80 research outputs found

    p-probabilistic k-anonymous microaggregation for the anonymization of surveys with uncertain participation

    Get PDF
    We develop a probabilistic variant of k-anonymous microaggregation which we term p-probabilistic resorting to a statistical model of respondent participation in order to aggregate quasi-identifiers in such a manner that k-anonymity is concordantly enforced with a parametric probabilistic guarantee. Succinctly owing the possibility that some respondents may not finally participate, sufficiently larger cells are created striving to satisfy k-anonymity with probability at least p. The microaggregation function is designed before the respondents submit their confidential data. More precisely, a specification of the function is sent to them which they may verify and apply to their quasi-identifying demographic variables prior to submitting the microaggregated data along with the confidential attributes to an authorized repository. We propose a number of metrics to assess the performance of our probabilistic approach in terms of anonymity and distortion which we proceed to investigate theoretically in depth and empirically with synthetic and standardized data. We stress that in addition to constituting a functional extension of traditional microaggregation, thereby broadening its applicability to the anonymization of statistical databases in a wide variety of contexts, the relaxation of trust assumptions is arguably expected to have a considerable impact on user acceptance and ultimately on data utility through mere availability.Peer ReviewedPostprint (author's final draft

    Enhanced Privacy Preserving Accesscontrol in Incremental Datausing Microaggregation

    Get PDF
    In microdata releases, main task is to protect the privacy of data subjects. Microaggregation technique use to disclose the limitation at protecting the privacy of microdata. This technique is an alternative to generalization and suppression, which use to generate k-anonymous data sets. In this dataset, identity of each subject is hidden within a group of k subjects. Microaggregation perturbs the data and additional masking allows refining data utility in many ways, like increasing data granularity, to avoid discretization of numerical data, to reduce the impact of outliers. If the variability of the private data values in a group of k subjects is too small, k-anonymity does not provide protection against attribute disclosure. In this work Role based access control is assumed. The access control policies define selection predicates to roles. Then use the concept of imprecision bound for each permission to define a threshold on the amount of imprecision that can be tolerated. So the proposed approach reduces the imprecision for each selection predicate. Anonymization is carried out only for the static relational table in the existing papers. Privacy preserving access control mechanism is applied to the incremental data

    Contribution to privacy-enhancing tecnologies for machine learning applications

    Get PDF
    For some time now, big data applications have been enabling revolutionary innovation in every aspect of our daily life by taking advantage of lots of data generated from the interactions of users with technology. Supported by machine learning and unprecedented computation capabilities, different entities are capable of efficiently exploiting such data to obtain significant utility. However, since personal information is involved, these practices raise serious privacy concerns. Although multiple privacy protection mechanisms have been proposed, there are some challenges that need to be addressed for these mechanisms to be adopted in practice, i.e., to be “usable” beyond the privacy guarantee offered. To start, the real impact of privacy protection mechanisms on data utility is not clear, thus an empirical evaluation of such impact is crucial. Moreover, since privacy is commonly obtained through the perturbation of large data sets, usable privacy technologies may require not only preservation of data utility but also efficient algorithms in terms of computation speed. Satisfying both requirements is key to encourage the adoption of privacy initiatives. Although considerable effort has been devoted to design less “destructive” privacy mechanisms, the utility metrics employed may not be appropriate, thus the wellness of such mechanisms would be incorrectly measured. On the other hand, despite the advent of big data, more efficient approaches are not being considered. Not complying with the requirements of current applications may hinder the adoption of privacy technologies. In the first part of this thesis, we address the problem of measuring the effect of k-anonymous microaggregation on the empirical utility of microdata. We quantify utility accordingly as the accuracy of classification models learned from microaggregated data, evaluated over original test data. Our experiments show that the impact of the de facto microaggregation standard on the performance of machine-learning algorithms is often minor for a variety of data sets. Furthermore, experimental evidence suggests that the traditional measure of distortion in the community of microdata anonymization may be inappropriate for evaluating the utility of microaggregated data. Secondly, we address the problem of preserving the empirical utility of data. By transforming the original data records to a different data space, our approach, based on linear discriminant analysis, enables k-anonymous microaggregation to be adapted to the application domain of data. To do this, first, data is rotated (projected) towards the direction of maximum discrimination and, second, scaled in this direction, penalizing distortion across the classification threshold. As a result, data utility is preserved in terms of the accuracy of machine learned models for a number of standardized data sets. Afterwards, we propose a mechanism to reduce the running time for the k-anonymous microaggregation algorithm. This is obtained by simplifying the internal operations of the original algorithm. Through extensive experimentation over multiple data sets, we show that the new algorithm gets significantly faster. Interestingly, this remarkable speedup factor is achieved with no additional loss of data utility.Les aplicacions de big data impulsen actualment una accelerada innovació aprofitant la gran quantitat d’informació generada a partir de les interaccions dels usuaris amb la tecnologia. Així, qualsevol entitat és capaç d'explotar eficientment les dades per obtenir utilitat, emprant aprenentatge automàtic i capacitats de còmput sense precedents. No obstant això, sorgeixen en aquest escenari serioses preocupacions pel que fa a la privacitat dels usuaris ja que hi ha informació personal involucrada. Tot i que s'han proposat diversos mecanismes de protecció, hi ha alguns reptes per a la seva adopció en la pràctica, és a dir perquè es puguin utilitzar. Per començar, l’impacte real d'aquests mecanismes en la utilitat de les dades no esta clar, raó per la qual la seva avaluació empírica és important. A més, considerant que actualment es manegen grans volums de dades, una privacitat usable requereix, no només preservació de la utilitat de les dades, sinó també algoritmes eficients en temes de temps de còmput. És clau satisfer tots dos requeriments per incentivar l’adopció de mesures de privacitat. Malgrat que hi ha diversos esforços per dissenyar mecanismes de privacitat menys "destructius", les mètriques d'utilitat emprades no serien apropiades, de manera que aquests mecanismes de protecció podrien estar sent incorrectament avaluats. D'altra banda, tot i l’adveniment del big data, la investigació existent no s’enfoca molt en millorar la seva eficiència. Lamentablement, si els requisits de les aplicacions actuals no es satisfan, s’obstaculitzarà l'adopció de tecnologies de privacitat. A la primera part d'aquesta tesi abordem el problema de mesurar l'impacte de la microagregació k-Gnónima en la utilitat empírica de microdades. Per això, quantifiquem la utilitat com la precisió de models de classificació obtinguts a partir de les dades microagregades. i avaluats sobre dades de prova originals. Els experiments mostren que l'impacte de l’algoritme de rmicroagregació estàndard en el rendiment d’algoritmes d'aprenentatge automàtic és usualment menor per a una varietat de conjunts de dades avaluats. A més, l’evidència experimental suggereix que la mètrica tradicional de distorsió de les dades seria inapropiada per avaluar la utilitat empírica de dades microagregades. Així també estudiem el problema de preservar la utilitat empírica de les dades a l'ésser anonimitzades. Transformant els registres originaIs de dades en un espai de dades diferent, el nostre enfocament, basat en anàlisi de discriminant lineal, permet que el procés de microagregació k-anònima s'adapti al domini d’aplicació de les dades. Per això, primer, les dades són rotades o projectades en la direcció de màxima discriminació i, segon, escalades en aquesta direcció, penalitzant la distorsió a través del llindar de classificació. Com a resultat, la utilitat de les dades es preserva en termes de la precisió dels models d'aprenentatge automàtic en diversos conjunts de dades. Posteriorment, proposem un mecanisme per reduir el temps d'execució per a la microagregació k-anònima. Això s'aconsegueix simplificant les operacions internes de l'algoritme escollit Mitjançant una extensa experimentació sobre diversos conjunts de dades, vam mostrar que el nou algoritme és bastant més ràpid. Aquesta acceleració s'aconsegueix sense que hi ha pèrdua en la utilitat de les dades. Finalment, en un enfocament més aplicat, es proposa una eina de protecció de privacitat d'individus i organitzacions mitjançant l'anonimització de dades sensibles inclosos en logs de seguretat. Es dissenyen diferents mecanismes d'anonimat per implementar-los en base a la definició d'una política de privacitat, en el context d'un projecte europeu que té per objectiu construir un sistema de seguretat unificat.Postprint (published version

    Contribution to privacy-enhancing tecnologies for machine learning applications

    Get PDF
    For some time now, big data applications have been enabling revolutionary innovation in every aspect of our daily life by taking advantage of lots of data generated from the interactions of users with technology. Supported by machine learning and unprecedented computation capabilities, different entities are capable of efficiently exploiting such data to obtain significant utility. However, since personal information is involved, these practices raise serious privacy concerns. Although multiple privacy protection mechanisms have been proposed, there are some challenges that need to be addressed for these mechanisms to be adopted in practice, i.e., to be “usable” beyond the privacy guarantee offered. To start, the real impact of privacy protection mechanisms on data utility is not clear, thus an empirical evaluation of such impact is crucial. Moreover, since privacy is commonly obtained through the perturbation of large data sets, usable privacy technologies may require not only preservation of data utility but also efficient algorithms in terms of computation speed. Satisfying both requirements is key to encourage the adoption of privacy initiatives. Although considerable effort has been devoted to design less “destructive” privacy mechanisms, the utility metrics employed may not be appropriate, thus the wellness of such mechanisms would be incorrectly measured. On the other hand, despite the advent of big data, more efficient approaches are not being considered. Not complying with the requirements of current applications may hinder the adoption of privacy technologies. In the first part of this thesis, we address the problem of measuring the effect of k-anonymous microaggregation on the empirical utility of microdata. We quantify utility accordingly as the accuracy of classification models learned from microaggregated data, evaluated over original test data. Our experiments show that the impact of the de facto microaggregation standard on the performance of machine-learning algorithms is often minor for a variety of data sets. Furthermore, experimental evidence suggests that the traditional measure of distortion in the community of microdata anonymization may be inappropriate for evaluating the utility of microaggregated data. Secondly, we address the problem of preserving the empirical utility of data. By transforming the original data records to a different data space, our approach, based on linear discriminant analysis, enables k-anonymous microaggregation to be adapted to the application domain of data. To do this, first, data is rotated (projected) towards the direction of maximum discrimination and, second, scaled in this direction, penalizing distortion across the classification threshold. As a result, data utility is preserved in terms of the accuracy of machine learned models for a number of standardized data sets. Afterwards, we propose a mechanism to reduce the running time for the k-anonymous microaggregation algorithm. This is obtained by simplifying the internal operations of the original algorithm. Through extensive experimentation over multiple data sets, we show that the new algorithm gets significantly faster. Interestingly, this remarkable speedup factor is achieved with no additional loss of data utility.Les aplicacions de big data impulsen actualment una accelerada innovació aprofitant la gran quantitat d’informació generada a partir de les interaccions dels usuaris amb la tecnologia. Així, qualsevol entitat és capaç d'explotar eficientment les dades per obtenir utilitat, emprant aprenentatge automàtic i capacitats de còmput sense precedents. No obstant això, sorgeixen en aquest escenari serioses preocupacions pel que fa a la privacitat dels usuaris ja que hi ha informació personal involucrada. Tot i que s'han proposat diversos mecanismes de protecció, hi ha alguns reptes per a la seva adopció en la pràctica, és a dir perquè es puguin utilitzar. Per començar, l’impacte real d'aquests mecanismes en la utilitat de les dades no esta clar, raó per la qual la seva avaluació empírica és important. A més, considerant que actualment es manegen grans volums de dades, una privacitat usable requereix, no només preservació de la utilitat de les dades, sinó també algoritmes eficients en temes de temps de còmput. És clau satisfer tots dos requeriments per incentivar l’adopció de mesures de privacitat. Malgrat que hi ha diversos esforços per dissenyar mecanismes de privacitat menys "destructius", les mètriques d'utilitat emprades no serien apropiades, de manera que aquests mecanismes de protecció podrien estar sent incorrectament avaluats. D'altra banda, tot i l’adveniment del big data, la investigació existent no s’enfoca molt en millorar la seva eficiència. Lamentablement, si els requisits de les aplicacions actuals no es satisfan, s’obstaculitzarà l'adopció de tecnologies de privacitat. A la primera part d'aquesta tesi abordem el problema de mesurar l'impacte de la microagregació k-Gnónima en la utilitat empírica de microdades. Per això, quantifiquem la utilitat com la precisió de models de classificació obtinguts a partir de les dades microagregades. i avaluats sobre dades de prova originals. Els experiments mostren que l'impacte de l’algoritme de rmicroagregació estàndard en el rendiment d’algoritmes d'aprenentatge automàtic és usualment menor per a una varietat de conjunts de dades avaluats. A més, l’evidència experimental suggereix que la mètrica tradicional de distorsió de les dades seria inapropiada per avaluar la utilitat empírica de dades microagregades. Així també estudiem el problema de preservar la utilitat empírica de les dades a l'ésser anonimitzades. Transformant els registres originaIs de dades en un espai de dades diferent, el nostre enfocament, basat en anàlisi de discriminant lineal, permet que el procés de microagregació k-anònima s'adapti al domini d’aplicació de les dades. Per això, primer, les dades són rotades o projectades en la direcció de màxima discriminació i, segon, escalades en aquesta direcció, penalitzant la distorsió a través del llindar de classificació. Com a resultat, la utilitat de les dades es preserva en termes de la precisió dels models d'aprenentatge automàtic en diversos conjunts de dades. Posteriorment, proposem un mecanisme per reduir el temps d'execució per a la microagregació k-anònima. Això s'aconsegueix simplificant les operacions internes de l'algoritme escollit Mitjançant una extensa experimentació sobre diversos conjunts de dades, vam mostrar que el nou algoritme és bastant més ràpid. Aquesta acceleració s'aconsegueix sense que hi ha pèrdua en la utilitat de les dades. Finalment, en un enfocament més aplicat, es proposa una eina de protecció de privacitat d'individus i organitzacions mitjançant l'anonimització de dades sensibles inclosos en logs de seguretat. Es dissenyen diferents mecanismes d'anonimat per implementar-los en base a la definició d'una política de privacitat, en el context d'un projecte europeu que té per objectiu construir un sistema de seguretat unificat

    Does k-anonymous microaggregation affect machine-learned macrotrends?

    Get PDF
    n the era of big data, the availability of massive amounts of information makes privacy protection more necessary than ever. Among a variety of anonymization mechanisms, microaggregation is a common approach to satisfy the popular requirement of k-anonymity in statistical databases. In essence, k-anonymous microaggregation aggregates quasi-identifiers to hide the identity of each data subject within a group of other k - 1 subjects. As any perturbative mechanism, however, anonymization comes at the cost of some information loss that may hinder the ulterior purpose of the released data, which very often is building machine-learning models for macrotrends analysis. To assess the impact of microaggregation on the utility of the anonymized data, it is necessary to evaluate the resulting accuracy of said models. In this paper, we address the problem of measuring the effect of k-anonymous microaggregation on the empirical utility of microdata. We quantify utility accordingly as the accuracy of classification models learned from microaggregated data, and evaluated over original test data. Our experiments indicate, with some consistency, that the impact of the de facto microaggregation standard (maximum distance to average vector) on the performance of machine-learning algorithms is often minor to negligible for a wide range of k for a variety of classification algorithms and data sets. Furthermore, experimental evidences suggest that the traditional measure of distortion in the community of microdata anonymization may be inappropriate for evaluating the utility of microaggregated data.Postprint (published version

    Hybrid microaggregation for privacy preserving data mining

    Get PDF
    k-Anonymity by microaggregation is one of the most commonly used anonymization techniques. This success is owe to the achievement of a worth of interest trade-off between information loss and identity disclosure risk. However, this method may have some drawbacks. On the disclosure limitation side, there is a lack of protection against attribute disclosure. On the data utility side, dealing with a real datasets is a challenging task to achieve. Indeed, the latter are characterized by their large number of attributes and the presence of noisy data, such that outliers or, even, data with missing values. Generating an anonymous individual data useful for data mining tasks, while decreasing the influence of noisy data is a compelling task to achieve. In this paper, we introduce a new microaggregation method, called HM-pfsom, based on fuzzy possibilistic clustering. Our proposed method operates through an hybrid manner. This means that the anonymization process is applied per block of similar data. Thus, we can help to decrease the information loss during the anonymization process. The HM-pfsom approach proposes to study the distribution of confidential attributes within each sub-dataset. Then, according to the latter distribution, the privacy parameter k is determined, in such a way to preserve the diversity of confidential attributes within the anonymized microdata. This allows to decrease the disclosure risk of confidential information

    Mathematically optimized, recursive prepartitioning strategies for k-anonymous microaggregation of large-scale datasets

    Get PDF
    © Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The technical contents of this work fall within the statistical disclosure control (SDC) field, which concerns the postprocessing of the demographic portion of the statistical results of surveys containing sensitive personal information, in order to effectively safeguard the anonymity of the participating respondents. A widely known technique to solve the problem of protecting the privacy of the respondents involved beyond the mere suppression of their identifiers is the k-anonymous microaggregation. Unfortunately, most microaggregation algorithms that produce competitively low levels of distortions exhibit a superlinear running time, typically scaling with the square of the number of records in the dataset. This work proposes and analyzes an optimized prepartitioning strategy to reduce significantly the running time for the k-anonymous microaggregation algorithm operating on large datasets, with mild loss in data utility with respect to that of MDAV, the underlying method. The optimization strategy is based on prepartitioning a dataset recursively until the desired k-anonymity parameter is achieved. Traditional microaggregation algorithms have quadratic computational complexity in the form T(n2). By using the proposed method and fixing the number of recurrent prepartitions we obtain subquadratic complexity in the form T(n3/2), T(n4/3), ..., depending on the number of prepartitions. Alternatively, fixing the ratio between the size of the microcell and the macrocell on each prepartition, quasilinear complexity in the form T(nlog¿n) is achieved. Our method is readily applicable to large-scale datasets with numerical demographic attributes.Peer ReviewedPostprint (author's final draft
    corecore