
Received April 5, 2018, accepted April 25, 2018, date of publication May 16, 2018, date of current version June 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2834858

Does k-Anonymous Microaggregation Affect
Machine-Learned Macrotrends?
ANA RODRÍGUEZ-HOYOS1,2, JOSÉ ESTRADA-JIMÉNEZ1,2, DAVID REBOLLO-MONEDERO 2,
JAVIER PARRA-ARNAU 3, AND JORDI FORNÉ2
1Departamento de Electrónica, Telecomunicaciones y Redes de Información, Escuela Politécnica Nacional, Ladrón de Guevara, E11-253 Quito, Ecuador
2Department of Telematics Engineering, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
3CYBERCAT-Center for Cybersecurity Research of Catalonia, Department of Computer Science and Mathematics, Universitat Rovira i Virgili,
E-43007 Tarragona, Spain

Corresponding author: David Rebollo-Monedero (david.rebollo@entel.upc.edu)

This work was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) through the Anonymized
Demographic Surveys Project under Grant TIN2014-58259-JIN, in part by the Proyectos de I + D + i para Jóvenes Investigadores
Funding Program through the MAGOS Project under Grant TEC2017-84197-C4-3-R, the INRISCO Project under Grant
TEC2014-54335-C4-1-R, and the Sec-MCloud Project under Grant TIN2016-80250-R, and in part by the European Commission through
the H2020 CLARUS Project and the CIPSEC Project under Grant 700378.

ABSTRACT In the era of big data, the availability of massive amounts of information makes privacy
protection more necessary than ever. Among a variety of anonymization mechanisms, microaggregation
is a common approach to satisfy the popular requirement of k-anonymity in statistical databases. In essence,
k-anonymous microaggregation aggregates quasi-identifiers to hide the identity of each data subject within
a group of other k − 1 subjects. As any perturbative mechanism, however, anonymization comes at the
cost of some information loss that may hinder the ulterior purpose of the released data, which very often is
building machine-learning models for macrotrends analysis. To assess the impact of microaggregation on
the utility of the anonymized data, it is necessary to evaluate the resulting accuracy of said models. In this
paper, we address the problem of measuring the effect of k-anonymous microaggregation on the empirical
utility of microdata. We quantify utility accordingly as the accuracy of classification models learned from
microaggregated data, and evaluated over original test data. Our experiments indicate, with some consistency,
that the impact of the de facto microaggregation standard (maximum distance to average vector) on the
performance of machine-learning algorithms is often minor to negligible for a wide range of k for a variety
of classification algorithms and data sets. Furthermore, experimental evidences suggest that the traditional
measure of distortion in the community of microdata anonymization may be inappropriate for evaluating the
utility of microaggregated data.

INDEX TERMS k-anonymity, microaggregation, machine learning, privacy, large-scale databases.

I. INTRODUCTION
With the advent of modern data-analytics technologies,
the availability of massive amounts of information –the
so-called big data era– has changed the landscape in a
big manner: more data now means more useful data. The
myriad of benefits these technologies can bring to private
companies, public institutions and, in general, our society
are innumerable. Healthcare, transportation, banking and
marketing are just a few fields in which big-data analyt-
ics is leading a profound transformation of the traditional
models [26], [37], [38].

However, the availability of sheer volumes of personal data
and the growing sophistication of machine-learning analytics

pose serious risks to individual privacy. Clearly, more data
and better analytic capabilities increase the risk of reidenti-
fication of the individuals to whom a database records refer.
The increasing demand for data-sharing among different data
collectors, besides, only exacerbates this risk.

To cope with this, when a data set is to be shared,
the privacy of the individuals therein must be taken into
account very seriously. The purpose of statistical disclosure
control (SDC) is precisely to ensure that only useful
macrotrends are learned by the recipients of such data and
individual privacy is therefore protected.

Microdata are database tables whose records carry data
concerning individual subjects. The typical scenario in
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FIGURE 1. Our work focuses on high-utility SDC, involving k-anonymous
microaggregation, which has a direct application, e.g., in the health domain.

microdata SDC is a data curator holding the original data
set and perturbing the so-called quasi-identifier attributes
(i.e., attributes that, in combination, may be linked with
external information to reidentify individuals in the data set),
so that disclosure risk is kept as low as possible. One of
the most common strategies to keep this risk under con-
trol is the ‘‘privacy first’’ approach. Here, the data curator
enforces a privacy model, which usually depends on a privacy
parameter, to ensure an upper bound on the re-identification
risk. Some of the best-known privacy models comprise
k-anonymity [43], [48] and ε-differential privacy [18].
Although anonymization methods for microdata rely on a

variety of mechanisms, the common denominator binding all
them is data perturbation. Essentially, all such mechanisms
modify the original data set to guarantee the chosen privacy
model, inevitably at the cost of some loss in data utility [44].
If the resulting utility of the anonymized microdata does not
satisfy the data curator’s requirements, then a less stringent
privacy parameter is applied or the privacy model is replaced.
Examples of these mechanisms include microaggregation,
suppression, generalization and noise addition.

When it comes to striking a balance between privacy
and utility, appropriate and effective measures of the latter
aspect are as important as the privacy model. In real practice,
however, the standard measures of data utility employed by
the SDC community may not capture the performance of
a given data-analytics task, and therefore may not be use-
ful in evaluating the anonymization mechanism in question.
In SDC, the most widely used utility metric is the mean-
squared error (MSE), while accuracy is the most popular one
in machine learning.

A. CONTRIBUTION AND PLAN OF THIS PAPER
In the context of microdata anonymization, and particularly
k-anonymous microaggregation, strong privacy protection
requires masking the original data significantly, thus reducing
their utility notably. However, the impact on utility caused
by microaggregation is typically measured in terms of the
syntactic distortion introduced to data, and not in terms of
the performance of the intended data-analytic task. Besides,
traditional utility metrics of k-anonymized data often neglect
the statistical dependence of quasi-identifier attributes, and
microaggregation algorithms tend to disregard the potential
of confidential attributes as quasi-identifiers. All this makes

it difficult to determine the effect of microaggregation on the
practical utility of protected data.

The leading object of this paper is to investigate the impact
on the performance of machine-learning tasks caused by
data perturbation in the k-anonymous microaggregation pro-
cess. To the best of our knowledge, the effect of standard
k-anonymous microaggregation on the macrotrends learned
from anonymized data has not been systematically studied,
reported and discussed.

We apply a rigorous methodology for evaluating the spe-
cific impact of microaggregated data on machine-learning
tasks. Our methodology uses accuracy and F-measure as
utilitymetrics. The two are standardmeasures of performance
in machine learning and allow for the statistical dependence
among quasi-identifiers. The impact of microaggregation on
the utility of anonymized data is quantified, accordingly,
as the resulting accuracy (or F-measure) of a machine-learn-
ing model trained on a portion of microaggregated data and
evaluated on a different portion of original data.

Since the utility extracted from data could depend on the
learning algorithm used, we conduct an extensive, thorough
evaluation of a wide range of machine-learning algorithms
amply used in classification tasks. The results of utility we
present correspond to the algorithms that obtain the greatest
accuracy from each anonymized data set. Among others,
our experiments investigate naïve Bayes, logistic regression,
SVM, bagging and C4.5. As for microaggregation algo-
rithms, we focus on MDAV, the SDC de facto standard for
k-anonymous microaggregation. The evaluation of MDAV
and all those machine-learning algorithms is conducted
in four data sets, three real and well-known data sets
and one synthetic. We would like to stress that our
analysis focus on high-utility SDC, which involves plain
k-anonymous microaggregation using numerical microdata.
Although more strict privacy criteria exist, e.g., in the
domain of syntactic microaggregation (such as t-closeness or
l-diversity), or in the domain of semantic privacy (such as
differential privacy), we examine those privacy mechanisms
offering greater utility guarantees for anonymized data, which
may be highly desirable in domains like health. We show the
context of our analysis in Fig. 1.

The remainder of this paper is organized as follows.
Section II reviews the background on k-anonymous microag-
gregation, reviews the state of the art in microaggregation
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FIGURE 2. Example of k-anonymous microaggregation of published data with k = 3. Quasi-identifiers in the left table are anonymized on
the right.

algorithms for SDC, and explores previous work evaluat-
ing the impact on data utility caused by anonymization.
Next, Section III describes our experimental methodology.
Section IV shows the experimental results obtained for a
variety of data sets and machine-learning algorithms. Lastly,
conclusions are drawn in Section V.

II. BACKGROUND AND STATE OF THE ART
The old polarized landscape of data transmission with only
intended and non-intended receivers has changed due to big
data. Nowadays, data is more prone to be shared with external
parties or even openly, e.g., for research purposes, in order
to better exploit its utility. Thus, malicious observers may
illegitimately take advantage, since sensitive information
might still be encoded within released data. Unfortunately,
conventional privacy services against unintended observers
and based on cryptography (such as confidentiality), fail to
address the practical dilemma when the intended recipient of
the information is not fully trusted.

As a first approach to protect the anonymity of individuals,
it is common to just eliminate their identifiers. However, this
practice was proved to be insufficient in [48], where it was
shown that 87% of the population in the United States could
be unequivocally identified solely on the basis of the triple
consisting of their date of birth, gender and 5-digit ZIP code,
according to 1990 census data. Due to the discriminative
potential of a few combined demographic attributes, more
sophisticated approaches have been proposed to obscure the
identity of the respondents appearing in the released data set.

A. BACKGROUND ON k-ANONYMOUS
MICROAGGREGATION
Privacy protection techniques usually focus on databases car-
rying information concerning individual respondents (from a
survey or a census). Said databases (also known as micro-
data sets) contain a set of attributes that may be classified
into identifiers, quasi-identifiers and confidential attributes.
Firstly, identifiers, such as full names or medical record
numbers, can single out individuals from a data set and
are commonly removed in order to preserve the anonymity

of respondents. Secondly, quasi-identifiers or key attributes
may include age, gender, address, or physical features, which
combined and linked with other external information can
be used to reidentify respondents. Finally, a data set may
contain confidential attributes with sensitive information on
the respondents, such as salary, health condition, and religion.

In Fig. 2, we illustrate how a perturbed, and thus more
private, version of a data set is obtained to be published
instead of the original one. In the figure, the original data
set combines attributes common in census and medical sur-
veys. It has three quasi-identifiers, age, marital status and
ZIP code, and two confidential attributes, annual salary and
type-2 diabetes condition. The figure at hand shows how,
in order to preserve the privacy of respondents, perturbation is
applied to quasi-identifiers. This technique, called microag-
gregation, is applied to enforce k-anonymity [48], a privacy
model that guarantees that each tuple of key-attribute values
is identically shared by at least k records in a data set. Rather
than making the original table available, a perturbed version
is published where aggregated records of quasi-identifying
values are replaced by a common representative tuple. The
result is a microaggregated data set that may prevent reiden-
tification attacks.

As illustrated in Fig. 3, if tuples of key attributes in a data
set could be represented as points in the Euclidean space,
k-anonymous microaggregation would consist in partitioning
these points in cells of size k , and quantizing each cell and its
elements with a representative point. Perturbed key attributes
would be characterized by the set of representative points.
The de facto standard for numerical microaggregation is the
maximum distance to average vector algorithm (MDAV).
It was proposed in [20] as a practical evolution of a mul-
tivariate fixed-size microaggregation method and conceived
in [12]. We provide, in Algorithm 1, a simplified version of
that given in [15] and termed ‘‘MDAV generic’’.

B. STATE OF THE ART OF k-ANONYMITY AND
k-ANONYMOUS MICROAGGREGATION
Microaggregation is a technique aimed to protect the privacy
of those individuals whose personal records are included in
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FIGURE 3. k-Anonymous microaggregation as a minimum-distortion quantizer design problem with a constraint
on the size of the quantizer cells [41].

Algorithm 1 MDAV ‘‘Generic’’, Functionally Equivalent to [15, Algorithm 5.1]
functionMDAV
input k , (xj)nj=1 FAnonymity parameter k, quasi-ID portion (xj)nj=1 of a data set of n records
output q FAssignment function from records to microcells j 7→ q(j)

1: while 2k points or more in the data set remain to be assigned to microcells do
2: find the centroid (average) C of those remaining points
3: find the furthest point P from the centroid C , and the furthest point Q from P
4: select and group the k−1 nearest points to P, along with P itself, into a microcell, and do the same with the k−1 nearest

points to Q
5: remove the two microcells just formed from the data set
6: if there are k to 2k − 1 points left then
7: form a microcell with those and finish
8: else FAt most k − 1 points left, not enough for a new microcell
9: adjoin any remaining points to the last microcell FTypically nearest microcell

a released microdata set. With microaggregation, as with
generalization and suppression, the distortion is applied
to the key attributes to satisfy the k-anonymity privacy
model [43], [48]. This model guarantees that each individ-
ual’s information contained in a released data set cannot be
distinguished from that of at least k − 1 individuals whose
information also appears in the data set. The original for-
mulation of k-anonymity as a privacy criterion was modified
into the microaggregation-based approach in [9], [12], [13],
and [15].

Although k-anonymity is a very popular privacy criterion,
it is not flawless. Since the criterion strictly operates with
the key attributes, the statistical properties of confidential
attributes (and thus their disclosure potential), both in the data
set and in the entire population, are neglected. In general,
k-anonymity overlooks the knowledge a potential attacker
may already have or obtain about the data set, giving rise to
similarity, skewness or background-knowledge attacks [16],
[40], [42]. In spite of its shortcomings, the application of
k-anonymous microaggregation does not only concern the
publication of databases but also some variants thereof like
search engine querying, online data collection and data
streaming [5], [14], [54].

Additional criteria have been proposed that refine
k-anonymity and prevent some of the above-mentioned
attacks. The former, p-sensitive [47], [49], requires that each
group of k-anonymized records contains at least p different
values of each confidential attribute. In the same but broader
spirit, l-diversity proposes that each group have at least l well-
represented confidential values. None of these criteria assures
complete protection against skewness attacks, nor against
similarity attacks when confidential attributes within a group
are semantically similar.

Other privacy criteria dealing with similarity and
skewness attacks pose requirements in the distribution of
confidential attributes within groups. The aim is that con-
fidential attributes in each group of anonymized records
are stratified according to their distribution in the original
data set. Depending on the discrepancy allowed between the
within-cluster and overall distributions, these privacy criteria
yield t-closeness [27], δ-disclosure [4], and average privacy
risk [39], [40].

To cope with the NP-hardness of multivariate microag-
gregation, several heuristic algorithms have been pro-
posed. These algorithms can be classified as fixed-size
and variable-size. Among the former ones, we find the

VOLUME 6, 2018 28261



A. Rodríguez-Hoyos et al.: Does k-Anonymous Microaggregation Affect Machine-Learned Macrotrends?

maximum distance [12] (MD) and its variation, maximum
distance to average vector [12], [15] (MDAV). Variable-size
algorithms include, on the other hand, theµ-Approx [13], the
minimum spanning tree [24] (MST), the variable
MDAV [46] (V-MDAV) and the two-fixed reference points
algorithms (TFRP).

In general, the implementations of microaggregation have
been oriented to reduce the inherent information loss [10],
[29], [35] due to perturbation, which commonly derives in
more sophisticated and significantly costlier implementations
in terms of computational time [41].

C. MEASURING THE IMPACT OF MICROAGGREGATION
ON MACHINE-LEARNED MACROTRENDS
Usually, the impact of microaggregation is measured in terms
of the distortion introduced in the data. MSE is commonly
used to quantify such distortion in the case of numerical
attributes. Equivalently, the utility of microaggregated data
is measured inversely as the distortion resulting from data
perturbation.

Within a broader scope, in an effort to tailor anonymization
mechanisms to the application domain of data (e.g., building
classifiers to predict someone’s health condition), some pre-
vious researchwork has also used other utility metrics. One of
such metrics is the accuracy of machine-learned macrotrends
built using anonymized data. A model built with perturbed
data would be less accurate than another built with original
data. Accordingly, a higher degree of anonymization would
result in less accurate models. Surprisingly, to the best of our
knowledge, this metric has not been used to systematically
evaluate microaggregation-based anonymization algorithms,
but other anonymization algorithms based on generalization
and suppression of records, such as Incognito, Mondrian and
DataFly.

In previous work, classification accuracy has been used
to evaluate the utility of (or, equivalently, the distortion
introduced to) anonymized data, just to compare the per-
formance of adapted classifiers or anonymization mecha-
nisms. One of these works is [45], where the effects of four
microaggregation algorithms on the estimation of a linear
regression is compared, when solely applied to simulated
data sets. Other works propose improvements on machine
learning algorithms and methodologies, to obtain higher
utility (classification accuracy) from anonymized data. This
is the case of [21], where the authors develop a method to
increase the level of utility obtained from support vector
machine (SVM) and k-nearest neighbor (kNN) machine
learning
algorithms, when data are anonymized with the DataFly
algorithm. By feeding these algorithms with statistics from
original data, in addition to anonymized data, greater utility
ensues from the latter. In the same line, [6] describes an
adjustment to logistic regression that provides differential
privacy [18]. Furthermore, decision tree learning methods are
developed in [34] and [53] that enforce l-diversity and dif-
ferential privacy, respectively, as privacy criteria and whose

accuracy levels approach those of a non-private decision tree.
Using a different focus, [30] and [31] address the privacy risk
resulting from the release of SVM and the anonymized data.
Privacy preserving versions of SVM are proposed and their
classification accuracies are used to compare them with the
original SVM.

A great deal of research has also investigated adap-
tations of anonymization algorithms that generate private
data of ‘‘higher quality’’. In that context, the utility of
anonymized data is evaluated in terms of classification accu-
racy of machine learning models [22], [23], [25]. The cited
works rely on generalization and suppression as perturbation
techniques and include preprocessing steps such as selec-
tive anonymization of attributes, to adapt the released data
to machine learning applications, and hence preserve their
utility. On the other hand, [7] proposes publishing syn-
thetic microdata generated from differentially private models
applied on original data. For that, machine learning tech-
niques are integrated to improve utility.

Ironically, although enhancements in the utility of
anonymized data are reported, it is not clear what the over-
all impact of original anonymizing mechanisms in the first
place is. Some approaches do attempt to evaluate the trade-
off between privacy gain and information loss (measured as
accuracy reduction) due to anonymization. However, various
considerations should be done for such evaluation. To start,
there is a variety of anonymization algorithms. For exam-
ple, [19] focuses on a proprietary anonymization algorithm
whereas [33] examines a non-standard one.

Other caveat is the variable application domain of the
data. While classification is the most popular workload for
anonymized data, machine learning algorithms would per-
form differently depending on the particular data set used,
so the utility would vary accordingly. This also applies to the
number of records, or the size of the data set, whichmay affect
the performance of anonymization algorithms, e.g., when
k-anonymity is applied, a given value of k shall affect the
utility of small data sets more than the utility of bigger ones.

A last limitation has to do with the baselines to measure
privacy gain and utility loss. Utility, measured as the accu-
racy of machine learning models, reaches its lower bound
when all the key attributes are discarded; or, for k-anonymity,
when k equals the number of records of the data set. Util-
ity’s upper bound is attained when no anonymization is
applied.1

Even in this variable scenario, one thing is certain about
how machine-learned trends are affected by anonymiza-
tion: simultaneously satisfying various privacy criteria,
e.g., k-anonymity, l-diversity, and t-closeness, may make the
data completely useless, as reported by [4], a study where
not only syntactic but also semantic requirements of privacy
are evaluated. Those privacy criteria, together with differ-
ential privacy, are out of the scope of this work, since our

1Further considerations regarding baseline performance can be found
in [28].
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TABLE 1. Summary of related contributions.

target application is that of data release for general statistical
analysis with a focus on data utility. Recall that differential
privacy is conceived for online querying on predefined com-
putations, and that in general it imposes stringent restrictions,
both in terms of usability and data utility. Those restrictions,
introductorily explained also in [36], render it useless for our
purposes.

Last but not least, we would like to stress that our review of
the state of the art in this section has been conducted from a
strictly technological perspective. Legal and socioeconomic
aspects are covered, for instance, in [8] and [17]. Table 1
summarizes the main conclusions of this section.

III. METHODOLOGY OF EVALUATION
Attack and Usability Model In this work, we assume the
standard attack model of the SDC literature [32]. When a
microdata set is released, it is assumed to be available to
any privacy attacker. For research and statistical purposes,
the released microdata contains key attributes (basically
demographic data) that are correlated with another, probably
confidential, attribute. In the k-anonymity model, besides,
the attacker knows a target individual’s record –although
microaggregated– is in the released data set.

To protect that individual’s privacy, an anonymized version
of the microdata set is released. To keep the information
usable, i.e., ‘‘truthful’’ [43], microaggregation is applied to
the key attributes, while the confidential attribute is unper-
turbed. Researchers may leverage the key attributes by build-
ing classifiers on the microaggregated data, for example

to predict a given condition. Recall that classification is a
machine learning task that aims to predict the class, or label,
of a tuple of information. To do so, it requires learning a
model from a group of labeled input samples. In our case,
we can assume a large anonymized data set of patients that is
publicly released so that researchers can build classifiers.

As another example of thismodel, suppose that the taxation
authority publishes a microaggregated data set with 3 key
attributes: gender, age, and marital status; additionally, a con-
fidential binary attribute is published without being modified,
specifying whether a respondent has paid taxes or not. Both
perturbed key attributes and the confidential attribute could
be used by researchers to develop algorithms that predict
the propensity of other people to pay taxes. At the same
time, the privacy of a specific individual would be preserved
as a result of microaggregation. However, as commented in
previous sections, the macrotrends embedded in the original
data, which are necessary to get more accurate classifiers,
might be affected by the perturbation of the key attributes
values caused by microaggregation.

A. MEASURING PRIVACY AND UTILITY
To evaluate the impact of anonymization on the utility of
a released microdata set, we need quantifiable metrics of
privacy and utility. Since our experiments focus on microag-
gregation as anonymization mechanism, we shall assume
k-anonymity as privacy criterion. In this manner, the identity
of a respondent will be protected in a group of k tuples sharing
the same key attribute values. Higher values of k will imply
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TABLE 2. Description of the data sets used to evaluate the impact of k-anonymous microaggregation.

TABLE 3. Machine learning algorithms used in our experimental evaluation.

more anonymity and then more privacy, although, eventually,
less utility.

To measure the utility of anonymized data, we must decide
the application domain of such data. We choose binary
classification since it is a very popular workload for released
microdata sets. Accordingly, we measure utility through
the performance of a binary classifier, when executed on
anonymized data. Several metrics exist that measure the per-
formance of binary classification tests. Next, we elaborate on
them with a medical example.

Let D be a binary random variable (r. v.) representing
whether a patient has a given condition (D = 1) or not
(D = 0). Let T be a binary r. v. representing the outcome of
a medical test, being T = 1 a positive detection, and T = 0 a
negative detection. By the law of total probability,

P{T = D} = P{T = D | D = 0} P{D = 0}

+P{T = D | D = 1} P{D = 1},

and thus,

P{T = D} = P{T = 0 | D = 0} P{D = 0}

+P{T = 1 | D = 1} P{D = 1}.

Specificity (true negative rate) and sensitivity (true positive
rate) are two metrics of the performance of a binary classifier

and can be defined as P{T = 0|D = 0} and P{T = 1 |D = 1},
respectively. In our evaluation, we follow the same approach
as [23], [25], and [33] and measure utility as the accuracy of
a binary classifier. In our example, accuracy can be defined
as the probability that the test and disease coincide, that is
A = P{T = D}. Accuracy can also be expressed in terms of
specificity and sensitivity as the convex combination

A= (1−prevalence)× specificity+prevalence× sensitivity

weighted by the prevalence, that is, the a priori probability of
having a disease.
Although accuracy is a very popular metric, when the

class of the data is significantly unbalanced this metric might
incorrectly measure the goodness of a classifier. Fortunately,
other stricter indicators are available such as F-measure, ROC
curve and area under the ROC curve (AuC).
Accuracy quantifies how well a binary classifier performs,

in terms of the rate of correctly classified (as positive or neg-
ative) samples in a test set. For example, a binary classifier
constructed to predict diabetes would be 100% accurate if,
when applied on a test set of 600 samples, it correctly identi-
fies the class of the 500 samples labeled with ‘‘no diabetes’’
and the class of the 100 samples labeled as ‘‘diabetes’’.
F-Measure (or F1 score) is a machine learning metric

that combines other metrics, particularly recall and precision.
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FIGURE 4. Experimental methodology followed to evaluate the impact of
MDAV-based k-anonymous microaggregation on the empirical utility of
microdata.

In fact, F-Measure is defined as the harmonic mean of preci-
sion and recall. Furthermore, another composed metric is the
ROC curve, which measures the performance of a classifier
based on the graphical representation of the sensitivity in
function of the specificity.

For our application domain (binary classification), we first
measure the utility of a microdata set before being microag-
gregated. Since no perturbation is applied to the data, the clas-
sifier built from that data set would yield the highest accuracy.
The data would therefore give the best achievable utility, but
the worst privacy.

In our experiments, we shall generate several microag-
gregated versions of a data set, by varying the value of the
privacy parameter k incrementally for a wide range. For each
of these versions, we shall compute the corresponding classi-
fication performance to observe the progressive degradation
of data utility due to microaggregation. We use accuracy and
F-measure to assess the performance of classifiers built with
microaggregated data. Naturally, as k increases, we expect
a lower data utility, but obviously in exchange for higher
privacy. Note that, for binary classifiers computed over a set
of data samples and their corresponding labels, the lowest

possible accuracy is not zero. To see this, suppose that ‘‘pos-
itive’’ is the majority class (more than 50% of the training
samples are labeled as ‘‘positive’’). Accordingly, the simplest
classifier would classify any new input as ‘‘positive’’. Then,
interestingly, a binary classifier should not have accuracy
values lower than 50%.

B. EXPERIMENTAL SETUP
Next, we describe the algorithms, tools and data we use to
quantify the impact of k-anonymous microaggregation on the
performance of machine-learned classifiers.

1) ALGORITHMS
With regard to microaggregation, our experiments employ
MDAV [11], the de facto standard protocol described in
Section I. The specification of theMDAV algorithm used here
can be found in [15]. The algorithm in question is referred in
the cited work as ‘‘MDAV-generic’’.

With the aim of constructing classifiers from microdata,
we use the Weka toolkit [52], a collection of algorithms
extensively employed by the machine learning community.
In the interest of fairness when measuring the impact of
microaggregation, we assign each data set the machine learn-
ing algorithm that extracts the greatest utility from it. Accord-
ingly, we measure said impact with respect to the highest
achievable utility. In order to find the corresponding algo-
rithm for a data set, we tried on it a range of machine
learning algorithms, including naïve Bayes, logistic regres-
sion, SVM, bagging, and C4.5. The reasons for choosing
this set is manifold. First, we include different algorithms to
observe whether the effects of microaggregation are consis-
tent along different utility extraction techniques. Moreover,
we select naïve Bayes and SVM since in several previous
works [7], [23], [25], [33] they have been adapted to obtain
more utility from anonymized data. Additionally, logistic
regression, C4.5 and baggingwere considered to represent the
main families of machine learning classifiers, i.e., regression,
decision tree, and ensemble algorithms, respectively. For each
data set, we choose the algorithm showing the best perfor-
mance in the classification task, i.e., the highest accuracy.
This way, we test the impact of microaggregation in the
different utility contexts or domains defined by a variety of
data sets and machine learning algorithms.

2) DATA
For the purpose of illustration, we shall evaluate the impact
of microaggregation first on a synthetic data set. The effect
of microaggregation on real scenarios will be assessed after-
wards in data sets satisfying these four properties. First,
we require data sets containing demographic attributes so that
they reflect the typical characteristics of microdata. Secondly,
we consider only data sets whose potential key attributes
are correlated with a given sensitive (label) attribute, so the
latter could be effectively predicted (classified). Thirdly,
we need a relatively large number of records (e.g., more
than 500) to have a better view of the overall effect of
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FIGURE 5. Accuracy of the kNN machine learning algorithm applied on the UCI Adult data set, for different
values of k (here, k is not related with k-anonymity).

FIGURE 6. Depiction of the quasi-identifiers (x2 vs x1) of our synthetic data set. Samples are colored according to their class, y ; blue for y = 0 and red
for y = 1.

microaggregation, using an incremental value of the privacy
parameter k . Finally, we use standardized or already tested
data sets so that our results can be easily reproduced. It is
worth noting that predictive demographic data turned out to
be a very restrictive condition when we searched for data sets
to carry out the tests.

For the sake of simplicity and ease in its graphic rep-
resentation, we build the synthetic data set with only two
numerical attributes (x1, x2) resembling quasi-identifiers, and
a binary attribute (y) as the confidential attribute. The data set
is generated so that y is to some extent predictable from x1 and
x2 and has 30,000 records. In Section IV-B, we describe in
greater detail the process by which the synthetic data set was
generated and show a preliminary experiment to illustrate the
effects of microaggregation.

Regarding the experiments on real data sets, we first
employ the standardized ‘‘Adult’’ data set from the UCI

Machine Learning Repository [50], described in Table 2.
The data set in question has been widely used to evalu-
ate binary classifiers and privacy preserving mechanisms.
Its 45,222 records are already split into two parts, for train-
ing (2/3) and testing (1/3) purposes. The data set contains
15 input demographic attributes and a binary label attribute,
the salary, which is the attribute the machine learning algo-
rithm will try to predict. In particular, the attribute specifies
whether a person makes over 50K a year or not. The attributes
we use as quasi-identifiers are age, education-num, marital-
status, sex, capital-gain, and hours-per-week.

The second standardized data set is ‘‘Pima Indians Dia-
betes’’ [51] which contains 768 records and 9 demographic
attributes. Available at the UCI Machine Learning Repos-
itory, this data set has been used in [22], [23], and [31].
The 8 key attributes we selected allow predicting whether
an individual will be diagnosed with diabetes or not. The
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FIGURE 7. Samples of our our synthetic data set, colored according to their predicted class, ȳ ; blue for ȳ = 0 and red for ȳ = 1.

FIGURE 8. Cells of samples obtained after k-anonymous microaggregation with MDAV on the quasi-identifiers of our synthetic data set
(k = 3000).

third real data set we consider in our experiments is the
‘‘Irish Census’’ [3], a synthetic version of the data from the
2011 Irish Census, which has been used in [1] and [2] to eval-
uate and compare k-anonymization algorithms. It contains
100,000 records and 10 demographic attributes. Originally,
it was not built with a predictive task in mind, but 5 of its
attributes could be used to predict an individual’s economic
status (employed or unemployed).

Table 2 describes the main characteristics of the data sets
tested in our experiments, and Table 3 shows the machine
learning algorithms employed for each data set.

3) ADDITIONAL TASKS
Since our implementation of MDAV only operates with
numerical attributes, we conducted some preprocessing tasks
on the data sets described in the previous subsection. Specif-
ically, we converted some useful categorical attributes to
numeric, where possible, and binarized the sensitive attribute,

where necessary, so that the application domain of data was
binary classification.

C. EXPERIMENTAL METHODOLOGY
The steps we follow to evaluate the impact of microaggre-
gation on the utility of microdata are in line with the attack
and utility models described at the beginning of Section III
and are illustrated in Fig. 4. As a first data preprocessing
step, we extract the key attribute information of our interest
from each data set, according to the guidelines described
in the previous subsection. Moreover, from the selected key
attributes, we ‘‘numerize’’ the categorical data so that they are
compatible withMDAV. Finally, we identify the key attributes
that are then used as input samples and the sensitive label
attribute that will serve as the class to be predicted by the
classification model.

The next step splits each microdata set into training and
test sets. As is common in the evaluation of machine learning
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FIGURE 9. Degradation of the empirical utility (accuracy and F-measure) of our synthetic data set when microaggregated (using MDAV) for
a wide range of k .

FIGURE 10. Distortion, measured as MSE, introduced by MDAV k-anonymous microaggregation to our synthetic data set, considering a
wide range of k .

algorithms, a model is constructed from a training subset of
the data and is evaluated on the test subset. Following such
methodology, we use two-thirds of the data for training and
one-third for testing. The splitting is done in such a way that
the class attribute is stratified in each subset, according to its
original distribution in all the data set.

After splitting the data into training and test sets,
the microaggregation process is performed usingMDAV over
the latter set. To this end, previously we follow the common
practice of normalizing each column of the data to have zero
mean and unit variance.

With the microaggregated versions of each (training) data
set, we then construct a classification model over each of
those versions using Weka and 10-fold cross validation.
The learning algorithms we use for each data set are listed
in Table 3. Finally, we evaluate the accuracy of the resulting
classification models over the non-anonymized test subset,
reproducing the application scenario where a database user
would use the classification model to classify their original
samples of data.

IV. EXPERIMENTAL RESULTS
Preliminary Experiment To get some intuition about the
impact of microaggregation and its clustering capability on
the empirical utility of anonymized data, we next make an
analogy with the operation of some machine learning algo-
rithms. Consider the k-nearest neighbors algorithm (kNN),
a simple classifier, and assume a data set with n training
tuples, each one assigned to a binary class label. kNN classi-
fies a new tuple according to a majority vote of its k closest
‘‘neighboring training tuples’’ in the feature space. Note that,
in this context, k has nothing to do with anonymity. A small k
implies considering few neighboring samples for classifica-
tion, which would be the most representative ones, being the
closest, but would not be so reliable in terms of predictability.
On the other hand, a large k implies taking more (and not
so close) neighboring samples, being demographically less
representative, but predictably more reliable. This tradeoff
is illustrated in Fig. 5, where we measure the accuracy of
kNN on the original UCI Adult data set for several values
of k . As depicted in Fig. 5, the classification accuracy of
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FIGURE 11. Accuracy of the bagging machine learning model trained on our microaggregated synthetic data set, against the distortion due to
MDAV.

FIGURE 12. Relevance of the cumulative number of selected attributes from the UCI Adult data set as predictors of the class attribute (Annual Salary).

kNN improves as groups rather than individual samples are
considered to robustly infer what would effectively constitute
a macrotrend.

We argue that microaggregation would be acting analo-
gously to kNN when aggregating neighboring data points
to construct cells, and computing averages to get repre-
sentative centroids for each cluster. Such clustering could
be regarded as a denoising process. In fact, the benefit of
preprocessing data with unsupervised techniques based on
clustering, prior to supervised learning, is known in the
machine-learning literature. Therefore, it seems reasonable to

expect k-anonymous microaggregation to have a minor (and
sometimes even positive) impact on the empirical utility of
data, measured as the accuracy of machine learning models
when deriving macrotrends.

A. MEASURING THE IMPACT OF MICROAGGREGATION
ON A SYNTHETIC DATA SET
We begin our experiments by analyzing the effect of microag-
gregation on synthetic data. To this end, we generate
30,000 samples of 3-dimensional Gaussian data. The first
two dimensions are assumed to be quasi-identifiers, and the
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FIGURE 13. Degradation of the empirical utility (accuracy and F-measure) of the UCI Adult data set when microaggregated (using MDAV) for a wide
range of k .

TABLE 4. Different utility metrics for the UCI Adult data set when
microaggregated for a wide range of k .

third dimension represents a binary confidential attribute.
Since we require that the quasi-identifiers be predictors
of the confidential attribute (as would be, e.g., the weight
and height predictors of the existence or not of a dis-
ease in an individual), we introduce in the data a learnable
macrotrend or dependence among the quasi-identifiers and
the confidential attribute.

Next, we describe how we generate this synthetic data set.
Let X be a bidimensional continuous r.v. representing the
two quasi-identifiers (x1, x2), and let Y be a binary r.v. indi-
cating whether an individual has a disease (Y = 1) or not
(Y = 0). The data set is generated in two parts, each matched
to a different value of Y . Accordingly, X is distributed as a
unit-variance Gaussian distribution with mean µ for Y = 1,
andwithmean−µ, for Y = 0. In Fig. 6, we represent this data
set by plotting the values of X for each record as coordinates
of a point in a plane, coloring each point according to the

class to which it belongs. As expected, two clouds of points
are obtained (the red one, for Y = 1, slightly on the right;
and the blue one, for Y = 0, on the left) where we can guess
the optimal threshold to estimate the class Ŷ of each point.

Let P{Y = 1|x} be the discriminative model of this prob-
lem. The prevalence p of a disease in this data set is the
proportion of records matched to the class Y = 1. It is routine
to represent this model, using logarithmic odds, as

L{Y = 1 | X = x} = 2µx + ln
p

1− p
.

We denote the cumulative distribution function (CDF) of
the zero-mean, unit-variance Gaussian distribution as8. The
accuracyA of our model to find the estimated class Ŷ can be
expressed as

A = P{Y = Ŷ } = (1− p)8(θ + µ)+ p8(µ− θ ),

for a given threshold x = θ . It is straightforward to
derive the optimal threshold θ∗ for maximum accuracy of our
discriminative model, which is

θ∗ = −
1
2µ

ln
p

1− p
.

In order to have a balanced data set, we use p = 0.5, thus
half of the samples are matched to each class. Consequently,
the optimal threshold to classify both parts of the data set
is θ∗ = 0. Additionally, we choose µ = 0.125 so that the
distribution of both groups of samples are close; evidently,
the more overlapped the two groups are, the more difficult
the classification task.

Next, we train a machine learning model over a stratified
part of the synthetic data, using the C4.5 algorithm. Sinceµ is
low, the accuracy obtained from the classifier is 60%. Based
on this model, we predict the class using the quasi-identifiers.
Then, in Fig. 7, we plot the same clouds of samples of Fig. 6,
but now we color them according to the predicted class.
Accordingly, the classification threshold is evident.

To analyze the impact of microaggregation, we apply
MDAV to the training set of this data set with k = 3000,
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FIGURE 14. Distortion introduced by MDAV k-anonymous microaggregation to the UCI Adult data set, when
microaggregated for a wide range of k .

FIGURE 15. Accuracy of the bagging machine learning model trained on the microaggregated UCI Adult data set, against the distortion due
to MDAV.

which is a very large value of cluster size. Accordingly, we get
7 cells that we plot in Fig. 8 with distinct colors; the classi-
fication threshold is also plotted. Notice in the figure that,
after the clustering applied by MDAV, the samples of 3 out of
7 cells might be misclassified with a higher probability since
such samples are distributed on both sides of the classification
threshold. However, the remaining 4 cells, which account for
about 57% of the data, are clearly defined on one side of
the classification threshold, so they would be correctly clas-
sified. Hence, even after microaggregation, machine-learned
macrotrends might not suffer a significant impact, i.e., the

accuracy obtained from original data is not harshly reduced,
even for high values of k .

To illustrate more systematically this effect on data utility,
we plot in Fig. 9 the accuracy and F-measure of the learning
model obtained from our synthetic data, after anonymizing
it with different values of k . Consistently with the previ-
ous experiment, none of these utility metrics is drastically
affected by the influence of microaggregation, for practical
values of k . Another metric of the impact of microaggre-
gation (not necessarily in terms of utility degradation) is
also depicted in Fig. 10. Here, we observe that distortion,
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FIGURE 16. Degradation of the empirical utility of the UCI Pima Indians Diabetes data set when microaggregated (using MDAV) for a wide range of k .

FIGURE 17. Distortion introduced by MDAV k-anonymous microaggregation to the UCI Pima Indians data set, for a wide
range of k .

measured in terms of MSE, increases with k . However, dis-
tortion starts soon to increase significantly from k = 100.
This divergence between accuracy and distortion is evidenced
in Fig. 11, where the connection between both seems non-
specific and nonlinear. A more detailed discussion regarding
these results is presented in the next section, where real data
is considered.

B. GENERAL RESULTS FROM REAL DATA SETS
We begin our first series of experiments by computing the
relevance of the number of predictive attributes in each
data set. The aim is to analyze how the accuracy of the
classification task varies with the number of predictive
attributes. To determine the order of the attributes employed,

we used sequential forward selection, which consists in
sequentially adding attributes to an empty set until the
addition of further attributes does not decrease the accuracy
of the classification task. Fig. 12 illustrates the variation of
accuracy with the number of predictive attributes for UCI
Adult.

Although intuition could suggest that even small levels of
data perturbation might yield important reductions in utility,
riveting results are found in our experiments when using
microaggregation. First, Fig. 13 shows how the accuracy and
F-measure of the classifier degrades as the privacy parame-
ter k increases, when anonymizing the UCI Adult data set.
As expected, accuracy attains its highest value (about 85%)
when no anonymization is applied (k = 1). For k = 200,
which is a relatively large value of cluster size, accuracy only
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FIGURE 18. Accuracy of the logistic regression model trained on the microaggregated UCI Pima Indians Diabetes data set, against the
distortion due to MDAV.

decreases up to 82%. We also note that, even for a value of k
of 3,000, which implies a strong level of anonymity, accuracy
is approximately 80%.

Fig. 13 also depicts a dotted line to represent the low-
est accuracy achieved by the machine learning algorithm
(76.37%) when no predictor attributes are used (suppression
of all key attributes); this provides the highest level of privacy
protection. Note that, when all key attributes are suppressed,
the machine learning model always classifies a new instance
depending on the majority value of the class attribute.

From the figure, we observe that a reduction in accuracy
from 85% to 82% (attained for k = 200) when the key
attribute (important predictor) ‘‘Capital Gain’’ is eliminated.
Similarly, even when k = 3, 000, we obtain a smaller impact
on utility (accuracy of 80%) than when all predictors–except
‘‘Education Number’’– are suppressed. This are good news
for microaggregation, since it suggests that we can still get
useful microdata after applying more than reasonable levels
of privacy. The reported values of accuracy and other metrics
(F-measure and AuC) are shown, in more detail, in Table 4.

The impact of MDAV on the UCI Adult data set is also
measured in terms of the distortion introduced to quasi-iden-
tifiers. We use MSE to quantify such distortion. In Fig. 14,
we can see how distortion increases from 0 (when k = 1) to
0.62 (for k = 3, 000). Specifically, we observe a pronounced
growth from k = 100, although for values of k smaller than
100, distortion does not seem significant.

In Fig. 15, we plot accuracy vs distortion. The most rel-
evant conclusion that can be drawn from this figure is that
accuracy stays relatively stable (greater than 80%) up to
distortions of 0.7. Precisely, although MSE is conventionally
used in SDC to compare the utility of microaggregation

TABLE 5. Different utility metrics for the UCI Pima Indians data set when
microaggregated for a wide range of k .

algorithms, we observe that this distortion metric says little
about the impact on the performance of a machine-learning
classifier. In other words, the data yielded by this figure seems
to provide convincing evidence that MSE is not a suitable
measure of utility for classification tasks.

In our evaluation of the UCI Pima Indian Diabetes data
set in Fig. 16, we note that the degradation margin of utility
goes from 74.2% (when k = 1, thus without perturbation) to
65.23% (from k = 100). Microaggregation shows a similar
behavior to that observed in the UCI Adult data set but,
being 50 times smaller, it evidently degrades more quickly
as k increases. However, a noticeable stability is appreciated
in accuracy up to k = 30 and, in fact, this performance
metric remains close to the upper baseline at around 74%. For
values of k between 10 and 30, accuracy is even improved,
which could be explained by the denoising effect of averaging
through clever clustering, that may positively contribute to
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FIGURE 19. Degradation of the empirical utility (accuracy) of the Irish Census data set when microaggregated for a wide range of k .

FIGURE 20. Accuracy of the C4.5 machine learning model trained over the microaggregated Irish Census data set, against the distortion due to MDAV.

a more robust inference. This effect is illustrated in §IV-A
and §V. Interestingly, Fig. 17 shows a sustained increase in
distortion as k becomes larger. To gain insight into this rela-
tive stability in accuracy, we also plot accuracy vs distortion
in Fig. 18 and confirm that, up to distortions of 50%, utility
remains close to the upper baseline. The values of accuracy
and other metrics (F-measure and AuC) obtained for this data
set are also shown in Table 5.

Finally, we examine the Irish data set in Fig. 19. Here,
we observe a wide degradation margin since its label
attribute has balanced classes. Specifically, accuracy goes
from 72.62% to about 68.04% when the privacy param-
eter k equals 3,000. Also, we can see, once again, that

accuracy remains quite high (more than 70%) and stable up
to k = 2, 000. A similar behavior is observed for F-measure.
Although the size of the data set at hand is relatively large
(100K instances), the available evidence suggests that the
reduction of empirical utility of the data due to microaggre-
gation is not significant for a wide range of values of k . Such
effect is also noticeable in Fig. 20, where we plot accuracy
vs distortion. Table 6 shows the reported values of accuracy,
as well as other metrics (F-measure and AuC), in greater
detail.

Our experimental findings confirm that MDAV introduces
sufficiently small levels of perturbation in the quasi-identi-
fiers, so that the statistical properties of the published data
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TABLE 6. Different utility metrics for the Irish Census data set when
microaggregated for a wide range of k .

can be preserved to a large extent, while satisfying a given
k-anonymity constraint. The upshot is that much of the
empirical utility is retained within the microaggregated data.
In fact, the results of our experiments suggest that such impact
is often minor, since microaggregation preserves machine-
learned macrotrends. We believe that the average operations
performed by MDAV to find a centroid representative of k
tuples are working as a noising removal filter that prevents
the classifier algorithm from adjusting to the existing noise
in the data.

Interestingly, although not explicitly reported in these
terms, previous work surveyed in Section I appears to be
consistent with our findings. For example, in [23], where
different algorithms based on generalization and suppression
are compared, the degradation in accuracy is certainly small
in many cases. Other works in the literature give some clues
about a potential ‘‘constructive effect’’ of anonymization
mechanisms. In that sense, [25] mentions that anonymization
might sometimes behave as a form of feature selection or con-
struction.Moreover,Malle et al. [33] conclude that a selective
anonymization may not be so destructive. Finally, using a
less conclusive argument, [7] states that, while making no
changes to existing tools and systems, significant utility can
be extracted from anonymized data.

Testing a wide range of values of the privacy parameter
helps to make visible the overall effect of anonymization on
data utility. Doing so also assists in noticing the influence
of other critical criteria such as the size of the data set and
the absolute upper and lower bounds of utility. As shown in
our experimental results, the utility of anonymizedmicrodata,
measured as classification accuracy, may not take values
strictly from 0 to 100%. The intrinsic statistical properties of
released data would already limit the capabilities of machine
learning algorithms and, thus, the improvements they get
over baseline methods (e.g., always predicting the most
frequent class in the training set). Evidently, very little utility

can be maintained after anonymization if machine learning
(classification) algorithms perform poorly, by default, with
respect to the baseline. Unfortunately, these considerations
are not always made when evaluating the performance of
k-anonymous microaggregation or, in general, of anonymiza-
tion mechanisms.

V. CONCLUSION
With the advent of the Internet and the development of sophis-
ticated data analytics, the availability of massive amounts
of information has increased the demand for data sharing.
In the context of structured data, microdata are an invalu-
able source of information for their potential to reveal pat-
terns or macrotrends about the population there represented.

Before these data can be made public or shared with
external entities, data holders must ensure individual privacy
is safeguarded. Perturbing quasi-identifiers attributes is the
usual approach to prevent identity disclosure in microdata.
Nonetheless, while perturbation may prevent reidentification
attacks, it may have a large impact on data utility, particularly
on the performance of machine-learning tasks. To cope with
it, several works have proposed adapting data-anonymiza-
tion or machine-learning algorithms to get more utility from
anonymized data. We claim in this work, however, that the
default operation of some anonymization mechanisms may
not affect data utility significantly.

In this paper, we have investigated the high-utility SDC
spectrum, implemented by syntactic k-anonymous microag-
gregation, which has a direct application on the health
domain where utility is critical. Our experiments have shown,
with some consistency, that k-anonymous microaggregation
implemented through MDAV does not have a significant
impact onmachine-learnedmacrotrends formultiple data sets
and a wide range of machine-learning algorithms. Trying to
consider the domain of data in or evaluation, we not only
tested different data sets but also multiple learning algorithms
to extract the maximum utility from the data. Then, these
algorithms were selected to get the highest accuracy from
each data set.

These excellent results on learning performance from
microaggregated data deserve careful attention. As the lack
of substantial degradation in classification accuracy for a
generous range of microcell sizes k may be somewhat
counterintuitive, we conducted further verification on such
remarkable finding. Specifically, we applied the k-nearest
neighbor algorithm (kNN) to the original, unperturbed data,
in order to verify our working hypothesis that clustering
effectively acts as a form of averaging and thus denoising.
In our verification, k is the usual name for the parameter gov-
erning the size of the cluster of the kNN algorithm, analogous
to some extent to the anonymity parameter. Fig. 5 illustrates
that the classification accuracy of kNN improves as groups
rather than individual samples are considered to robustly infer
what would effectively constitute a macrotrend. We stress
that kNN was applied in Fig. 5 to the original data, with no
alteration or protection, to shed light on this matter.
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We contend that a similar denoising effect, akin to averag-
ing through clustering, is the underlying cause of the striking
utility of k-anonymous microaggregation. Conceivably, for
reasonable values of the anonymity parameter k , microag-
gregation should not substantially devalue the process of
inference of macrotrends carried out by the machine learning
algorithm. Moreover, high-utility microaggregation algo-
rithms such as MDAV may, in some cases, positively con-
tribute to a more robust inference by denoising through
clever clustering of demographically similar individuals. The
benefit of preprocessing data with unsupervised techniques
based on clustering, prior to supervised learning, is known in
themachine-learning literature. The lack of substantial degra-
dation in classification performance due to k-anonymous
microaggregation, and the occasional slight improvement in
utility, is a novel result of strategic importance in the privacy
arena.

Finally, our results provide confirmatory evidence that,
while keeping a monotonicity relationship with accuracy,
the traditional utility metric of SDC (i.e., MSE) is not an
ideal metric to determine the impact on the utility of microag-
gregated data, since there exists a non-specific non-linear
dependence.
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