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Abstract 
 

In this paper a coevolutionary algorithm is 
developed to find the Nash Equilibrium (NE) points of 
nonlinear games. Using the global search property of 
the evolutionary strategy enables the proposed 
algorithm to find the admissible NE and escape from 
trapping in local optimums. Several numerical 
examples are presented to show the effectiveness of 
this method for both dynamic and static games.  
 
1. Introduction 
 

Many developments in game and control theory in 
the last few decades have caused an increasing interest 
in using non-zero sum dynamic games for modeling 
several problems in the area of engineering, 
mathematics, biology, economics, management 
science, and political science. Game theory began with 
the two-player matrix game, which introduced the 
concepts of conflict, strategy, and payoff. There 
continues to be a large and growing literature on the 
theory and application of matrix games in economics 
[2], [3], [4] and [5]. In a rational game, each player’s 
objective is to choose a strategy that maximizes his 
payoff, when an individual’s payoff is not only a 
function of his own strategy but the strategies of all the 
other players. One application in engineering problems 
is designing control systems when modeled as an 
optimization problem. A robust H∞ controller design 
problem can be described as a zero sum differential 
game. The first player, control actions, tries to choose 
strategies in a way to keep performance function high 
while the other player, disturbances, aims to degrade it 
[6]. The saddle equilibrium point of the corresponding 
Hamiltonian function is the answer to the problem. In 
general, A game consists of players, strategies and 
strategy sets, payoffs, and rules for determining how 

the strategies employed by the players result in their 
respective payoffs.  

Nash Equilibrium (NE) plays an important role in 
game theory. Although rigorous mathematical 
framework is available for finding the NE in the 
quadratic cost with linear dynamic games [10], 
considerable effort has been made to find the NE in the 
case of the nonlinear games. Geometrically 
considering the concept of the NE, it is the intersection 
of players’ best response curves. This intuitive lemma 
is applied through this paper to illustrate the distinction 
between local and global NE points. The notion of 
local NE, firstly introduced by [1], demonstrates the 
drawback of methods which use local optimization 
tools in finding the NE, such as the iterative algorithms 
[11].  

This paper discusses the use of coevolutionary 
strategies in finding the NE point in games with 
nonlinear cost or profit functions. It is shown that by 
using a global search method inside each iteration of 
the main NE search algorithm, like the evolutionary 
strategy (ES), the NE points can be found in relatively 
few iterations. 

This paper is organized as follows: In the remaining 
of the introduction the definitions of game theory and 
evolutionary algorithms are reviewed. In section two, 
the use of coevolutionary strategy in finding NE point 
in more detail and an algorithm for conducting this is 
proposed. This is followed by numerical solution and 
more debate in section three. Finally, section four 
draws some conclusions. 

 
1.1. Game Theory: Basic Definitions 

 
Nash Equilibrium (NE) is a point which satisfies 

every player’s optimizing condition given the other 
players’ choices. In this paper, based on this essential 
concept a technique for searching an NE is designed.  
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A general formulation for the class of finite 
dynamic games is presented here. An N-person 
discrete time deterministic finite dynamic game of pre-
specified fixed duration involves [10] 

i. An index set N = {1, 2, …, N} called the players’ 
set. 

ii. An index set K = {1, 2, …, K} denoting the stages 
of the game, where K is the maximum possible 
number of moves a player is allowed to move in 
the game. 

iii. An infinite set X with some topological structure, 
called the state set (space) of the game, to which 
the state of the game xk belongs for all k∈K. 

iv. An infinite set i
kU  with some topological structure, 

defined for each k∈K and i∈N, which is called the 
action (control) set of Pi (i’th player) at stage k. Its 
elements are the permissible actions i

ku  of Pi at 
stage k. 

v. A function fk: 
1: N

k k kf X U U X× × × →…  Eq.1 

defined for each k∈K, and for some x1∈X which is 
called the initial state of the game. This difference 
equation is called the state equation of the dynamic 
game, describing the evolution of the underlying 
decision process. 

vi. A set i
kY with some topological structure, defined 

for each k∈K and is called the observation set of  
Pi at stage k. 

vii. The actions of the players are completely 
determined by the relation: 

ui=γi(ηi), i∈N Eq.2 
where ηi denoted the information set of Pi. The { 
γi∈Γi; i∈N }  are the strategies of the players in 
which { Γi; i∈N} is strategy sets. 
 
An N-tuple of strategies {γ1*,γ2*,…,γN*} with γi*∈Γi*, 

i∈N, is said to constitute a noncooperative Nash 
equilibrium solution for an N-person nonzero-sum 
finite game in extensive form, if the following N 
inequalities are satisfied for all γi∈Γ, i∈N: 
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The N-tuple {J1*, J2*,…, JN*} of quantities is known 
as a Nash equilibrium outcome of the nonzero-sum 
finite game in extensive form. J in Eq.3 is called the 
cost function. This definition could also be written 
with the profit function. In this case the inequalities are 
reversed. The Nash equilibrium solution could 
possibly be non-unique with the corresponding set of 
Nash values (players’ strategies) being different. A 
Nash equilibrium strategy pair is said to be admissible 
if there exists no better Nash equilibrium strategy pair. 
By better we means that there is no other strategy 
where all of the player gain better outcome. 

 
1.2. Evolution, Coevolution and Game Theory 
 

Evolutionary algorithm is a powerful method in 
optimization problems. In fact, by using an appropriate 
fitness function that reflects the optimization goal, the 
population converges to the global optimal point of the 
underlying problem. Factors such as the size of the 
population, mutation rate and selection method of the 
next generation affect the rate of the convergence. 
Evolutionary algorithm, which is the basic model of 
the evolutionary process of nature, can be divided into 
the process of generating some new individuals 
(offspring) from the mutation of parents, and the 
natural selection of superior parameters through the 
competition among the parents and generated 
offspring. 

Table.1 shows the Pseudocode of the evolutionary 
strategy algorithm used as a global optimization in this 
paper. Consider a minimization problem as follows 

( )arg min
i

opt
i i iU

U U= Π  Eq.4 

where Πi (cost function)is the function to be minimized 
with respect to the variable Ui (with the size of n×1 
vector). The evolutionary strategy (ES) algorithm 
[7,8,9] firstly initializes a randomly S trial solutions 
called parent population say Up: 

1 2, , ,p p p p
SU U U U⎡ ⎤= ⎣ ⎦…  Eq.5 

Then, through a mutation process defined in Eq.6 the 
offspring population will be generated.  

( )0,1o p p
i i i ju u Nσ= + ⋅×  

( ) ( )( )'exp . 0,1 . 0,1o p
i i jN Nσ σ τ τ= ⋅× +  

Eq.6 

where ( ⋅× ) is element by element product, and N is a 
normally distributed random number with mean zero 
and standard deviation one. Index j in Nj indicates that 
the random number is generated newly for each value 
of the counter j. The factors τ ,τ׳ are robust exogenous 
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parameters,  commonly set to ( ) 1
2 n

−
and ( ) 1

2n
−

, 

respectively. 
In the evaluation phase, the appropriateness of an 

individual existing in each of the populations is 
determined based on a fitness function, here is 
specified in Eq.4.  

In the selection phase, a pair wise comparison 
among individuals in both populations is conducted to 
select the best fitted ones for the next generation. A 
number of opponents for each individual are selected 
randomly among these populations and the criterion 
for the comparison is the fitness function. A number of 
‘wins’ that this individual gains in the comparison to 
his opponents indicates his score. Then, the individuals 
with the best scores are chosen for the next generation. 
In this probabilistic selection phase, the weak 
individuals also have the chance to enter the next 
generation if the randomly selected opponents would 
be weaker than them. 

This routine continues until an acceptable solution 
is reached or the gradient of the best individual’s 
fitness through the generations become negligible. 

The Nash Equilibrium by definition requires a 
different kind of evolutionary optimization, i.e., every 
player has to choose its best strategy against others’. 

Iterative NE search algorithms that use repeated 
individual profit maximization have been applied to 
more complex games. Seok et. al. [1] proved that any 
iterative NE search algorithm based on local 
optimization cannot differentiate real NE and local NE 
minima. They suggested coevolutionary programming, 
a parallel and global search algorithm, to overcome 
this problem. In fact the cooperation of the individuals 
in finding NE resembles a quasi-static approach in 
which every individual optimizes its own fitness 
function and the best solutions are shared among the 
populations. 

In this paper, a different kind of coevolutionary 
algorithm, namely the coevolutionary strategy, is 
proposed. Since the game considered here is 
continuous, quantizing the input space makes it viable 
to deceit the simple genetic algorithm to go in the 
wrong direction, when using the standard crossover 
and mutation operators. By utilizing this algorithm, the 
input variables are used continuously and the 
deception problem is resolved. 
 
2. Finding NE using Coevolutionary 
Strategy 
 

As previously mentioned, evolutionary algorithms 
are general optimization methods which are especially 
useful when several local optimum solutions exists in 
the hypothesis landscape, the cost functions are not 
differentiable or their derivatives are otherwise hard to 
obtain. The Nash Equilibrium solution of complex 
dynamic game problems are generally of this type, for 
which analytical solutions are hard to find. Finding NE 
points is an instance of optimization problem for which 
there are several cost functions, each for a unique 
player. By altering the evolutionary strategies 
framework one can readily obtain a solution for this 
kind of problems. To find an NE point, each player has 
to optimize his strategy based on what strategies the 
other players have chosen to adopt. This creates 
several cost functions which have to be jointly 
optimized. In coevolutionary algorithms, unlike 
evolutionary methods, there are several populations 
each assigned according to a cost function. A part of 
every population consists of the best offspring 
generated in other populations, and as of this, each 
population only optimizes a part of the solution.  
In this section an algorithmic description of our 
method is provided in detail along with a schematic 
diagram of the flowchart (Fig.1). At first strategy 

Table 1 Pseudocode of a global search 
algorithm, Evolutionary Strategies Function 
 
Uopt = ES_Search (Ui tilda) 
 
Initialize the parent population of S trial 
solution pU =[ 1 2, , ,p p p

SU U U… ], each individual, p
iU , consists of a real 

valued vectors, ( ,pi iu σ ), in which iu corresponds to the player’s 
strategy and iσ initially set to 0.5 and is called strategy 
parameters 
 
Pass:=true; 
While (Pass)  

Mutation Phase: 
Generate the offspring population, oU =[ 1 2, , ,o o o

SU U U… ], from 
each parent as in Eq.6, 
 
Evaluation Phase: 
Evaluate the fitness of each individual in parent and 
offspring population, the fitness is defined as the payoff 
function, 

( )
( )

o o
i i i

p p
i i i

U

U

Π =Π

Π = Π
 

Selection Phase: 
Conduct a pair wise comparison over the individuals in 
both populations and select the best fitted ones in order to 
form the next generation. 
 
If the stop criterion is satisfied, 
     Return (Best Individual); 
     Pass:=fault; 

EndWhile 
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vectors for all of the players are randomly initialized. 
That is, 

1 2, , , NU U U U⎡ ⎤= ⎣ ⎦…  Eq.7 
the ES algorithm is then utilized to find each player’s 
best strategy to minimize his payoff function given 
other players strategies:  

( )arg min ,
i

opt
i i i iU

U U U= Π  Eq.8 

where iU is the strategy vectors of all players 
excluding the one of player i , i.e., 

1 1 1, , , , ,i i NiU U U U U− +
⎡ ⎤= ⎣ ⎦… …  Eq.9 

During this phase all the other players’ strategies 
are fixed for each player, and only one is optimized. 
Now if the payoff does not increase for at least one 
player, a Nash Equilibrium point has been reached and 
the solution of the previous iteration is returned. 
Otherwise, the next strategy is created by juxtaposing 
the best strategy of each player according to its 
respective population into the best strategy of the 
solution of this iteration. The Pseudocode of this 
algorithm is showed in Table.1.  This process is 
continued until convergence of the strategies, which is 
in turn equivalent to a Nash Equilibrium solution. 
 

Figure 1-Schematic algorithm of the 
coevolutionary algorithm 

3. Numerical Simulations 
 
The coevolutionary algorithm described in section 4 is 
applied to two nonlinear static and one dynamic game 
to find the NE points. Results show the effectiveness 
of this method in finding NE in games with nonlinear 
cost functions. This algorithm can find the global 
solution in the presence of many local optima which is 
a problem of iterative search approaches. Unlike 
simple coevolutionary algorithms proposed by [1], this 
one succeeds in both recognizing the existence of an 
NE and identifying it. The algorithm is implemented 
using Matlab R14. 
 

3.1. Example of a Static Nonlinear Game 
 
This simulation is an example of a Non-cooperative 

two player game. The profit functions for player A and 
player B are defined by 

 
( ) ( ) ( )
( ) ( ) ( )ABABBBAB

BBAAABAA

xpixxxpixxx
xpixxxpixxx

×+×+=
×+×+=

sinsin21,
sinsin21,

π
π

 

  Eq.10 
In Fig.2, Player A's response to the other player’s 

strategic variable is depicted and vice versa. The 
intersections of the two curves represent both local and 
global solutions of this game.  This plot is plagued 
with local optima and has a global optimum in a 
constrained area. The parameters of the algorithm for 
this example are set with a population size of 200, 
tournament selection pool of 10, initial eta equal to 
0.5, and incorporating eliticism in iterations of 
evolutionary strategy algorithm. Fig.3 depicts the best 
players’ strategies and obtained profits over iteration.  
Unlike [1] which asserts that simple coevolutionary 
algorithms can not identify NE points, our results show 
that by using a global search method inside each 
iteration of the main NE search algorithm, like the 
evolutionary strategy, the NE points are found in 
relatively few iterations. 

 
3.2. Example of a Static Nonlinear Game 
 

As a more practical and complex example, we 
examine three market players in a transmission-
unconstrained system [1]. As a review to this problem, 
the model and Cournot solution will be presented. 

 
A .Game Configuration 

There are three utilities A, B, and C interconnected 
with three transmission lines. For Utility A, the profit 
function i given by 

No

Initialize 
strategies 

Fix others, play 
ES for each 

player 

Yes 

End 

Nash inequality 
conditions 
satisfied? 
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)2/1())(( 2
AAAAAACBAi qqqqqq ηγφρθπ ++−++−=  

  Eq.11 
where the parameters are given in table.1. Since the 
profit function    of utility A is concave and quadratic, 
the profit maximizing condition is given by setting the 
partial derivative equal to zero.  
 
B. Transmission Unconstrained Results: 

Using coevolutionary algorithm the results are 
computed when there are no transmission constrained 
present. Fig.4 depicts the simulation results. 

 
3.3. Example of a Dynamic Nonlinear Game 

 
A simple numerical example of a two person 

noncooperative dynamic game is useful. Assume that 
the problems of the problem is 

( )∑
=

⎥⎦
⎤

⎢⎣
⎡ −−−

2

1

2
21 2

11max
,2,1 t

ititttxx
xyyy

ii  
Eq.12 

 subject to 

giveny
xyy ittiit

0

1, += −

 
Fig.5 depicts the best players' strategies and obtained 
profits over generation. 

Table 2 Parameters of Example Three 

 Utility A Utility B Utility C 

iφ  0.015718 0.021052 0.012956 

iγ  1.360575 -2.07807 8.105354 

iη  9490.366 11128.95 6821.482 

θ  106.1176 
ρ  0.0206 

 
4. Conclusion 
 

A simple iterative algorithm is developed to find 
the Nash Equilibrium point in nonlinear games. This 
algorithm makes use of evolutionary strategies method 
in an iteration to ensure finding admissible NE and 
escaping from trapping in local optimums. A number 
of numerical examples are presented. These examples 
contain a static nonlinear game with several local NE 
point, a practical Cournot model of the transmission-
unconstrained system, and a nonlinear dynamic game. 
Unlike other proposed algorithms which assert that 
simple coevolutionary algorithms can not identify NE 
points, results in this paper show that by using a global 
search method inside each iteration of the main NE 
search algorithm, the NE points are found in relatively 

few iterations. The results are compared with 
analytical solutions of Nash Equilibrium points to 
show the success of the algorithm. Moreover, it is 
discussed that the process of finding the NE through 
coevolutionary algorithm is a homogeneous concept of 
Evolutionary Game Theory. 
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