2,274 research outputs found

    Smart Substation Network Fault Classification Based on a Hybrid Optimization Algorithm

    Get PDF
    Accurate network fault diagnosis in smart substations is key to strengthening grid security. To solve fault classification problems and enhance classification accuracy, we propose a hybrid optimization algorithm consisting of three parts: anti-noise processing (ANP), an improved separation interval method (ISIM), and a genetic algorithm-particle swarm optimization (GA-PSO) method. ANP cleans out the outliers and noise in the dataset. ISIM uses a support vector machine (SVM) architecture to optimize SVM kernel parameters. Finally, we propose the GA-PSO algorithm, which combines the advantages of both genetic and particle swarm optimization algorithms to optimize the penalty parameter. The experimental results show that our proposed hybrid optimization algorithm enhances the classification accuracy of smart substation network faults and shows stronger performance compared with existing methods

    Smart Substation Network Fault Classification Based on a Hybrid Optimization Algorithm

    Get PDF
    Accurate network fault diagnosis in smart substations is key to strengthening grid security. To solve fault classification problems and enhance classification accuracy, we propose a hybrid optimization algorithm consisting of three parts: anti-noise processing (ANP), an improved separation interval method (ISIM), and a genetic algorithm-particle swarm optimization (GA-PSO) method. ANP cleans out the outliers and noise in the dataset. ISIM uses a support vector machine (SVM) architecture to optimize SVM kernel parameters. Finally, we propose the GA-PSO algorithm, which combines the advantages of both genetic and particle swarm optimization algorithms to optimize the penalty parameter. The experimental results show that our proposed hybrid optimization algorithm enhances the classification accuracy of smart substation network faults and shows stronger performance compared with existing methods

    Deep Learning based Prediction of Clogging Occurrences during Lignocellulosic Biomass Feeding in Screw Conveyors

    Get PDF
    Over the last decades, there have been substantial government and private sector investments to establish a commercial biorefining industry that uses lignocellulosic biomass as feedstock to produce fuels, chemicals, and other products. However, several biorefining plants experienced material conveyance problems due to the variability and complexity of the biomass feedstock. While the problems were reported in most conveyance unit operations in the biorefining plants, screw conveyors merit special attention because they are the most common conveyors used in biomass conveyance and typically function as the last conveyance unit connected to the conversion reactors. Thus, their operating status affects the plant production rate. Therefore, detecting emerging clogging events and, ultimately, proactively adjusting operating conditions to avoid downtime is crucial to improving overall plant economics. One promising solution is the development of sensor systems to detect clogging to support automated decision-making and process control. In this study, two deep learning based algorithms are developed to detect an imminent clogging event based on the current signature and vibration signals extracted from the sensors connected to the benchtop screw conveyor system. The study focuses on three biomass materials (switchgrass, loblolly pine, and hybrid poplar) and is designed around three research objectives. The first research objective examines the relationship between the occurrence of clogging in a screw conveyor and the current and vibration signals on the different feedstocks to establish the presence of clogging event fingerprint that could be exploited in automated decision-making and process-control. The second research objective applies two deep learning algorithms to the current and vibration signals to detect the imminent occurrence of clogging and its severity for decision making with an optimization procedure. The third objective examines the robustness of the optimized deep learning algorithm to detection imminent clogging events when feedstock properties (size distribution and moisture contents) vary. In the long-term, the early clogging detection methodology developed in this study could be leveraged to develop smart process controls for biomass conveyance

    Intelligent Feature Extraction, Data Fusion and Detection of Concrete Bridge Cracks: Current Development and Challenges

    Full text link
    As a common appearance defect of concrete bridges, cracks are important indices for bridge structure health assessment. Although there has been much research on crack identification, research on the evolution mechanism of bridge cracks is still far from practical applications. In this paper, the state-of-the-art research on intelligent theories and methodologies for intelligent feature extraction, data fusion and crack detection based on data-driven approaches is comprehensively reviewed. The research is discussed from three aspects: the feature extraction level of the multimodal parameters of bridge cracks, the description level and the diagnosis level of the bridge crack damage states. We focus on previous research concerning the quantitative characterization problems of multimodal parameters of bridge cracks and their implementation in crack identification, while highlighting some of their major drawbacks. In addition, the current challenges and potential future research directions are discussed.Comment: Published at Intelligence & Robotics; Its copyright belongs to author

    Methods of Technical Prognostics Applicable to Embedded Systems

    Get PDF
    Hlavní cílem dizertace je poskytnutí uceleného pohledu na problematiku technické prognostiky, která nachází uplatnění v tzv. prediktivní údržbě založené na trvalém monitorování zařízení a odhadu úrovně degradace systému či jeho zbývající životnosti a to zejména v oblasti komplexních zařízení a strojů. V současnosti je technická diagnostika poměrně dobře zmapovaná a reálně nasazená na rozdíl od technické prognostiky, která je stále rozvíjejícím se oborem, který ovšem postrádá větší množství reálných aplikaci a navíc ne všechny metody jsou dostatečně přesné a aplikovatelné pro embedded systémy. Dizertační práce přináší přehled základních metod použitelných pro účely predikce zbývající užitné životnosti, jsou zde popsány metriky pomocí, kterých je možné jednotlivé přístupy porovnávat ať už z pohledu přesnosti, ale také i z pohledu výpočetní náročnosti. Jedno z dizertačních jader tvoří doporučení a postup pro výběr vhodné prognostické metody s ohledem na prognostická kritéria. Dalším dizertačním jádrem je představení tzv. částicového filtrovaní (particle filtering) vhodné pro model-based prognostiku s ověřením jejich implementace a porovnáním. Hlavní dizertační jádro reprezentuje případovou studii pro velmi aktuální téma prognostiky Li-Ion baterii s ohledem na trvalé monitorování. Případová studie demonstruje proces prognostiky založené na modelu a srovnává možné přístupy jednak pro odhad doby před vybitím baterie, ale také sleduje možné vlivy na degradaci baterie. Součástí práce je základní ověření modelu Li-Ion baterie a návrh prognostického procesu.The main aim of the thesis is to provide a comprehensive overview of technical prognosis, which is applied in the condition based maintenance, based on continuous device monitoring and remaining useful life estimation, especially in the field of complex equipment and machinery. Nowadays technical prognosis is still evolving discipline with limited number of real applications and is not so well developed as technical diagnostics, which is fairly well mapped and deployed in real systems. Thesis provides an overview of basic methods applicable for prediction of remaining useful life, metrics, which can help to compare the different approaches both in terms of accuracy and in terms of computational/deployment cost. One of the research cores consists of recommendations and guide for selecting the appropriate forecasting method with regard to the prognostic criteria. Second thesis research core provides description and applicability of particle filtering framework suitable for model-based forecasting. Verification of their implementation and comparison is provided. The main research topic of the thesis provides a case study for a very actual Li-Ion battery health monitoring and prognostics with respect to continuous monitoring. The case study demonstrates the prognostic process based on the model and compares the possible approaches for estimating both the runtime and capacity fade. Proposed methodology is verified on real measured data.

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Α state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    A big data MapReduce framework for fault diagnosis in cloud-based manufacturing

    Get PDF
    This research develops a MapReduce framework for automatic pattern recognition based on fault diagnosis by solving data imbalance problem in a cloud-based manufacturing (CBM). Fault diagnosis in a CBM system significantly contributes to reduce the product testing cost and enhances manufacturing quality. One of the major challenges facing the big data analytics in cloud-based manufacturing is handling of datasets, which are highly imbalanced in nature due to poor classification result when machine learning techniques are applied on such datasets. The framework proposed in this research uses a hybrid approach to deal with big dataset for smarter decisions. Furthermore, we compare the performance of radial basis function based Support Vector Machine classifier with standard techniques. Our findings suggest that the most important task in cloud-based manufacturing, is to predict the effect of data errors on quality due to highly imbalance unstructured dataset. The proposed framework is an original contribution to the body of literature, where our proposed MapReduce framework has been used for fault detection by managing data imbalance problem appropriately and relating it to firm’s profit function. The experimental results are validated using a case study of steel plate manufacturing fault diagnosis, with crucial performance matrices such as accuracy, specificity and sensitivity. A comparative study shows that the methods used in the proposed framework outperform the traditional ones

    CORRELATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES WITH SOFT COMPUTING IN VARIOUS AREAS

    Get PDF
    Artificial Intelligence (AI) is a part of computer science concerned with designing intelligent computer systems that exhibit the characteristics used to associate with intelligence in human behavior. Basically, it define as a field that study and design of intelligent agents. Traditional AI approach deals with cognitive and biological models that imitate and describe human information processing skills. This processing skills help to perceive and interact with their environment. But in modern era developers can build system that assemble superior information processing needs of government and industry by choosing from large areas of mature technologies. Soft Computing (SC) is an added area of AI. It focused on the design of intelligent systems that process uncertain, imprecise and incomplete information. It applied in real world problems frequently to offer more robust, tractable and less costly solutions than those obtained by more conventional mathematical techniques. This paper reviews correlation of artificial intelligence techniques with soft computing in various areas
    corecore