539 research outputs found

    ROBOTIC INTERACTION AND COOPERATION. Industrial and rehabilitative applications

    Get PDF
    The main goal of the thesis is the development of human-robotic interaction control strategies, which enable close collaboration between human and robot. In this framework we studied two di erent aspects, with applications respectively in industrial and rehabilitation domains. In the rst part safety issues are examined on a scenario in which a robot manipulator and a human perform the same task and in the same workspace. During the task execution the human should be able to get into contact with the robot and in this case an estimation algorithm of both interaction forces and contact point is proposed in order to guarantee safety conditions. At the same time, all the unintended contacts have to be avoided, and a suitable post collision strategy has been studied to move away the robot from the collision area or to reduce the impact e orts. However, the second part of the thesis focus on the cooperation between an orthesis and a patient. Indeed, in order to support a rehabilitation process, gait parameters, such as hip and knee angles or the beginning of a gait phase, have been estimated. For this purpose a sensor system, consisting of accelerometers and gyroscopes, and algorithms, developed in order to avoid the error accumulation due to the gyroscopes drift and the vibrations related to the beginning of the stance phase due to the accelerometers, have been proposed.The main goal of the thesis is the development of human-robotic interaction control strategies, which enable close collaboration between human and robot. In this framework we studied two di erent aspects, with applications respectively in industrial and rehabilitation domains. In the rst part safety issues are examined on a scenario in which a robot manipulator and a human perform the same task and in the same workspace. During the task execution the human should be able to get into contact with the robot and in this case an estimation algorithm of both interaction forces and contact point is proposed in order to guarantee safety conditions. At the same time, all the unintended contacts have to be avoided, and a suitable post collision strategy has been studied to move away the robot from the collision area or to reduce the impact e orts. However, the second part of the thesis focus on the cooperation between an orthesis and a patient. Indeed, in order to support a rehabilitation process, gait parameters, such as hip and knee angles or the beginning of a gait phase, have been estimated. For this purpose a sensor system, consisting of accelerometers and gyroscopes, and algorithms, developed in order to avoid the error accumulation due to the gyroscopes drift and the vibrations related to the beginning of the stance phase due to the accelerometers, have been proposed

    A Hybrid Visual Control Scheme to Assist the Visually Impaired with Guided Reaching Tasks

    Get PDF
    In recent years, numerous researchers have been working towards adapting technology developed for robotic control to use in the creation of high-technology assistive devices for the visually impaired. These types of devices have been proven to help visually impaired people live with a greater degree of confidence and independence. However, most prior work has focused primarily on a single problem from mobile robotics, namely navigation in an unknown environment. In this work we address the issue of the design and performance of an assistive device application to aid the visually-impaired with a guided reaching task. The device follows an eye-in-hand, IBLM visual servoing configuration with a single camera and vibrotactile feedback to the user to direct guided tracking during the reaching task. We present a model for the system that employs a hybrid control scheme based on a Discrete Event System (DES) approach. This approach avoids significant problems inherent in the competing classical control or conventional visual servoing models for upper limb movement found in the literature. The proposed hybrid model parameterizes the partitioning of the image state-space that produces a variable size targeting window for compensatory tracking in the reaching task. The partitioning is created through the positioning of hypersurface boundaries within the state space, which when crossed trigger events that cause DES-controller state transition that enable differing control laws. A set of metrics encompassing, accuracy (DD), precision (θe\theta_{e}), and overall tracking performance (ψ\psi) are also proposed to quantity system performance so that the effect of parameter variations and alternate controller configurations can be compared. To this end, a prototype called \texttt{aiReach} was constructed and experiments were conducted testing the functional use of the system and other supporting aspects of the system behaviour using participant volunteers. Results are presented validating the system design and demonstrating effective use of a two parameter partitioning scheme that utilizes a targeting window with additional hysteresis region to filtering perturbations due to natural proprioceptive limitations for precise control of upper limb movement. Results from the experiments show that accuracy performance increased with the use of the dual parameter hysteresis target window model (0.91D10.91 \leq D \leq 1, μ(D)=0.9644\mu(D)=0.9644, σ(D)=0.0172\sigma(D)=0.0172) over the single parameter fixed window model (0.82D0.980.82 \leq D \leq 0.98, μ(D)=0.9205\mu(D)=0.9205, σ(D)=0.0297\sigma(D)=0.0297) while the precision metric, θe\theta_{e}, remained relatively unchanged. In addition, the overall tracking performance metric produces scores which correctly rank the performance of the guided reaching tasks form most difficult to easiest

    The Use of Tactile Sensors in Oral and Maxillofacial Surgery: An Overview

    Get PDF
    Background: This overview aimed to characterize the type, development, and use of haptic technologies for maxillofacial surgical purposes. The work aim is to summarize and evaluate current advantages, drawbacks, and design choices of presented technologies for each field of application in order to address and promote future research as well as to provide a global view of the issue. Methods: Relevant manuscripts were searched electronically through Scopus, MEDLINE/PubMed, and Cochrane Library databases until 1 November 2022. Results: After analyzing the available literature, 31 articles regarding tactile sensors and interfaces, sensorized tools, haptic technologies, and integrated platforms in oral and maxillofacial surgery have been included. Moreover, a quality rating is provided for each article following appropriate evaluation metrics. Discussion: Many efforts have been made to overcome the technological limits of computed assistant diagnosis, surgery, and teaching. Nonetheless, a research gap is evident between dental/maxillofacial surgery and other specialties such as endovascular, laparoscopic, and microsurgery; especially for what concerns electrical and optical-based sensors for instrumented tools and sensorized tools for contact forces detection. The application of existing technologies is mainly focused on digital simulation purposes, and the integration into Computer Assisted Surgery (CAS) is far from being widely actuated. Virtual reality, increasingly adopted in various fields of surgery (e.g., sino-nasal, traumatology, implantology) showed interesting results and has the potential to revolutionize teaching and learning. A major concern regarding the actual state of the art is the absence of randomized control trials and the prevalence of case reports, retrospective cohorts, and experimental studies. Nonetheless, as the research is fast growing, we can expect to see many developments be incorporated into maxillofacial surgery practice, after adequate evaluation by the scientific community

    Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm

    Full text link
    [EN] Robotics has been successfully applied in the design of collaborative robots for assistance to people with motor disabilities. However, man-machine interaction is difficult for those who suffer severe motor disabilities. The aim of this study was to test the feasibility of a low-cost robotic arm control system with an EEG-based brain-computer interface (BCI). The BCI system relays on the Steady State Visually Evoked Potentials (SSVEP) paradigm. A cross-platform application was obtained in C++. This C++ platform, together with the open-source software Openvibe was used to control a Staubli robot arm model TX60. Communication between Openvibe and the robot was carried out through the Virtual Reality Peripheral Network (VRPN) protocol. EEG signals were acquired with the 8-channel Enobio amplifier from Neuroelectrics. For the processing of the EEG signals, Common Spatial Pattern (CSP) filters and a Linear Discriminant Analysis classifier (LDA) were used. Five healthy subjects tried the BCI. This work allowed the communication and integration of a well-known BCI development platform such as Openvibe with the specific control software of a robot arm such as Staubli TX60 using the VRPN protocol. It can be concluded from this study that it is possible to control the robotic arm with an SSVEP-based BCI with a reduced number of dry electrodes to facilitate the use of the system.Funding for open access charge: Universitat Politecnica de Valencia.Quiles Cucarella, E.; Dadone, J.; Chio, N.; García Moreno, E. (2022). Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm. Sensors. 22(13):1-26. https://doi.org/10.3390/s22135000126221

    Modelling and Evaluation of Piezoelectric Actuators for Wearable Neck Rehabilitation Devices

    Get PDF
    Neck pain is the most common neck musculoskeletal disorder, and the fourth leading cause of healthy years lost due to disability in the world. Due to the need of hands-on physical therapy and Canada’s aging population, access to treatment will become highly constrained. Wearable devices that allow at-home rehabilitation address this future limitation. However, few have emerged from the laboratory setting because they are limited by the use of conventional actuators. An overlooked type of actuation technology is that of piezoelectric actuators, more specifically, travelling wave ultrasonic motors (TWUM). In this work, a clear procedure that outlines how the required parameters within the hybrid TWUM model can be identified, as well as an assessment of the use of TWUMs within wearable devices for the neck, is presented. The procedure includes custom testing setups that were designed to identify the stator motion parameters, and the Coulomb coefficient of friction. The accuracy of the determined parameters were confirmed when the angular velocity of the hybrid model at different duty cycles was compared to the real TWUM being modelled, producing a coefficient of determination of 0.974. The model was then used to create a position control system that controlled the joints of a virtual robotic manipulator that modelled the neck. The manipulator exhibited a maximum absolute mean error of only 0.0289 m when simulating the required trajectories of range of motion exercises. This performance, in addition to the exemplary traits TWUMs express, demonstrate their potential to advance the field of wearable mechatronic devices

    Safe navigation and human-robot interaction in assistant robotic applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore