158 research outputs found

    Nash Equilibria, collusion in games and the coevolutionary particle swarm algorithm

    Get PDF
    In recent work, we presented a deterministic algorithm to investigate collusion between players in a game where the players’ payoff functions are subject to a variational inequality describing the equilibrium of a transportation system. In investigating the potential for collusion between players, the diagonalization algorithm returned a local optimum. In this paper, we apply a coevolutionary particle swarm optimization (PSO) algorithm developed in earlier research in an attempt to return the global maximum. A numerical experiment is used to verify the performance of the algorithm in overcoming local optimum

    A Coevolutionary Particle Swarm Algorithm for Bi-Level Variational Inequalities: Applications to Competition in Highway Transportation Networks

    Get PDF
    A climate of increasing deregulation in traditional highway transportation, where the private sector has an expanded role in the provision of traditional transportation services, provides a background for practical policy issues to be investigated. One of the key issues of interest, and the focus of this chapter, would be the equilibrium decision variables offered by participants in this market. By assuming that the private sector participants play a Nash game, the above problem can be described as a Bi-Level Variational Inequality (BLVI). Our problem differs from the classical Cournot-Nash game because each and every player’s actions is constrained by another variational inequality describing the equilibrium route choice of users on the network. In this chapter, we discuss this BLVI and suggest a heuristic coevolutionary particle swarm algorithm for its resolution. Our proposed algorithm is subsequently tested on example problems drawn from the literature. The numerical experiments suggest that the proposed algorithm is a viable solution method for this problem

    Finding Nash Equilibrium Point of Nonlinear Non-cooperative

    Get PDF
    Abstract In this paper a coevolutionary algorithm is developed to find the Nash Equilibrium (NE

    Market Equilibrium in Active Distribution System With μ VPPs: A Coevolutionary Approach

    Get PDF

    Market-oriented micro virtual power prosumers operations in distribution system operator framework

    Get PDF
    As the European Union is on track to meet its 2020 energy targets on raising the share of renewable energy and increasing the efficiency in the energy consumption, considerable attention has been given to the integration of distributed energy resources (DERs) into the restructured distribution system. This thesis proposes market-oriented operations of micro virtual power prosumers (J.lVPPs) in the distribution system operator framework, in which the J.lVPPs evolve from home-oriented energy management systems to price-taking prosumers and to price-making prosumers. Considering the diversity of the DERs installed in the residential sector, a configurable J.l VPP is proposed first to deliver multiple energy services using a fuzzy logic-based generic algorithm. By responding to the retail price dynamics and applying load control, the J.lVPP achieves considerable electricity bill savings, active utilisation of energy storage system and fast return on investment. As the J.lVPPs enter the distribution system market, they are modelled as price-takers in a two-settlement market first and a chance-constrained formulation is proposed to derive the bidding strategies. The obtained strategy demonstrates its ability to bring the J.l VPP maximum profit based on different composition of DERs and to maintain adequate supply capacity to meet the demand considering the volatile renewable generation and load forecast. Given the non-cooperative nature of the actual market, the J.l VPPs are transformed into price-makers and their market behaviours are studied in the context of electricity market equilibrium models. The resulted equilibrium problems with equilibrium constraints (EPEC) are presented and solved using a novel application of coevolutionary approach. Compared with the roles of home-oriented energy management systems and price-taking prosumers, the J.lVPPs as price­ making prosumers have an improved utilisation rate of the installed DER capacity and a guaranteed profit from participating in the distribution system market

    Market-oriented micro virtual power prosumers operations in distribution system operator framework

    Get PDF
    As the European Union is on track to meet its 2020 energy targets on raising the share of renewable energy and increasing the efficiency in the energy consumption, considerable attention has been given to the integration of distributed energy resources (DERs) into the restructured distribution system. This thesis proposes market-oriented operations of micro virtual power prosumers (J.lVPPs) in the distribution system operator framework, in which the J.lVPPs evolve from home-oriented energy management systems to price-taking prosumers and to price-making prosumers. Considering the diversity of the DERs installed in the residential sector, a configurable J.l VPP is proposed first to deliver multiple energy services using a fuzzy logic-based generic algorithm. By responding to the retail price dynamics and applying load control, the J.lVPP achieves considerable electricity bill savings, active utilisation of energy storage system and fast return on investment. As the J.lVPPs enter the distribution system market, they are modelled as price-takers in a two-settlement market first and a chance-constrained formulation is proposed to derive the bidding strategies. The obtained strategy demonstrates its ability to bring the J.l VPP maximum profit based on different composition of DERs and to maintain adequate supply capacity to meet the demand considering the volatile renewable generation and load forecast. Given the non-cooperative nature of the actual market, the J.l VPPs are transformed into price-makers and their market behaviours are studied in the context of electricity market equilibrium models. The resulted equilibrium problems with equilibrium constraints (EPEC) are presented and solved using a novel application of coevolutionary approach. Compared with the roles of home-oriented energy management systems and price-taking prosumers, the J.lVPPs as price­ making prosumers have an improved utilisation rate of the installed DER capacity and a guaranteed profit from participating in the distribution system market

    The value of information in electricity investment games.

    Get PDF
    In this paper we look at the assumptions behind a Cournot model of investment in electricity markets. We analyze how information influences investment, looking at the way common knowledge of marginal costs, expectations on the competitors' marginal costs, expectations on the level and duration of demand, and conjectures on the others’ behavior, influence the value of a project. We expose how the results are highly dependent on the assumptions used, and how the investment Nash–Cournot game with perfect and complete information implies such a degree of coordination between players that the outcome of the game would be classified by any regulation law as collusive behavior. Furthermore, we introduce the concept of Nash Value of Complete Information. As an example we use a stylized model of investment in liberalized electricity markets

    CO-EVOLUTIONARY BIDDING AND COOPERATION STRATEGIES FOR BUYERS IN POWER MARKETS

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Influence of bidding mechanism and spot market characteristics on market power of a large genco using hybrid DE/BBO

    Get PDF
    Generation company (Genco) bidding in an electricity market (EM) aims to maximize its profit under uncertain market characteristics and a regulated bidding mechanism. This paper addresses the strategic bidding for a large price maker Genco and empirically investigates the effect of a step-wise multiple segment bidding mechanism and EM characteristics, such as demand and rivals' behavior, on its market power (MP) potential and efficiency. The methodology of using novel hybrid differential evolution with biogeography-based optimization (DE/BBO), employing the sinusoidal migration model, is proposed for strategic bidding. DE exploration with BBO exploitation enhances global optimization. Uncertain rival behavior is modeled as normal distribution and simulated by the Monte Carlo technique. The proposed approach is validated for large Genco bidding in spot EM, under changing market characteristics and bidding segments. The implicit MP potential and efficiency of Genco for corresponding strategies is assessed using the criteria of expected profit, risk of profit variance, and failure rate of Genco. This assessment discovers an underlying correlation between the market characteristics and bidding segments, which would aid Genco in optimizing its bidding strategy and market performance.</p
    corecore