4,855 research outputs found

    Parallel Brownian dynamics simulations with the message-passing and PGAS programming models

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Computer Physics Communications. The final authenticated version is available online at: https://doi.org/10.1016/j.cpc.2012.12.015[Abstract] The simulation of particle dynamics is among the most important mechanisms to study the behavior of molecules in a medium under specific conditions of temperature and density. Several models can be used to compute efficiently the forces that act on each particle, and also the interactions between them. This work presents the design and implementation of a parallel simulation code for the Brownian motion of particles in a fluid. Two different parallelization approaches have been followed: (1) using traditional distributed memory message-passing programming with MPI, and (2) using the Partitioned Global Address Space (PGAS) programming model, oriented towards hybrid shared/distributed memory systems, with the Unified Parallel C (UPC) language. Different techniques for domain decomposition and work distribution are analyzed in terms of efficiency and programmability, in order to select the most suitable strategy. Performance results on a supercomputer using up to 2048 cores are also presented for both MPI and UPC codes.Ministerio de Ciencia e Innovación ; TIN2010-16735Xunta de Galicia; ref. 2010/

    Performance Evaluation of MPI, UPC and OpenMP on Multicore Architectures

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer Science. The final authenticated version is available online at: https://doi.org/10.1007/978-3-642-03770-2_24[Abstract] The current trend to multicore architectures underscores the need of parallelism. While new languages and alternatives for supporting more efficiently these systems are proposed, MPI faces this new challenge. Therefore, up-to-date performance evaluations of current options for programming multicore systems are needed. This paper evaluates MPI performance against Unified Parallel C (UPC) and OpenMP on multicore architectures. From the analysis of the results, it can be concluded that MPI is generally the best choice on multicore systems with both shared and hybrid shared/distributed memory, as it takes the highest advantage of data locality, the key factor for performance in these systems. Regarding UPC, although it exploits efficiently the data layout in memory, it suffers from remote shared memory accesses, whereas OpenMP usually lacks efficient data locality support and is restricted to shared memory systems, which limits its scalability.Gobierno de España; TIN2007-67537-C03-0

    C Language Extensions for Hybrid CPU/GPU Programming with StarPU

    Get PDF
    Modern platforms used for high-performance computing (HPC) include machines with both general-purpose CPUs, and "accelerators", often in the form of graphical processing units (GPUs). StarPU is a C library to exploit such platforms. It provides users with ways to define "tasks" to be executed on CPUs or GPUs, along with the dependencies among them, and by automatically scheduling them over all the available processing units. In doing so, it also relieves programmers from the need to know the underlying architecture details: it adapts to the available CPUs and GPUs, and automatically transfers data between main memory and GPUs as needed. While StarPU's approach is successful at addressing run-time scheduling issues, being a C library makes for a poor and error-prone programming interface. This paper presents an effort started in 2011 to promote some of the concepts exported by the library as C language constructs, by means of an extension of the GCC compiler suite. Our main contribution is the design and implementation of language extensions that map to StarPU's task programming paradigm. We argue that the proposed extensions make it easier to get started with StarPU,eliminate errors that can occur when using the C library, and help diagnose possible mistakes. We conclude on future work

    Performance Evaluation of Unified Parallel C Collective Communications

    Get PDF
    This is a post-peer-review, pre-copyedit version. The final authenticated version is available online at: http://dx.doi.org/10.1109/HPCC.2009.88[Abstract] Unified Parallel C (UPC) is an extension of ANSI C designed for parallel programming. UPC collective primitives, which are part of the UPC standard, increase programming productivity while reducing the communication overhead. This paper presents an up-to-date performance evaluation of two publicly available UPC collective implementations on three scenarios: shared, distributed, and hybrid shared/distributed memory architectures. The characterization of the throughput of collective primitives is useful for increasing performance through the runtime selection of the appropriate primitive implementation, which depends on the message size and the memory architecture, as well as to detect inefficient implementations. In fact, based on the analysis of the UPC collectives performance, we proposed some optimizations for the current UPC collective libraries. We have also compared the performance of the UPC collective primitives and their MPI counterparts, showing that there is room for improvement. Finally, this paper concludes with an analysis of the influence of the performance of the UPC collectives on a representative communication-intensive application, showing that their optimization is highly important for UPC scalability.Ministerio de Ciencia e Innovación; TIN2007-67537-C03-02Xunta de Galicia; 3/2006 DOGA 13/12/200

    Using shared-data localization to reduce the cost of inspector-execution in unified-parallel-C programs

    Get PDF
    Programs written in the Unified Parallel C (UPC) language can access any location of the entire local and remote address space via read/write operations. However, UPC programs that contain fine-grained shared accesses can exhibit performance degradation. One solution is to use the inspector-executor technique to coalesce fine-grained shared accesses to larger remote access operations. A straightforward implementation of the inspector executor transformation results in excessive instrumentation that hinders performance.; This paper addresses this issue and introduces various techniques that aim at reducing the generated instrumentation code: a shared-data localization transformation based on Constant-Stride Linear Memory Descriptors (CSLMADs) [S. Aarseth, Gravitational N-Body Simulations: Tools and Algorithms, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2003.], the inlining of data locality checks and the usage of an index vector to aggregate the data. Finally, the paper introduces a lightweight loop code motion transformation to privatize shared scalars that were propagated through the loop body.; A performance evaluation, using up to 2048 cores of a POWER 775, explores the impact of each optimization and characterizes the overheads of UPC programs. It also shows that the presented optimizations increase performance of UPC programs up to 1.8 x their UPC hand-optimized counterpart for applications with regular accesses and up to 6.3 x for applications with irregular accesses.Peer ReviewedPostprint (author's final draft
    corecore