391,097 research outputs found

    Finite volume implementation of the method of asymptotic partial domain decomposition for the heat equation on a thin structure

    No full text
    International audienceThe non-steady heat equation is considered in thin structures. The asymptotic expansion of the solution constructed earlier is used for evaluation of the partial derivatives of the solution. The method of partial asymptotic domain decomposition is applied to the non-steady heat equation. It reduces the original 2D model to a hybrid dimension one, partially 2D, partially 1D with some special interface conditions between the 2D and 1D parts. The finite volume method is applied for the numerical solution of the hybrid dimension model. The error estimate is proved. The numerical experiment confirms the theoretical error evaluation

    Hybrid artificial bee colony algorithm with branch and bound for two–sided assembly line balancing

    Get PDF
    The two-sided assembly-line balancing (2SALB) is widely used in various production systems especially in high-volume large-size products. However, not many types of research are focused on the study of the 2SALB problem. Recently, the artificial bee colony (ABC) algorithm was used in the solution process where it was considered as a very useful, effective and well-known algorithm. Nevertheless, the ABC is also known to be a slow converging method in achieving an optimal solution. This research is intended to improve the ABC performance in solving the 2SALB problem with the objectives to hybrid ABC algorithm with branch and bound concept and to evaluate the performance of this algorithm in minimizing idle time and number of the workstation . The two-sided assembly line data was tested in modified spreadsheet model which is equipped with random priority rules in order to get multi-solution of ABC approach for balancing two-sided assembly line. The feasible number of workstations was determined with the minimum idle time of every mated station and maintains the minimum one in each cycle. This was done by calculating the partial fitness of the mated station. The branch and bound concept was applied by using mated workstations to overcome the slow convergence of the ABC algorithm and solve the problem optimality. The visual basic application software was used to generate different solutions with the various partial fitness of the proposed approach. The modified ABC algorithm was tested with the 2SALB problems involving P9, P12, P16, P24, P44 and P65 tasks. The results were tested by comparing hybrid ABC with pure ABC, where it was found that hybrid ABC had less number of workstation with minimum partial fitness value. In addition, the comparison was done with other research on ABC with full constraints and the proposed approach shows improvement by reduction of two workstations in sixteen task problem and reduction of one workstation at nine, twenty four and sixty five task problem sizes. As a conclusion, the proposed hybrid of ABC with Branch and Bound concept has increased the effectiveness of 2SALB solutions through the evaluation of many alternative mated stations results before going to assign to next mated stations to obtain minimum workstations with given cycle time solution

    New efficient constructive heuristics for the hybrid flowshop to minimise makespan: A computational evaluation of heuristics

    Get PDF
    This paper addresses the hybrid flow shop scheduling problem to minimise makespan, a well-known scheduling problem for which many constructive heuristics have been proposed in the literature. Nevertheless, the state of the art is not clear due to partial or non homogeneous comparisons. In this paper, we review these heuristics and perform a comprehensive computational evaluation to determine which are the most efficient ones. A total of 20 heuristics are implemented and compared in this study. In addition, we propose four new heuristics for the problem. Firstly, two memory-based constructive heuristics are proposed, where a sequence is constructed by inserting jobs one by one in a partial sequence. The most promising insertions tested are kept in a list. However, in contrast to the Tabu search, these insertions are repeated in future iterations instead of forbidding them. Secondly, we propose two constructive heuristics based on Johnson’s algorithm for the permutation flowshop scheduling problem. The computational results carried out on an extensive testbed show that the new proposals outperform the existing heuristics.Ministerio de Ciencia e Innovación DPI2016-80750-

    Hybrid machine translation guided by a rule-based system

    Get PDF
    This paper presents a machine translation architecture which hybridizes Matxin, a rulebased system, with regular phrase-based Statistical Machine Translation. In short, the hybrid translation process is guided by the rulebased engine and, before transference, a set of partial candidate translations provided by SMT subsystems is used to enrich the treebased representation. The final hybrid translation is created by choosing the most probable combination among the available fragments with a statistical decoder in a monotonic way. We have applied the hybrid model to a pair of distant languages, Spanish and Basque, and according to our evaluation (both automatic and manual) the hybrid approach significantly outperforms the best SMT system on out-of-domain data.Peer ReviewedPostprint (author’s final draft

    A hybrid approach to conjunctive partial evaluation of logic programs

    Full text link
    Conjunctive partial deduction is a well-known technique for the partial evaluation of logic programs. The original formulation follows the so called online approach where all termination decisions are taken on-the-fly. In contrast, offline partial evaluators first analyze the source program and produce an annotated version so that the partial evaluation phase should only follow these annotations to ensure the termination of the process. In this work, we introduce a lightweight approach to conjunctive partial deduction that combines some of the advantages of both online and offline styles of partial evaluation. © 2011 Springer-Verlag.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant ACOMP/2010/042.Vidal Oriola, GF. (2011). A hybrid approach to conjunctive partial evaluation of logic programs. En Logic-Based Program Synthesis and Transformation. Springer Verlag (Germany). 6564:200-214. https://doi.org/10.1007/978-3-642-20551-4_13S2002146564Ben-Amram, A., Codish, M.: A SAT-Based Approach to Size Change Termination with Global Ranking Functions. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 218–232. Springer, Heidelberg (2007)Bruynooghe, M., De Schreye, D., Martens, B.: A General Criterion for Avoiding Infinite Unfolding during Partial Deduction of Logic Programs. In: Saraswat, V., Ueda, K. (eds.) Proc. 1991 Int’l Symp. on Logic Programming, pp. 117–131 (1991)Christensen, N.H., Glück, R.: Offline Partial Evaluation Can Be as Accurate as Online Partial Evaluation. ACM Transactions on Programming Languages and Systems 26(1), 191–220 (2004)Codish, M., Taboch, C.: A Semantic Basis for the Termination Analysis of Logic Programs. Journal of Logic Programming 41(1), 103–123 (1999)De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen, M.H.: Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and Experiments. Journal of Logic Programming 41(2&3), 231–277 (1999)Hruza, J., Stepánek, P.: Speedup of logic programs by binarization and partial deduction. TPLP 4(3), 355–380 (2004)Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Generation. Prentice-Hall, Englewood Cliffs (1993)Leuschel, M.: Homeomorphic Embedding for Online Termination of Symbolic Methods. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 379–403. Springer, Heidelberg (2002)Leuschel, M.: The DPPD (Dozens of Problems for Partial Deduction) Library of Benchmarks (2007), http://www.ecs.soton.ac.uk/~mal/systems/dppd.htmlLeuschel, M., Elphick, D., Varea, M., Craig, S., Fontaine, M.: The Ecce and Logen Partial Evaluators and Their Web Interfaces. In: Proc. of PEPM 2006, pp. 88–94. IBM Press (2006)Leuschel, M., Vidal, G.: Fast Offline Partial Evaluation of Large Logic Programs. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp. 119–134. Springer, Heidelberg (2009)Lloyd, J.W., Shepherdson, J.C.: Partial Evaluation in Logic Programming. Journal of Logic Programming 11, 217–242 (1991)Somogyi, Z.: A System of Precise Modes for Logic Programs. In: Shapiro, E.Y. (ed.) Proc. of Third Int’l Conf. on Logic Programming, pp. 769–787. The MIT Press, Cambridge (1986

    Structure Earthquake Analysis Program using Computer-Aided IT Sensor

    Get PDF
    The purpose of this study is to develop a complex test and analysis technique to improve the reliability of seismic performance evaluation of buildings, and to establish a seismic performance evaluation system using shear damper as an earthquake preparation technology. In this study, validated examples of viscoelasticity provided by OpenSees were selected for verification of hybrid experimental results data and compared with hybrid experimental techniques. By applying the analysis program and the developed Labplugin, the hybrid experimental system built through the connection between the equipment was verified. As a result, the behavior of the cyclic loading test showed the general behavior of the damper, but in the hybrid test, the behavior of the damper with respect to the ground acceleration and the decrease in stiffness caused by fracture were found. From the above comparison experiment, it can be seen that the hybrid technique developed in this study shows excellent seismic behavior compared to the cyclic loading experiment, dynamic experiment, and analytical technique. With the system built in this study, it is judged that it is possible to design a structure damper in the future. In addition hybrid experimental system will help to conduct more economical and reliable research on seismic control by applying partial experimental data to structures with nonlinear behavior in the future

    Impact of inter-cell interference on flow level performance of scheduling schemes for the UMTS EUL

    Get PDF
    The UMTS Enhanced Uplink (EUL) is expected to provide higher capacity, increased data rates, and smaller latency on the communication link from users towards the network. A key mechanism in EUL traffic handling is the packet scheduler, for which a number of basic schemes can be identified (one-by- one, partial parallel, and full parallel). In this paper we analyze the interaction between the EUL scheduling scheme deployed in the network and the inter-cell interference. On the one hand, different scheduling schemes cause different inter-cell interference patterns on neighbouring cells. On the other hand, the different schemes are affected by inter-cell interference in different ways. The scheduling schemes are evaluated and compared under different approaches for reserving part of the allowed noise rise at the base station for inter-cell interference. For our analysis, we have developed a hybrid analytical/simulation approach allowing for fast evaluation of performance measures such as the mean flow transfer time and fairness expressing how the performance depends on the user’s location. This approach takes into account both the packet-level characteristics and the flow-level dynamics due to the random user behaviour

    An Investigation into the Merger of Stochastic Diffusion Search and Particle Swarm Optimisation

    Get PDF
    This study reports early research aimed at applying the powerful resource allocation mechanism deployed in Stochastic Diffusion Search (SDS) to the Particle Swarm Optimiser (PSO) metaheuristic, effectively merging the two swarm intelligence algorithms. The results reported herein suggest that the hybrid algorithm, exploiting information sharing between particles, has the potential to improve the optimisation capability of conventional PSOs

    Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using AWE with Hybrid FEM/MoM Technique

    Get PDF
    Application of Asymptotic Waveform Evaluation (AWE) is presented in conjunction with a hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique to calculate the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FEM/MoM technique is used to form an integro-partial-differential equation to compute the electric field distribution of the cavity-backed aperture antenna. The electric field, thus obtained, is expanded in a Taylor series around the frequency of interest. The coefficients of 'Taylor series (called 'moments') are obtained using the frequency derivatives of the integro-partial-differential Equation formed by the hybrid FEM/MoM technique. Using the moments, the electric field in the cavity is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency band. Numerical results for an open coaxial line, probe fed cavity, and cavity-backed microstrip patch antennas are presented. Good agreement between AWE and the exact solution over the frequency range is observed
    corecore