with deep

neural networks. Journal of Computer and Communications, 5(10):50 – 65,

2017. doi: https://doi.org/10.4236/jcc.2017.510006. URL www.scirp.org/

journal/PaperInformation.aspx?PaperID=78666.

[89] Dietmar Schabus, Michael Pucher, and Gregor Hofer. Joint audiovisual hidden

semi-markov model-based speech synthesis. Selected Topics in Signal Process-

ing, IEEE Journal of, 8(2):336–347, 2014.

[90] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, 45(11):2673–2681, Nov 1997. ISSN

1053-587X. doi: 10.1109/78.650093.

[91] Felix Shaw. Expressive Modulation of Neutral Visual Speech. PhD thesis,

School of Computing Sciences, University of East Anglia, 2015.

[92] Koichi Shinoda and Takao Watanabe. Acoustic modeling based on the mdl

principle for speech recognition. In EUROSPEECH, pages 99–102, 1997.

[93] Koichi Shinoda and Takao Watanabe. Mdl-based context-dependent subword

modeling for speech recognition. Acoustical Science and Technology, 21(2):

79–86, 2000. doi: 10.1250/ast.21.79.

[94] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: A simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014. URL

http://jmlr.org/papers/v15/srivastava14a.html.

www.scirp.org/journal/PaperInformation.aspx?PaperID=78666
www.scirp.org/journal/PaperInformation.aspx?PaperID=78666
http://jmlr.org/papers/v15/srivastava14a.html

BIBLIOGRAPHY 225

[95] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning

with neural networks. In Proceedings of the 27th International Conference

on Neural Information Processing Systems, NIPS’14, pages 3104–3112, Cam-

bridge, MA, USA, 2014. MIT Press. URL http://dl.acm.org/citation.

cfm?id=2969033.2969173.

[96] Masatsune Tamura, Takashi Masuko, Takao Kobayashi, and Keiichi Tokuday.

Visual speech synthesis based on parameter generation from HMM: Speech-

driven and text-and-speech-driven approaches. In ICASSP-98, pages 3745–

3748, 1998.

[97] Paul Taylor, Alan W Black, and Richard Caley. The architecture of the festival

speech synthesis system. In 3rd ESCA Workshop in Speech Synthesis, pages

147–151, 1998.

[98] Sarah Taylor, Moshe Mahler, Barry-John Theobald, and Iain Matthews. Dy-

namic units of visual speech. In Proceedings of the Symposium on Computer

Animation, pages 275–284, 2012.

[99] Sarah Taylor, Akihiro Kato, Iain Matthews, and Ben Milner. Audio-to-visual

speech conversion using deep neural networks. In Interspeech 2016, pages

1482–1486, 2016. doi: 10.21437/Interspeech.2016-483. URL http://dx.doi.

org/10.21437/Interspeech.2016-483.

[100] Sarah Taylor, Taehwan Kim, Yisong Yue, Moshe Mahler, James Krahe, Anas-

tasio Garcia Rodriguez, Jessica Hodgins, and Iain Matthews. A deep learn-

ing approach for generalized speech animation. ACM Trans. Graph., 36(4):

93:1–93:11, July 2017. ISSN 0730-0301. doi: 10.1145/3072959.3073699. URL

http://doi.acm.org/10.1145/3072959.3073699.

[101] Ausdang Thangthai and Barry-John Theobald. HMM-based visual speech

synthesis using dynamic visemes. In Auditory-Visual Speech Processing, AVSP

2015, Vienna, Austria, September 11-13, 2015, pages 88–92, 2015. URL http:

//www.isca-speech.org/archive/avsp15/av15_088.html.

http://dl.acm.org/citation.cfm?id=2969033.2969173
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://dx.doi.org/10.21437/Interspeech.2016-483
http://dx.doi.org/10.21437/Interspeech.2016-483
http://doi.acm.org/10.1145/3072959.3073699
http://www.isca-speech.org/archive/avsp15/av15_088.html
http://www.isca-speech.org/archive/avsp15/av15_088.html

BIBLIOGRAPHY 226

[102] Ausdang Thangthai, Ben Milner, and Sarah Taylor. Visual speech synthesis

using dynamic visemes, contextual features and dnns. In Interspeech 2016,

17th Annual Conference of the International Speech Communication Associa-

tion, San Francisco, CA, USA, September 8-12, 2016, pages 2458–2462, 2016.

doi: 10.21437/Interspeech.2016-1084. URL http://dx.doi.org/10.21437/

Interspeech.2016-1084.

[103] Barry-John Theobald. Visual speech synthesis using shape and appearance

models. PhD thesis, School of Computing Sciences, University of East Anglia,

2003.

[104] Barry-John Theobald and Iain Matthews. Relating objective and subjective

performance measures for aam-based visual speech synthesis. IEEE Transac-

tions on Audio, Speech and Language Processing, 20(8):2378–2387, oct. 2012.

ISSN 1558-7916. doi: 10.1109/TASL.2012.2202651.

[105] Barry-John Theobald, Andrew Bangham, Iain Matthews, and Gavin C Caw-

ley. Near-videorealistic synthetic talking faces: implementation and eval-

uation. Speech Communication, 44(14):127–140, 2004. ISSN 0167-6393.

doi: 10.1016/j.specom.2004.07.002. URL http://www.sciencedirect.com/

science/article/pii/S0167639304000822.

[106] Barry-John Theobald, Sascha Fagel, Gérard Bailly, and Frédéric Elisei.

LIPS2008: visual speech synthesis challenge. In INTERSPEECH, pages 2310–

2313, 2008.

[107] Barry-John Theobald, Iain Matthews, Michael Mangini, Jeffrey R. Spies, Tim-

othy R. Brick, Jeffrey F. Cohn, and Steven M. Boker. Mapping and ma-

nipulating facial expression. Language and Speech, 52(2-3):369–386, 2009.

doi: 10.1177/0023830909103181. URL http://las.sagepub.com/content/

52/2-3/369.abstract.

[108] Tomoki Toda and Keiichi Tokuda. A speech parameter generation algorithm

considering global variance for HMM-based speech synthesis. IEICE - Trans.

Inf. Syst, pages 816–824, 2007.

http://dx.doi.org/10.21437/Interspeech.2016-1084
http://dx.doi.org/10.21437/Interspeech.2016-1084
http://www.sciencedirect.com/science/article/pii/S0167639304000822
http://www.sciencedirect.com/science/article/pii/S0167639304000822
http://las.sagepub.com/content/52/2-3/369.abstract
http://las.sagepub.com/content/52/2-3/369.abstract

BIBLIOGRAPHY 227

[109] Keiichi Tokuda and Heiga Zen. Fundamentals and recent advances in HMM-

based speech synthesis. In INTERSPEECH, 2009.

[110] Keiichi Tokuda, Takao Kobayashi, and Satoshi Imai. Speech parameter gen-

eration from HMM using dynamic features. In 1995 International Conference

on Acoustics, Speech, and Signal Processing, volume 1, pages 660–663 vol.1,

May 1995. doi: 10.1109/ICASSP.1995.479684.

[111] Keiichi Tokuda, Takayoshi Yoshimura, Takashi Masuko, Takao Kobayashi,

and Tadashi Kitamura. Speech parameter generation algorithms for HMM-

based speech synthesis. In 2000 IEEE International Conference on Acoustics,

Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), volume 3,

pages 1315–1318 vol.3, 2000. doi: 10.1109/ICASSP.2000.861820.

[112] Ashish Venna, Nitendra Rajput, and L Venkata Subramaniam. Using viseme

based acoustic models for speech driven lip synthesis. In Multimedia and Expo,

2003. ICME ’03. Proceedings. 2003 International Conference on, volume 3,

pages III–533–6 vol.3, July 2003. doi: 10.1109/ICME.2003.1221366.

[113] Johan Verwey and Edwin H. Blake. The influence of lip animation on the

perception of speech in virtual environments. In Proceedings of the 8th Annual

International Workshop on Presense, University College London, pages 163–

170, 2005.

[114] Lijuan Wang and Frank K. Soong. HMM trajectory-guided sample selection

for photo-realistic talking head. Multimedia Tools and Applications, 74(22):

9849–9869, Nov 2015. ISSN 1573-7721. doi: 10.1007/s11042-014-2118-8. URL

https://doi.org/10.1007/s11042-014-2118-8.

[115] Lijuan Wang, Yi-Jian Wu, Xiaodan Zhuang, and Frank K. Soong. Synthesizing

visual speech trajectory with minimum generation error. In 2011 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 4580–4583, May 2011. doi: 10.1109/ICASSP.2011.5947374.

[116] Lijuan Wang, Wei Han, and Frank Soong. High quality lip-sync animation for

3d photo-realistic talking head. In 2012 IEEE International Conference on

https://doi.org/10.1007/s11042-014-2118-8

BIBLIOGRAPHY 228

Acoustics, Speech and Signal Processing (ICASSP), pages 4529–4532, March

2012. doi: 10.1109/ICASSP.2012.6288925.

[117] Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and Hai Zhao. Part-of-speech

tagging with bidirectional long short-term memory recurrent neural network.

CoRR, abs/1510.06168, 2015. URL http://arxiv.org/abs/1510.06168.

[118] Oliver Watts, Gustav Eje Henter, Thomas Merritt, Zhizheng Wu, and Si-

mon King. From HMMs to DNNs: where do the improvements come

from? In Proc. ICASSP, volume 41, pages 5505–5509, Shanghai, China,

March 2016. URL http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?arnumber=7472730.

[119] Takayoshi Yoshimura. Simultaneous modeling of phonetic and prosodic pa-

rameters, and characteristic conversion for HMM-based text-to-speech systems.

PhD thesis, Department of Electrical and Computer Engineering Nagoya In-

stitute of Technology, 2002.

[120] Takayoshi Yoshimura, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi,

and Tadashi Kitamura. Duration modeling for HMM-based speech synthe-

sis. In Proceedings of the 5th International Conference on Spoken Language

Processing (ICSLP), pages 29–32, 1998.

[121] Takayoshi Yoshimura, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi, and

Tadashi Kitamura. Simultaneous modeling of spectrum, pitch and duration

in HMM-based speech synthesis. In Sixth European Conference on Speech

Communication and Technology, pages 2347–2350, 1999.

[122] Atef Ben Youssef, Hiroshi Shimodaira, and David A. Braude. Speech driven

talking head from estimated articulatory features. In IEEE International Con-

ference on Acoustics, Speech and Signal Processing, ICASSP 2014, Florence,

Italy, May 4-9, 2014, pages 4573–4577, 2014. doi: 10.1109/ICASSP.2014.

6854468. URL https://doi.org/10.1109/ICASSP.2014.6854468.

[123] Jiahong Yuan and Mark Liberman. Speaker identification on the scotus corpus.

Journal of the Acoustical Society of America, 123(5):3878, 2008.

http://arxiv.org/abs/1510.06168
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7472730
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7472730
https://doi.org/10.1109/ICASSP.2014.6854468

BIBLIOGRAPHY 229

[124] Matthew D. Zeiler, Marc’Aurelio Ranzato, Rajat Monga, Mark Z. Mao,

K. Yang, Quoc V. Le, Patrick Nguyen, Andrew W. Senior, Vincent Vanhoucke,

Jeffrey Dean, and Geoffrey E. Hinton. On rectified linear units for speech pro-

cessing. In 2013 IEEE International Conference on Acoustics, Speech and

Signal Processing, pages 3517–3521, May 2013. doi: 10.1109/ICASSP.2013.

6638312.

[125] Heiga Zen and Hasim Sak. Unidirectional long short-term memory recurrent

neural network with recurrent output layer for low-latency speech synthesis.

In Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), pages 4470–4474, 2015.

[126] Heiga Zen, Takashi Nose, Junichi Yamagishi, Shinji Sako, Takashi Masuko,

Alan W. Black, and Keiichi Tokuda. The HMM-based speech synthesis system

version 2.0. In Proc. of ISCA SSW6, pages 294–299, 2007.

[127] Heiga Zen, Keiichi Tokuda, Takashi Masuko, Takao Kobayasih, and Tadashi

Kitamura. A hidden semi-markov model-based speech synthesis system. IE-

ICE - Trans. Inf. Syst., E90-D(5):825–834, May 2007. ISSN 0916-8532.

doi: 10.1093/ietisy/e90-d.5.825. URL http://dx.doi.org/10.1093/ietisy/

e90-d.5.825.

[128] Heiga Zen, Andrew Senior, and Mike Schuster. Statistical parametric speech

synthesis using deep neural networks. In Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing (ICASSP),

pages 7962–7966, 2013.

[129] Xinjian Zhang, Lijuan Wang, Gang Li, Frank Seide, and Frank K. Soong. A

new language independent, photo-realistic talking head driven by voice only.

In INTERSPEECH 2013, 14th Annual Conference of the International Speech

Communication Association, Lyon, France, August 25-29, 2013, pages 2743–

2747, 2013. URL http://www.isca-speech.org/archive/interspeech_

2013/i13_2743.html.

http://dx.doi.org/10.1093/ietisy/e90-d.5.825
http://dx.doi.org/10.1093/ietisy/e90-d.5.825
http://www.isca-speech.org/archive/interspeech_2013/i13_2743.html
http://www.isca-speech.org/archive/interspeech_2013/i13_2743.html

	Introduction
	Goal and Objectives
	Contributions
	Thesis Outline

	Overview of visual speech synthesis
	Introduction
	Overview of text-to-speech (TTS) synthesis systems
	Input to the visual speech synthesiser
	Text input
	Audio speech input

	Output modality of the visual speech synthesiser
	Audiovisual synthesis system - based on a two-phase approach
	Audiovisual synthesis system - based on a single-phase approach

	Speech units for visual speech synthesis
	Phoneme units
	Static viseme units
	Dynamic viseme

	Approaches to visual speech synthesis
	Performance-based approach
	Blendshape approaches
	Model-based
	Sample-based approach
	Statistical-based
	HMM-based
	DNN-based

	Technical background
	Introduction
	Overview of HMM synthesis
	Gaussian mixture model (GMM)
	Hidden Markov model (HMM)
	Hidden semi-Markov model (HSMM)
	Maximum likelihood parameter generation (MLPG)

	Overview of feedforward neural networks
	Training feedforward neural network using backpropagation
	Forward Propagation Pass
	Backward Propagation Pass
	Optimisation: Weight Update

	Overview of recurrent neural networks
	Unidirectional RNN architectures
	Synchronised many-to-many
	Many-to-one
	One-to-many
	Encoder-decoder many-to-many

	Bidirectional RNN architectures
	Long short term memory (LSTM)
	Training LSTM-RNN using backpropagation through time (BPTT)
	Epochwise and truncated backpropagation through time

	Data corpora
	Introduction
	Overview of KB-2k dataset
	Visual processing of KB-2k dataset
	Dynamic viseme units of KB-2k dataset
	Training part
	Identifying Visual Gestures
	Clustering Visual Gestures

	Testing part
	Determining Visual Gestures

	Data preparation of KB-2k dataset
	Feature normalisation
	Syllable segmentation
	Training/validation/testing dataset

	Visual speech synthesis based on hidden Markov models
	Introduction
	HMM-based visual speech synthesis
	Training part
	Input feature extraction: contextual input
	Output feature extraction: contextual output
	HMM training: context dependent HMMs

	Synthesis part

	Experiment results
	Objective tests
	Effect of frame rate
	Effect of dynamic feature
	Effect of static viseme classes
	Effect of dynamic viseme classes
	Effect of output normalisation
	Effect of number of HMM states
	Comparing phoneme, static viseme, and dynamic viseme Units
	Analysis of contextual features

	Visual Speech Synthesis based on Feedforward Networks
	Introduction
	DNN-based Visual Speech Synthesis
	Input Feature Representation
	Frame Level Features
	Segment Level Features
	Syllable, Word, Phrase and Utterance Features

	Output Feature Representation
	Network Structure

	Experiment Results
	Objective Tests
	Effect of contextual input
	Effect of contextual output
	Effect of Frame Level Feature
	Optimisation of Frame Features
	Comparing Phoneme and Dynamic Viseme Units

	Visual speech synthesis based on LSTM-RNN
	Introduction
	Encoder-decoder LSTM-RNN visual speech synthesis
	Input features representation
	Frame level: input features
	Segment level: input features
	Syllable, word, phrase and utterance: input features

	Visual: output features extraction
	Network structure
	Context-truncated BPTT
	Encoder-decoder LSTM-RNNs

	Experimental results
	Experimental measurement
	Objective tests
	Subjective tests

	Experimental training conditions
	Analysis of framing method
	Analysis of speech units
	Effect of the truncated context length (Nl and Nr)
	Effect of the truncated context decoding (Nc)
	Analysis of the RNN architecture on visual speech synthesis
	Subjective tests
	Turing tests
	Preference tests

	Phoneme-to-dynamic viseme visual speech synthesis
	Introduction
	Traditional phonemes to dynamic visemes conversion
	Proposed phonemes to dynamic visemes conversion
	Full pipeline visual speech synthesis

	Preference tests

	Conclusion and Future work
	Conclusion
	What is the most appropriate unit of speech?
	How can discontinuity be reduced?
	What are the best input and output feature representations?
	What is the most appropriate model?
	What relation in there between objective and subjective measure?
	How much training data is needed?
	Can visual TTS be made practical?

	Future Work

	Appendices
	Appendix A

