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July 2020



c© Copyright by Ana Fernanda Rodŕıguez Hoyos 2020
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Abstract

For some time now, big data applications have been enabling revolutionary innova-

tion in every aspect of our daily life by taking advantage of tons of data generated

from the interactions of users with technology. Supported by machine learning and

unprecedented computation capabilities, different entities are capable of efficiently

exploiting such data to obtain significant utility. However, since personal information

is involved, these practices raise serious privacy concerns.

Although multiple privacy protection mechanisms have been proposed, there are

some challenges that need to be addressed for these mechanisms to be adopted in

practice, i.e., to be “usable” beyond the privacy guarantee offered. To start, the real

impact of privacy protection mechanisms on data utility is not clear, thus an empirical

evaluation of such impact is crucial.

Moreover, since privacy is commonly obtained through the perturbation of large

data sets, usable privacy technologies may require not only preservation of data utility

but also efficient algorithms in terms of computation speed. Satisfying both require-

ments is key to encourage the adoption of privacy initiatives.

Although considerable effort has been devoted to design less “destructive” privacy

mechanisms, the utility metrics employed may not be appropriate, thus the wellness

of such mechanisms would be incorrectly measured. On the other hand, despite the

advent of big data, more efficient approaches are not being considered. Not complying

with the requirements of current applications may hinder the adoption of privacy

technologies.

In the first part of this thesis, we address the problem of measuring the effect of

k-anonymous microaggregation on the empirical utility of microdata. We quantify
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utility accordingly as the accuracy of classification models learned from microaggre-

gated data, evaluated over original test data. Our experiments show that the impact

of the de facto microaggregation standard on the performance of machine-learning al-

gorithms is often minor for a variety of data sets. Furthermore, experimental evidence

suggests that the traditional measure of distortion in the community of microdata

anonymization may be inappropriate for evaluating the utility of microaggregated

data.

Secondly, we address the problem of preserving the empirical utility of data. By

transforming the original data records to a different data space, our approach, based

on linear discriminant analysis, enables k-anonymous microaggregation to be adapted

to the application domain of data. To do this, first, data is rotated (projected)

towards the direction of maximum discrimination and, second, scaled in this direction,

penalizing distortion across the classification threshold. As a result, data utility

is preserved in terms of the accuracy of machine learned models for a number of

standardized data sets.

Afterwards, we propose a mechanism to reduce the running time for the k-anony-

mous microaggregation algorithm. This is obtained by simplifying the internal op-

erations of the original algorithm. Through extensive experimentation over multiple

data sets, we show that the new algorithm gets significantly faster. Interestingly, this

remarkable speedup factor is achieved with no additional loss of data utility.

Finally, in a more applied effort, we propose a data privacy tool to protect privacy

of individuals and organizations by anonymizing sensitive data included in security

logs. We design different anonymization mechanisms to then implement them accord-

ing to the definition of a privacy policy. We adapt said approach to the context of

an EU project whose aim is to build a unified security framework. Since this frame-

work collects and processes security-related data (logs, reports, events) from multiple

devices of critical infrastructures, our work is devoted to protect privacy there by

integrating our anonymization approach.

vii



Acknowledgments

A mis padres por su amor y apoyo siempre. A mi esposo e hijo por su comprensión,

paciencia y dedicación.
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Chapter 1

Introduction

In present times, sophisticated and powerful information systems are being imple-

mented to achieve an unprecedented level of intelligent behavior and personalization.

In a wide variety of fields, more utility can be mined from data to unveil qualitatively

superior insight into challenges and opportunities that may otherwise remain undis-

covered [3, 4]. This is now possible thanks to the combination of automatic learning

algorithms and the increasing availability of data. Namely, vast quantities of detailed

information, often referred to as big data, are made available to more sophisticated

and powerful information systems.

Part of such sophistication involves machine-learning algorithms that are being

developed to automatically discover useful “anomalies”, e.g., in medicine, but they

still require vast amounts of data to achieve actionable accuracy. Combining such

technologies with big data may lead to truly remarkable scientific feats such as a better

cancer detection ([5, 6]). In fact, human proficiency is being combined with machine-

based mechanisms to provide augmented intelligence from large-scale databases.

An unquestionable product of this revolution is personalization. By adapting

services to the specific needs of users, personalization has brought numerous benefits

for people and big profits for companies. One of the reasons of its popularity has

to do with the effectiveness of personalized services. In fact, personalization may

be so accurate that it is currently applied to offer precision medicine or product

1
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recommendation. Note that this is possible since there is a lot of personal information

within the large amounts of data processed.

Consequently, the revolutionary advances accomplished in the big data era poses

equally serious privacy risks for users. Although identifiers are typically suppressed

from shared or published data, some demographic attributes, when combined, can still

be used to re-identify individuals ([7–9]). Unfortunately, this re-identification might

enable privacy attackers to link the identity of subjects with their corresponding

sensitive attributes. Said disclosure might lead to harmful attitudes against subjects,

e.g., discrimination [10].

Anonymization is commonly used to reduce this disclosure risk by perturbing de-

mographic attributes to de-identify records. The privacy models enforced through

user data perturbation, e.g., k-anonymity [7, 11] or ε-differential privacy ([12]), are

usually conditioned by a privacy parameter that defines an upper bound on the re-

identification risk. However, in practice, other parameters such as data utility and

mechanism usability convolute the task of protecting privacy. Evidently, data pertur-

bation comes at the cost of some loss in data utility. Additionally, finding a balance

between privacy and utility, when big data is involved, might turn private data analy-

sis unfeasible or unusable for some applications where, e.g., mechanisms must execute

in a reasonable amount of time despite the size of data.

These penalties discourage the adoption of privacy protection so it is important

to tackle them. First, an empirical metric of utility would help to determine the

real impact of anonymization on the utility of data. Since said impact is relative

to the application domain of data, its magnitude probably should be measured in

similar terms. Second, preserving data utility while protecting privacy is another

pending task. This is, in fact, the most valued parameter by an industry whose

revenues are based on the exploitation of data. However, computational cost may be

a metric as important, given the demanding requirements of current web applications.

Unfortunately, providing privacy generates more distortion, which implies less data

utility, while preserving utility usually entails more computing time. Addressing these

issues is crucial for an accurate performance analysis of protection mechanisms and
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it is fundamental for designing better approaches or choosing the best according to

the context.

In this line, many privacy enhancing technologies have been proposed in the liter-

ature but there is not a consensus with respect, e.g., to the way to measure empirical

utility. Moreover, these approaches include preserving data utility, but at a signifi-

cant cost in computational cost. And, although some of them aim at reducing the

execution time of privacy protection algorithms, the price in terms of distortion is

high.

In order to have privacy implemented in practice, it is necessary to face this

compromise.

1.1 Objectives

In this dissertation we tackle three main objectives. Firstly, we address the issue

of evaluating the real impact of privacy protection on the empirical utility of data;

first by performing a systematic study of a standard algorithm; and, secondly, ex-

tending this analysis to other, related, mechanisms. We use the accuracy of models

learned from perturbed data as utility metric of privacy protection algorithms. On

the other hand, we aim at tackling the problem of preserving utility when applying

data-perturbative mechanisms. We address this problem by using a machine learning

strategy to adapt the privacy protection mechanism to the application domain of data.

Finally, we address the issue of computational cost of protection algorithms. For this,

we resort to strategies of simplification to speed up their execution, particularly on

large data sets.

The objectives of this thesis may be more precisely described as follows:

• Impact on empirical data utility. We systematically evaluate the impact of

k-anonymous microaggregation on the empirical utility of data. To capture the

practical degradation of data utility, we use a metric derived from a popular

application domain of data: machine learning. To start, we evaluate the de

facto microaggregation algorithm and then other approaches. Different scenar-

ios are tested, including multiple machine learning algorithms and data sets, to
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determine how data is affected and whether popular metrics are able to predict

such impact.

• Preservation of data utility. We design a mechanism to preserve data utility

empirically when a data-perturbative algorithm is applied. This mechanism

is based on a machine learning technique to enable privacy protection to be

adapted to this application domain of data. We try that this effort does not

imply an increase in the execution time.

• Runtime reduction. We propose and evaluate strategies to significantly re-

duce the running time for k-anonymous microaggregation. This involves tuning

the operations of the privacy protection algorithm to reduce its complexity. Also

in this case, we concentrate on preventing additional distortion as a consequence

of these approaches.

• As part of our collaboration on a European project, we describe the conception

of a privacy protection tool oriented to anonymize cibersecurity data in critical

infrastructures. We address the specific challenges of providing privacy in a

context where unstructured data is involved.

1.2 Summary of contributions

Next, we give an overview of the major contributions of this dissertation.

• We investigate the impact on the performance of machine-learning tasks caused

by data perturbation in the k-anonymous microaggregation process. We apply

a rigorous methodology for evaluating the specific impact of microaggregated

data on machine-learning tasks. Our methodology uses two standard measures

of performance in machine learning and allow for the statistical dependence

among quasi-identifiers. We conduct an extensive, thorough evaluation of a

wide range of machine-learning algorithms amply used in classification tasks.
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• Based on the methodology aforementioned, we evaluate the performance of

other k-anonymous microaggregation techniques in terms of the loss in clas-

sification accuracy of the machine-learned models built from modified data.

Extensive experimentation on four data sets allows us to compare the utility

guarantees provided by the most popular microaggregation algorithms.

• We propose and analyze an anonymization method that draws upon a machine

learning technique, with the aim of preserving the empirical utility of data. By

transforming the original data records to a different data space, this technique

enables k-anonymous microaggregation to adapt its operation to the application

domain of data. To do this, the representation of data is changed. Interestingly,

data utility is preserved without a price in running time.

• We develop five strategies to simplify the internal operations of the maximum

distance to average vector algorithm, the de facto microaggregation standard.

For the sake of its usability in large-scale databases, they, e.g., reduce the num-

ber of operations necessary to compute distances. Also, the complexity of sort-

ing operations gets reduced. Through extensive experimentation over multiple

data sets, we show that the new algorithm gets significantly faster. We get

resulting algorithm four times faster than the original microaggregation mech-

anism. This remarkable speedup factor is achieved, literally, with no additional

cost in terms of data utility, i.e., it does not incur greater information loss.

• Finally, we build a privacy preserving tool for obfuscating sensitive data from se-

curity logs to protect the privacy of the involved entities and individuals. In the

context of the CIPSEC European project [13], our proposal includes a method-

ology to identify and perturb unstructured data generated by a cibersecurity

system.

1.3 Related publications

Most of the research results presented in this dissertation have been published in

journals. In this section we provide a list of such publications, together with their
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bibliographic information. Further, we include other complementary articles that are

not directly related with the research topic of this thesis, but in which the author has

participated while performing her doctoral studies.

Journal publications:

1. A. Rodŕıguez-Hoyos, D. Rebollo-Monedero, J. Estrada-Jiménez, J. Forné, and

L. Urquiza-Aguiar, “Preserving Empirical Data Utility in k-Anonymous Mi-

croaggregation via Linear Discriminant Analysis,” accepted to be published in

Elsevier Engineering Applications of Artificial Intelligence, May 2020. ISSN:

0952-1976. Impact factor 2019: 4.201 [14].

2. A. Rodŕıguez-Hoyos, J. Estrada-Jiménez, D. Rebollo-Monedero, J. Parra- Ar-

nau, Ahmad Mohamad Mezher, and J. Forné, “The fast MDAV (F-MDAV)

algorithm: An algorithm for k-anonymous microaggregation in big data,” El-

sevier Engineering Applications of Artificial Intelligence, vol. 90, no. 103531,

April 2020. ISSN: Impact factor 2019: 4.201 [15].
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and J. Forné, “Does k-anonymous microaggregation affect machine learned

macrotrends?,” IEEE Access, vol. 6, pp. 28 258–28 277, May 2018. ISSN:

2169-3536. Impact factor 2018: 4.098 [16].

4. E. Pallarès, D. Rebollo-Monedero, A. Rodŕıguez-Hoyos, J. Estrada-Jiménez, A.

Mohamad Mezher, and J. Forné, “Mathematically optimized, recursive prepar-

titioning strategies for k-anonymous microaggregation of large-scale datasets,”

Elsevier Expert Systems with Applications, vol. 144, pp. 1–17, April 2020.

ISSN: 0957-4174. Impact factor 2019: 5.452 [17].

5. J. Estrada-Jiménez, J. Parra-Arnau, A. Rodŕıguez-Hoyos, and J. Forné, “Online

advertising: Analysis of privacy threats and protection approaches,” Elsevier

Computer Communications, vol. 100, pp. 32–51, March 2017. ISSN: 0140-3664.

Impact factor 2017: 2.613 [18].
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6. J. Estrada-Jiménez, J. Parra-Arnau, A. Rodŕıguez-Hoyos, and J. Forné, “On

the regulation of personal data distribution in online advertising platforms,”

Engineering Applications of Artificial Intelligence, vol. 82, pp. 13–29, June

2019. ISSN: 0140-3664. Impact factor 2019: 4.201 [19].

7. J. Estrada-Jiménez, J. Parra-Arnau, A. Rodŕıguez-Hoyos, and J. Forné, “Mea-

suring Online Tracking and Advertising in Iberoamerica,” submitted to IEEE

Access. ISSN: 2169-3536. Impact factor 2019: 3.745.

Conference publications:

1. A. Rodŕıguez-Hoyos, J. Estrada-Jiménez, D. Rebollo-Monedero, J. Forné, R.

Trapero, A. Álvarez, and R. Rodŕıguez, “Anonymizing cybersecurity data in

critical infrastructures: The CIPSEC approach,” in Proceedings of the Interna-

tional Conference on Information Systems for Crisis Response and Management

(ISCRAM), Valencia, Spain, May 2019 [20].

2. A. Rodŕıguez-Hoyos, J. Estrada-Jiménez, L. Urquiza-Aguiar, J. Parra-Arnau,

and J. Forné, “Digital hyper-transparency: leading e-government against pri-

vacy,” in Proceedings of the 2018 International Conference on eDemocracy &

eGovernment (ICEDEG), Ambato, Ecuador, June 2018. [21]

3. J. Estrada-Jiménez, J. Parra-Arnau, A. Rodŕıguez-Hoyos, and J. Forné, “Mea-

suring Online Tracking and Privacy Risks on Ecuadorian Websites,” IEEE

Fourth Ecuador Technical Chapters Meeting (ETCM), Guayaquil, Ecuador,

November 2019 [22].

1.4 Outline of this thesis

The structure of this dissertation is in line with the research objectives defined in Sec.

1.1.
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Chapter 2 describes some of the privacy risks derived from the era of big data

as well as some privacy protection mechanisms proposed in the literature, but par-

ticularly k-anonymous microaggregation. Relevant concepts regarding the impact of

privacy protection on data utility are also reviewed in this chapter.

Chapter 3 presents a systematic evaluation of the impact of MDAV, the de facto

standard k-anonymous microaggregation, on the empirical utility of data. This

methodology is also used in the following two chapters.

Chapter 4 follows a similar evaluation approach of k-anonymous microaggregation,

but more algorithms are considered with the aim of detecting particular strategies

that might preserve empirical data utility.

Afterwards, Chapter 5 proposes a mechanism to preserve empirical data utility

when applying k-anonymous microaggregation. In this chapter we describe how we

apply a machine learning technique to adapt the microaggregation process to the

application domain of data.

Chapter 6 presents an approach to accelerate the execution of k-anonymous mi-

croaggregation for its application on large-scale data sets.

Lastly, Chapter 7 focuses on the design and implementation of a privacy protection

tool for a system managing the security logs of critical infrastructures.



Chapter 2

Background and related work

2.1 Privacy issues in the era of big data

The exponential progress of computing is evident, not only in terms of capacity,

including processing or storage, but also in terms of cost. Every five years computers

become roughly 10 times more powerful (per constant dollar).

Such trend concurs these days with an equally exponential growth of data gener-

ation. Through an ubiquitous telecommunications infrastructure, full of sensors and

activity monitors, millions of Internet users enable a massive collection of data, in-

cluding theirs. But this is not only triggered by users browsing the Web; interactions

of users with any single entity (hospitals, banks, social networks, Internet providers,

etc.) are susceptible to feed big data.

The availability of big data and the capacity to process it have had a revolutionary

impact on the world. Equivalently to a human’s deeper observation, exploiting more

data would not only enable us to “see” more but new, better, and different data

[6]. In fact, as argued in [3], a massive wealth of data may significantly improve

the effectiveness of a machine-learning algorithm to the point of turning a hopeless

computer model into an expert system.

As expected, a lot of critical applications of big data have proved its positive

impact, specially with the emergence of machine learning. One of such applications

9
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has to do with health, where machine learning applied to large data sets may en-

able, e.g., the detection of subtle effects of some medicines, or even the personalized

treatment of a given disease. Namely, based on big data, precision medicine could be

implemented to identify which approaches will be effective for which patients based

on genetic, environmental, and lifestyle factors.

Although other more commercial applications of big data are supporting billionaire

businesses, including online advertising, currently, information is also raw material for

other efforts such as scientific research or demographic studies. Due to the intrinsic

value of data, currently, any information collected is expected to be released to some

point and to some extent with the aim of being exploited.

The personalized nature of most big data applications that users consume implies

that tons of personal information are required to get effectiveness. That is, the more

data items are processed about users, the more accurate personalization services will

be (i.e., the more utility could be extracted from information). Said data items might

involve several kind of attributes that characterize users in a given context.

In addition, in the current era of big data, information flows involve several entities

from different domains interested in extracting as much utility as possible. In fact,

the means to process data have become so accessible that even small startups could

actively participate in this revolution.

Given the multiple benefits of processing data, its application has spread to all

areas and hundreds of services have been implemented to take advantage of it. Con-

sequently, an intense exchange of (personal) information among entities has arisen,

which has given rise to a very complex scenario where utility has always been the

priority.

This complexity and the indiscriminate exploitation of personal data have lead

to serious privacy concerns. Moreover, such a crowded environment has made data

more prone to be shared, even openly, among third-parties. Thus, potential malicious

“observers” could take advantage of sensitive information encoded within released

data.

Unfortunately, the high speed of transactions when data is processed along with

the real-time requirements of current web applications have left very little room for
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facing privacy issues. In particular, the tight dependence of these applications on

data discourages the implementation of privacy protection technologies that may

significantly reduce its utility and, thus, the resulting revenues.

The issue, in this context, is that intended recipients of information are not fully

trusted, thus conventional mechanisms such as confidentiality through cryptography

are not suitable. Data is required to be usable (accessible, at some extent) while some

protection for user privacy is provided, i.e., two opposing objectives.

A first approach to protect the privacy of individuals involves suppressing their

identifiers, e.g., names, social security numbers, while releasing the rest of attributes.

This way, the link between the subject and potential sensitive information, e.g., re-

ligion, income or political preference, is apparently broken. However, this strategy

may not be enough to protect privacy. It was proven in [23] that three supposedly

innocuous attributes (date of birth, gender and 5-digit ZIP code) were enough to

unequivocally identify an 87% of the population in the United States in 1990.

Due to the discriminative potential of a few combined demographic attributes,

more sophisticated approaches have been proposed to obscure the identity of the

subjects represented in a released data set. Since less needs to be learned about users

to be anonymized, said approaches usually require distorting the data. Sadly, such

distortion of data implies reducing its utility.

Measuring the impact of privacy protection mechanisms on data utility is vital to

determine their suitability in practice. If a mechanism is too destructive, it will not

be applied on the industry, no matter how well it behaves in theoretical terms. Thus,

empirical metrics to asses the expected degradation of utility are also necessary.

In practice, it is evident that the utility of data is increasingly being obtained

through the implementation of machine learning algorithms. By extracting intrinsic

macrotrends from available data, these algorithms are being used massively to build

models that predict outcomes from new data. Being these models the paradigm of

data utility extraction, their performance parameters might be interesting indicators

when measuring resulting data utility after applying distorting mechanisms.

Finally, in addition to data utility, computational complexity of privacy protection

mechanisms is key to have usable privacy. Especially with the advent of big data and
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the real-time requirements of web applications, data processing algorithms have to be

faster than ever to satisfy such requirements. Thus, optimizing their implementation

could be a great incentive for the adoption of privacy enhancing initiatives.

2.1.1 Data release and attacker models

When analyzing data privacy,it is important to define how data about individuals

is represented. Standardizing such representation along with establishing privacy

and utility metrics enables the construction of a common framework where different

protection approaches are suitable to be evaluated and compared.

In general, privacy protection is applied on databases carrying information about

individual respondents, e.g., from a survey or a census. The resulting databases

(also known as microdata sets) contain a set of attributes that may be classified into

identifiers, quasi-identifiers and confidential attributes.

Firstly, identifiers, such as full names or medical record numbers, can single out in-

dividuals from a data set, so are commonly removed in order to preserve the anonym-

ity of respondents. Secondly, quasi-identifiers may include demographic attributes

such as age, gender, address, or physical features, which combined and linked with

other external information can be used to reidentify respondents [8, 9, 23]. Finally, a

data set may contain confidential attributes with sensitive information on the respon-

dents, such as salary, health condition, and religion. These sensitive attributes might

be easily linked to the subjects to whom the disclosed information corresponds if

quasi-identifiers are not adequately obfuscated; said disclosure might lead to discrim-

ination, retaliation, and blackmail [10]. In Fig. 2.1, the table on the left illustrates

an example of this representation and the different types of attributes here described.

With the aim of protecting privacy, then, only quasi-identifiers and confidential

attributes should be released. Confidential attributes could be released as is since the

link between them and the subject is supposed to be broken by the suppression of

identifiers. However, quasi-identifiers, given its reidentification potential, have to be

carefully obfuscated while preserving some of its utility.
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Name Age Marital
Status

ZIP 
Code

Annual
Salary

Type-2
Diabetes

Alice Adams 32 1 94024 45 K Yes

Bob Brown 34 0 94305 35 K Yes

Chloe Carter 33 0 94024 15 K No

Dave Diaz 43 0 90210 55 K Yes

Eve Ellis 47 1 90210 70 K Yes

Frank Fisher 45 1 90213 60 K Yes

Identifiers Quasi-Identifiers Confidential Attributes

Age Marital 
Status

ZIP 
Code

Annual
Salary

Type-2
Diabetes

33 0.33 94*** 45 K Yes

33 0.33 94*** 35 K Yes

33 0.33 94*** 15 K No

45 0.67 9021* 55 K Yes

45 0.67 9021* 70 K Yes

45 0.67 9021* 60 K Yes

Anonymized
Quasi-Identifiers Confidential Attributes

k-
A

no
ny

m
iz

ed
 R

ec
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ds

Figure 2.1: Example of k-anonymous microaggregation of published data with k=3. Quasi-identifiers
in the left table are anonymized on the right.

2.2 Privacy protection through k-anonymous mi-

croaggregation

2.2.1 Statistical disclosure control

Beyond the mere suppression of subjects’ identifiers, statistical disclosure control

(SDC) aims to allow useful inferences about subpopulations from a microdata set

while at the same time protecting the privacy of the subjects who contributed their

data.

Microdata are database tables whose records carry data concerning individual

subjects. The typical scenario in microdata SDC is a data curator holding the original

data set and perturbing the so-called quasi-identifier attributes (i.e., attributes that,

in combination, may be linked with external information to reidentify individuals in

the data set). The goal is to keep disclosure risk as low as possible, while ensuring

that only useful statistics or trends are learned by the recipients of data. One of the

most common strategies to keep this risk under control is the “privacy first” approach.

Here, the data curator enforces a privacy model, which usually depends on a privacy

parameter, to ensure an upper bound on the re-identification risk.

Some of the best-known privacy models comprise k-anonymity [11, 23] and ε-

differential privacy [12].
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Privacy models rely on a variety of anonymization mechanisms, the common de-

nominator binding all them is data perturbation. Essentially, all such mechanisms

modify the original data set to guarantee the chosen privacy model, inevitably at the

cost of some loss in data utility [24]. Evidently, a balance between privacy and utility

should be found so that protected data are useful in real practice, that is, they ap-

proximate well the original data. However, in a big data domain, privacy protection

also requires mechanisms to execute in a reasonable amount of time, despite the size

of the data.

Examples of privacy protection approaches include microaggregation, suppression,

generalization and noise addition. Among them, k-anonymous microaggregation is a

high-utility approach.

2.2.2 k-Anonymity

k-Anonymity guarantees the privacy of an individual by making her quasi-identifying

attributes indistinguishable from those of other k − 1 individuals in a microdata set.

More specifically, k-anonymity is a privacy model that guarantees that each tuple of

quasi-identifying values is identically shared by at least k records in a data set.

Thus, rather than making the original table available, a perturbed version of

quasi-identifiers is published where aggregated records of quasi-identifying values are

replaced by a common representative tuple. If every tuple shares quasi-identifying

values with at least k records, the data set is considered k-anonymous [23].

Figure 2.1 depicts how a data set is transformed to satisfy k-anonymity. This way,

a perturbed, more private, version of a data set is obtained to be published instead of

the original one. In the figure, the original data set combines attributes common in

census and medical surveys. It has three quasi-identifiers: age, marital status and ZIP

code; and two confidential attributes: annual salary and type-2 diabetes condition.

The figure at hand shows how, in order to preserve the privacy of respondents, k-

anonymity is enforced by applying perturbation to quasi-identifiers. The technique

applied here is called microaggregation. The result is a microaggregated data set that

may prevent reidentification attacks.
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Figure 2.2: Block diagram of k-anonymous microaggregation as a two-step process [1].
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Figure 2.3: Illustration of the process of k-anonymous microaggregation as a minimum-distortion
quantizer design problem [1].

2.2.3 k-Anonymous microaggregation

Microaggregation is a technique aimed to protect the privacy of those individuals

whose personal records are included in a released microdata set. With microaggrega-

tion, distortion is applied to quasi-identifying attributes to satisfy the k-anonymity

privacy model [11, 23]. The original formulation of k-anonymity as a privacy criterion

was modified into the microaggregation-based approach in [25–28].

In Fig. 2.2, a block diagram describes microaggregation as a two-step process

including microcell assignment and centroid assignment. Accordingly, each record (its
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quasi-identifying tuple) is first grouped in a cluster with other k − 1 records. Then,

within each cluster of size k, a centroid, representative of such cluster, is calculated

and assigned to each record. The version released of the data set involves the values

of the centroids calculated for each quasi-identifying tuple.

This process is graphically illustrated in Fig. 2.3. If tuples of quasi-identifiers

in a data set could be represented as points in the Euclidean space, k-anonymous

microaggregation would consist in partitioning these points in cells of size k, and

quantizing each cell and its elements with a representative point. Perturbed key

attributes would be characterized by the set of representative points.

2.2.4 Maximum distance to average vector

The maximum distance to average vector algorithm (MDAV) is the de facto standard

for numerical microaggregation. It was proposed in [29] as a practical evolution of a

multivariate fixed-size microaggregation method and conceived in [26]. We provide,

in Algorithm 1, a simplified version of that given in [27] and termed “MDAV generic”.

Seen a data set as a list of points in IRn, MDAV is an iterative process that starts

by finding the centroid C (calculated as the mean) of the points not yet assigned

to a microcell. Then, points P and Q are found as the furthest point from C and

the furthest point from P, respectively. Two corresponding microcells are built by

grouping P and Q with their k − 1 nearest points. This process is repeated while 2k

points or more in the data set remain to be assigned to microcells.

Finally, to be released, the data set is reconstructed replacing the quasi-identifying

values of each record with the centroid of the microcell they belong to. This centroid

is calculated as the mean of the quasi-identifiers of the microcell.

2.2.5 Reconstruction mechanisms

The way of representing records for each resulting microcell is also important to

preserve the utility of data. For MDAV, when having numerical microdata, we have

chose to use the average of the quasi-identifying tuples as centroid and, thus, as

representative tuple.
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Algorithm 1 MDAV “generic”, functionally equivalent to Algorithm 5.1 in [27]

function MDAV
input k, (xj)

n
j=1 .Anonymity parameter k, quasi-ID portion (xj)

n
j=1 of a data set

of n records
output q .Assignment function from records to microcells j 7→ q(j)

1: while 2k points or more in the data set remain to be assigned to microcells do
2: find the centroid (average) C of those remaining points
3: find the furthest point P from the centroid C, and the furthest point Q from P
4: select and group the k − 1 nearest points to P , along with P itself, into a microcell, and do

the same with the k − 1 nearest points to Q
5: remove the two microcells just formed from the data set
6: if there are k to 2k − 1 points left then
7: form a microcell with those and finish
8: else .At most k − 1 points left, not enough for a new microcell
9: adjoin any remaining points to the last microcell .Typically nearest microcell

However, besides numerical microaggregation, other anonymization mechanisms

can be used to implement data perturbation. These mechanisms include suppression,

generalization and noise addition. Those could be used indistinctly, depending on

the type of data (e.g., numerical, categorical, ordinal, string), and on its expected

utility. In our work, we mostly deal with numerical data although for some data sets

we transform some textual or ordinal to numerical attributes.

2.2.6 Other privacy criteria

Although k-anonymity is a very popular privacy criterion, it is not flawless. Since the

criterion strictly operates with quasi-identifying attributes, the statistical properties

of confidential attributes (and thus their disclosure potential), both in the data set

and in the entire population, are neglected. In general, k-anonymity overlooks the

knowledge a potential attacker may already have or obtain about the data set, giving

rise to similarity, skewness or background-knowledge attacks [30–32].

In spite of its shortcomings, the application of k-anonymous microaggregation

does not only concern the publication of databases but also some variants thereof like

search engine querying, online data collection and data streaming [33–35].

Additional criteria have been proposed that refine k-anonymity and prevent some

of the above-mentioned attacks. The former, p-sensitive [36, 37], requires that each

group of k-anonymized records contains at least p different values of each confidential
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attribute. In the same but broader spirit, l-diversity proposes that each group have

at least l well-represented confidential values. None of these criteria assures complete

protection against skewness attacks, nor against similarity attacks when confidential

attributes within a group are semantically similar.

Other privacy criteria dealing with similarity and skewness attacks pose require-

ments in the distribution of confidential attributes within groups. The aim is that

confidential attributes in each group of anonymized records are stratified according

to their distribution in the original data set. Depending on the discrepancy allowed

between the within-cluster and overall distributions, these privacy criteria yield t-

closeness [38], δ-disclosure [39], and average privacy risk [31, 40].

To cope with the NP-hardness of multivariate microaggregation, several heuristic

algorithms have been proposed. These algorithms can be classified as fixed-size and

variable-size. Among the former ones, we find the maximum distance [26] (MD)

and its variation, maximum distance to average vector [26, 27] (MDAV). Variable-size

algorithms include, on the other hand, the µ-Approx [28], the minimum spanning tree

[41] (MST), the variable MDAV [42] (V-MDAV) and the two-fixed reference points

algorithms (TFRP).

In general, the implementations of microaggregation have been oriented to reduce

the inherent information loss [43–45] due to perturbation, which commonly derives

in more sophisticated and significantly costlier implementations in terms of compu-

tational time [1].

2.3 Impact of microaggregation on data utility

k-Anonymous microaggregation, as any data perturbation mechanism, implies dis-

tortion or information loss on the data since original data is modified. Measuring

such impact is fundamental for assessing the performance of this and other privacy

protection mechanisms.
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2.3.1 A syntactic metric based on mean squared error

The usual criterion to quantify the distortion of microaggregated data is the mean-

squared error (MSE) for numerical quasi-identifying attributes representable as points

in the Euclidean space. MSE can be computed as

MSE =
n∑

j=1

‖xj − x̂j‖2 ,

where n is the number of records of the data set, m is the number of attributes of

each record, xj ∈ Rm is the jth record, and x̂j is the tuple representative of the jth

record.

As can be seen, MSE measures the numerical variation of records after data pertur-

bation is applied. Although such variation may provide an idea about the magnitude

of utility degradation, it does not consider the global macrotrends within the data

set and, more important, neglects the application domain of data where its utility

is exploited. This is the reason why we refer to MSE, or distortion, as a syntactic

measure of data utility.

2.3.2 Machine learning parameters as a semantic metric

While MSE, as a measure of data distortion, is the general metric of the degrada-

tion of data utility after microaggregation, probably, other more practical metrics are

required to evaluate the real impact of this privacy protection mechanism. A more

empirical approach necessarily involves the application domain of data, i.e., the pro-

cess by which utility is extracted in practice. Besides, it is reasonable to think about

adapting privacy protection mechanisms to the application domain of data such that

more utility is preserved while offering similar levels of privacy.

Undoubtedly, one of the most common ways of data exploitation currently is

machine learning. Learning algorithms are widely used to build models (from data)

capable of predicting an outcome when applied to new data.

In an effort to tailor anonymization mechanisms to the application domain of

data (e.g., building classifiers to predict someone’s health condition), some previous



20 CHAPTER 2. BACKGROUND AND RELATED WORK

research work has used empirical utility metrics. One of such metrics is the accuracy

of machine-learned macrotrends built using anonymized data.

The logic is simple: a learning model built with perturbed data would be less

accurate than another built with original data. Accordingly, a higher degree of

anonymization would result in less accurate models. Surprisingly, to the best of our

knowledge, this metric has not been used to systematically evaluate microaggrega-

tion-based anonymization algorithms, but other anonymization algorithms based on

generalization and suppression of records, such as Incognito, Mondrian and DataFly.

In previous work, classification accuracy has been used to evaluate the utility of

(or, equivalently, the distortion introduced to) anonymized data, just to compare the

performance of adapted classifiers or anonymization mechanisms. One of these works

is [46], where the effects of four microaggregation algorithms on the estimation of

a linear regression is compared, when solely applied to simulated data sets. Other

works propose improvements on machine learning algorithms and methodologies, to

obtain higher utility (classification accuracy) from anonymized data. This is the case

of [47], where the authors develop a method to increase the level of utility obtained

from support vector machine (SVM) and k-nearest neighbor (kNN) machine learning

algorithms, when data are anonymized with the DataFly algorithm. By feeding these

algorithms with statistics from original data, in addition to anonymized data, greater

utility ensues from the latter. In the same line, [48] describes an adjustment to

logistic regression that provides differential privacy [12]. Furthermore, decision tree

learning methods are developed in [49] and [50] that enforce l-diversity and differential

privacy, respectively, as privacy criteria and whose accuracy levels approach those of

a non-private decision tree. Using a different focus, [51] and [52] address the privacy

risk resulting from the release of SVM and the anonymized data. Privacy preserving

versions of SVM are proposed and their classification accuracies are used to compare

them with the original SVM.

A great deal of research has also investigated adaptations of anonymization algo-

rithms that generate private data of “higher quality”. In that context, the utility of

anonymized data is evaluated in terms of classification accuracy of machine learning

models [53], [54], and [55]. The cited works rely on generalization and suppression as
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perturbation techniques and include preprocessing steps such as selective anonymiza-

tion of attributes, to adapt the released data to machine learning applications, and

hence preserve their utility. On the other hand, [56] proposes publishing synthetic

microdata generated from differentially private models applied on original data. For

that, machine learning techniques are integrated to improve utility.

Ironically, although enhancements in the utility of anonymized data are reported,

it is not clear what the overall impact of original anonymizing mechanisms in the

first place is. Some approaches do attempt to evaluate the tradeoff between privacy

gain and information loss (measured as accuracy reduction) due to anonymization.

However, various considerations should be done for such evaluation. To start, there

is a variety of anonymization algorithms. For example, [57] focuses on a proprietary

anonymization algorithm whereas [58] examines a non-standard one.

Other caveat is the variable application domain of the data. While classification is

the most popular workload for anonymized data, machine learning algorithms would

perform differently depending on the particular data set used, so the utility would

vary accordingly. This also applies to the number of records, or the size of the data

set, which may affect the performance of anonymization algorithms, e.g., when k-

anonymity is applied, a given value of k shall affect the utility of small data sets more

than the utility of bigger ones.

A last limitation has to do with the baselines to measure privacy gain and utility

loss. Utility, measured as the accuracy of machine learning models, reaches its lower

bound when all the key attributes are discarded; or, for k-anonymity, when k equals

the number of records of the data set. Utility’s upper bound is attained when no

anonymization is applied(a).

Even in this variable scenario, one thing is certain about how machine-learned

trends are affected by anonymization: simultaneously satisfying various privacy cri-

teria, e.g., k-anonymity, l-diversity, and t-closeness, may make the data completely

useless, as reported by [39], a study where not only syntactic but also semantic re-

quirements of privacy are evaluated. Those privacy criteria, together with differential

privacy, are out of the scope of this work, since our target application is that of

(a)Further considerations regarding baseline performance can be found in [59].
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data release for general statistical analysis with a focus on data utility. Recall that

differential privacy is conceived for online querying on predefined computations, and

that in general it imposes stringent restrictions, both in terms of usability and data

utility. Those restrictions, introductorily explained also in [60], render it useless for

our purposes.

The review of the state of the art in this section has been conducted from a strictly

technological perspective. Legal and socioeconomic aspects are covered, for instance,

in [61, 62]. Table 2.1 summarizes some of the main contributions where machine

learning performance parameters are used to measure the utility degradation of data

after applying privacy protection mechanisms.

Table 2.1: Contributions using machine learning performance as metric of privacy protection impact.

Reference
Anonymization

algorithm

Type of
attributes

used
Application domain

Max size
of data

sets
Max value of k Main focus

Inan et al,
2009 [47]

DataFly Hybrid Classification 5,000 128
Comparing classifiers on
anonymized data

LeFevre et
al, 2006
[53]

Mondrian,
TDS

Hybrid Classification 49,657 1,000
Algorithms to anonymize data
while preserving utility

Chaudhuri
and Mon-
teleoni,
2008 [48]

Differential
Privacy

Numeric Classification N/A N/A
Improving ML algorithm to
work with anonymized data

Lin and
Chen, 2010
[51]

DataFly Numeric Classification 270-49,990 128
Improving ML algorithm to
work with anonymized data

Kisilevich
et al, 2010
[55]

kACTUS,
TDS, TDR,
Mondrian,
kADET

Hybrid Classification 42,244 1,000

Building an algorithm to
protect privacy in classification
tasks (comparing accuracy with
others)

Jaffer et al,
2014 [54]

Mondrian Hybrid Classification 1,000 50

Building an algorithm to
protect privacy in classification
tasks (comparing accuracy with
others)

Malle et al,
2016 [58]

SaNGreeA Hybrid Classification 42,244 19

Showing the destructive effect
of an
anonymization algorithm on
classification tasks

Gursoy et
al, 2017
[57]

k-Map Hybrid Classification 42,244 5
Evaluating an anonymization
algorithm based on differential
privacy

Brickell
and V
Shmatikov,
2008 [39]

Mondrian Hybrid Classification 42,244 1,000
A methodology to measure the
tradeoff between loss of privacy
and gain of utility
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2.4 Impact of microaggregation on data usability

Although the extraction and preservation of data utility are certainly important when

designing applications either to exploit or protect data, there are other requirements to

make sure such applications are suitable in practice. Evidently, such requirements are

commonly inherited from the technological applications to which privacy protection

mechanisms support.

Although data is the new oil in the big data era, applications of big data are

currently possible just because the algorithms that process it can be executed much

faster than in the past. However, the execution time is still a bottleneck for some

highly demanding applications, which does not favor the implementation of further

processing privacy routines. Consequently, we could say that accelerating the exe-

cution of privacy protection mechanisms is a fundamental approach to encourage its

adoption in the era of big data.

Recent works have shown to follow approaches to increase the efficiency of pri-

vacy protection algorithms, not only in terms of runtime [63–65], but also in terms of

resulting data utility. For instance, [41] developed an efficient clustering mechanism

to deal with large databases while preserving the data utility through a partitioning

method of a modified minimum spanning tree. In the same line, [66] designed an

efficient and effective microaggregation mechanism based on calculating the distance

among records as the mutual information (entropy) among them. Finally, [67] in-

troduced fast data-oriented microaggregation (FDM), a method capable of getting

multiple protected versions of a large data set (for different values of k) in a single

load.

Note that all these approaches offer a reduction of runtime for privacy protection

mechanisms at a cost in data distortion. Thus, there is another trade off that should

be actively tacked to guarantee that privacy protection can be implemented in real

scenarios.



Chapter 3

Impact of MDAV on the empirical

utility of data

3.1 Introduction

The permanent and increasing interactions of people (both conscious and uncon-

scious) with the Internet trigger the disclosure of tons of personal data. Besides, as

discussed in Sec. 2.1, the great utility that can be extracted from data encourages its

exploitation by thousands of third-parties. Naturally, serious privacy concerns arise

from such practice.

To face the potential privacy threats, several protection mechanisms have been

proposed in the literature; one of them is k-anonymous microaggregation, whose basic

elements were described in 2.2.3 . Although the level of privacy protection it offers

is clearly defined, there is an issue with measuring its real impact on data utility. In

this line, we discussed in Sec. 2.3 the problem that merely syntactic metrics may not

reflect the impact of data perturbation, in terms of utility, if these metrics are not

tightly linked with the mechanism through which data utility is extracted. Therefore,

an exploration to find an empirical metric of data utility would enable a more accurate

evaluation of the impact on utility, and would assist researchers in building utility-

preserving privacy protection mechanisms.

24
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As any perturbative mechanism, anonymization comes at the cost of some infor-

mation loss that may hinder the ulterior purpose of the released data, which very

often is building machine-learning models for macrotrends analysis.

In this chapter we propose to assess the impact of microaggregation on the utility

of anonymized data by calculating the resulting accuracy of said models. In particular,

we address the problem of measuring the effect of k-anonymous microaggregation on

the empirical utility of microdata. For this, we quantify utility as the accuracy of

classification models learned from microaggregated data, and evaluated over original

test data. In a nutshell, our approach seeks to validate whether this impact is major

and, accordingly, whether the metric of distortion (based on MSE) is concordant with

a more empirical vision of data utility.

We apply a rigorous methodology for evaluating the specific impact of microaggre-

gated data on machine-learning tasks. Our methodology uses accuracy and F-measure

as utility metrics. The two are standard measures of performance in machine learn-

ing and allow for the statistical dependence among quasi-identifiers. The impact of

microaggregation on the utility of anonymized data is quantified, accordingly, as the

resulting accuracy (or F-measure) of a machine-learning model trained on a portion

of microaggregated data and evaluated on a different portion of original data.

Since the utility extracted from data could depend on the learning algorithm used,

the results of utility we present correspond to the algorithms that obtain the greatest

accuracy from each anonymized data set. Among others, our experiments investigate

näıve Bayes, logistic regression, SVM, bagging and C4.5. As for microaggregation

algorithms, we focus on MDAV, the SDC de facto standard for k-anonymous micro-

aggregation. The evaluation of MDAV and all those machine-learning algorithms is

conducted in four data sets, three real and one synthetic.

Note that this analysis focuses on high-utility SDC, which involves plain k-anony-

mous microaggregation using numerical microdata. Although more strict privacy

criteria exist, e.g., in the domain of syntactic microaggregation (such as t-closeness or

l-diversity), or in the domain of semantic privacy (such as differential privacy), only
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+

SDC

syntactic 
microaggregation

differential 
privacy

k-anonymity
l-diversity
t-closeness

+
privacy

utility

The focus of our analysis

Figure 3.1: Our work focuses on high-utility SDC, involving k-anonymous microaggregation, which
has a direct application, e.g., in the health domain.

privacy mechanisms offering greater utility guarantees for anonymized data are ex-

amined, which may be highly desirable in domains like health. This analysis context

is illustrated in Fig. 3.1.

The work presented in this chapter was published in [16].

Chapter outline

The rest of this chapter is organized as follows. Section 3.2 describes our experimental

methodology. Section 3.3 shows the experimental results obtained for a variety of data

sets and machine-learning algorithms. Lastly, conclusions are drawn in Section 3.4.

3.2 Methodology of evaluation

When assessing a privacy protection mechanism, defining the assumptions considered

is fundamental to provide a systematic and repeatable analysis. In addition, the

details of personal data release, as well as the applications used to exploit it, may

vary from case to case, even more in the changing technological world we live in now.

Then, it is convenient to clarify the particular scenario for which our approach is

valid.

Next we describe the elements of this evaluation scenario. While in Section 2.1.1

we briefly introduced attacker and data release models, here we also include the

usability model in Section 3.2.1 where we illustrate by example the practical context

where our evaluation has sense. Moreover, the privacy and utility metrics we use in

this chapter and along the rest of this work are defined in Section 3.2.2.
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Finally, the tools, data sets used, and the methodology followed are described in

Sections 3.2.3 and 3.2.4.

3.2.1 Attack and usability model

In this chapter, and in the next ones, we assume the standard attack model of the

SDC literature [68]. When a microdata set is released, it is assumed to be available

to any privacy attacker. For research and statistical purposes, released microdata

contains key attributes (basically, demographic data) that are correlated with another,

probably confidential, attribute. In the k-anonymity model, besides, the attacker

knows that a target individual’s record –although microaggregated– is in the released

data set.

To protect that individual’s privacy, an anonymized version of the microdata set

is released. To keep the information usable, i.e., “truthful” [11], microaggregation

is applied to key attributes, while the confidential attribute keeps unperturbed. Re-

searchers may leverage the key attributes by building classifiers on the microaggre-

gated data, for example to predict a given condition. Recall that classification is a

machine learning task that aims to predict the class, or label, of a tuple of informa-

tion. To do so, it requires learning a model from a group of labeled input samples.

In our case, we can assume a large anonymized data set of patients that is publicly

released so that researchers can build classifiers.

As another example of this model, suppose that the taxation authority publishes

a microaggregated data set with 3 key attributes: gender, age, and marital status;

additionally, a confidential binary attribute is published without being modified, spec-

ifying whether a respondent has paid taxes or not. Both perturbed key attributes

and the confidential attribute could be used by researchers to develop algorithms that

predict the propensity of other people to pay taxes. At the same time, the privacy

of a specific individual would be preserved as a result of microaggregation. How-

ever, as commented in previous sections, the macrotrends embedded in the original

data, which are necessary to get more accurate classifiers, might be affected by the

perturbation of the key attributes values caused by microaggregation.
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3.2.2 Measuring privacy and utility

To evaluate the impact of anonymization on the utility of a released microdata set,

quantifiable metrics of privacy and utility are required. Since our experiments focus

on microaggregation as anonymization mechanism, we assume k-anonymity as privacy

criterion. In this manner, the identity of a respondent will be protected in a group

of k tuples sharing the same key attribute values. Higher values of k will imply more

anonymity and then more privacy, although, eventually, less utility.

To measure the utility of anonymized data, we must decide the application domain

of such data. We choose binary classification since it is a very popular workload for

released microdata sets. Accordingly, we measure utility through the performance of

a binary classifier, when executed on anonymized data. Several metrics exist that

measure the performance of binary classification tests. Next, we elaborate on them

with a medical example.

Let D be a binary random variable (r. v.) representing whether a patient has a

given condition (D = 1) or not (D = 0). Let T be a binary r. v. representing the

outcome of a medical test, being T = 1 a positive detection, and T = 0 a negative

detection. By the law of total probability,

P{T = D} = P{T = D | D = 0} P{D = 0} + P{T = D | D = 1} P{D = 1},

and thus,

P{T = D} = P{T = 0 | D = 0} P{D = 0} + P{T = 1 | D = 1} P{D = 1}.

Specificity (true negative rate) and sensitivity (true positive rate) are two metrics

of the performance of a binary classifier and can be defined as P{T = 0 | D = 0}
and P{T = 1 |D = 1}, respectively. In our evaluation, we follow the same approach

as [53, 55, 58] and measure utility as the accuracy of a binary classifier. In our example,

accuracy can be defined as the probability that the test and disease coincide, that is

A = P{T = D}. Accuracy can also be expressed in terms of specificity and sensitivity

as the convex combination

A = (1 − prevalence) × specificity + prevalence × sensitivity
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weighted by the prevalence, that is, the a priori probability of having a disease.

Although accuracy is a very popular metric, when the class of the data is signifi-

cantly unbalanced this metric might incorrectly measure the goodness of a classifier.

Fortunately, other stricter indicators are available such as F-measure, ROC curve and

area under the ROC curve (AuC).

Accuracy quantifies how well a binary classifier performs, in terms of the rate

of correctly classified (as positive or negative) samples in a test set. For example,

a binary classifier constructed to predict diabetes would be 100% accurate if, when

applied on a test set of 600 samples, it correctly identifies the class of the 500 samples

labeled with “no diabetes” and the class of the 100 samples labeled as “diabetes”.

F-Measure (or F1 score) is a machine learning metric that combines other metrics,

particularly recall and precision. In fact, F-Measure is defined as the harmonic mean

of precision and recall. Furthermore, another composed metric is the ROC curve,

which measures the performance of a classifier based on the graphical representation

of the sensitivity in function of the specificity.

For our application domain (binary classification), we first measure the utility of

a microdata set before being microaggregated. Since no perturbation is applied to

the data, the classifier built from that data set would yield the highest accuracy. The

data would therefore give the best achievable utility, but the worst privacy.

In our experiments, we generate several microaggregated versions of a data set, by

varying the value of the privacy parameter k incrementally for a wide range. For each

of these versions, we compute the corresponding classification performance to observe

the progressive degradation of data utility due to microaggregation. We use accuracy

and F-measure to assess the performance of classifiers built with microaggregated

data. Naturally, as k increases, we expect a lower data utility, but obviously in

exchange for higher privacy. Note that, for binary classifiers computed over a set

of data samples and their corresponding labels, the lowest possible accuracy is not

zero. To see this, suppose that “positive” is the majority class (more than 50% of the

training samples are labeled as “positive”). Accordingly, the simplest classifier would

classify any new input as “positive”. Then, interestingly, a binary classifier should

not have accuracy values lower than 50%.
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3.2.3 Experimental setup

Next, we describe the algorithms, tools and data we use to quantify the impact of

k-anonymous microaggregation on the performance of machine-learned classifiers.

3.2.3.1 Algorithms

With regard to microaggregation, our experiments employed MDAV [69], the de facto

standard protocol described in Section 2.2.4.

With the aim of constructing classifiers from microdata, we used the Weka toolkit [70],

a collection of algorithms extensively employed by the machine learning community.

In the interest of fairness when measuring the impact of microaggregation, we as-

signed each data set the machine learning algorithm that extracts the greatest utility

from it. Accordingly, we measured said impact with respect to the highest achievable

utility. In order to find the corresponding algorithm for a data set, we tried on it a

range of machine learning algorithms, including näıve Bayes, logistic regression, SVM,

bagging, and C4.5. The reasons for choosing this set is manifold. First, we included

different algorithms to observe whether the effects of microaggregation are consistent

along different utility extraction techniques. Moreover, we selected näıve Bayes and

SVM since in several previous works [53, 55, 56, 58] they have been adapted to obtain

more utility from anonymized data. Additionally, logistic regression, C4.5 and bag-

ging were considered to represent the main families of machine learning classifiers,

i.e., regression, decision tree, and ensemble algorithms, respectively. For each data

set, we chose the algorithm showing the best performance in the classification task,

i.e., the highest accuracy. This way, we tested the impact of microaggregation in the

different utility contexts or domains defined by a variety of data sets and machine

learning algorithms.

3.2.3.2 Data

For the purpose of illustration, we evaluated the impact of microaggregation first on

a synthetic data set. The effect of microaggregation on real scenarios was assessed

afterwards in data sets satisfying these four properties. First, we require data sets
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containing demographic attributes so that they reflect the typical characteristics of

microdata. Secondly, we considered only data sets whose potential key attributes are

correlated with a given sensitive (label) attribute, so the latter could be effectively

predicted (classified). Thirdly, we needed a relatively large number of records (e.g.,

more than 500) to have a better view of the overall effect of microaggregation, using

an incremental value of the privacy parameter k. Finally, we used standardized or

already tested data sets so that our results could be easily reproduced. It is worth

noting that predictive demographic data turned out to be a very restrictive condition

when we searched for data sets to carry out the tests.

For the sake of simplicity and ease in its graphic representation, we built the

synthetic data set with only two numerical attributes (x1, x2) resembling quasi-iden-

tifiers, and a binary attribute (y) as the confidential attribute. The data set was

generated so that y is to some extent predictable from x1 and x2 and had 30,000

records. In Sec. 3.3.2, we describe in greater detail the process by which the syn-

thetic data set was generated and show a preliminary experiment to illustrate the

effects of microaggregation.

Regarding the experiments on real data sets, we first employed the standardized

“Adult” data set from the UCI Machine Learning Repository [71], described in Table

3.1. The data set in question has been widely used to evaluate binary classifiers and

privacy preserving mechanisms. Its 45,222 records are already split into two parts, for

training (2/3) and testing (1/3) purposes. The data set contains 15 input demographic

attributes and a binary label attribute, the salary, which is the attribute the machine

learning algorithm tries to predict. In particular, the attribute specifies whether a

person makes over 50K a year or not. The attributes we use as quasi-identifiers are

age, education-num, marital-status, sex, capital-gain, and hours-per-week.

The second standardized data set was “Pima Indians Diabetes” [72] which contains

768 records and 9 demographic attributes. Available at the UCI Machine Learning

Repository, this data set has been used in [51, 54, 55]. The 8 attributes we selected

allows predicting whether an individual will be diagnosed with diabetes or not. The

third real data set we considered in our experiments was the “Irish Census” [73], a

synthetic version of the data from the 2011 Irish Census, which has been used in [74]
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and [75] to evaluate and compare k-anonymization algorithms. It contains 100,000

records and 10 demographic attributes. Originally, it was not built with a predictive

task in mind, but 5 of its attributes could be used to predict an individual’s economic

status (employed or unemployed).

Table 3.1 describes the main characteristics of the data sets tested in our experi-

ments, and Table 3.2 shows the machine learning algorithms employed for each data

set.

Table 3.1: Description of the Data sets Used to Evaluate the Impact of k-Anonymous microaggre-
gation

Data set
# of in-
stances

# of at-
tributes

Selected key attributes
Confidential

(label) attribute

Synthetic 30,000 2 x1, x2 y

Adult [71] 45,222 15
Age, education-num, marital-status, sex,
capital-gain, hours-per-week

Salary
(>50K?)

Pima Indians
Diabetes [72]

768 9

Number of pregnancies, glucose
concentration, blood pressure, triceps skin
fold thickness, serum insulin, body mass
index, diabetes pedigree function, age

Health condition
(diabetes?)

Irish Census [73] 100,000 10
Gender, age, marital status, highest
education completed

Economic status
(employed?)

Table 3.2: Machine learning algorithms used in our experimental evaluation

Data set ML algorithm used ML algorithm description

Type Name

Synthetic
Classification

tree
C4.5

It builds decision trees from training data, where attribute
nodes are selected based on their information gain (mutual
information).

Adult [71] Ensemble Bagging

Bootstrap aggregation is an ensemble of decision trees that
improves classification tasks by combining the classification
results of randomly (bootstrap) generated training data sets
obtained from the original data set.

Pima Indians
[72]

Regression
Logistic

Regression

It is a regression model that probabilistically estimates a binary
response (binary classification) based on a set of predictors. It is
based on the logistic or sigmoid function.

Irish Census [73]
Classification

tree
C4.5

It builds decision trees from training data, where attribute
nodes are selected based on their information gain (mutual
information).
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3.2.3.3 Additional Tasks

Since our implementation of MDAV only operates with numerical attributes, we con-

ducted some preprocessing tasks on the data sets described in the previous subsection.

Specifically, we converted some useful categorical attributes to numeric, where pos-

sible, and binarized the sensitive attribute, where necessary, so that the application

domain of data was binary classification.

3.2.4 Experimental methodology

The steps we follow to evaluate the impact of microaggregation on the utility of mi-

crodata are in line with the attack and utility models described at the beginning of

Section 3.2.1 and are illustrated in Fig. 3.2. As a first data preprocessing step, we

extract the quasi-identifiers of our interest from each data set, according to the guide-

lines described in the previous subsection. Moreover, from the selected attributes, we

“numerize” the categorical data so that they are compatible with MDAV. Finally, we

identify the quasi-identifiers that are then used as input samples and the sensitive

label attribute that will serve as the class to be predicted by the classification model.

The next step splits each microdata set into training and test sets. As is common in

the evaluation of machine learning algorithms, a model is constructed from a training

subset of the data and is evaluated on the test subset. Following such methodology,

we use two-thirds of the data for training and one-third for testing. The splitting is

done in such a way that the class attribute is stratified in each subset, according to

its original distribution in the data set.

After splitting the data into training and test sets, the microaggregation process

is performed using MDAV over the latter set. To this end, previously we followed the

common practice of normalizing each column of the data to have zero mean and unit

variance.

With the microaggregated versions of each (training) data set, we then construct a

classification model over each of those versions using Weka and 5-fold cross validation.

The learning algorithms we use for each data set are listed in Table 3.2. Finally, we

evaluate the accuracy of the resulting classification models over the non-anonymized
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Figure 3.2: Experimental methodology followed to evaluate the impact of MDAV-based k-anonymous
microaggregation on the empirical utility of microdata.

test subset, reproducing the application scenario where a database user would use the

classification model to classify their original samples of data.

3.3 Experimental results

3.3.1 Preliminary experiment

To get some intuition about the impact of microaggregation and its clustering ca-

pability on the empirical utility of anonymized data, we next make an analogy with

the operation of some machine learning algorithms. Consider the k-nearest neighbors
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algorithm (kNN), a simple classifier, and assume a data set with n training tuples,

each one assigned to a binary class label. kNN classifies a new tuple according to a

majority vote of its k closest “neighboring training tuples” in the feature space. Note

that, in this context, k has nothing to do with anonymity. A small k implies consider-

ing few neighboring samples for classification, which would be the most representative

ones, being the closest, but would not be so reliable in terms of predictability. On

the other hand, a large k implies taking more (and not so close) neighboring samples,

being demographically less representative, but predictably more reliable. This trade-

off is illustrated in Fig. 3.3, where we measure the accuracy of kNN on the original

UCI Adult data set for several values of k. As depicted in Fig. 3.3, the classification

accuracy of kNN improves as groups rather than individual samples are considered

to robustly infer what would effectively constitute a macrotrend.
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Figure 3.3: Accuracy of the kNN machine learning algorithm applied on the UCI Adult data set,
for different values of k (here, k is not related with k-anonymity).

We argue that microaggregation would be acting analogously to kNN when aggre-

gating neighboring data points to construct cells, and computing averages to get rep-

resentative centroids for each cluster. Such clustering could be regarded as a denoising

process. In fact, the benefit of preprocessing data with unsupervised techniques based
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on clustering, prior to supervised learning, is known in the machine-learning litera-

ture. Therefore, it seems reasonable to expect k-anonymous microaggregation to

have a minor (and sometimes even positive) impact on the empirical utility of data,

measured as the accuracy of machine learning models when deriving macrotrends.

3.3.2 Measuring the impact of microaggregation on a syn-

thetic data set

We begin our experiments by analyzing the effect of microaggregation on synthetic

data. To this end, we generate 30,000 samples of 3-dimensional Gaussian data. The

first two dimensions are assumed to be quasi-identifiers, and the third dimension

represents a binary confidential attribute. Since we require that the quasi-identifiers

be predictors of the confidential attribute (as would be, e.g., the weight and height

predictors of the existence or not of a disease in an individual), we introduce in

the data a learnable macrotrend or dependence among the quasi-identifiers and the

confidential attribute.

Next, we describe how we generate this synthetic data set. Let X be a bidimen-

sional continuous r.v. representing the two quasi-identifiers (x1, x2), and let Y be a

binary r.v. indicating whether an individual has a disease (Y = 1) or not (Y = 0).

The data set is generated in two parts, each matched to a different value of Y . Ac-

cordingly, X is distributed as a unit-variance Gaussian distribution with mean µ for

Y = 1, and with mean −µ, for Y = 0. In Fig. 3.4, we represent this data set by

plotting the values of X for each record as coordinates of a point in a plane, coloring

each point according to the class to which it belongs. As expected, two clouds of

points are obtained (the red one, for Y = 1, slightly on the right; and the blue one,

for Y = 0, on the left) where we can guess the optimal threshold to estimate the class

Ŷ of each point.

Let P{Y = 1|x} be the discriminative model of this problem. The prevalence p of

a disease in this data set is the proportion of records matched to the class Y = 1. It

is routine to represent this model, using logarithmic odds, as

L{Y = 1 | X = x} = 2µx+ ln
p

1− p
.
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Figure 3.4: Depiction of the quasi-identifiers (x2 vs x1) of our synthetic data set. Samples are
colored according to their class, y; blue for y = 0 and red for y = 1.
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Figure 3.5: Depiction of the quasi-identifiers (x2 vs x1) of our synthetic data set. Samples are
colored according to their class, y; blue for y = 0 and red for y = 1.
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We denote the cumulative distribution function (CDF) of the zero-mean, unit-variance

Gaussian distribution as Φ. The accuracy A of our model to find the estimated class

Ŷ can be expressed as

A = P{Y = Ŷ } = (1− p)Φ(θ + µ) + pΦ(µ− θ),

for a given threshold x = θ . It is straightforward to derive the optimal threshold

θ∗ for maximum accuracy of our discriminative model, which is

θ∗ = − 1

2µ
ln

p

1− p
.

In order to have a balanced data set, we use p = 0.5, thus half of the samples are

matched to each class. Consequently, the optimal threshold to classify both parts of

the data set is θ∗ = 0. Additionally, we choose µ = 0.125 so that the distribution of

both groups of samples are close; evidently, the more overlapped the two groups are,

the more difficult the classification task.

Next, we train a machine learning model over a stratified part of the synthetic

data, using the C4.5 algorithm. Since µ is low, the accuracy obtained from the

classifier is 60%. Based on this model, we predict the class using the quasi-identifiers.

Then, in Fig. 3.5, we plot the same clouds of samples of Fig. 3.4, but now we color

them according to the predicted class. Accordingly, the classification threshold is

evident.

To analyze the impact of microaggregation, we apply MDAV to the training set of

this data set with k = 3000, which is a very large value of cluster size. Accordingly,

we get 7 cells that we plot in Fig. 3.6 with distinct colors; the classification threshold

is also plotted. Notice in the figure that, after the clustering applied by MDAV, the

samples of 3 out of 7 cells might be misclassified with a higher probability since such

samples are distributed on both sides of the classification threshold. However, the

remaining 4 cells, which account for about 57% of the data, are clearly defined on one

side of the classification threshold, so they would be correctly classified. Hence, even

after microaggregation, machine-learned macrotrends might not suffer a significant

impact, i.e., the accuracy obtained from original data is not harshly reduced, even for

high values of k.
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Figure 3.6: Cells of samples obtained after k-anonymous microaggregation with MDAV on the
quasi-identifiers of our synthetic data set (k = 3000).

To illustrate more systematically this effect on data utility, we plot in Fig. 3.7 the

accuracy and F-measure of the learning model obtained from our synthetic data, after

anonymizing it with different values of k. Consistently with the previous experiment,

none of these utility metrics is drastically affected by the influence of microaggre-

gation, for practical values of k. Another metric of the impact of microaggregation

(not necessarily in terms of utility degradation) is also depicted in Fig. 3.8. Here,

we observe that distortion, measured in terms of MSE, increases with k. However,

distortion starts soon to increase significantly from k = 100. This divergence between

accuracy and distortion is evidenced in Fig. 3.9, where the connection between both

seems nonspecific and nonlinear. A more detailed discussion regarding these results

is presented in the next section, where real data is considered.

3.3.3 Results from real data sets

We begin our first series of experiments by computing the relevance of the number

of predictive attributes in each data set. The aim is to analyze how the accuracy of

the classification task varies with the number of predictive attributes. To determine

the order of the attributes employed, we used sequential forward selection, which

consists in sequentially adding attributes to an empty set until the addition of fur-

ther attributes does not decrease the accuracy of the classification task. Figure 3.10
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Figure 3.7: Degradation of the empirical utility (accuracy and F-measure) of our synthetic data set
when microaggregated (using MDAV) for a wide range of k.
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Figure 3.8: Distortion, measured as MSE, introduced by MDAV k-anonymous microaggregation to
our synthetic data set, considering a wide range of k.
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Figure 3.9: Accuracy of the bagging machine learning model trained on our microaggregated syn-
thetic data set, against the distortion due to MDAV.

illustrates the variation of accuracy with the number of predictive attributes for UCI

Adult.

Although intuition could suggest that even small levels of data perturbation might

yield important reductions in utility, riveting results were found in our experiments

when using microaggregation. First, Fig. 3.11 shows how the accuracy and F-measure

of the classifier degrades as the privacy parameter k increases, when anonymizing the

UCI Adult data set. As expected, accuracy attains its highest value (about 85%)

when no anonymization is applied (k = 1). For k = 200, which is a relatively large

value of cluster size, accuracy only decreases up to 82%. We also note that, even

for a value of k of 3, 000, which implies a strong level of anonymity, accuracy is

approximately 80%.

Figure 3.11 also depicts a dotted line to represent the lowest accuracy achieved

by the machine learning algorithm (76.37%) when no predictor attributes are used

(suppression of all quasi-identifiers); this provides the highest level of privacy pro-

tection. Note that, when all quasi-identifiers are suppressed, the machine learning

model always classifies a new instance depending on the majority value of the class

attribute.

From the figure, we observe that a reduction in accuracy from 85% to 82% (at-

tained for k = 200) when the key attribute (important predictor) “Capital Gain”
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Figure 3.10: Relevance of the cumulative number of selected attributes from the UCI Adult data
set as predictors of the class attribute (Annual Salary).
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Figure 3.11: Degradation of the empirical utility (accuracy and F-measure) of the UCI Adult data
set when microaggregated (using MDAV) for a wide range of k.
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is eliminated. Similarly, even when k = 3, 000, we obtain a smaller impact on util-

ity (accuracy of 80%) than when all predictors –except “Education Number”– are

suppressed. This are good news for microaggregation, since it suggests that we can

still get useful microdata after applying more than reasonable levels of privacy. The

reported values of accuracy and other metrics (F-measure and AuC) are shown, in

more detail, in Table 3.3.
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Figure 3.12: Distortion introduced by MDAV k-anonymous microaggregation to the UCI Adult data
set, when microaggregated for a wide range of k.

The impact of MDAV on the UCI Adult data set was also measured in terms of the

distortion introduced to quasi-identifiers. We used MSE to quantify such distortion.

In Fig. 3.12, we can see how distortion increases from 0 (when k = 1) to 0.62 (for

k = 3, 000). Specifically, we observed a pronounced growth from k = 100, although

for values of k smaller than 100, distortion did not seem significant.

In Fig. 3.13, we plot accuracy vs distortion. The most relevant conclusion that

can be drawn from this figure is that accuracy stays relatively stable (greater than

80%) up to distortions of 0.7. Precisely, although MSE is conventionally used in SDC

to compare the utility of microaggregation algorithms, we observe that this distortion

metric says little about the impact on the performance of a machine-learning classifier.
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Table 3.3: Different utility metrics for the UCI Adult data set when microaggregated for a wide
range of k.

k Accuracy F-Measure AuC

1 84.63 0.841 0.902

2 84.48 0.839 0.898

3 84.33 0.837 0.897

5 84.35 0.837 0.897

10 84.44 0.838 0.898

20 84.15 0.838 0.891

30 84.11 0.833 0.887

50 83.91 0.831 0.883

100 82.88 0.821 0.875

200 81.95 0.810 0.861

300 83.00 0.819 0.848

500 82.07 0.815 0.827

1000 80.38 0.773 0.794

2000 80.61 0.797 0.693

3000 80.22 0.745 0.585

In other words, the data yielded by this figure seems to provide convincing evidence

that MSE is not a suitable measure of utility for classification tasks.

In our evaluation of the UCI Pima Indian Diabetes data set in Fig. 3.14, we

noted that the degradation margin of utility goes from 74.2% (when k = 1, thus

without perturbation) to 65.23% (from k = 100). Microaggregation showed a similar

behavior to that observed in the UCI Adult data set but, being 50 times smaller,

it evidently degrades more quickly as k increases. However, a noticeable stability is

appreciated in accuracy up to k =30 and, in fact, this performance metric remains

close to the upper baseline at around 74%. For values of k between 10 and 30,

accuracy was even improved, which could be explained by the denoising effect of

averaging through clever clustering, that may positively contribute to a more robust

inference. This effect was described in Sec. 3.3.2. Interestingly, Fig. 3.15 showed a

sustained increase in distortion as k becomes larger. To gain insight into this relative

stability in accuracy, we also plotted accuracy vs distortion in Fig. 3.16 and confirmed

that, up to distortions of 50%, utility remains close to the upper baseline. The values

of accuracy and other metrics (F-measure and AuC) obtained for this data set are

also shown in Table 3.4.
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Figure 3.13: Accuracy of the bagging machine learning model trained on the microaggregated UCI
Adult data set, against the distortion due to MDAV.
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Figure 3.14: Degradation of the empirical utility of the UCI Pima Indians Diabetes data set when
microaggregated (using MDAV) for a wide range of k.
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Figure 3.15: Distortion introduced by MDAV k-anonymous microaggregation to the UCI Pima
Indians data set, for a wide range of k.
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Figure 3.16: Accuracy of the logistic regression model trained on the microaggregated UCI Pima
Indians Diabetes data set, against the distortion due to MDAV.
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Table 3.4: Different utility metrics for the UCI Pima Indians data set when microaggregated for a
wide range of k

k Accuracy F-Measure AuC

1 74.21 0.735 0.813

2 73.43 0.729 0.810

3 73.43 0.728 0.808

5 73.04 0.726 0.804

10 73.43 0.730 0.806

20 76.17 0.754 0.807

30 76.56 0.757 0.789

50 69.53 0.683 0.758

100 65.23 0.644 0.716

Finally, we examine the Irish data set in Fig. 3.17. Here, we observe a wide

degradation margin since its label attribute has balanced classes. Specifically, accu-

racy goes from 72.62% to about 68.04% when the privacy parameter k equals 3,000.

Also, we can see, once again, that accuracy remains quite high (more than 70%) and

stable up to k = 2, 000. A similar behavior is observed for F-measure. Although the

size of the data set at hand is relatively large (100K instances), the available evidence

suggests that the reduction of empirical utility of the data due to microaggregation

is not significant for a wide range of values of k. Such effect is also noticeable in Fig.

3.18, where we plot accuracy vs distortion. Table 3.5 shows the reported values of

accuracy, as well as other metrics (F-measure and AuC), in greater detail.
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Figure 3.17: Degradation of the empirical utility (accuracy) of the Irish Census data set when
microaggregated for a wide range of k.
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Figure 3.18: Accuracy of the C4.5 machine learning model trained over the microaggregated Irish
Census data set, against the distortion due to MDAV.

Our experimental findings confirm that MDAV introduces sufficiently small levels

of perturbation in the quasi-identifiers, so that the statistical properties of the pub-

lished data can be preserved to a large extent, while satisfying a given k-anonymity

constraint. The upshot is that much of the empirical utility is retained within the mi-

croaggregated data. In fact, the results of our experiments suggest that such impact

is often minor, since microaggregation preserves machine-learned macrotrends. We

believe that the average operations performed by MDAV to find a centroid represen-

tative of k tuples are working as a noising removal filter that prevents the classifier

algorithm from adjusting to the existing noise in the data.

Interestingly, although not explicitly reported in these terms, previous work sur-

veyed in Section 2.3.2 appears to be consistent with our findings. For example, in [55],

where different algorithms based on generalization and suppression are compared, the

degradation in accuracy is certainly small in many cases. Other works in the literature

give some clues about a potential “constructive effect” of anonymization mechanisms.

In that sense, [53] mentions that anonymization might sometimes behave as a form

of feature selection or construction. Moreover, in [58], the authors conclude that a

selective anonymization may not be so destructive. Finally, although using a less
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Table 3.5: Different utility metrics for the Irish Census data set when microaggregated for a wide
range of k

k Accuracy F-Measure AuC

1 72.62 0.721 0.736

2 72.62 0.721 0.733

3 72.62 0.721 0.733

5 72.61 0.721 0.733

10 72.52 0.720 0.733

20 72.60 0.721 0.733

30 72.60 0.721 0.733

50 72.62 0.721 0.734

100 72.40 0.720 0.731

200 72.40 0.719 0.735

300 72.33 0.720 0.729

500 72.17 0.719 0.718

1000 71.58 0.710 0.729

2000 70.48 0.693 0.739

3000 68.04 0.675 0.703

conclusive argument, [56] states that, while making no changes to existing tools and

systems, significant utility can be extracted from anonymized data.

Testing a wide range of values of the privacy parameter helps to make visible the

overall effect of anonymization on data utility. Doing so also assists in noticing the

influence of other critical criteria such as the size of the data set and the absolute

upper and lower bounds of utility. As shown in our experimental results, the utility

of anonymized microdata, measured as classification accuracy, may not take values

strictly from 0 to 100%. The intrinsic statistical properties of released data would

already limit the capabilities of machine learning algorithms and, thus, the improve-

ments they get over baseline methods (e.g., always predicting the most frequent class

in the training set). Evidently, very little utility can be maintained after anonymiza-

tion if machine learning (classification) algorithms perform poorly, by default, with

respect to the baseline. Unfortunately, these considerations are not always made

when evaluating the performance of k-anonymous microaggregation or, in general, of

anonymization mechanisms.
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3.4 Conclusion

The experiments presented in this chapter have indicated, with some consistency, that

the impact of the de facto microaggregation standard (Maximum Distance to Average

Vector, MDAV) on the performance of machine learning algorithms is often minor to

negligible for a wide range of k, for a variety of classification algorithms and data sets.

Furthermore, experimental evidences have suggested that the traditional measure of

distortion in the community of microdata anonymization may be inappropriate for

evaluating the utility of microaggregated data.

With the advent of the Internet and the development of sophisticated data ana-

lytics, the availability of massive amounts of information has increased the demand

for data sharing. In the context of structured data, microdata are an invaluable

source of information for their potential to reveal patterns or macrotrends about the

population there represented.

Before these data can be made public or shared with external entities, data holders

must ensure individual privacy is safeguarded. Perturbing quasi-identifiers attributes

is the usual approach to prevent identity disclosure in microdata. Nonetheless, while

perturbation may prevent reidentification attacks, it may have a large impact on

data utility, particularly on the performance of machine-learning tasks. To cope with

it, several works have proposed adapting data-anonymization or machine-learning

algorithms to get more utility from anonymized data. We claim in this work, however,

that the default operation of some anonymization mechanisms may not affect data

utility significantly.

We have investigated in this chapter the high-utility SDC spectrum, implemented

by syntactic k-anonymous microaggregation, which has a direct application on the

health domain where utility is critical. Our experiments have shown, with some

consistency, that k-anonymous microaggregation implemented through MDAV does

not have a significant impact on machine-learned macrotrends for multiple data sets

and a wide range of machine-learning algorithms. Trying to consider the domain of

data in our evaluation, we not only tested different data sets but also multiple learning
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algorithms to extract the maximum utility from the data. Then, these algorithms were

selected to get the highest accuracy from each data set.

These excellent results on learning performance from microaggregated data de-

serve careful attention. As the lack of substantial degradation in classification accu-

racy for a generous range of microcell sizes k may be somewhat counterintuitive, we

conducted further verification on such remarkable finding. Specifically, we applied

the k-nearest neighbor algorithm (kNN) to the original, unperturbed data, in order

to verify our working hypothesis that clustering effectively acts as a form of averag-

ing and thus denoising. In our verification, k is the usual name for the parameter

governing the size of the cluster of the kNN algorithm, analogous to some extent to

the anonymity parameter.

We contend that a similar denoising effect, akin to averaging through clustering,

is the underlying cause of the striking utility of k-anonymous microaggregation. Con-

ceivably, for reasonable values of the anonymity parameter k, microaggregation should

not substantially devalue the process of inference of macrotrends carried out by the

machine learning algorithm. Moreover, high-utility microaggregation algorithms such

as MDAV may, in some cases, positively contribute to a more robust inference by de-

noising through clever clustering of demographically similar individuals. The benefit

of preprocessing data with unsupervised techniques based on clustering, prior to su-

pervised learning, is known in the machine-learning literature. The lack of substantial

degradation in classification performance due to k-anonymous microaggregation, and

the occasional slight improvement in utility, is a novel result of strategic importance

in the privacy arena.

Finally, these results provide confirmatory evidence that, while keeping a mono-

tonicity relationship with accuracy, the traditional utility metric of SDC (i.e., MSE)

is not an ideal metric to determine the impact on the utility of microaggregated data,

since there exists a non-specific non-linear dependence.



Chapter 4

Comparison of the impact of

different microaggregation

algorithms on the empirical utility

of data

4.1 Introduction

As we discussed in Sec. 2.1, currently, in the big data era, there are several incentives

to exploit data. In general, there is more data available, and better and cheaper

technology to take advantage of it, including, e.g., a lot of algorithms for machine

learning analytics. The potential benefits of these technologies are countless in several

fields such as healthcare, advertising, and even industrial engineering ([76–78]). Said

benefits entail important economic profits, so giant tech companies are leveraging data

as core assets ([79]) that are disclosed (exploited, shared or even sold) to maximize

profit.

Unfortunately, since personal information is inevitably involved in this data, such

incentives and tools to exploit data may easily imply abusing user privacy. Even

if direct identifier attributes such as full names are suppressed, the combination of

several non-direct identifier attributes (also known as quasi-identifiers) may still be
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used to re-identify an individual. If a sensitive attribute (e.g., gender, health status,

income) were disclosed, re-identification would enable an attacker to associate an

individual with such attribute, violating her privacy.

To mitigate such risk, the data needs to undergo first a process of anonymization,

which typically implies modifying the data. In this regard, statistical disclosure control

offers an interesting approach to protect individual privacy while preserving some of

the data utility.

Since the criteria posed by privacy models are invariably met by perturbing quasi-

identifiers to anonymize data, there is an impact on the data in terms of loss in

utility ([24]). However, said utility loss may vary according to the strategy followed

by the privacy mechanism, even when the privacy parameter is already met. If the

resulting data utility does not meet the requirements of the application domain (e.g.,

health) a different privacy parameter or mechanism should be used. Some of these

mechanisms include microaggregation, suppression, generalization and noise addition.

Being a high-utility approach that may be applicable for critical domains such as

health, our work is devoted to k-anonymous microaggregation. In Sec. 2.2 we have

described some of its foundations, and, in chapter 3, the de facto standard microag-

gregation algorithm (MDAV) was evaluated in terms of data utility degradation.

Although MDAV demonstrated to be a utility-preserving anonymization algorithm

to some extent, there are other algorithms following a similar microaggregation spirit.

Once agreeing, as discussed in Sec. 2.3 , on the relevance of metrics capturing the

practical utility of anonymized data, it would be interesting to assess the impact of

these privacy mechanisms on such utility. This would help unveil the strategies that

best preserve utility, but also whether or not standard metrics faithfully predict such

practical utility.

k-Anonymous microaggregation is typically implemented through different mech-

anisms. In this chapter, we evaluate the most relevant of such mechanisms [2, 26, 42]

in terms of the practical utility of the anonymized data.

Our evaluation aims to provide insight into those implementations by assessing

them in terms of the loss in classification accuracy of the machine-learned models

built from modified data. We employ non standard, but empirical utility metrics
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taken from machine learning, which is currently a very common application data

domain.

In our evaluation of such mechanisms, we aimed to identify the anonymization

parameters of each of them that may help preserve the macrotrends of the data. Our

extensive experiments found out that the efforts to preserve the statistical dependence

within quasi-identifiers and confidential attributes (such as in MDAV with statistical

dependence) may effectively attenuate the impact of microaggregation on the utility

of data.

Last but not least, for all the examined microaggregation algorithms, we also

investigated the capability of a standard distortion metric to predict the empirical

utility of anonymized data.

Chapter outline

The rest of this chapter is organized as follows. Section 4.2 reviews the k-anonymous

microaggregation algorithms evaluated here. Next, Sec. 4.3 describes the method-

ology followed to evaluate such impact. Section 4.4 shows the experimental results

obtained for a variety of microaggregation algorithms, data sets and machine-learn-

ing algorithms. Lastly, a brief discussion is presented in Sec. 4.5 and conclusions are

drawn in Sec. 4.6.

4.2 Background on k-anonymous microaggregation

algorithms

In this section we briefly describe some well-known microaggregation algorithms with

the aim of introducing the strategies followed to group and reconstruct microcells.

This will provide with some feedback for the evaluation performed in this chapter

that focuses on unveiling the utility preserving capabilities of k-anonymous microag-

gregation, but particularly on showing that some efforts to preserve the statistical

dependence within data would help to increase said empirical utility.
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In 2.2.4, we already referred to MDAV as the de facto standard for microaggrega-

tion of numerical microdata [29]. By systematically finding the furthest k-anonymous

cells within the data set, MDAV replaces each record with the centroid (average) of

its corresponding cell. It evolved from the multivariate fixed-size microaggregation

method and was proposed by [26]. MDAV provides an excellent heuristic method

for multivariate microaggregation [42] in terms of utility, measured both syntacti-

cally [42] and empirically [16], and in terms of computation complexity. Note that

MDAV generates cells of fixed size k and potentially a cell with size 2k − 1.

V-MDAV ([42]), follows a similar strategy to MDAV but enables the aggregation

process to generate variable-size cells. When k records are already aggregated, an

extension step may include more records to the cell being formed (up to a total

2k − 1) if they are “close enough” to this cell. The inclusion decision is defined by

a gain parameter γ that must be adjusted depending on the data set. It offers less

distortion for some data sets at a computational cost comparable to that of MDAV.

Unlike traditional k-anonymous microaggregation (e.g., through MDAV) where

only the values of quasi-identifiers X are considered when building microcells, mi-

croaggregation with preservation of statistical dependence (we call it MDAV

with SD) also includes confidential attributes ([2]) in the partition design. Thus, if a

confidential attribute Y has to be predicted, this approach would lead to a more ac-

curate prediction (e.g., classification) from perturbed quasi-identifiers X̂. To involve

both types of attributes, the authors propose designing a cell assignment function

that minimizes a multiobjective Lagrangian distortion function

D = (1− λ)DX + λDY

where DX is the traditional information loss term based on MSE, DY characterizes the

degradation in statistical dependence, captured through the non linear predictability

of Y from X, and λ controls the tradeoff between these two optimization objectives.

Finally, Mondrian, presented in [80], is a greedy algorithm that recursively par-

titions a microdata set in regions of at least k records, where a dimension (attribute)

and a value about which to partition have to be heuristically chosen in each iteration.

This is a microaggregation algorithm in the sense that it partitions a microdata set
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in variable-size cells, satisfying the k-anonymity criteria. The values of the quasi-

identifiers for each cell are reconstructed as non-overlapping intervals in which such

values are contained. Intuitively, such partitions are defined as hyperrectangles in the

multidimensional space of quasi-identifiers.

4.3 Methodology of Evaluation

4.3.1 Evaluation context

Our evaluation scenario is similar to that presented in Sec. 2.1.1, i.e., involves a mi-

crodata set whose quasi-identifiers are correlated with its corresponding confidential

attribute. Moreover, this information may have to be publicly released for research

purposes, so k-anonymous microaggregation is applied over quasi-identifiers to pro-

tect the privacy of data subjects. This is the standard attack model of the SDC

literature ([68]).

Accordingly, anonymized quasi-identifiers (here also input samples) would be pub-

lished along with untouched confidential attributes (also output labels) to feed a ma-

chine learning classifier, which is the enabler of the selected application domain of

data. The resulting models would allow external data analysts to build predictive

models on different testing data. Intuitively, the quality of the statistical trends em-

bedded in the resulting anonymized data would be undermined with respect to those

in the original data.

Although in chapter 3 we confirmed that MDAV offers interesting benefits in

terms of distortion and classification accuracy, additional variations exist, some even

incorporating utility improvements ([2]), which have not been assessed in this context.

Finally, the privacy metric we use is naturally k-anonymity since microaggregation

algorithms aim at guaranteeing such criteria. In addition, we also assume binary

classification as the application domain of data, so the utility metric is the accuracy

of the classification model built from anonymized data, as performed in [53, 55, 58].

Basically, accuracy quantifies the rate of correctly classified samples in a test set.



4.3 METHODOLOGY OF EVALUATION 57

Besides, we also use a complementary machine learning metric, F-measure, to confirm

our results in the next sections.

Thus, higher values of k, implying larger anonymous microcells, will offer more

privacy but, at some point, less utility.

4.3.2 Scenario setup

As can be grasped from the sections above, our experimental setup builds on the

algorithms for privacy protection and utility exploitation, the data sets used to assess

the impact of anonymization, and the steps taken to get the results.

Being MDAV the de facto microaggregation algorithm, we extend the study pre-

sented in chapter 3 by assessing not only MDAV but also V-MDAV ([42] and MDAV

with SD [2]). As explained in Sect. 4.2, both of them aim at increasing the data util-

ity preserved, measured from the distortion applied by these two variants of MDAV.

While V-MDAV proposes building larger microcells, when possible, to favor forming

more compacted clusters, MDAV with SD builds microcells capturing the statistical

dependence between quasi-identifiers and confidential attributes. Moreover, Mon-

drian ([80]) is also considered in our setup to corroborate the performance of micro-

aggregation algorithms, no matter the strategy used to build k-anonymous microcells.

Some of the implementation details of these algorithms and further references are in-

cluded in Sec. 4.3.1.

To measure the utility of microaggregated data, we use the machine learning

algorithms that obtain the best performance, in terms of classification accuracy, from

each of our data sets. Since the intrinsic nature of the data sets might vary, we

experimentally determine the best performer by testing a series of algorithms such as

boosted trees, logistic regression, Support Vector Machine, and k-nearest neighbor on

the original data. This way we more rigorously adapt our evaluation to the specific

utility context.

The data where microaggregation algorithms were assessed includes both real and

synthetic data sets. As in chapter 3, we look for data sets meeting two main re-

quirements: include demographic attributes and evidence a correlation between the
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quasi-identifiers and a confidential attribute. We briefly describe their characteris-

tics in Table 4.1. The first is the “Adult” data set ([71]), which is a standard when

assessing microaggregation algorithms. Although this data set has 15 attributes, for

our tests we use the six that contribute the most to the application domain; the

contribution of the rest for binary classification is null. We also tested the “Breast

Cancer Wisconsin” data set ([81]) and the “Heart disease” data set ([82]) that con-

tain medical data extensively used to evaluate binary classification tasks. Finally, we

created an elementary synthetic data set with three attributes mimicking two quasi-

identifiers and a binary confidential attribute; to do it, two groups of two-dimensional

quasi-identifiers are generated following two different, but overlapping, normal distri-

butions.

Table 4.1: Description of the Data sets Used to Evaluate the Impact of k-Anonymous microaggre-
gation.

Data set
# of

records

# of at-
tributes
used as
quasi-

identifiers

list of quasi-identifiers used (input)

confidential
attribute

(output label of
the data set in

ML terms)

Adult [71] 45,222 15
Age, education-num, marital-status, sex,
capital-gain, hours-per-week

Salary
(>50K?)

Breast Cancer
Wisconsin [81]

699 9

clump thickness, uniformity of cell size,
uniformity of cell shape, marginal
adhesion, single epithelial cell size, bare
nuclei, bland chromatin, normal nucleoli,
mitoses

class (be-
nign/malignant)

Heart Disease [82] 303 13

age, sex, chest pain type, trestbps, serum
cholestoral, fasting blood sugar, resting
electrocardiographic results, maximum
heart rate achieved, exercise induced
angina, ST depression induced by
exercise, the slope of the peak exercise ST
segment, number of major vessels (0-3)
colored by flourosopy, thal

diagnosis of heart
disease

Synthetic 1000 2 x1, x2 y

We employed Matlab 2018B to implement the aforementioned microaggregation

algorithms ([2, 27, 42]), except for Mondrian, as well as to deploy the evaluation of

perturbed data sets, and to process and plot results. Said evaluation implies load-

ing data, building machine learning models over it, and applying such models over

new data to measure classification accuracy, F-measure, and distortion. The imple-

mentation of Mondrian was written in Python and was taken from [83]. Since the
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reconstruction method applied by Mondrian returns intervals instead of single val-

ues for each microaggregated attribute, we adapted this reconstruction such that the

multidimensional hyperrectangles (microcells) were replaced by their corresponding

centroids. The exploratory analysis to define the best suitable classification algorithm

for each data set is performed with the Classification Learner application included in

Matlab 2018B and then the model training and evaluation were automatized using

specific embedded functions for each algorithm.

4.3.3 Methodology

The experimental methodology used to assess the performance of microaggrega-

tion algorithms in terms of resulting empirical utility is basically the same followed

in the previous chapter, which is particularly described in Sec. 3.2.4. Figure 4.1

synthesizes the main elements of such procedure.

First, the original data set is preprocessed through three steps. To start, since

MDAV based algorithms only work with numerical data, any categorical values for

quasi-identifiers are represented numerically (e.g., the values female and male for sex

are replaced with 1 and 0). Moreover, for validation purposes explained in the next

paragraphs, we split each data set in two sets: a training set and a test set such that

the former’s size is 3/4 of the data set. Afterwards, each column of the training set,

involving only quasi-identifiers, are normalized such that each column has zero mean

and unit variance. Note that normalization is useful to avoid the harmful impact on

microaggregation resulting from attributes having different ranges.

Once normalized, the microaggregation algorithm is fed with the training set for

data perturbation. Only in the case of MDAV with SD, confidential attributes are

also considered since this algorithm exploits the statistical dependence between quasi-

identifiers and confidential attributes. We use progressively increasing values of k to

then measure the utility degradation of data due to k-anonymous microaggregation.

Besides the generic privacy criteria k, other parameters are configured for some algo-

rithms.



60
CHAPTER 4. COMPARISON OF THE IMPACT OF DIFFERENT MICROAGGREGATION

ALGORITHMS ON THE EMPIRICAL UTILITY OF DATA

Preprocessing

microggregation

utility 
extraction

Evaluation

original data set

training set test set

microaggregated 
quasi-identifiers

classification 
model

Figure 4.1: Experimental methodology followed to assess k-anonymous microaggregation algorithms
in terms of the empirical utility preserved.
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V-MDAV requires a gain parameter γ that we set in 0.9 as set by [42]. Additionally,

MDAV with SD can be tuned by a λ parameter that regulates the tradeoff between

distortion of quasi-identifiers and distortion of confidential attributes; we test different

values of λ from 0 to 1 in order to get those showing the highest utility (maximum

utility trace).

Once quasi-identifiers are perturbed, we implement the utility extraction phase.

For this, we build a classification model using the microaggregated version of each

data set as input. The algorithms showing the best performance in terms of util-

ity are boosting trees and logistic regression, and the specific functions implemented

in Matlab 2018b are used for training using 5-fold cross validation. Finally, each

resulting classification model is evaluated over the test set originally extracted dur-

ing the preprocessing phase; then accuracy and F-Measure are obtained. Namely,

the machine-learned model built from microaggregated data is tested on a different

portion of original data.

4.4 Experimental Results

In this section, we present the results obtained from measuring the degradation of

empirical utility of microdata due to k-anonymous microaggregation. This implies

assessing the accuracy of machine learned models when trained over data microag-

gregated using an increasing value of k. Also distortion as MSE is measured in these

terms to validate its capability to estimate the practical utility of data.

Said two main results are depicted in two groups of figures for each data set:

one where accuracy and F-measure are shown and another where distortion is drawn

against accuracy to unveil their potential correlation.

Our first experiment builds on the UCI Adult data set. In this particular case,

we do not use the entire data set of more than 45 thousand records, but only 10% of

them, i.e., a random sample that preserves the prevalence of the output (confidential)

attribute. Suppressing potentially valuable data might reduce even more the data

utility after microaggregation, an effect that we are interested in studying.
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(a) Accuracy degradation

(b) F-measure degradation

Figure 4.2: Degradation of the empirical utility of the microaggregated “Adult” data set.
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Accordingly, we illustrate in Figure 4.2 how empirical utility is affected when

microaggregation is applied over the UCI Adult data set. As expected, data pertur-

bation eventually renders data useless, as shown by the decreasing trend in accuracy

as k gets higher values. Note that the lowest value in accuracy does not reach zero

since, in the worst case, when the data input (quasi-identifiers) is completely per-

turbed, machine learned models predict based only on the prevalence of classes in the

output data.

Despite this inevitable degradation in the long term, microaggregated data shows

high levels of utility even up to k = 50. Namely, for such values of k, accuracy easily

keeps greater than 80% for any of the four microaggregation algorithms evaluated.

Interestingly enough, in the case of the UCI Adult data set, this means that said

utility in terms of machine learning accuracy might be kept even when vast amounts

of data are suppressed.

Furthermore, from Fig. 4.2a, utility is remarkably preserved by MDAV with SD.

In fact, accuracy do not drop below 80%, even for k = 1000. Similar encouraging

results are obtained when measuring F-measure as illustrated in Fig. 4.2b. Besides,

we can see that the original MDAV is the second best performer in regards to practical

utility, at least up to k = 60. On the other hand, V-MDAV and Mondrian are the

worst performers, although for very few small values of k, V-MDAV gets the best

results.

When plotting the evolution of distortion as k is progressively increased, while

microaggregating the Adult data set, Fig. 4.3a confirms that MDAV with SD applies

less distortion (as measured through the combined metric proposed by [2]) than the

other algorithms. Original MDAV repeats as the second best performer, now in terms

of MSE, but Mondrian and V-MDAV seem to introduce more perturbation. In any

case, distortion grows exponentially so, according to this metric, data would render

useless very quickly. In fact, when k = 50, MDAV and MDAV with SD would have

injected more than 20% of distortion while Mondrian and V-MDAV more than 40%.

The utility metric obtained empirically may not go hand in hand with a more

syntactical measure based on MSE. This is confirmed in Fig. 4.3b where we plot

accuracy vs data distortion. The scatter plot shows that, although the distortion
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(a) Distortion measured for different values of k-anonymity.

(b) Representation of accuracy vs distortion

Figure 4.3: Distortion of the microaggregated “Adult” data set. The distortion corresponding to
MDAV with SD is measured according to the hybrid metric D proposed by [2] and presented in
2.2.6.
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increases, e.g. up to 0.5, the corresponding accuracy keeps more or less stable in 80%

for all the microaggregation algorithms. This implies that distortion, in general, is

not a good predictor of the practical utility of microaggregated data, at least in the

application domain here studied.

As described in Section 3.2.3, the results aforementioned are corroborated in ex-

periments with three more data sets. When testing the Breast Cancer Wisconsin

data set, the resilience of empirical data utility manifests again when k-anonymous

microaggregation is enforced. Once again, the benefits of MDAV with SD are evident

when outperforming the accuracy obtained by the rest of algorithms, as can be seen

in Figure 4.4. Beyond the clear superiority of MDAV with SD, it is not clear for this

data set which of the other algorithms performs the best in terms of accuracy.

Regarding the standard metric of utility (degradation), note in Figure 4.5a that

MDAV with SD also has the least distortion, that Mondrian performs the worst,

and that both MDAV and V-MDAV show a similar distortion trend. As with the

previous data set, the results of distortion hardly explain the practical utility of

microaggregated data because it can be seen in 4.5a that accuracy does not vary as

significantly as MSE when measuring the impact of microaggregation algorithms.

Figures 4.6, 4.7, 4.8, and 4.9 illustrate the results of assessing microaggregation

algorithms over the Heart Disease and synthetic data sets. For both of them, micro-

aggregation, in general, performs quite well in terms of practical utility (see Figures

4.6a and 4.8a) while distortion grows much faster (see Figs. 4.7a and 4.9a). In any

case, the original MDAV exhibits anonymized data with lower distortion and stable

accuracy, only improved by its statistically dependent variant, MDAV with SD.

We must note that in Fig. 4.7b, for values of distortion greater than 0.5 larger

values of distortion do correspond to lower accuracies, particularly when contrasting

with the results depicted in other figures. However, when distortion is lower than

0.5, accuracy is not degraded, so we feel that this behavior still fits our claim that

distortion is not a great predictor of the practical utility of microaggregated data.

Namely, accuracy is not degraded for this stretch of distortion increase. In any case,

each of the different processing techniques may definitely have a particular effect on

the intrinsic trends within a data set. Since we may not be able to model said trends,
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(a) Accuracy degradation

(b) F-measure degradation

Figure 4.4: Degradation of the empirical utility of the microaggregated “Breast Cancer Wisconsin”
data set.
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(a) Distortion measured for different values of k-anonymity.

(b) Representation of accuracy vs distortion

Figure 4.5: Distortion of the microaggregated “Breast Cancer Wisconsin” data set. The distortion
corresponding to MDAV with SD is measured according to the hybrid metric D proposed by [2] and
presented in 2.2.6.
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(a) Accuracy degradation

(b) F-measure degradation

Figure 4.6: Degradation of the empirical utility of the microaggregated “Heart Disease” data set.
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(a) Distortion measured for different values of k-anonymity.

(b) Representation of accuracy vs distortion

Figure 4.7: Distortion of the microaggregated “Heart Disease” data set. The distortion correspond-
ing to MDAV with SD is measured according to the hybrid metric D proposed by [2] and presented
in 2.2.6.



70
CHAPTER 4. COMPARISON OF THE IMPACT OF DIFFERENT MICROAGGREGATION

ALGORITHMS ON THE EMPIRICAL UTILITY OF DATA

(a) Accuracy degradation

(b) F-measure degradation

Figure 4.8: Degradation of the empirical utility of the microaggregated synthetic data set.
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(a) Distortion measured for different values of k-anonymity.

(b) Representation of accuracy vs distortion

Figure 4.9: Distortion of the microaggregated synthetic data set. The distortion corresponding to
MDAV with SD is measured according to the hybrid metric D proposed by [2] and presented in
2.2.6.
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we performed several tests on different data sets to estimate the general impact of

each protection approach.

Finally, V-MDAV and Mondrian show interesting results on these data: while the

former would spawn more distortion than the latter, V-MDAV apparently preserves

better the data utility when measured as accuracy of the resulting machine learning

model.

4.5 Discussion

Our systematic experimentation shows that k-anonymous microaggregation has a

benevolent, still destructive, effect on microdata in terms of its empirical utility,

which is measured as the accuracy of learning models built from such data. Namely,

while meeting a k-anonymity criteria, microaggregation preserves data utility even

for high values of k, as previously pointed out in chapter 3 for MDAV. This effect is

attributed to the averaging operations to find a centroid that would be denoising the

data, making it more resistant to perturbation.

In addition, although said averaging, inherent to microaggregation, might be even

convenient, the distortion metric based on MSE would measure it as utility degrada-

tion. In this sense, MSE is a pessimistic metric that, in general, is not able to predict

the practical utility of microaggregated data in this domain. As a matter of fact, not

even the combined distortion metric proposed by [2] for MDAV with SD is capable of

estimating such practical utility, despite its great performance in terms of accuracy.

The results obtained by MDAV with SD confirm that adapting privacy protec-

tion mechanisms to the intrinsic statistical properties of microdata and to the specific

application domain might open the door to interesting improvements in utility preser-

vation. This approach has not been addressed for microaggregation algorithms and

particularly for MDAV-based approaches, so there is an appealing avenue for future

work.
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The “positive” impact of anonymization algorithms is indirectly reported by previ-

ous work that accounts for, e.g., the reduced degradation of obfuscated data under cer-

tain conditions [55, 56], and the beneficial contribution to utility of some anonymiza-

tion techniques ([53]) that may act as feature selection mechanisms, particularly when

the protection strategy is selectively tailored to the application domain [58].

Accordingly, from the results depicted when representing accuracy vs distortion

along several experiments, we corroborated that distortion may not predict the prac-

tical utility of microaggregated data. Although minimum values of accuracy are

measured when having maximum values of data distortion and vice versa, as the

distortion increases, the accuracy metric does not vary in the same magnitude, even

when distortion takes values as high as 0.5. Namely, while a syntactic utility metric

indicates that microaggregated data is, e.g., 50% distorted, a more empirical utility

metric suggests that such data might be almost as useful as the original.

V-MDAV and Mondrian show, in general, a lower performance than the ones of

MDAV and MDAV with SD in terms of both distortion and accuracy. However, since

the strategies of V-MDAV and Mondrian operate on the internal distribution of the

microdata set, such results could vary according to the data set being microaggre-

gated.

Beyond the promising results, it is worth noting that our approach has inevitably

some limitations that arise, essentially, from the bounded evaluation context we have

defined . For instance, the application domain, where utility is empirically measured,

is binary classification. However, many other domains may exist where utility is

extracted differently.

Furthermore, a statistical dependence should exist between quasi-identifiers and

confidential attributes such that something can be learned and preserved when mi-

croaggregating. Evidently, if this is not the case, another utility metric should be

assessed.



74
CHAPTER 4. COMPARISON OF THE IMPACT OF DIFFERENT MICROAGGREGATION

ALGORITHMS ON THE EMPIRICAL UTILITY OF DATA

4.6 Conclusion

In this chapter, we have corroborated the intuition that further catching and process-

ing the statistical properties of microdata (e.g., the statistical dependence between

quasi-identifiers and confidential attributes) when building microaggregation algo-

rithms cause an additional slowdown in the degradation of empirical utility. This is

clearly evidenced by MDAV with SD through our extensive tests. Sadly, the hybrid

metric created to assess its performance is not a good enough predictor of the prac-

tical utility of microaggregated data as would be expected. However, high values of

distortion measured using such metric do suggest some correlation with metrics of

empirical utility.

Although Mondrian and V-MDAV consistently perform worse than MDAV and

MDAV with SD, the two former algorithms behave differently between each other in

terms of accuracy and MSE-based distortion. This would evidence the dependence

of their performance on the internal distribution of the data set, as claimed by their

creators. Such dependency calls again our attention to the need of considering the

application domain of data (size, exploitation mechanisms, distribution of tuples)

when designing or adapting privacy protection.

Finally, we confirmed in this chapter that k-anonymous microaggregation algo-

rithms are able to preserve much of the data utility while protecting the privacy

of each subject in groups of k individuals. Their clustering and averaging opera-

tions seem to contribute to filter, normalise, or consolidate the statistical information

within microdata, e.g., when exploiting data through machine learning applications.



Chapter 5

Preserving empirical utility of

microaggregated data through

LDA

5.1 Introduction

Modern technologies and massive access to them by billions of people have enabled

the generation of vast amounts of data. Also, more powerful and sophisticated infor-

mation systems are developed to exploit such data with the aim of getting unprece-

dented intelligence and personalization. The potential benefits of these technologies

are countless in several fields such as healthcare, advertising, and even industrial

engineering [76–78]. For most of such fields, more utility can be mined from data

to unveil qualitatively superior insight into challenges and opportunities that may

otherwise remain undiscovered [3, 4].

A compelling example of application where data utility is absolutely critical is,

undoubtedly, health and, particularly, precision or personalized medicine. In this

domain, a large data sample could reveal otherwise subtle patterns. To illustrate

this point, we recall a well-known medical experiment conducted in 1989, in which

a large number of participants in a study allowed practitioners to find out a slight

but clinically relevant effect of aspirin tablets in participants who had a myocardial

75
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infarction [4]. From a sample of 22, 071 individuals, the study found that heart

attacks were 0.77% less frequent when participants took an aspirin table every other

day, a phenomenon that would have been much harder to observe without such a

large sample.

Unfortunately, as explained in Sec. 2.1, exploitation of data encompasses serious

privacy risks when information is associated with individuals. Since abundant details

are usually collected about them, even after suppressing identifier attributes such as

full names, other, apparently innocuous, personal attributes (quasi-identifiers), could

still be used to re-identify an individual [23]. Thus, if a sensitive attribute were

disclosed along with other information, re-identification would enable an attacker to

associate an individual with such attribute, thus violating her privacy. But this risk

is exacerbated by the fact that data has become a core asset for companies [79], so

there is a great incentive to exploit, share, and even sell data to maximize profit.

We discussed in 2.2 that SDC is commonly used to tackle these privacy risks

when disclosing microdata files. SDC techniques build on perturbing quasi-identifier

attributes to de-identify records, a process also called anonymization. The privacy

models enforced through user data perturbation, e.g., k-anonymity [7, 11] or ε-differ-

ential privacy [12], are usually conditioned by a privacy parameter that defines an

upper bound on the re-identification risk.

k-anonymous microaggregation, as probed in chapters 3 and 4 is a high-utility

mechanism to protect privacy in microdata by obfuscating demographic attributes.

Carefully aggregating these attributes, a minimum level of distortion must be applied

to original data. In fact, on the last two chapters, we have found that k-anonymous

microaggregation is an excellent approach for applications requiring the preservation

of data utility [16].

Obfuscating data to protect privacy naturally affects its resulting utility [24].

This was briefly discussed in Sec. 2.3. Consequently, there is a trade-off that must be

addressed so that data exploitation keeps feasible and usable. In this line, the role of

SDC mechanisms is guaranteeing a given level of privacy while preserving (some of)

the utility of anonymized data.
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Also in Sec. 2.3 we addressed some ways to measure the impact of these mech-

anisms on the utility of data. In general, it has been commonly measured using

standard, but merely syntactical, metrics, such as mean-squared error (MSE). How-

ever, to capture the practical utility of anonymized data, other metrics related to its

application domain might be more relevant. Since a very common domain of appli-

cation is building machine learning models, accuracy or F-measure of these models

are reasonable metrics of empirical utility.

Aiming to find a balance among privacy and empirical utility, some research is

devoted, not only to design new less-“destructive” protection algorithms, but also to

“adapt” already existing algorithms that increase the resulting utility of anonymized

data. In this line, recent work is increasingly oriented to propose semantic (more

empirical) approaches to the preservation of data utility when protecting privacy

[84–86]. Part of this work was described in the two previous chapters.

Although utility is certainly the raison d’etre of our effort, another parameter key

to privacy protection usability is computational complexity. If protection mechanisms

cannot cope with the (sometimes real-time) requirements of modern applications, they

render unusable no matter how much utility is preserved. A few works have been

proposed recently in this direction [16, 17] and are presented in the next chapter.

In this chapter, we present and assess a strategy to preserve (empirical) utility

of data after a k-anonymous microaggregation algorithm is applied. By representing

original data in a new rotated and scaled domain, we adjust the implementation of

the microaggregation algorithm to the specific application domain of data, which in

this case is also binary classification. As a result, the error of the machine learning

model, when evaluated over new testing data, was reduced, at no cost, even for high

anonymity levels.

The anonymization method addressed in this work is computationally and func-

tionally efficient since the utility of data is preserved while the privacy level offered

by an underlying microaggregation algorithm is left intact, at no additional cost in

terms of running time.

Interestingly, data utility preservation at no (computational) cost could be a great

incentive to adopt privacy protection technologies. In fact, some big tech companies
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are turning their privacy stance into a huge competitive advantage. Thus, the compa-

nies that best adapt their operation to privacy requirements (preserving data utility

and algorithm usability) will be in better position to exploit such advantage. In this

context, these parameters could become a powerful value generator.

The work presented in this chapter is summarized in the next items.

• We develop a method to preserve empirical data utility when microaggregating

data. Namely, it is built on a practical metric derived from the application

domain of data which is binary classification in this case.

• This is done by leveraging on Linear Discriminant Analysis to find the direction

of maximum discrimination within data, which enables the microaggregation

mechanism to adapt its anonymization strategy to binary classification.

• This approach also involves weighting (by scaling) said discriminating direction

in such a way that distances in this direction are penalized when building k-

anonymous groups. The upshot is that k-anonymous microcells are grouped to

not overlap with the classification threshold.

• To give some intuition regarding our approach, we included in this work a

running example to illustrate the transformation applied to data for preserving

utility.

• We systematically evaluate this method on several data sets, both real and syn-

thetic, using different machine learning algorithms, and increasing anonymity

levels and scaling factors.

Chapter outline

The rest of this chapter is organized as follows. Sec. 5.2 formally presents the

proposed formulation of our privacy preserving approach, while Sec. 5.3 presents

the experimental analysis and outcomes of this strategy. Finally, conclusions are

drawn in Sec. 5.4.

The work presented in this chapter was accepted to be published in Elsevier

Engineering Applications of Artificial Intelligence [14].
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5.2 Application of LDA to k-anonymous microag-

gregation

To explain the concept of LDA and then illustrate its application to preserving data

utility while implementing k-anonymous microaggregation, we next introduce some

principles and notation that are explained later through a running example. This

example builds on a synthetic data set, generated according to the scenario and

parameters described below.

5.2.1 Introduction to the preservation of the utility of mi-

croaggregated data through LDA

Following the scenario stated in chapters 3 and 4, we use binary classification as

the application domain since machine learning is increasingly used to exploit data.

Namely, we assume that data requiring anonymization through microaggregation will

be further processed to extract a binary classification model.

However, k-anonymous microaggregation groups records (building cells) without

considering any application domain, so both privacy protection and data exploitation

might be naturally incompatible in terms of utility preservation. Thus, our aim is

to modify this aggregation process such that it adjusts to the binary classification

algorithm while privacy is still protected.

Binary classification, in general, obtains a threshold that enables classifying the

elements of a given set that, in our scenario, consists of multidimensional numeric

points. Since k-anonymous microaggregation groups such points in cells without

any particular shape or direction, it is likely that said threshold will split some of

the cells, implying that their corresponding centroids misrepresent their aggregated

points when obtaining a classification model. In order to address this issue that would

affect the resulting utility of data, we resort to LDA.

LDA [87, 88] is a method commonly used as a preprocessing step before implement-

ing machine learning classification. It aims at modeling the difference between classes

of data by projecting a data set onto a lower-dimensional space. To do this, loosely
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speaking, LDA looks for maximizing the distance (separability) among the data of

different classes (their means) while minimizing the variation within each class. Such

projection enables good class separability and even a reduction of computational costs

on classification tasks ([89]) .

LDA and Fisher’s linear discriminant technique ([88]) are often used interchange-

ably, but there is a subtle difference. On the one hand, with Fisher’s linear discrim-

inant, we seek to maximize the ratio between the determinants of the between-class

covariance and the within-class covariance. On the other hand, LDA fits a Gaussian

homoscedastic mixture to the generative model via maximum likelihood estimation.

The original linear discriminant was described for a 2-class problem, and it was gen-

eralized later for multiple classes. Both methods result in the same direction of best

discrimination for the corresponding class from the multivariate observation.

Interestingly, such direction of best discrimination can be used to tailor the mi-

croaggregation process such that microcells are built aligned to such direction by,

basically, a rotation. In addition, we propose a weighing step of the records. Both of

this building blocks (rotation and scaling/weighting) aim at increasing the separability

of the two classes embedded in data to facilitate the construction of utility-preserving

microcells. Namely, our approach would be implemented before applying the original

microaggregation process, as depicted in the scheme of Fig. 5.1.

In the next subsections we try to depict by example how this direction of best

discrimination is obtained.

LDA scalar
multiplication

rotation scalation microaggregation

original data anonymized 
data

Figure 5.1: Main building blocks of our proposal to preserve utility from microaggregated data.
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5.2.2 Integration of LDA into k-anonymous microaggrega-

tion

In this section we explain our proposed method in detail. We include a description on

the scope considered –in particular for data utility exploitation– and a step-by-step

illustration of the integration of LDA into k-anonymous microaggregation.

5.2.2.1 Scope and preliminary notation

As stated in Sec. 5.1, the scope of this work, in terms of data utility extraction (and

application domain of data), is binary classification. Thus, we next make a brief

description of the main elements of this scenario, the math connecting them, and the

notation that will be used along the rest of this section.

First, consider a population of patients whose attributes (e.g., height/weight) and

diabetes status are studied to build a model capable of detecting diabetes in new

individuals, based on said attributes, i.e., a binary classification problem.

Then, let x be a numeric random variable (r. v.) in Rn, i.e., an n-dimensional

vector representing these attributes for an individual. Also, let Y be a binary random

variable representing whether a patient has a diabetes condition (Y = 1) or not (Y =

0), i.e., a label. Let µ1 and µ0 be the mean vectors of the diabetic and non-diabetic

subpopulations, respectively, considering only their attributes. Accordingly, let Σ1

and Σ2 be the corresponding covariance matrices, and p the prevalence of diabetics

in this example. Finally, let

ΣW = (1− p)Σ0 + pΣ1

be the within-class covariance matrix associated to the two-class data mentioned

above. For single-class Fisher’s discriminant, there is no need to compute the between-

class matrix

ΣB = (1− p) p(µ1 − µ0) (µ1 − µ0)T .

Based on the previous definitions of x and Y , suppose a data set with n numerical

attributes, resembling n quasi-identifiers, and a binary label as the confidential at-

tribute. Besides, assume Y is to some extent predictable from the quasi-identifiers
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represented by x so the data set is useful in the realm of machine learning classifica-

tion. Accordingly, consider a generative model defined by

x|Y ∼ N (µ1, Σ)

x|Ȳ ∼ N (µ0, Σ), and

p

that builds a Gaussian homoscedastic mixture fit via machine learning estimation. Af-

ter characterizing a generic representation of the data on which our approach would

be applicable, below we describe the method for preserving its utility when microag-

gregated.

5.2.2.2 Data rotation and scaling

Our strategy for preserving data utility when microaggregating consists of building

microcells shaped in parallel to a discriminative direction and scaling data; all this

with the aim to increase the separability of numeric records when a learning model

is built. Accordingly, the following paragraphs describe the steps for finding such

direction and implementing scaling of data.

To discern between Y and Ȳ , we use a discriminative model defined by P(Y |x),

i.e., the probability a posteriori of the event Y . Recall that the corresponding Bayes

factor (BF)
P(x|Y )

P(x|Ȳ )

can be perfectly used as the discrimination function since it is a minimal sufficient

statistic for Y from x under this homoscedastic and multivariate Gaussian model.

If we obtain the natural logarithm of the BF (which can be seen as a unit change),

it can be finally expressed as a simple scalar product, i.e.,

ln BF =

〈
µ1 − µ0, x−

µ0 + µ1

2

〉
Σ−1

W

= (µ1 − µ0)T Σ−1
W

(
x− µ0 + µ1

2

)
.

We obtain a linear discriminant function whose direction of maximum discrimination

(given that ΣW is symmetric and applying some properties of the matrix multiplica-

tion) can be expressed as

U = Σ−1
W (µ1 − µ0).
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In general, for the multi-class Fisher’s discriminant, the compression matrix U con-

tains the orthonormal eigenvectors associated with the L − 1 largest eigenvalues of

Σ−1
W ΣB (regarded as the solution to a generalized eigenvalue problem), where L de-

notes the number of classes. The optimization criterion is

max
U

det(UTΣB U)

det(UTΣWU)
.

Rotation. LDA projects the data set (the part defined by x) on U , which de-

fines the direction on which the distance among the different classes of the data is

maximized while their variance is minimized. As a note, this direction can be more

efficiently calculated, e.g., in MATLAB, without resorting to the calculation of an

inverse matrix but by solving a system of linear equations.

Then, with full QR decomposition, we find an orthonormal base extension of U ,

V (an orthonormal base where one of the axes is U). This contains the normalized

Fisher’s discriminant direction. Next, the original attributes of the data set, which

are points in the Euclidean space, are represented in terms of the new axes defined

by V . Thus, we get the projection

x′ = V T x,

where x′ is a transformed version of the original attributes represented by x. The

first component of x′ is the linear combination of the original attributes that best

discriminate between the classes, while the rest can be considered less relevant.

Scaling. In line with the spirit of increasing the separability of two-class data,

we complement the application of LDA with another strategy. We propose weighting

the first transformed component, that is, first component of the LDA projection, by

a factor α ≥ 1. In this manner, distance and distortion calculations will penalize

the discrimination direction. Namely, we increase the distance among points in this

direction so that they can be more easily grouped into microcells that do not overlap

with the classification threshold. This scaling operation turns the new representation

of data into the product S V T x, for S = diag(α, 1, . . . , 1). Note that the scaling affects

the first rotated component only, and this scaling can be regarded as a multiplication

by a diagonal matrix. This product can be equally computed as (S V T )x or S (V T x),
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but if the data set to be transformed is very large, the former is much faster. Namely,

this scaling by S can be regarded as matrix multiplication and the rotation by V

can be associatively lumped into a transformation by a linear operator incorporating

both scaling and rotation, for efficiency.

In Fig. 5.2 we summarize the main building blocks of the theoretical analysis of

this proposal.
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Figure 5.2: Main building blocks and theoretical operations involved in our proposal for preserving
data utility. This can also be read as the particular experimentally methodology followed for its
implementation.

To graphically illustrate the wellness of our utility-preserving methods, we next

depict their application in a simple scenario. In Sec. 5.3 we assess them experimen-

tally using real data sets.

From the scenario and generative model proposed in Sec. 5.2.2.1, assume a toy syn-

thetic dataset of 1000 records, with two numerical quasi-identifiers (say, e.g., weight

and height) x1, x2, and a corresponding binary confidential attribute y for each indi-

vidual (e.g., diabetes status). For the sake of clarity, let us illustrate the distribution

of these quasi-identifiers in Fig. 5.3, where x1 and x2 are plotted as points in two

dimensions in the Cartesian plane. Evidently, the confidential attribute y is some-

what dependent on the contribution of the quasi-identifiers x1, x2, so a model can be

learned to predict the former one from the latter ones.

If k-anonymous microaggregation through MDAV is employed to protect the iden-

tity of data owners, these points are grouped in cells of size k as graphically depicted

in Fig. 5.4. As can be seen in this figure, microcells are built considering only relative

closeness among points, so they tend to be grouped more or less equidistantly from
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Figure 5.3: Depiction of the quasi-identifiers (x2 vs x1) of our toy synthetic data set. Samples are
colored according to their class, y; blue for y = 0 and red for y = 1. The direction defined by mean
points of both classes is the direction of maximum discrimination on which data will be projected
to maximize its separability.

Figure 5.4: Microcells of samples obtained by applying k-anonymous microaggregation with MDAV
on our toy synthetic data set (k = 100). Note how the single criteria to group points in clusters is
their relative closeness.
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a centroid. This produces “thick” groups with no particular orientation in any direc-

tion. Such thickness, and the omnidirectional distribution of cells, however, makes

them more prone to fall over the classification threshold; thus, their corresponding

centroids will likely misrepresent such points when a classification model is built. This

evidently may contribute to reducing data utility.

Finding a maximally discriminative direction over which this data can be repre-

sented, LDA seems to be a convenient technique for k-anonymous microaggregation

in terms of resulting empirical utility of anonymized data. In practice, LDA will

maximize separation of data of the two classes and the inherent distortion would be

weighted by an empirical parameter α. While in Fig. 5.3 we draw such direction,

defined by the mean points of both classes of data, in Fig. 5.5 we can see the LDA

projection of the data set on this direction. Said otherwise, data is rotated and scaled

in this direction.

Figure 5.5: LDA projection of our toy synthetic data set on the direction of maximum discrimination
x′1. Scaling is also applied with α = 2.

5.2.2.3 Brief discussion

Within this new representation of data, MDAV builds “thinner” microcells in the

direction of maximum discrimination. Namely, increasing the separability between

classes will enable MDAV to tailor the shape of resulting microcells to the intrinsic

classification threshold estimated by LDA. This new distribution of cells is illustrated

in Fig. 5.6 for our toy example. There we plot the microcells built from the original
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data set, following the microcell assignment obtained from microaggregating the LDA

projection of the data set.

Since the resulting cells are clearly distributed in parallel to the intrinsic classifi-

cation threshold gotten by LDA (Fig. 5.6), it is much less likely that such threshold

falls over multiple cells. Thus, very few centroids would misrepresent data when a

machine learning model is built from microaggregated data, preserving, in this way,

its utility.

Besides preserving data utility, our method does not involve any additional com-

putational complexity since the microaggregation process is not essentially changed

but the representation of data before being anonymized. Fortunately, rotating and

scaling data to change its representation are tasks performed once and does not en-

tail significant complexity with respect to that of the iterative and complex process

of microaggregation.

Figure 5.6: Microcells built in our original toy example by using the microcell assignment obtained
from microaggregating the LDA projection of the data set (k = 100). Note how microcells are
thinner in the direction of maximum discrimination, favoring the separation of the two classes by a
classification task.
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5.3 Experimental evaluation

In this section we aim at describing the general context of the evaluation of our

proposal on preserving the utility of anonymized data. For this, we describe the

scenario assumed, the evaluation criteria (privacy and utility metrics), the tools used,

and the phases implemented.

5.3.1 Evaluation scenario

The evaluation revolves around the standard attack model in the SDC literature ([68]).

To start, we assume a microdata set that needs to be released for research purposes.

This microdata set has quasi-identifiers and a single confidential attribute. In this

case, the utility of data lies in the statistical dependence among quasi-identifiers and a

confidential attribute (such a diagnosis). In particular, such dependence would derive

in a learning model to classify other individuals, e.g., as sick or healthy. In this data

mining context, quasi-identifier records used to build the model are input samples,

while the confidential records are output labels.

Besides, due to evident privacy concerns in this context, k-anonymous microag-

gregation is applied over quasi-identifiers to protect the privacy of data subjects.

Thus, instead of original data, anonymized quasi-identifiers along with untouched

confidential attributes are released. However, the utility of anonymized data would

be undermined since obfuscating quasi-identifier records will most likely affect the

quality of statistical trends embedded.

As mentioned in previous sections, to preserve such utility, we propose using LDA

and scaling on the data as part of the microaggregation process. To assess this

approach, we test it on several data sets and compare the resulting utility with that

of data anonymized only with MDAV.

5.3.2 Data sets

With respect to the data to assess our mechanism, we used essentially the same data

sets tested in chapter 4 including real and synthetic data sets. Namely, given the
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scenario proposed in this work, two main conditions were met when selecting data, in

particular for real data sets. First, we looked for microdata sets, i.e., data containing

demographic information about actual individuals, such that a privacy concern might

be involved. Second, we required data whose confidential attribute evidenced a clear

statistical dependence on its quasi-identifiers, since data utility is measured in terms of

the capability of a machine learning algorithm to exploit such dependence. Given the

last condition, standardized data sets that do now show such statistical characteristic

were excluded.

As in chapter 4, we used four data sets: three real and one synthetic. The first

one is “UCI Adult” data set [71], standardized in the evaluation of microaggregation

algorithms but, conveniently, also employed to assess machine learning algorithms.

The other two real data sets are “Breast Cancer Wisconsin” data set [81] and “Heart

disease” data set [82], both containing medical data extensively used to evaluate

binary classification tasks. Finally, we created an elementary synthetic data set with

three attributes mimicking two quasi-identifiers and a binary confidential attribute,

in the same way as the toy example illustrated in Sec. 5.2.2.2. Table 4.1 includes

greater details of these data sets.

5.3.3 Evaluation criteria

The privacy metric we use is k-anonymity since microaggregation algorithms aim at

guaranteeing such criteria. Higher values of k imply larger anonymous microcells, so

will offer more privacy to the subjects involved. Naturally, less utility is expected

from data anonymized with higher values of k.

As described in Sec. 5.1, our evaluation scenario assumes that binary classifica-

tion is the application domain of data. Thus, the corresponding utility metric here

employed is classification accuracy, i.e., the accuracy of the classification model built

from data, whether anonymized or not. Basically, accuracy quantifies the rate of

correctly classified samples in a test set.
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5.3.4 Algorithms and tools

In order to assess the effectiveness of our approach, we used some tools that we put

together and describe next. We refer to the algorithms used for privacy protection

and utility exploitation.

As expected, the privacy protection mechanism we use is MDAV, the de facto

microaggregation algorithm. Besides its benefits in terms of time complexity, it has

demonstrated to offer interesting results in terms of distortion and classification ac-

curacy.

As in chapter 3, to measure the utility of microaggregated data, we use the ma-

chine learning algorithms that obtain the best performance, in terms of classification

accuracy, from each of our data sets.These algorithms are boosting trees (Adult) and

logistic linear regression (for the rest).

Finally, all the tests whose results are here presented were implemented with

MATLAB 2018B. This includes loading and preprocessing data, the implementation

of MDAV [27], as well as the evaluation of the resulting utility of perturbed data sets.

This evaluation implies building machine learning models over data and applying such

models over new data to measure classification accuracy and F-measure; all of this

automatized using specific embedded functions for each algorithm. Greater detail is

given in the next subsection.

5.3.5 Methodology

Next we describe the experimental methodology we used to assess the effectiveness of

our (empirical) utility-preserving approach for k-anonymous microaggregation. Fig-

ure 5.7 synthesizes the flow of the evaluation procedure, while Fig. 5.2 illustrates the

specific methodology implemented for our utility-preserving strategy.

In general, our evaluation builds on determining whether the utility of microaggre-

gated data is preserved better when LDA is considered as part of the anonymization

process. In this scenario, two main steps are carried out: anonymization through

k-anonymous microaggregation, and utility extraction through the application of a

machine learning algorithm over anonymized data. Figure 5.7 illustrates the flow of
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these steps. To assess the benefits of our LDA-based approach, then, we measure the

performance of such algorithm when LDA is used and when not.

Note that some preprocessing on the data set was necessary: numerization of some

categorical values, split of data sets to get training and test sets, and zero-mean, unit-

variance normalization of quasi-identifiers.

preprocessing

LDA-based
microggregation

machine 
learning 

algorithm 

evaluation

original data set

training set test set

classification 
model

Figure 5.7: Main experimental methodology followed to implement our utility-preserving privacy
protection approach on top of MDAV-based k-anonymous microaggregation.

Once normalized, the microaggregation algorithm is fed with the training set for

data perturbation. We test progressively increasing values of k to then measure the

utility degradation of data due to k-anonymous microaggregation. Figure 5.2 shows

the specific process followed to obtain the anonymized data set from our approach

proposed here. To start, the quasi-identifier values of the training set are transformed

by projecting them through LDA and scaling them by a factor α. Then, the resulting

transformed data is microaggregated using MDAV. Finally, the microcell assignment

(a vector indicating the cell to which each record belongs) from the last step is applied

on the original data to obtain the microaggregated data set, as depicted in Fig. 5.2.
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With respect to the scaling, we made several tests varying the factor α from 1

(no scaling) to 64. Then, when presenting the results, we drew the corresponding

maximum trace, i.e., the highest accuracy and F-measure values reached for each

value of k.

After the anonymization phase, we implement the utility extraction phase. This

is implemented following the same methodology described in Sec. 4.3.3. Namely,

we build a classification model from microaggregated data. Specific functions imple-

mented in MATLAB 2018b are used for training using 5-fold cross validation. Finally,

each resulting model is evaluated over the test set; then accuracy and F-Measure are

obtained.

5.3.6 Experimental results

In this section, we describe the results of assessing the performance of our LDA-

based k-anonymous microaggregation in terms of utility preservation. To this end,

we present here a series of figures where such performance was compared with that of

MDAV. As previously explained, since we addressed the empirical utility of data, the

metrics used were accuracy and F-measure of machine learned models when trained

over data microaggregated, using an increasing value of k.

To start, we assessed our approach on UCI Adult data set. In this case, we do not

use all the records but a sample of 10% of them, looking for reducing even more the

data utility after microaggregation. To keep the structure of the original data set,

we took a random sample that preserves the prevalence of the output (confidential)

attribute. By reducing the baseline utility, we thought we could better visualize the

effects of data utility preservation.

In Fig. 5.8 we depict the results of empirical utility extracted from the UCI Adult

data set after applying k-anonymous microaggregation. Note that, as expected, the

values of both metrics show a decreasing trend as the value of k increases: the impact

of anonymization eventually renders data useless.

However, as depicted in Fig. 5.8, despite the inevitable degradation, the improve-

ment, both in terms of accuracy and F-measure, is not only clear but significant in
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some cases when using MDAV with LDA. For example, when k = 50, the accuracy

of the machine learning model goes from 81.8% to 83.9%, i.e., the error is reduced

from 16.1% to 13.2%, which is a relative reduction of 18%. In the general, curves

of utility look more stable when LDA and scaling are introduced, which implies that

utility gets preserved even with relatively high values of k.

As described in Sec. 5.2, the results aforementioned are corroborated in experi-

ments with three more data sets. When testing Breast Cancer Wisconsin data set,

the benefits of MDAV with LDA are again evident. Also in this case, for some val-

ues of k, the reduction is significant. Figure 5.9 illustrates this in terms of accuracy

and F-measure. Although the results of our method are better than those of “plain”

MDAV, they do not seem as good as those obtained with the UCI Adult data set.

There are several reasons that justify this behavior. Different data sets might natu-

rally involve different macrotrends whose quality, in terms of utility, could also vary

depending even on the amount of data. In addition, learning models built from the

Breast Cancer Wisconsin data set show a maximum reachable accuracy of about 97%

(i.e., very high), while it is about 80% for UCI Adult. Thus, we suspect that, when

the room for improvement is greater, it is more likely that higher increases in accuracy

can be reached.

Figures 5.10 and 5.11 illustrate the results of assessing microaggregation algo-

rithms over Heart Disease and synthetic data sets, respectively. For this two data

sets, we confirm that MDAV with LDA achieves its goal of preserving utility of mi-

croaggregated data sets better than with MDAV. Once more we verify the benefits

of our proposed mechanism but also the difficulty to do so given that MDAV already

offer a privacy preserving approach.

Even though experimenting over real data sets might be enough for validation

purposes, we use a synthetic data set with the aim to validate the results obtained

over real data.

As a last note, classical distortion metrics based on MSE does not make sense in

this study since the transformation based on LDA does not modify distances among

points. In the case of scaling points are indeed separated in the direction of maximum
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MDAV
MDAV with LDA

(a) Accuracy

(b) F-measure

Figure 5.8: Empirical utility extracted from the UCI Adult dataset, microaggregated with original
MDAV (blue) and with LDA-based MDAV (orange). Both in terms of accuracy and F-measure,
LDA-based MDAV preserves better the utility of anonymized data.
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MDAV
MDAV with LDA

(a) Accuracy

(b) F-measure

Figure 5.9: Empirical utility extracted from the Breast Cancer Wisconsin dataset, microaggregated
with original MDAV (blue) and with LDA-based MDAV (orange). Both in terms of accuracy and
F-measure, LDA-based MDAV seems to preserve better the utility of anonymized data.
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(a) Accuracy

(b) F-measure

Figure 5.10: Empirical utility extracted from the Heart disease dataset, microaggregated with origi-
nal MDAV (blue) and with LDA-based MDAV (orange). Both in terms of accuracy and F-measure,
LDA-based MDAV preserves better the utility of anonymized data.
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(a) Accuracy

(b) F-measure

Figure 5.11: Degradation of the empirical utility for the synthetic data set.
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discrimination, so it is even possible that the resulting distortion in this context is

even greater than 1 although the empirical results are improved.

The results obtained by our method are encouraging in that they show a consistent

and, in some cases, significant preservation of data utility for microaggregated data.

We would like to make some points below about this matter.

First, although MDAV with LDA behaves consistently better, in terms of data

utility, than classical MDAV, the increase in utility may depend on the data set at

hand, particularly on the information it can contribute to a learning model to improve

its performance. Little could be done if machine learning algorithms cannot obtain

practical accurate models from data even before applying privacy protection methods.

Second, in practice, our proposal does not imply any modification of the iterative

process performed by MDAV. Given that our method modifies the representation of

data before being microaggregated, the resulting computation complexity remains

invariable. This detail is important because, in times when the world revolves around

big data, processing time quickly becomes a bottleneck with respect to the poten-

tial applications of large-scale databases. Moreover, domains as critical as health,

vehicular traffic, or network intrusion detection are currently using tons of data to

help computational systems make real-time, and even life-or-death decisions. Due to

such demanding requirements, privacy issues related to data processing are commonly

overshadowed. Thus, from the perspective of privacy, we feel that any improvement

in preserving data utility without a price in (computing) efficiency is not negligible

and some works are currently being purposed in this direction [15, 17]. In fact, the

next chapter presents a proposal addressing this particular issue.

Finally, we would like to point out that, since this strategy resorts to changing

the representation of data –although not necessarily its semantics–, conventional,

syntactic, utility metrics such as distortion (measured as MSE) would be hardly

applicable in this context. This fact gradually characterized syntactic metrics as less

meaningful in practical, real-word applications.
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5.4 Conclusion

Our method successfully preserves the empirical utility of data when microaggregated

through MDAV. This is done by transforming quasi-identifier values in such a way

that, after microaggregated, the resulting k-anonymous cells enable the construction

of a more effective machine learning classifier.

Graphically illustrated, our proposal gets “thinner” microcells in the direction of

maximum discrimination, obtaining a distribution of cells and reconstruction that

better preserve the statistical properties on microaggregated data. Linear Discrimi-

nant Analysis and scaling were applied to find this direction and to weight the inherent

distortion by an empirical parameter α.

In terms of accuracy and F-measure of resulting machine learning models, LDA ap-

plied to MDAV outperforms the classical implementation of MDAV. Although MDAV

is by default benign when affecting the statistics within data, our approach success-

fully preserves the utility of data after microaggregation. This is confirmed trough

systematic experimentation over synthetic and real data sets.

Conveniently, this benefit comes at no cost, e.g., in terms of running time, as

other utility preserving proposals do ([90]). Thus, our approach is both function-

ally and computationally effective. Furthermore, ours is the first application of LDA

to the domain of statistical disclosure control, applying a substantial and non triv-

ial modification of any microaggregation algorithm, although here is assessed with

MDAV.



Chapter 6

Computational improvements for

microaggregating large-scale data

sets

6.1 Introduction

As we discussed in Sec. 2.1, big data is bringing new, unprecedented business op-

portunities to companies around the world. Currently, it is possible to collect and

process vast amounts of information from which more, new, better and varied cus-

tomer knowledge is mined. As a result, better decisions can be made in sectors like

health care, banking, marketing and transportation [91–93].

Despite these benefits, within such an abundance of data, it is common to find

personal sensitive information, which poses serious privacy risks. First, in the name of

this data revolution, information is more prone to be openly published or shared with

untrusted third parties. Also, although identifiers are typically suppressed, other

demographic attributes, when combined, can be used to reidentify individuals [8,

9, 23]. Thus, sensitive attributes might be easily linked to the subjects to whom

the disclosed information corresponds, which might lead to privacy risks [10]. This

scenario was described in Sec. 2.1.1.

100
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Statistical disclosure control aims at addressing these privacy issues in the special

case of microdata files. As stated in Sec. 2.2.1, the goal of SDC is to reduce the risk

of sensitive data disclosure while preserving the internal macro trends of data, i.e.,

its utility. Along this work, we have concentrated on k-anonymous microaggregation

and particularly on MDAV as a high-utility privacy protection algorithm.

By carefully aggregating microdata attributes, a minimum level of distortion must

be applied to data. Unfortunately, current microaggregation algorithms entail a very

high computational cost when anonymizing big data [90]. Thus, since utility extrac-

tion from big data is a priority, and already time consuming, privacy protection might

be easily neglected. That is why some works are starting to propose strategies to re-

duce the running time of privacy enhancing mechanisms while preserving the utility

of data.

In this chapter, we propose an avenues for improving the performance of MDAV,

in terms of computational time. The fundamental aim of such improvement is to

facilitate the implementation of privacy protection in big data.

The proposal allows obtaining remarkable reductions in running time by dimin-

ishing the number of operations necessary to aggregate data with MDAV, all of this

without yielding any additional loss in data utility.

This effort is interesting since the reduction of the computational cost of privacy

protection algorithms may encourage its implementation, especially when computa-

tion usually entails important economic costs for companies exploiting big data.

Furthermore, due to the massification of Internet access, the vast amounts of data

containing personal information may grow and change very dynamically, commonly

feeding online services. Then, microaggregation, in this context, is likely to be im-

plemented as an ongoing process, running as fast as possible, rather than as a static

one-time job. In fact, if data is sufficiently vast, microaggregating it once could be

unfeasible in practice for some, e.g., real-time, applications due to the quadratic com-

plexity of MDAV, so optimizing its running time in the big data era seems mandatory.

Interestingly, in this context, increasing the efficiency of privacy protection mech-

anisms (e.g., reducing their runtime) could become a powerful value generator for

companies implementing privacy.
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The work presented in this chapter was published in [15].

Chapter outline

Section 6.2 describes the adaptations applied to MDAV in order to reduce its running

time while leaving untouched the resulting utility of data. Section 6.3 presents the

results of experimental evaluation. Finally, conclusions are drawn in Sec. 6.4.

6.2 Strategies for speeding up MDAV

Our first effort towards speeding up k-anonymous microaggregation lies in analyzing

the microaggregation algorithm, i.e., in finding the components subject to be acceler-

ated, and devise the mechanisms and algebraic properties that could implement such

improvements.

As described in Sec 2.2.4, MDAV creates partitions or microcells from a data set

by aggregating neighboring records. Since MDAV operates with numerical attributes,

each record is seen as anm-dimensional point (xs ∈ Rm) in the Euclidean space, being

m the number of attributes of the data set. Note that the microaggregation process

iteratively extracts pairs of cells while 2k points or more in the data set remain to

be assigned. First, a centroid C is calculated as the average of the remaining points.

Then, from C, two points P and Q are found from the data set, which serve as

references to obtain the neighboring points of each of the two new microcells: one

formed by P with its k − 1 nearest points and another by Q with its k − 1 nearest

points. P is obtained as the furthest point from C (the maximum distance to average

vector) and Q as the furthest point from P.

The previous description reveals a set of mathematical operations over the records

of the data set. These operations mainly involve centroids calculation, distances cal-

culation, and sorting. Since these operations are used repetitively and executed over

a vast number of tuples, there is an interesting chance for improvement in the overall

performance of MDAV. Next, we describe in detail the improvements we propose on

these operations; Table 6.1 summarizes the MDAV tasks improved in this work, the



6.2 STRATEGIES FOR SPEEDING UP MDAV 103

respective strategy followed, and gives a brief description of each one. We call the

new version of MDAV as Fast MDAV or F-MDAV. In Sec. 6.3, we show the benefits

of these strategies through extensive experimentation.

Table 6.1: Summary of computational improvements for MDAV

10 Ana Rodríguez-Hoyos et al.

(total sorting) and then obtaining the first ones, i.e., the shortest, which come to
belong to the points closest to the centroid.

Interestingly, in the case of MDAV, total sorting is not strictly necessary because
the k− 1 shortest distances to the centroid could directly be chosen, without having
to sort them all first, in a process called partial sorting or selection. In the realm
of computer science, total sorting is extensively implemented through the quicksort
algorithm while partial sorting through the quickselect algorithm. The computational
complexity of the sorting task when using quickselect may be significantly reduced
from O(nlog n) to O(n) on the average case, since choosing a limited group of the
smallest distances is certainly an easier problem than sorting all the distances.

Our proposal in this paper is evidently to resort to the use of an implementation
of partial sorting (e.g., quickselect) in MDAV when the phase of microcell assignment
is performed.

Table 1 Summary of computational improvements for MDAV

MDAV task Improvement
strategy Description

Distance
calculation

Algebraic
modification,
precomputing

We propose using a property of the inner 
product to calculate and compare distances 
so that less operations are needed for 
microaggregation. Being these algebraic 
operations, their implementation is usually 
even optimized in multiple computing 
libraries.

Sorting Use partial sorting
(or selection)

Since MDAV does not strictly require total
order when finding the k− 1 shortest points to
a reference, a more relaxed version called
partial sorting can help MDAV save
computing resources.

Assignment of
microcell

Reuse of distance
calculations

Given that much of the running time of
MDAV is devoted to calculating distances
among the tuples of a data set and a reference
point (to obtain its shortest and furthest
points), such distances could be precomputed
and then reused to prevent redundant
operations.

Centroid
calculation

Precomputation
and reuse of
calculations

We propose modifying the calculation of 
centroids in MDAV so that redundant 
addition operations are eliminated.

All calculations in
general

Use less precision
in the calculations

Since MDAV operations may not require much 
precision to build microcells, we propose 
changing the numerical representation to 
single precision so that less bits be processed, 
thus implying a reduction in MDAV’s running 
time.

3.4 Centroid by Subtraction

MDAV builds on another critical operation, centroid calculation (line 2 of Algorithm
A). At each iteration of MDAV, a centroid C is obtained to then serve as a reference
in the construction of two microcells (line 3 of Algorithm A). Every time a couple of
microcells are created, their corresponding microaggregated tuples are removed (line

6.2.1 Algebraic improvement

From line 3 of Algorithm 1, we can devise that much of the MDAV runtime is intended

to calculate distances in three moments: when finding the furthest point P from

centroid C, when finding the furthest point Q from P, and when obtaining the k − 1

nearest points from P and from Q to build two microcells.

The fact that distances between the (in some cases the same) points of a data set

are continuously calculated turns each iteration very redundant. The computation
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complexity of MDAV, then, derives from such redundancy, which we tackle through

this improvement.

Since MDAV considers each record of the data set as an m-dimensional point in

the Euclidean space, a distance Dj between a reference point x0 (which is C, P and

Q, depending on the moment) and a collection of points xj for j ∈ {1, . . . , n} is

calculated as a quadratic Euclidean distance, i.e.,

Dj = ‖xj − x0‖2 .

Then, to get Dj, for each m-dimensional point xj, an element by element sub-

traction (m operations) and a square norm (2m− 1 operations) must be calculated.

That is, a total of 3m− 1 operations for each point of the data set.

To reduce the resulting runtime, we consider finding an analogous expression to

calculate Dj such that less operations are performed. In this case, we harness the

polarization identity of the inner product to put the expression of Dj in terms of the

inner product of xj and x0. So we expand the last expression such that

‖xj − x0‖2 = ‖xj‖2 + ‖x0‖2 − 2 〈xj, x0〉 .

If both sides of the last equation are subtracted ‖x0‖2 and multiplied by 1/2, we

obtain
1

2

(
‖xj − x0‖2 − ‖x0‖2

)
=

1

2
‖xj‖2 − 〈xj, x0〉 .

Although the expressions on both sides of the equation no longer represent the

real value of Dj, they are a metric still useful to compare distances since they were

summed and multiplied by a constant. Thus, when the calculation of distances in

MDAV is used to determine the furthest point from a fixed point x0, we can safely

use the right part of the last expression for comparison issues.

Conveniently, for each compared point xs, the value of 1
2
‖xj‖2 can be precomputed

once before MDAV is initiated, out of the redundant process, and avoiding significant

recalculation in every iteration of MDAV. Thus, in this case, the distance comparison

is reduced to the calculation of the inner product 〈xj, x0〉, which consists in an element

by element multiplication, i.e., m operations, and a sum of the resulting m terms,
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i.e., m− 1 operations, for each point xj. For this representation of distances, we have

a grand total of 2m− 1 operations.

By analytically operating on an expression, we get less operations than the original

expression of distance Ds. More precisely, the number of operations is reduced from

3m − 1 to 2m − 1 for each distance calculation where m is the number of quasi-

identifiers of each record in the data set.

Not only the number of operations is reduced, but they are algebraic in nature,

and that is something for which much of the current code is optimized (e.g., in Matlab

or the C standard library). Consequently, it is reasonable that Matlab uses vector-

ized code or more efficient CPU instructions, that is, advanced vector instructions

(AVX) through the Intel math kernel library (MKL). In fact, there are instructions

that compute an accumulated sum and a product, designed for the efficient computa-

tion of vector and matrix products, called multiply-accumulate operations and fused

multiply-add (FMA), which are included in certain Intel processors (e.g., Haskell). In-

terestingly, if FMA were implemented, our proposal would lead to reduce the number

of operations here analyzed to m.

In Fig. 6.1, we summarize the analysis carried out in the last paragraphs. Finally,

this improvement lends itself to the implementation of MDAV in graphics processing

units (GPU).
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Figure 6.1: Representation of the distance calculation performed for each m-dimensional point xj
when k-anonymous microcells are built. We can see that our approach Fast MDAV is able to reduce
the number of operations from 3m− 1 to 2m− 1 for each of these n records. Furthermore, since the
inner product 〈xj , x0〉 is subject to optimization if FMA is used, the number of operations could be
even reduced to m.
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6.2.2 Distance reuse

The high utility offered by MDAV comes from smartly grouping the closest points

into microcells. As already pointed out, this process certainly involves several steps

where distances need to be calculated. In this section we concentrate on steps 3 and

4 of Algorithm 1 with the aim of reducing the runtime of MDAV.

We can see that, when aggregating a microcell, given a reference point P, two

distance-calculation operations are performed. First, to find the k− 1 nearest points

to P necessary to form a microcell, the distances from all points to P have to be

calculated previously. Afterwards, the furthest point Q from P is needed to serve as

a reference for building a new microcell; this also entails calculating distances to P.

Evidently, for both steps, the calculations of distances to P can be calculated once

and reused. Here, our proposal is using the distances from every point xs to P both

to find the points nearest to P and to find the furthest point from P.

6.2.3 Partial sorting

Sorting is another time-consuming operation within the original version of MDAV. It

is recurrently implemented, e.g., to find the points closest to a given centroid in order

to establish the most appropriate members for each microaggregated cell, as posed in

line 4 of Algorithm 1.

Finding the points closest to a centroid C implies sorting all the distances from

those points to C upwards (total sorting) and then getting the first ones, i.e., the

shortest ones. Interestingly, in the case of MDAV, such total sorting is not necessary

because only the k − 1 nearest points are required. In fact, their corresponding

distances to the centroid do not even need to be ordered. Finding the k smallest

elements implies a more relaxed sorting approach called partial sorting or partial

selection.

In computer science, total sorting is extensively implemented through the quick-

sort algorithm [94] while partial sorting through the quickselect algorithm [95]. The

computational complexity of the sorting task when using quickselect may be signif-

icantly reduced, since it finds the kth smallest number in an unordered list, which
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does not require total order. This relaxation makes quickselect’s problem a much

easier one.

As expected, our proposal is to resort to the use of an implementation of par-

tial sorting (e.g., quickselect) in MDAV when the phase of microcell assignment is

performed.

Quickselect is a selection algorithm by which a single element, the kth smallest,

is found from a list. Its approach starts by randomly selecting a pivot element that

will partition the elements in two; the elements smaller than the pivot on the left

and the larger ones on the right. Then, this same approach is recursively imple-

mented only into the side where the element being searched lies up until a single

element is obtained. On the other hand, total sorting implemented through quicksort

applies the aforementioned approach on both branches, which significantly increases

the computational cost. Figure 6.2 offers a brief scheme of the extensive reduction of

computation complexity when using quickselect instead of quicksort.

By using quickselect, the average complexity of the operations in question is re-

duced from O(n log n) to O(n) on the average case. This is very convenient for a

context such as big data where millions of records may have to be processed.
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Figure 6.2: Brief depiction of the recursive steps carried out for the quickselect algorithm. To
find the kth element from an unordered list, quickselect starts by randomly choosing a pivot that
partitions the list into two parts: the left one with the elements smaller than the pivot and the right
one with the elements larger than the pivot. This process is is applied again only on the part where
the searched element lies. Finally, all this operation is recursively executed up until the kth smallest
element is found. The gray blocks represent the part of the data where the algorithm is not executed
(unlike quicksort), thus significantly reducing redundancy.
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6.2.4 Centroid by subtraction

MDAV builds on another critical operation, centroid calculation (line 2 of Algorithm

1). At each iteration of MDAV, a centroid C is obtained to then serve as a reference

in the construction of two microcells (line 3 of Algorithm 1). Every time a couple of

microcells are created, their corresponding microaggregated tuples are removed from

a stack (line 5 of Algorithm 1) and a new centroid is calculated using the remaining

tuples, to build other two microcells. A centroid is calculated, at the beginning of

every iteration, by averaging the remaining tuples, which simply consists in adding

up all these tuples and dividing by the number of tuples. However, in this iterative

process, several tuples of the data set get added again and again multiple times, which

definitely results in redundant work and thus running time that can be saved.

In order to accelerate the execution of MDAV, we can modify the calculation of

centroids so that the redundant operations of sum are eliminated. To this end, we

propose to calculate centroids “by subtraction”. Accordingly, we first calculate the

sum S =
∑n

j=1 xj of all the tuples of the data set (x1, . . . , xn). Moreover, we keep

track of the tuples being aggregated by adding them up in S ′ as soon as they are

assigned a microcell. Conveniently, subtracting S ′ from S has the same effect as

obtaining the sum of all the tuples not already aggregated for each iteration so said

subtraction can be used to calculate centroids as Cs = S−S′
ns

. The benefit evidently

lays in that unnecessary adding operations are not done. Finally, note that initially

precomputing the sum of all the tuples of the data set does not represent significant

complexity since it is only done once.

6.2.5 Single precision

In computer hardware, numerical data is represented with a number of bits that define

the precision of calculations. These options include single precision, where 32 bits are

used, and double precision, which uses 64 bits.

Due to the higher computing capabilities of modern hardware, most of the al-

gorithms are implemented using double precision as a standard. However, if single

precision could be implemented, we could speedup the execution of such algorithms
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since less bits would have to be processed. Consequently, given that the standard ver-

sion of MDAV performs a series of mathematical operations over numerical values, we

propose to use single precision for them in order to accelerate the microaggregation

process.

This is the only modification that might imply a change in the results of the calcu-

lations performed by MDAV. Notwithstanding, since this algorithm might not require

extremely precise operations (in terms of the number of decimal points considered),

we expect no significant changes in the structure of microcells obtained with respect

to the original version of MDAV, but a faster k-anonymous microaggregation.

6.2.6 Prepartitioning

Prepartitioning, or dividing data into multiple chunks, is a known mechanism to en-

able, e.g., the distribution, among various instances, of the computing load necessary

to process such data. Since the execution time t of k-anonymous microaggregation

is super linear (t = n2

k
), thus super additive, this “divide and conquer” strategy is

appropriate for reducing such execution time.

As explained in [17], the strategy consists in two steps: first, dividing the data set

in big macrocells of size K (macroaggregation) through MDAV; and, second, applying

MDAV to each of the resulting macrocells to obtain microcells of size k that satisfy

k-anonymity. The execution time of microaggregation, after applying this strategy,

is subject to be optimized based on the size K of macrocells.

The speedup reached by prepartitioning can be improved if the strategy is applied

recursively. The resulting execution time may have a quasilinear form, but at a price

to pay in terms of data distortion.

Although this approach is out of the scope of this chapter, we described it here for

the sake of illustration of the potential avenues of improvement for the acceleration

of microaggegation.
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6.3 Experimental evaluation

In this section, we evaluate the efficiency of the proposed computational enhancements

to MDAV. The objective of evaluation through experimentation of our approach is

mainly to determine its impact on microdata. As mentioned in previous sections,

such impact can be measured in terms of the algorithm’s speedup and the resulting

data distortion (although in this particular case it is unlikely to occur) spawned by

F-MDAV. Another objective is finding out whether such effect is independent of the

data set employed.

We conducted this evaluation across two dimensions: speedup and performance.

Speedup was measured as time gain, while performance was measured as the addi-

tional distortion incurred by the adapted versions of MDAV. However, since most

of the proposed modifications do not change the internal operations of the algo-

rithm, there was no additional distortion in the data and thus we mainly focused

on measuring speedup. Below, we describe the experimental setup and our results

from systematic tests over a variety of data sets. Such results are depicted for each

enhancement and data set in Figs. 6.3, 6.4, and 6.5, while the overall speedup is

illustrated in 6.8.

The evaluation of the computational performance of our methods was conducted

with three standardized data sets. These real data sets included “Large Census”,

“Quant Forest” and “USA House”, which were previously used in [17, 96]. The “Large

Census” data set has 149,642 records and includes 13 numerical attributes; “Quant

Forest” has 581,012 records, from which we use a random sample of 150,000 records,

and 10 numerical attributes. The “USA House” data set has 5,967,303 records and

13 numerical attributes. We used the “Large Census” data set since it is extensively

employed in SDC, whereas “Quant Forest” and “USA House” data sets were used to

validate the results obtained in “Large Census”. For our study, all attributes were

considered to be quasi-identifiers.

The experiments described in this section were run in an Intel Core i7 CPU 3.4

GHz with 32 GB RAM. The microaggregation algorithm MDAV, its adapted versions,
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and the measurement tests were implemented entirely in Matlab R2017b, where, for

the sake of fairness, we disabled any form of parallelization.

In general, all versions of MDAV were parameterized with k = 10, which im-

plies a reasonable level of privacy without incurring a significant distortion of data.

Moreover, before microaggregation was applied, we followed the common practice of

normalizing each column of the data set to have zero mean and unit variance.

To find the speedup obtained by our improvements, we measured the running

time of MDAV before [27] and after implementing our refinements. Our reference

MDAV is once again the algorithm specified in Algorithm 1. We refer to it as tra-

ditional MDAV. Furthermore, the modifications proposed in this work were applied

to MDAV individually, with the aim of measuring their separate contribution to the

speed of the microaggregation algorithm. Also, to show the combined effect of the

five improvements, we implemented them in a version of the algorithm we called Fast

MDAV.

Our experiments relied on a speedup to show how faster MDAV may become due to

the proposed computational improvements. Let t0 be the running time of traditional

MDAV and t the running time of any improved version of MDAV (including fast

MDAV). Essentially, the speedup factor s = t0
t

tells us how fast this version is with

respect to traditional MDAV. For instance, consider t0 = 15; if, after adapting the

algorithm, its running time were reduced to t = 5, we would have gotten a speedup

factor of s = 3×, i.e., an MDAV that is 3 times faster.

Regarding our experimental methodology, we have a few final remarks. First, we

assessed MDAV over a varying number of records n with the aim of verifying the

impact of our methods when the size of the data is increased. Thus, from each data

set, we extracted portions of data of varied sizes (different values of n). For each

value of n, the running time we measured was the averaged time that it took MDAV

to microaggregate n records. To that end, for every data set, we systematically

obtained 3 random samples of n records each and then averaged the corresponding

running times of MDAV. The running times for every improvement were registered

and then compared with the time of traditional MDAV through the aforementioned

speedup factor s.
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The results of our computational strategies are presented in 4 bar charts; the first

3 illustrate, for each tested data set, the speedup factor obtained by every method.

Although we experimented with several lengths, for the sake of visibility, the results

are shown only for 3 representative values of n (10,000, 70,0000 and 150,000). In

the same line, the last bar chart exhibited the speedup factor reached by the fast

MDAV, i.e., when all the improvements were consolidated within the same MDAV

implementation. Although in essence the modifications we propose to MDAV do not

imply a change in the numerical results of its internal operations, we verified whether

or not each improvement leads to a variation of the built microcells or an increased

distortion with respect to traditional MDAV.

In the following subsections, we depict and explain the results of our experiments.

Algebraic improvement

As already explained in Sec. 6.2.1, this method reduces the number of operations

needed to calculate distances by taking advantage of a property of the inner product.

Remarkably, numerical libraries are usually optimized for these algebraic operations.

Consequently, the results of our experiments show a significant speedup of MDAV

that could reach a factor of 1.54×. This is depicted in Figs. 6.3, 6.4, and 6.5, for

the three data sets we use, over which a homogeneous computational improvement is

revealed.

Figure 6.3: Speedup factor (s) of each of the five proposed improvements, i.e., when applied indi-
vidually on the Large Census data set.
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Figure 6.4: Speedup factor (s) of each of the five proposed improvements, i.e., when applied indi-
vidually on the Quant Forest data set.

Figure 6.5: Speedup factor (s) of each of the five proposed improvements, i.e., when applied indi-
vidually on the USA House data set.
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Along with the partial sorting improvement, this algebraic strategy presents the

best performance in terms of running time. In addition, the results of the cell assign-

ment function c(j) and the resulting distortion of this new version of MDAV remain

unchanged with respect to traditional MDAV.

Distance reuse

Given the recurrence of distance calculations in MDAV, its running time can be

reduced by precomputing some of such distances as theoretically explained in Sec.

6.2.2. Accordingly, after testing this improvement, when using the experimental

setup described in this section, we observe a speedup factor between 1.14 and 1.31×.

This execution performance is illustrated in Figs. 6.3, 6.4, 6.5 for the three data sets

previously mentioned.

Once again, implementing this distance reuse does not reflect any variation neither

in the structure of the microcells obtained nor in the distortion imposed to the data

sets.

Partial sorting

As described in Sec. 6.2.3, the impact of sorting operations on the running time of

MDAV could be reduced by using partial sorting, given its lower complexity with

respect to total sorting. To illustrate the potential improvements due to partial

sorting, we first performed an experiment in Matlab comparing two applications of

both problems. Although not explicitly stated in the documentation, it is reasonable

to assume that the functions sort and mink of Matlab R2017b implement variants of

quicksort (total sorting) and quickselect (partial sorting) algorithms, respectively. In

fact, this experiment confirms that these functions follow the behavior of quicksort

and quickselect in terms of computational complexity.

For this initial test, we did not only measure how long sort and mink take to

execute over a list of random generated numerical values, but we tried to mimic the

sorting operations performed by MDAV through a few simple steps: sorting real-

valued numbers and allocating and returning the indices of sorted values. It turned
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that returning indices noticeably slowed down the execution of sorting functions for

short lengths. Moreover, when necessary, we preallocated outputs to exclude the time

for memory allocation from our measurements. Particularly for the function sort, we

also considered the time of trimming off the shortest values from the list.

The test involved more than 300 experiments, each of which consisted in measuring

the time it takes to obtain the k shortest values from a randomly generated list of

length n. This process, along with the considerations of the last paragraph, emulated

the role of sorting within MDAV. To evaluate the benefits of partial sorting over total

sorting, we obtained the running times when using mink and sort functions to find

the shortest values; we tested their performance for several values of n, which ranged

from 10 to 10 million, and for k = {5, 10, 20, 50}.

For the sake of reliability, we measured the running times for several repetitions

in each experiment. Then, we computed the mean, as an estimate of average perfor-

mance. Also, while the length of the data used was the same for every experiment,

the values of the list were randomly sampled for every repetition. After a one-hour

experiment, we found that our measurements were extremely reliable: the worst co-

efficient of variation, calculated as the standard deviation divided by the mean, was

observed to be 1.63%.

Figure 6.6 shows how our experiments took longer (the running time t gets higher)

as the length n of the list increases. We used double logarithmic scales since we had

very wide ranges of values for n and t, and thus extremely low and high values

may appear. We can see that the running time for mink grows lineally with n,

regardless of the value of k used, in line with the complexity O(n) of the quickselect

algorithm; this is important evidence that mink would be implementing a variant

of this algorithm. For sort, the corresponding running times are certainly higher.

However, the magnitude of the difference with respect to mink is not very clear.

For that reason, we depicted in Fig. 6.7 the running time per element t
n

for every

experiment. Using a semilogarithmic scale, this figure does show that mink (partial

sorting) is much more efficient than sort (total sorting) since while for mink the

running time per element was constant, said time grows logarithmically with n for
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sort. As a reference, we also plotted the running time of the function min that

retrieved only the lowest value from each list.

Figure 6.6: Running time of different variants of sorting implemented in Matlab R2017b. Extensive
testing was performed for several values of n (number of elements in the sorted list) and k (here
representing the number of elements to be selected and sorted from the list, when partial sorting
was tested). For the sake of clarity, double logarithmic scales were used.

Finally, to estimate the speedup of microaggregation due partial sorting, we ran

the experiments according to the setup proposed at the beginning of Sec. 6.3, but

using a version of MDAV that relied on the function mink for microcell assignment.

We then compared the resulting running times with those of traditional MDAV that

used sort by default.

As expected, partial sorting introduced interesting computational improvements.

In fact, a speedup factor of almost 2× was reached for the Large Census data set

when n = 150, 000, as depicted in Fig. 6.2. However, the degree of improvement was

not uniform for the three data sets, as it is shown in Fig. 6.4 and Fig. 6.5 for the

partial sorting method where the maximum speedup factor did not attain 1.5×. This
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Figure 6.7: Running time of different variants of sorting implemented in Matlab R2017b. Here, we
depict the time taken per element t

n (t is the time taken to sort a list of n elements) to have a clearer
illustration of the remarkable performance of partial sorting implementations compared to those of
total sorting. Again k represents the number of elements to be selected and sorted from the list in
the case of partial sorting. Briefly, the running time of partial sorting remained constant for large
values of n, while for total sorting time grew logarithmically. Also, for clarity, a semilogarithmic
scale was used.
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seems reasonable since the complexity of the variants of sorting may depend on the

intrinsic structure of the data.

Centroid by subtraction

It is clear from Sec. 6.2.4 that the operations for the calculation of centroids in

MDAV are subject to redundancy since the tuples of a microdata set have to be

added recurrently to find a representative mean. Our centroid by subtraction strategy,

which uses precomputing and subtraction, obtained a speedup factor of up to 1.15×
as shown in Figs. 6.3, 6.4 and 6.5. Although performance gain was more moderate for

MDAV, it was still important, considering that its implementation does not represent

any additional cost in terms of distortion.

Single precision

Being MDAV an algorithm whose calculations may not require extreme precision, our

last method is based on using single precision for the corresponding mathematical

operations. Strikingly, this modification allowed a computational improvement that

was even better than that of centroid by subtraction, i.e., a speedup factor of up to

1.35×, as depicted in Figs. 6.3, 6.4, 6.5, for our three data sets.

As anticipated in Sec. 6.2.4, the results from using this strategy showed a slight

variation in the structure of the microcells built by MDAV. However, the resulting

distortion remained unchanged.

Fast MDAV

Our last series of experiments analyzed the case when all proposed modifications

were combined in a single version of the microaggregation algorithm, Fast MDAV.

The tests showed remarkable results, as reflected in Fig. 6.8. We confirmed that fast

MDAV was up to 4 times faster than the original version and that, as expected, no

additional distortion was introduced in the three microaggregated data sets.
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Figure 6.8: Overall speedup factor s of our fast MDAV obtained over the three data sets. The five
strategies are consolidated in a single version and it is tested for several values of n. Due to space
considerations, only the results of tests for n = 10 000, 70 000, 150 000 are depicted in this figure.

Information loss with F-MDAV

As mentioned when describing each computational improvement, the rationale be-

hind the work presented in this subsection was simplifying redundant operations

when implementing MDAV. Such simplification was based on finding alternate al-

gebraic expressions, reusing and precomputing (repetitive) calculations, adapting a

more relaxed sorting strategy, and even using less precise calculations.

When single precision is used for calculations, there was a risk of obtaining a

structure of microcells different from that of MDAV. However, microaggregation did

not require extremely precise calculations since those were used only for comparing

distances between points. Namely, in practice, our proposal did not imply any modi-

fication of the resulting k-anonymous groups built by MDAV, so there might not be a

price in distortion. As a matter of fact, we verified that microcell allocation remains

invariable after F-MDAV is implemented. Consequently, our strategies did not incur

in additional distortion or information loss with respect to that provoked by original

MDAV.
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6.4 Conclusions

In this chapter we have addressed the problem of computational complexity of k-

anonymous microaggregation for large data sets with a substantial amount of nu-

merical records. This effort striven to obtain a more usable privacy mechanism in

contexts brought by the current big data era.

We proposed an approach with five algorithmic and algebraic strategies that re-

duced the running time of MDAV by a factor of 4, without affecting the resulting

utility of data.

This approach mainly spanned the reuse of calculations, precomputing, algebraic

modifications, and a relaxed approach of sorting; all of them were implemented in

the main tasks performed by the maximum distance to average vector algorithm,

e.g., distance calculation, sorting, assignment of microcell, and centroid calculation.

These strategies focused on the most repetitive operations, e.g., distance calculation

and sorting, lead to the highest performance.

A not negligible detail about these strategies is that can be combined with that

of other proposals without additional distortion. Naturally, said effect enables an in-

teresting opportunity for capitalizing on several of the efficiency approaches proposed

for microaggregation and, particularly for MDAV. Interestingly, these computational

improvements can also be combined with the functional (data utility) improvements

introduced by other works where microaggregation is involved [63, 97, 98].



Chapter 7

Anonymizing cybersecurity data in

critical infrastructures

7.1 Introduction

Although all the work presented in previous chapters is devoted to k-anonymous

microaggregation (in particular MDAV) and its implications on data utility and us-

ability, here we address a different anonymization approach that we used as part of

our participation in the CIPSEC European Project [13].

A different scenario was tackled where unstructured and non-numeric data needs

to be protected in terms of privacy. In particular, we refer to the security logs gener-

ated by critical infrastructures. This context poses specific challenges to the adoption

of privacy technologies, including, e.g., practical issues related to their implementa-

tion.

Critical infrastructures (CIs) are either physical or virtual systems whose opera-

tion directly supports the functioning of a society. In fact, given the wide reach of

critical infrastructures, even small problems on their operation could have a massive

impact on a vast population [99]. Besides their reach, CIs are tightly coupled with

sensitive areas such as health, telecommunications or economy, which are strategic

for a country, so their interruption might imply severe affectation for citizens [99].

121
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We are talking about the infrastructure of hospitals, transportation, oil and energy

distribution, banking, environment monitoring, etc. Since these services are essential

to the security, prosperity, and social welfare of the population, their corresponding

CIs must not stop working and are usually managed by governments.

Given the importance of CIs, their information systems are usually strongly pro-

tected against intrusions, mainly against those coming from the Internet. Currently,

the resources available for such protection involve “intelligent” cybersecurity solutions

that “learn” how attackers behave and ultimately detect and stop future incidents.

To do so, these solutions are fueled with so called logs, i.e., detailed information about

past events, which are stored as records describing every security incident. Further-

more, logs from multiple sources are commonly shared among several devices and

then aggregated so that more input information can improve the efficiency of pro-

tection . Aiming to ensure the continuity of their services, CIs have widely adopted

such protection mechanisms that generate very detailed and vast information about

the entities and interactions involved in security incidents.

Although more granular logs provide more intelligent security protection in CIs,

inappropriate sharing of sensitive data may rise serious privacy concerns. Cybersecu-

rity logs could include identifying attributes (IP addresses, user names, fingerprints,

etc.), strategic information of companies, e.g., about vulnerabilities, software versions,

and several other indicators (path names, user data) that, when disclosed, could easily

be used to violate the privacy of the individuals or companies involved. The risk for

privacy in this context is not only exacerbated by the increasing need of security ser-

vices to aggregate shared cybersecurity data to get improved protection mechanisms,

but also by the large number of data items enclosed in cybersecurity logs.

Beyond the security they require to protect their information systems, CIs are

more exposed to external attacks than conventional infrastructures due to a number of

factors. First, since CIs commonly serve a large population, they are desired targets of

attackers who aim at magnifying the impact of their offensive [100, 101]. Also, dealing

with strategic processes and information, CIs are usually the target of high-level

adversaries supported by powerful organizations and even governments [102, 103].

These factors aggravate even more the effects of information leakage to the point
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that, e.g., the mere revealing of internal IP addresses or user names might imply

severe risks for the integrity of such infrastructures. Interestingly then, the privacy

of companies and individuals whose information is revealed in logs may have a direct

impact on the security of CIs.

In this chapter, we present an effort to preserve the privacy of individuals and

organizations in the context of the CIPSEC framework, and particularly in what

involves the sharing of cybersecurity information. The EU project CIPSEC proposes

a unified security framework to orchestrate state-of-the-art heterogeneous, diverse,

security products aiming to offer high levels of cybersecurity protection. To do so,

this framework is able to collect and process security-related data (logs, reports,

events) so as to generate security anomaly alerts that can affect a CI health and that

can have cascading effects on other CI systems. Our proposal includes a methodology

and a tool (data privacy tool, DPT) for obfuscating sensitive data from cybersecurity

logs to protect the privacy of the involved entities and individuals.

Namely, our DTP will modify sensitive data with the aim of sanitizing or cleaning

it from too distinctive attributes. This involves applying several anonymization mech-

anisms to cybersecurity logs (suppression, generalization, pseudonymization) whose

implementation will depend on the specific anonymized attributes.

The work presented in this chapter was published in [104].

7.2 The CIPSEC framework

7.2.1 CIPSEC objectives

The main objective of the EU project CIPSEC is to create a unified security frame-

work that orchestrates state-of-the-art heterogeneous, diverse security tools and offers

high levels of cybersecurity protection in IT & OT Critical infrastructure environ-

ments. The framework is currently built to collect and process security-related data

(logs, reports, events) so as to generate alerts for security incidents that can affect

the integrity of a CI together with the potential cascading effect affecting other parts

of the CI or event other CIs. The framework aims to be very flexible, adaptable and
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causing minimum interference to the normal operations of the CI, allowing for its

easy updating when needed in a secure and easy manner.

The CIPSEC framework is capable of collecting events supported by different tools

that monitor different aspects of the CI, such as network traffic, malware threats or

wireless spectrum among others. Along with the operations for collecting events there

is also a reasoning capability based on correlation algorithms that generate alerts for

the anomalies detected in the events collected. Additionally, the CIPSEC framework

provides with additional services, transverse to the CI monitoring activity, which

complements the activities carried out:

• vulnerability tests and recommendations, including cascading effect attacks;

which allows to have a snapshot of the level of protection against cyber threats

exploiting current vulnerabilities of the assets within a CI ;

• security information sharing, leveraging the report of security incidents either

across the infrastructure or to the rest of the world, in order to, for instance,

prevent incidents propagation;

• training services, assisting on the usage of the framework and on different char-

acteristics of security management aspects, allowing for an easy training of

security staff in the context of the CIPSEC framework;

• updating and patching mechanisms, with the purpose of having a unified view

of the status of all the monitoring tools deployed in the infrastructure and

giving the possibility to automatically update them, guaranteeing the timely

protection against the latest security threats.

The CIPSEC framework was being validated in real environments using the infrastruc-

ture of three pilots that covers different domains: rail transportation, environmental

monitoring and health sector.



7.2 THE CIPSEC FRAMEWORK 125

7.2.2 CIPSEC architecture

For the sake of flexibility, the CIPSEC framework was designed to be independent

from the underlying critical infrastructure (i.e., independent from the resources man-

aged or the security requirements). The reference architecture of CIPSEC was con-

ceived based on the flow of the data managed within a CI, or, said otherwise, was

designed to be infrastructure-agnostic by design. With this aim, the architecture is

defined according to the life cycle of the security data (logs, events, reports) acquired,

disseminated and consumed in CIs.

Data Acquisition refers to the process of collecting or storing the information

(logs, events) generated by end devices devoted to secure the integrity of CIs. Thus,

there are multiple sources of this data, e.g., intrusion detection systems.

Data Dissemination covers the transmission of the acquired security informa-

tion to the components that will further process it. The dissemination of this data is

usually performed in real-time describing the multiple processes carrying out in a CI,

so that they can be monitored and controlled. In the context of CIPSEC, the infor-

mation disseminated encompasses security data related to events, alarms, updates,

etc.

Data Consumption concerns the processing of the acquired security information

after being disseminated to the relevant consumers (e.g., incident correlators). Such

information is processed and interpreted to fuel several assessment tools that enable

users to make informed decisions.

Figure 7.1 depicts the architecture of the CIPSEC framework based on a group

of layers that follow the flow of security data described above. This illustration also

shows how the security data travels from the CI to a user interface so that the system

admin can take appropriate decisions based in the processing activities carried out

by the framework, such as enforcing mitigations or applying contingency plans.

The acquisition layer obtains a lot of information directly from the CI components

dedicated such as vulnerability assessment, identity access management, integrity

management, endpoint detection and response, and cryptography. The information

collected is aggregated and processed by a component called anomaly detection rea-

soner that triggers security alerts depending on the patterns devised in security data.
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Figure 7.1: CIPSEC Reference Architecture for protecting of critical infrastructures.
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The data processing layer is on top of the acquisition layer and involves two main

components: the DPT and the forensics service. While the forensic service filters and

analyzes indicators potentially useful for forensic analysis, the DPT aims at preserv-

ing privacy in the security data coming from the CI and at storing such sanitized

data in a different database for sharing purposes. This component is the one whose

implementation we present in this chapter.

The presentation layer aggregates the information produced by the underlying

layers through a dashboard that offers a user interface where statistics and evolution

indicators are presented to illustrate the security status of the whole CI. Such interface

provides with an aggregated and uniform view of this status to the user in order to

facilitate decision-making processes.

Finally, other complementary services are also provided by the architecture in

order to guarantee the support to end users, the compliance with the CIPSEC frame-

work, and the continuity of the services.

7.3 Data privacy tool

7.3.1 Background on cybersecurity logs and privacy protec-

tion mechanisms

Logs are pieces of information that sequentially register the events affecting a system;

therefore, when seen aggregated, they constitute evidence of the system behavior.

Said diagnosis is fundamental to scrutinize and then fix a given issue, even more

in the cybersecurity realm where thousands of attackers are permanently generating

incidents that threaten the integrity of critical systems connected to the Internet.

Usually, logs contain a lot of granular information on a related event, starting

with a time stamp. Cybersecurity logs may include, e.g., IP addresses, process IDs,

hardware information and event descriptions.This information is stored in text files

formatted to guarantee its agile reading and processing. For instance, two formats

extensively used to store logs are XML and JSON. Both have interesting features

based on labels to present information as name-value pairs, e.g., “ID: 123456” or
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“Alarm type: critical”. Namely, the attributes or information elements of a log are

organized using a name (or label) of the attribute and its corresponding value (the

raw data). This way of representing information in logs significantly facilitates further

selection and replacement (transform) of sensitive attributes.

Roughly speaking, protecting said information against privacy threats builds on

these two operations: selection of sensitive attributes in the logs and transformation

of corresponding values to a more private version. This is more deeply described

in this document, where our proposal is presented. Although the definition of said

operations depend on the context (sharing policies, organization concerns, etc.), the

modern ways to structure logs are decreasing the complexity of performing these

operations of selection (search) and transform (replace).

First, to protect privacy, sensitive attributes (the target) must be defined and then

detected in logs. In practice, this task consists in searching for specific information in

plain text. Given the vast log data that cybersecurity systems could generate, such

searching for specific items might be daunting if it is expected to be done manually

by a human operator. Fortunately, technology can now be used to automatize the

detection of this type of attributes. Moreover, the most common logging formats are

based on labeling every single piece of information contained in the log. Thus, once

the sensitive attribute (or its label) is defined, it is not difficult to retrieve it from

the logs along with its value. If the data within logs were not appropriately format-

ted, sensitive information should be located by looking for specific syntax patterns

that such information present in logs. For instance, if IP addresses were considered

as sensitive information, the privacy protecting approach could start detecting IP

addresses in logs by resorting to its unambiguous syntax. Then, searching for a pat-

tern of four numbers separated by dots would eventually lead the system to find said

IP addresses. Regular expressions are powerful constructions that can be used to

represent and search such patterns.

After finding the attribute in cybersecurity logs, it has to be protected to pre-

serve the privacy of involved companies or individuals. This implies modifying or

transforming the value of the attribute to obfuscate any sensitive information there

contained. This task is also referred to as sanitization in the sense that it “cleans”
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data from too distinctive attributes. To do so, some anonymization or sanitization

mechanisms are commonly implemented. These mechanisms are described in the

following lines.

Suppression is the simplest strategy to protect privacy in this context. It consists

in completely eliminating sensitive information, which can be interpreted as replacing

it for a blank or any meaningless string. This implies that no trace of said sensitive

data is left which may directly affect the utility of the logs.

Generalization is rather a less destructive anonymization approach. It builds

on replacing sensitive information with more general but still meaningful data. For

instance, if the sensitive piece of data is the IP address 192.168.1.1, a generalized

version would be 192.168.0.0. In contrast with suppression, generalization could keep

some utility from the data in log records, depending on the deep of generalization

attained.

Pseudonymization is a mechanism that consists in replacing identifying infor-

mation by artificial identifiers, also called pseudonymous. Since said pseudonymous

would be used instead of the original identifier, each time the latter appears, it is pos-

sible in practice to recover the original information from its pseudonymized version.

Also, if such identifiers are only used for identifying purposes, pseudonymizing them

would not affect the utility of information.

As briefly described, the resulting utility of cybersecurity logs may be more or less

affected depending on the anonymization mechanism used to protect privacy.

7.3.2 Privacy risks from disclosing cybersecurity logs

In general, logs contain a lot of information since they are aimed at describing the

state of a system at a given point in time. Further, an aggregated set of logs should

enable an administrator to have a general view of the performance of said system. In

particular, the specific amount of data items (we call them attributes) present in a log

record will depend on the level of granularity set in the logging service. Interestingly,

some equipment, e.g., networking devices, allow to be configured with such high levels

of granularity that manufacturers explicitly warn about the risk of saturating storage
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or processing resources. Thus, logs could become extremely detailed pieces of data

describing a system where companies and individuals are involved.

Cybersecurity logs might include very sensitive data since they are commonly

associated with vulnerabilities and security threats. If that information fell into the

wrong hands, it could cause severe damage to the data owners. Besides, the level

of granularity of security logs is usually higher to afterwards enable the detection of

security breaches (which use to be provoked by undercover interactions), so more and

more attributes are included in logs to improve protection to the same extent. As

a consequence, the potential leakage of this information implies serious privacy risks

for the entities involved, not only due to the weaknesses that such logs could reveal

to attackers, but also due to the increased detail of the information.

Ironically, the risk of leaking this information does not necessarily come from de-

liberate attacker intrusions to steal it, but from the voluntary release of such logs

when sharing them to other partners. In fact, sharing cybersecurity logs has become

a common practice among organizations as a collaboration mechanism to enhance the

effectiveness in detecting and preventing security threats. The attributes characteriz-

ing a security incident in a system, e.g., IP addresses, file names, sizes, can be shared

with system administrators with the aim to help other systems detect or prevent

related threats. More specifically, information sharing enables sharing partners to

enhance their defensive capabilities, i.e., detecting, responding, and recovering from

cybersecurity incidents. As a matter of fact, the collective aggregation of shared secu-

rity logs is currently the main input fueling powerful antivirus and network security

devices.

Despite the great benefits that sharing cybersecurity logs may bring, some chal-

lenges still remain. One of said challenges is safeguarding sensitive information that

might be included in these logs, i.e., protecting the privacy of the entities whose infor-

mation is shared. The violation of privacy in this context (e.g., due to the disclosure

of personally identifiable information) may have serious consequences, particularly

for companies, such as financial loss, legal action, loss of reputation, and exposure to

protection capabilities.
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As explained above, the nature of cybersecurity information contained in logs is

inherently sensitive since it includes several attributes and also some very punctual

data items that may reveal strategic operations of systems regarding their security.

Virtually every computing device and application are enabled to generate this type

information, especially if they engage networking or web interactions. Some examples

of sensitive information that could be included in cybersecurity logs are described

next.

Timestamp. A time stamp is fundamental to determine the moment when a

security incident occurred. The exact date and time of the incident allow to correlate

other events that could contribute on the investigation of the threat. However, if

coupled, e.g., with individuals, temporal data could also help attackers perform the

same correlation to unveil patterns (a person’s sleep time, a company’s patching

calendar) to violate privacy.

IP address. IP addresses individuate devices so that security issues can be

associated with the entity where the incident has been generated. Nevertheless, in

the same line, IP addresses are key information for privacy attackers to identify

the individuals and companies involved. In fact, an IP address could unequivocally

represent an individual or a family, so the security logs related to their interactions

would reveal such tight association. The mere availability of this information enables

further security attacks (denial of service, fingerprinting) to companies, which could

reveal even more indicators about potential victims (privacy violations).

IP addresses are not the only data items with this individuating capability. Other

attributes that may appear in security logs such as user names, host names and

MAC addresses have similar identification capabilities, although their presence is not

as common as IP addresses. There are also apparently innocuous indicators that

are contained in cybersecurity logs that can serve as identifying parameters when

combined, e.g., software version and patch level information, hardware information,

system event, file access, etc. Interestingly, the resulting combination of said at-

tributes can be seen as a fingerprint of the associated entity and could be used as an

identifier by itself.
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Table 7.1: Some attributes whose disclosure in cybersecurity logs might jeopardize privacy.

Attribute Privacy risk

IP address May enable identification of users and organizations.
e-mail address May enable identification of users and organizations.
path names Could disclose user names, directory hierarchies.
patching information Could reveal software updating calendars, thus when
software versions Along with other attributes, could enable fingerprinting and identification of users.
incident description When associated with an origanization, could unveil its vulnerabilities.
organization name May allow attackers to identify an organization.

Any indicator or attribute included in logs could reveal further sensitive infor-

mation. The specific privacy risk, however, depends on the context, i.e., on the

background information available for the attacker, and his objective, but also on the

particular status of the potential victim. For example, path names could disclose

information about the work a user might be performing, or operating system and

patches names may reveal the preferences of a company regarding their network or

software implementation (which it had been keeping secret). Disclosing such infor-

mation in logs that will be shared may represent a privacy violation for users or the

company whether or not the parameters included are critical for each entity.

Besides identifying attributes or other complementary indicators, the information

included in cybersecurity logs may be very specific when generated by specialized de-

vices such as routers, antivirus servers, intrusion protection systems, forensic toolkits,

SIEMs (security information and event management systems), etc. Moreover, these

logs contain very critical information since it is commonly derived from assessment

routines, i.e., contemplates “refined data” (which in practical terms implies more and

more valuable data). This information might span vulnerability alerts, system arti-

facts, attack alerts, or summary reports, whose disclosure is a direct threat for the

privacy of the entities involved.

The risk to privacy when sharing cybersecurity logs is seriously exacerbated when

CIs are involved since the corresponding entities and their workers are more exposed

given the strategic role they are playing. In Table 7.1, we describe some attributes

whose disclosure in cybersecurity logs may imply serious privacy risks.
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7.3.3 Architecture of the data privacy tool

The objective of our DPT is offering privacy for individuals and institutions in a

context where cybersecurity logs have to be shared among different partners. While

disclosing and aggregating such data may improve the capabilities of security solu-

tions in CIs, the high granularity of logs and the sensitive attributes there contained

may jeopardize privacy. Thus, we devise a tool to protect this sensitive data by

anonymizing it. This tool encompasses the components described below.

7.3.3.1 Target description

The first step in protecting privacy in cybersecurity logs is determining the set of

sensitive attributes that will have to be sanitized. Said otherwise, the specific target

of the anonymization mechanisms has to be defined since logs use to hold a lot of

information.

The level of sensitivity, however, depends on the specific context in which users

and companies perform (their interests, needs, worries, adversaries, etc.). Moreover,

although some attributes might be defined as sensitive by default (e.g., identity num-

bers), or automatic mechanisms could be created to “recognize” them, the operators

of the DPT should always have the last word when deciding what attributes to protect

by defining a privacy policy.

Evidently then, to locate sensitive attributes and their values within the data

provided by logs, some language might be necessary for the user to describe the

corresponding targets. If logs were generated by CIs without any visible structure,

patterns should be found to detect the sensitive attribute, e.g., looking for quartets

of decimal numbers separated by dots to find IP addresses (which the operator would

have defined as sensitive). Fortunately, to facilitate its exploitation and analysis, logs

are commonly generated in structured formats, sometimes even in hierarchical trees,

such that the information be organized according to certain logic and that every

attribute value is labeled.

As logs are presented through standard approaches and attribute values are in-

dexed through labels, it is straightforward to refer to such attributes to then retrieve
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their values. For instance, let us suppose that the operator is interested in preventing

individuation of his company in the logs generated by their devices. Thus, he might

have to detect identifying data in logs, such as IP addresses, to anonymize them and

protect privacy. There may be different approaches to search for IP addresses in a

log, as described below.

• By keyword. Within cybersecurity logs, IP addresses are usually labeled with

a keyword such as SRC IP (source IP) or DST IP (destination IP) or any other.

Knowing such keyword, it is pretty easy to obtain the sensitive value associated

in the corresponding log.

• By pattern. If the sensitive data to be anonymized is not systematically

associated with an index or label, a pattern could be used to look for such data.

In the IP address example, e.g., we could look for any group of four numbers

from 0 to 255 separated by dots, which could be symbolically represented as

X.X.X.X.

• By value. Still in the case when no specific keyword is available, the value of

the sensitive attribute could be directly searched in logs. The drawback of this

approach is evidently that this search spans a single value while the first two

may encompass a wider spectrum of values.

Since the first step to protect privacy in cybersecurity logs involves searching for

a string (keyword, pattern or value) in a piece of text, it is worth noting that, at

an implementation level, the use of regular expressions is highly recommended for

such tasks. See Figure 7.2 where this component of target description of our DPT

is depicted as it would work with the other two components described in the next

subsections.

7.3.3.2 Context definition

As stated in the previous section, the sensitivity of some data item is subject to the

context where its owner performs. In the same line, the privacy protection mechanism

required will vary according to the specific needs and characteristics of the subjects
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Data Privacy Tool

TARGET
Description

CONTEXT
Definition

TRANSFORMATION

By keyword SRC_IP
By pattern H.H.H.H
By value 1.1.1.1

WHAT is sensitive? WHEN is this sensitive?     PROTECT sensitive info

originally,
SRC_IP: 1.1.1.1

apply when
organization: hospital SRC_IP: 1.1.*.*

• Suppression
• Generalization
• Pseudonymization

an IP address by organization by obfuscating info

Figure 7.2: Architecture of the data privacy tool.

involved. The context-definition component then enables the user of our DPT to set

any restriction or condition on the application of the privacy protection strategy.

While a lot of restrictions could be integrated, there is one in which we are in-

terested for the CIPSEC framework. Since three different pilots or organizations are

sharing their cybersecurity logs, the user of the DPT could opt for anonymization or

not depending on the organization he belongs to. For instance, air quality monitor-

ing might not involve sensitive attributes for the organization generating such data so

could decide not anonymizing their data. Other more complex scenarios may be char-

acterized, e.g., by a company having very specific needs on anonymizing attributes

that in other contexts might not be critical to protect. In brief, the scope in which

our DTP is used may also define the operation of the DPT.

In Figure 7.2, we illustrate this component within the whole architecture of this

tool.

7.3.3.3 Transformation

Once sensitive information and context are defined, sensitive data has to be trans-

formed in order to protect privacy. Said transformation implies perturbing attribute

values so that, e.g., identifiers no longer serve to identify individuals, or that sensitive

values provide less specific information regarding individuals or companies.
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The transformation component in the architecture of our DPT is implemented

through the anonymization mechanisms described in Sec. 7.3.1. As explained above,

such mechanisms will replace the original sensitive value with another (at least less

specific) string. Figure 7.2 shows how this component is integrated in the architecture

of our DPT.

It is worth noting that when transformation has to be done dynamically (i.e.,

when replacing according to a a predefined pattern), regular expressions are also very

useful as with target description.

7.3.3.4 Privacy policies

In order to enable users to set the context of their privacy protection, a privacy policy

has to be defined. A privacy policy is essentially a list of named rules that include

the parameters that characterize the anonymization of sensitive information, i.e., the

description of the specific attribute to be anonymized, the transformation mechanism

to use, and any other criterion (e.g., the organization whose logs will be anonymized).

7.4 Implementation and Integration in the CIPSEC

framework

As explained throughout this chapter, cybersecurity logs enable the intelligent pro-

tection provided by the CIPSEC framework. Meanwhile, our DPT aims at preserving

the privacy of individuals and organizations involved in such logs when shared among

different partners. All the logs generated by several security devices in the CIPSEC

infrastructure are aggregated and formatted in standard JSON format in real time to

then be stored in a security information and event management server (XL-SIEM).

Figure 7.3 depicts a sample of these logs that are further available for sharing in a

Malware Information Sharing Platform (MISP).

As mentioned in Section 3, our DPT has three main inputs that guide the anonymiza-

tion process: the cybersecurity logs that are fueled by the XL-SIEM; a privacy policy,

also as a file formatted in JSON (an example is depicted in Figure 7.4); and a scope
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Structure of the log

{'AlarmEvent’: {
'USERNAME': '', 'SRC_IP': '188.112.63.117', 'BACKLOG_ID': 
'839301cfd5b54179847535ffa3e29adc', 'DATE': '2018-07-17 
09:00:16’, 
'DST_IP': '84.88.67.117', 'USERDATA7': '', 'USERDATA6': '', 
'FILENAME': '', 'PRIORITY': 4, 'RELIABILITY': 10, 
'ORGANIZATION': ‘hospital', 'SENSOR': 
'AD14C6F3975ED9860E32190EA3DF2535', 'SID_NAME': 
'directive_event: Detected access to SAMBA in Honeypot', 
'USERDATA2': '', 'USERDATA3': '', 'USERDATA1': 'tcp', 
'PROTOCOL': 6, 'RISK': 4, 'USERDATA4': '', 'USERDATA5': '', 
'EVENT_ID': '04447d36c0614e3fbe70b5b4612adf2e', 'USERDATA8': 
'', 'USERDATA9': '', 'PLUGIN_NAME': 'cyber-monitor', 
'DST_IP_HOSTNAME': '00000000', 'RELATED_EVENTS': 
'[899f11e885a4080027ea052cd289c2dc,899f11e885a4080027ea052cd2
b27c90]', 'PASSWORD': '', 'PLUGIN_SID': '2', 'CATEGORY': 
'Recon', 'SRC_IP_HOSTNAME': '00000000', 'SUBCATEGORY': 
'Scanner}

Figure 7.3: Sample of logs generated by the CIPSEC framework.

Example of Policies (policies.json)
"SRCIP":{

"ORGANIZATION":"all",

"ACTION":"generalization",

"TYPE":"ip_address",

"KRE":"^SRC_IP$",

"VRE":"",

"SRE":""

},

"USERDATA":{

"ORGANIZATION":"all",

"ACTION":"suppression",

"KRE":"^USERDATA*",

"VRE":"",

"SRE":""

},

"ORG":{

"ORGANIZATION":"hospital",
"ACTION":"pseudonymization",

"TYPE":"organization",

"KRE":"^ORGANIZATION$",

"VRE":"",

"SRE":""

}

Figure 7.4: Sample of policies defined in JSON format.

that indicates the organization that is executing the anonymization process. The

latter argument enables the user to anonymize only the logs that belong to his orga-

nization. After logs are anonymized, they are sent to the MISP for sharing purposes.

Finally, for the sake of usability, the control of the execution of the DPT and the

selection of the privacy policy is delegated to a graphical user interface integrated in

the dashboard of the CIPSEC framework. Figure 7.5 illustrates the components men-

tioned in this section and their corresponding interactions, while Figure 7.6 shows how

a single anonymized log record would look. As a side note, our DPT is implemented

using Python.
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Data Privacy Tool Interactions

DPTXL‐SIEM
(from ATOS)

Dashboard

policies.json

Policy A
Policy B
Policy C

scope

log anon log
MISP

Figure 7.5: Interactions of the DPT with different components of the CIPSEC framework.

AlarmEvent: {

USERNAME: “**********”,

SRC_IP: “187.62.X.X”,

BACKLOG_ID: “360ce19b0da047e”,

DATE: “2018-10-08 14:40:04”,

DST_IP: “**********”,

RELIABILITY: “10”,

ORGANIZATION: “pilot3”,

SID_NAME: “directive_evento”,

USERDATA2: “**********”,

PROTOCOL: “6”,

RISK: “4”,

EVENT_ID: “37ddfcc89e6448d2ae”,

PLUGIN_NAME: “**********”,

RELATED_EVENTS: “[cb0811,cb0812]”,

CATEGORY: “Recon”,

SUBCATEGORY: “Scanner”,

...

AlarmEvent: {

USERNAME: “”,

SRC_IP: “187.62.178.34”,

BACKLOG_ID: “360ce19b0da047e”,

DATE: “2018-10-08 14:40:04”,

DST_IP: “84.88.67.117”,

RELIABILITY: “10”,

ORGANIZATION: “hospital”,

SID_NAME: “directive_evento”,

USERDATA2: “”,

PROTOCOL: “6”,

RISK: “4”,

EVENT_ID: “37ddfcc89e6448d2ae”,

PLUGIN_NAME: “cyber-monitor”

RELATED_EVENTS: “[cb0811,cb0812]”,

CATEGORY: “Recon”,

SUBCATEGORY: “Scanner”,

...

SUPPRESSION

SUPPRESSION

SUPPRESSION

SUPPRESSION

GENERALIZATION

PSEUDONYMIZATION

Before and after Anonymization

Figure 7.6: A view on how the privacy in cybersecurity logs could be protected through different
anonymization mechanisms.
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7.4.1 Related work

The concerns on the privacy risks from cybersecurity data are not new. The Gov-

ernment Accountability Office (GAO) of the USA already reports in [105] how the

advances in technology have given rise to important challenges to ensure the privacy

of personally identifiable information. The GAO recommends implementing privacy

practices to protect personal identifying information, especially when managed in

critical infrastructures. But in a wider scope, severe regulation is currently been ap-

plied in the USA and Europe [106] to protect privacy at every context, essentially

by given users great control over their data. Though these documents acknowledge

the increasing need to protect privacy, they are regulatory approaches that require

implementation according to the specific domain.

Several approaches can be found in the literature that describe privacy preserving

mechanisms on unstructured data (e.g., any type of log data). Those mechanisms are

based on sanitization (through suppression, generalization, or any kind of perturba-

tion) of such data. Some works address related mechanisms [107], not only focused on

protecting privacy but also on preserving the utility of sanitized data [108]. Interest-

ingly, some of such approaches even consider the semantics of the text to be sanitized

to get more efficient mechanisms [109, 110]. Unlike those works, our approach fo-

cuses on privacy preserving within cybersecurity data in the particular context of the

CIPSEC framework.

With regards to the exchange of threat information several initiatives are ex-

ploiting their possibilities. For example, the DiSIEM project (a) uses it to empower

Security Information and Event Management systems by exporting and importing

data about incidents detected, allowing for the update of detection rules according to

the information imported. DiSIEM also uses MISP as platform for the exchange of

information although the privacy considerations are something not considered so far.

(a)DiSIEM project web page: http://disiem-project.eu/

http://disiem-project.eu/
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7.5 Conclusions

Cybersecurity data generated in the form of logs is very prone to including sensitive

information about individuals and organizations, even more so when such logs be-

long to CIs. The strategic importance of such data, then, makes those individuals

and organizations common targets of privacy adversaries. The EU project CIPSEC

integrates the cybersecurity information systems of three CIs to improve their threat

detection and reaction capabilities. However, since this integration involves sharing

such cybersecurity data, there are privacy risks that must be tackled.

The solution we propose addresses this issue by pre-processing logs to anonymize

sensitive attributes according to a privacy policy that defines a particular context.

Enabling users to set privacy policies is definitely the most important and compli-

cated task since many factors have to be considered to define not only what data

to anonymize, but also when and how. Fortunately, the logs generated by informa-

tion systems are currently represented using more structured and flexible formats

(e.g., JSON), which, along with the power of regular expressions to define context,

significantly facilitate matching and dynamically perturbing string-based attributes.

As a work in progress, there are several avenues to enhance our privacy tool.

Perhaps the most important pending work has to do with assessing the impact of

the anonymization mechanisms on the practical utility of cybersecurity logs. Un-

doubtedly, data perturbing strategies reduce the quality of the information involved

so a balance must be reached to protect privacy while minimizing utility loss. More-

over, standardization of the definition of privacy policies is necessary to simplify the

configuration of the anonymization mechanisms. This could be a daunting task so au-

tomating it according to the requirements of users and organizations might certainly

help. Furthermore, a challenge in data sanitization is the reidentification risk posed

by inferences based on several attributes exploited simultaneously. Finally, in the

same line, more usable (probably graphical) interfaces could be developed to enable

end users to provide the parameters of a personalized context in order to better guide

the anonymization process of cybersecurity logs.
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Conclusions and future work

8.1 Conclusions

Privacy protection implemented as data perturbation inevitably degrades data util-

ity, more if privacy requirements are stricter. This has been shown through several

experiments along this work. However, this evaluation could be relative since there is

not a single way to evaluate data utility. Thus, selecting the most appropriate metric

is crucial to have a truthful evaluation.

To address this issue, we have presented a methodology to systematically evaluate

the impact of privacy protection, particularly of k-anonymous microaggregation, on

the empirical utility of data. Assuming machine learning as a popular application

domain of data, we have used the accuracy of resulting learning models as a metric

of the utility of microaggregated data.

We have found that the default operation of some k-anonymous microaggregation

algorithms (MDAV) may not affect empirical data utility significantly. We have ar-

gued that the clustering implemented by microaggregation may be acting as a form

of averaging and thus denoising. This denoising effect, akin to averaging through

clustering, may be the underlying cause of the striking utility of k-anonymous micro-

aggregation.

Although the empirical utility metric we have employed (accuracy) shows a monoto-

nous relationship with MSE, the traditional utility metric of SDC, the latter is not an

141
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ideal metric to determine the impact on the utility of microaggregated data. These

results have been corroborated with various algorithms.

When evaluating different microaggregation approaches, we have confirmed the

intuition that processing the statistical properties of microdata when building micro-

aggregation algorithms cause an additional slowdown in the degradation of empirical

utility. This suggested that, although microaggregation was a high-utility approach,

there were some space for improvement. In any case the dependence of the perfor-

mance of microaggregation algorithms on the internal distribution of the data set was

also evidenced.

Beyond the evaluation of k-anonymous microaggregation in terms of the applica-

tion domain of data, we have proposed a mechanism to preserve its inherent empirical

utility. Applied to MDAV, this mechanism has successfully preserved data utility by

transforming quasi-identifier values so that the resulting k-anonymous cells enable

the construction of a more effective machine learning classifier. Linear Discriminant

Analysis and scaling were used as a preprocessing step to transform data such that

microaggregation builds a distribution of cells that produces a more accurate learning

model.

In terms of accuracy, LDA applied to MDAV outperformed the classical imple-

mentation of MDAV. Interestingly, this comes at no cost in terms of running time.

Thus, this solution results both functionally and computationally effective. As the ef-

forts presented in next chapters, this proposal was implemented on MDAV but could

be applied on other k-anonymous microaggregation approaches.

Besides the natural interest in preserving data utility, the run-time overhead of

privacy mechanisms should be low to encourage its adoption in practice, particular

when large data sets are involved. If a privacy technology hinders the operation of

a service, it will most likely be discarded. Unfortunately, utility preservation usually

comes at a price in computational cost, which implies an additional trade off between

utility and running time. Then, beyond the primary objective of privacy, there is

an important challenge that has to do with the usability of related mechanisms, i.e.,

with its feasibility to be implemented and used in practice.
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We have addressed this issue by proposing a method for speeding up the execution

of MDAV. This included algorithmic and algebraic strategies that reduced the running

time of MDAV by a factor of 4. This was done by simplifying the internal operations of

MDAV, without affecting the resulting utility of data. Conveniently, these strategies

can be combined with those of other proposals, provoking a multiplicative effect,

without additional distortion.

In times when the world revolves around big data, processing time quickly becomes

a bottleneck with respect to the potential applications of large-scale databases. More-

over, domains as critical as health, vehicular traffic, or network intrusion detection are

currently using tons of data to help computational systems make real-time, and even

life-or-death decisions. Due to such demanding requirements, privacy issues related to

data processing are commonly overshadowed. Thus, from the perspective of privacy,

we feel that any improvement in (computing) efficiency is not negligible, particularly

when the strategy does not entail additional data distortion, and even more when its

multiplicative effect may turn a privacy mechanism feasible for a critical application.

Finally, we have explored the anonymization of unstructured data in the form

of logs through a practical implementation. In particular, we have presented a tool

that preprocesses cybersecurity data to protect the privacy of the entities involved

in such logs. Since sensitive information could be released in security logs, this tool

anonymizes sensitive attributes, that are further shared, according to a privacy policy

that defines a particular context.

The design of the tool enables users to built this policy by considering many factors

that describe a particular context. This includes defining what data to anonymize,

when and how. This was an interesting practical exercise that evidenced some of

the issues of implementing a privacy tool beyond the general assumptions, e.g., with

respect to the structure of data.

8.2 Future work

In chapters 3 and 4 we performed a systematic analysis of the impact of k-anonymous

microaggregation on the empirical utility of data. Assuming machine learning as the
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application domain of data, we used the accuracy of learning models as a utility

metric.

These considerations paved the way for future work on improving the performance

of microaggregation algorithms. For instance, other anonymization algorithms could

be assessed under these conditions to test their behavior when empirical utility is mea-

sured. However, some of their reconstruction techniques, e.g., using other than nu-

merical representations for microaggregated data, could complicate the measurement

of utility when the application domain is machine learning, so further assumptions or

preprocessing should be done.

Additionally, it is worth exploring adaptations or novel contributions for privacy

protection that exploit to the maximum the statistical properties of all the information

available within microdata. Intuitively, it seems that some of the strategies available

for machine learning could be used to preserve the utility of microaggregated data.

In Chapter 5, we presented our proposal on preserving data utility when microag-

gregating data using MDAV. We leveraged on a machine learning technique called

LDA which was applied on two-class data, i.e., for binary classification. Further re-

search in this direction could involve the generalization of this method to address

multi-class classification and not only binary classification scenarios.

More generally, it might be interesting to study other machine-learning-based

models as mechanisms to represent and microaggregate data to reduce the distortion

introduced to variables, combination of variables, or directions that contribute to a

more accurate classification. This mainly implies exploring adaptations or novel con-

tributions for privacy protection that exploit to the maximum the statistical prop-

erties of all the information available within microdata. This work confirmed the

intuition that some of the strategies already available for machine learning could be

used to preserve the utility of microaggregated data.

In Chapter 6, we explored a promising mechanism to reduce the running time of

k-anonymous microaggregation, particularly on large data sets. The assessment of

our proposal is limited in the sense that it is implemented only on top of MDAV, as

well as the aforementioned approaches.
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Finally, in Chapter 7 we presented the design of a privacy tool for anonymizing

sensitive attributes in unstructured data. As a work in progress, there are several av-

enues to enhance this privacy tool. Perhaps the most important pending work has to

do with assessing the impact of the anonymization mechanisms on the practical utility

of cybersecurity logs. Undoubtedly, data perturbing strategies reduce the quality of

the information involved so a balance must be reached to protect privacy while min-

imizing utility loss. Moreover, standardization of the definition of privacy policies is

necessary to simplify the configuration of the anonymization mechanisms. This could

be a daunting task so automating it according to the requirements of users and orga-

nizations might certainly help. Finally, more usable (probably graphical) interfaces

could be developed to enable end users to provide the parameters of a personalized

context in order to better guide the anonymization process of cybersecurity logs.
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