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SUMMARY 

 

 

Deregulation of electric power industries in recent years has opened many 

opportunities for electricity buyers. However, the strong influence of network 

physical constraints may result in economic decisions that adversely affect the 

interests of the consumers. Compared to the monopolistic economy of yesteryears, 

electricity buyers may now actually be able to influence the market by cooperating 

with other buyers in the electrical power network. This research presents different 

models using agent-based co-evolutionary framework for evolving individual and 

cooperative strategies of electricity buyers in a power market.  

To realize the above objectives, simulations involving evolutionary 

algorithms and multi-agent systems are used to study a single-node system, where 

economic agents are modeled by their supply / demand functions, and then a 

multi-node system, where the technical constraints of the power distribution 

network are fully taken into account. The results of the single-node model show 

that it is of great benefit to cooperate but the free rider problem may arise when an 

individual buyer gains more profit due to the cooperative effort of the others.  

The multi-node model is investigated through two situations. First, we 

focus on deterministic cases where buyers choose their bidding strategies to 

maximize the profits in different scenarios of playing individually or 

cooperatively. It is also found that by evolutionary learning, buyers can benefit 

from cooperation. Next, the uncertain nature of the market is modeled where 

buyers find optimal cooperation strategies to hedge against the risk of low 
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payoffs. Our approach is universal since it can be applied to study the behaviors of 

buyers with any objective for cooperation. We proved a theorem to link the payoff 

distribution problem in cooperative game theory with the optimal coalition 

structure generation problem in combinatorial optimization theory. The 

statistically consistent simulation results show that our approach is able to 

discover interesting cooperation strategies, and can be easily extended for 

practical networks with large number of buyers. 
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Chapter 1: INTRODUCTION 

 

 

 

In this chapter, we give a brief review on deregulated electricity market. Then the 

motivation for the work done and structure of the thesis are presented. 

 

1.1 Overview of the deregulated power market 

Over the last twenty years, electric power markets have successively experienced 

a deregulation process related to the opening of gas and electricity industry. 

Competition, expected to push operators to high efficiency, is presented as the 

most effective response to the imperfections of the old regulated power industry. 

Initially implemented by Anglo-Saxon countries, the deregulation of power 

markets has been gradually taken up by all industrialized countries. By the 

principle that competition should be introduced whenever possible, this reform 

has to major implications on the decision of firms initially protected from 

competition. Moreover, electricity buyer agents also have new opportunities to 

actively optimize their objectives in a dynamically changing environment.  

 

1.1.1 Electricity and natural monopoly 

Electricity is an essential commodity in modern life; the interruption of the 

electricity supply implies a considerable social cost. Electricity is not storable by 
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its users; the demand, therefore, must be satisfied in real time. The consumption of 

electricity is subject to strong randomness which is a function of exogenous 

factors such as temperature or brightness.  

Electricity is transported via high voltage interconnected 

lines. Transmission and distribution (low voltage) follow nodal rule and mesh rule 

of Kirchhoff. The lack of storage implies that we must have permanent means of 

reserve to manage the difference between the predicted quantity and the actually 

produced and consumed quantity. Transmission is also subject to line loss (part of 

the electrical power is converted into heat due to Joule effect). If the line 

temperature exceeds a certain threshold, it will give rise to the rupture of the 

line. The cost of failure is outrageous as other lines can also collapse in cascade. 

These features illustrate that the systems must be designed according to the peak 

demand, with some margin to ensure continuity of supply in case of technical 

problems. 

The electric power industry consists of three major components: central 

power generation, high voltage transmission and distribution networks. We can 

therefore recognize the importance of coordination between the various activities 

related vertically, both in long-term system configuration, and short-term efficient 

allocation of resources. If we add the economies of scale in production and 

increasing returns on transportation, electricity markets appear as natural 

monopolies and vertical integration can significantly reduce transaction costs. 

This explains why electricity markets have been managed by national or regional 

monopolies (at least on transportation) in all countries, often vertically integrated, 

or characterized by close ties between vertically related actors. These companies 

were often public, particularly because electricity has become a vital product 
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carrying public service missions. The involvement of the state had also facilitated 

the mobilization of main material resources that are necessary for the rapid 

construction of dense and high performance networks. 

 

1.1.2 Movement to a new competitive market 

The motivation of movement to competition is driven by a number of criticisms 

against monopolies in place: inefficiency of production and social debate over 

surplus sharing. In developing countries, bureaucratic criticism is often used to 

justify the open to competition and privatization of the electricity industry. 

Competition, expected to push operators to efficiency, is presented as the most 

effective response to these imperfections. Thus, allowing consumers to choose 

their suppliers should guide the latter to better use of resources, reducing waste, 

improving services or even greater respect for the environment.  

The deregulation process has transformed the power market into a 

competitive environment; firms must therefore change their strategy and 

organization deeply to adapt. In this free market economy, each participant seeks 

for the optimal strategy that maximizes its benefit when trading. 

The main sectors of power generation, distribution, wholesale and retail 

have seen an increase in the number of players, who are now able to freely enter 

and exit the market to seek out economic opportunities. In most countries that 

have seen the deregulation in power sector, the competitive nature of the new 

economy has aided the technological push in this area. Coupled with the market 

forces at work, this has generally led to lower costs and greater market reliability, 

which has benefited the industry, especially the end users. The result is a market 
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of stiff competition in which the price and the electricity power traded is decided 

by the market forces, and where all players are price takers and have to accept the 

market clearing price (MCP) as dictated by the market. New rules and regulations 

have been set into place by supervisory bodies to regulate possible technical 

problems such as system blackouts and transmission security, as well as economic 

decisions such as curbing possible market power to restrict the ability to set 

unreasonably high price. Therefore, electricity buyers and sellers have to 

reconsider their bidding strategies and economic approaches to tackle the changed 

environment.   

 

1.1.3 Deregulated power market models 

The management of the daily operations and ensuring network security are tasked 

to two independent bodies: the power exchange and the independent system 

operator. The former determines the market clearing price and market clearing 

quantity (MCQ) based on the demand and supply bids it receives from the electric 

power buyers and sellers respectively. The latter monitors and checks the dispatch 

forecasts to ensure that the security of the system has not been compromised, and 

advices the power exchange on preventive measures.  

Following the restructuring of electricity market, different market models 

have been proposed to replace the vertically integrated monopoly. There are three 

basic types of deregulated power market models: PoolCo model, the bilateral 

contracts model and the hybrid model [1].   

A PoolCo is viewed as a centralized marketplace that clears the market for 

buyers and sellers using a set of rules for trading electricity. Producers submit 
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their bids for different periods, usually for each hour. Every offer of power 

quantity is accompanied by a corresponding price representing the minimum level 

that each producer is willing to accept for each period. The pool centralizes all 

offers and defines an order of economic efficiency. The last accepted bid that is 

necessary to cover the level of demand defines the spot price. Sellers compete for 

selling electricity; if a seller bids too high, it may not be able to sell. On the other 

hand, buyers compete for buying power, and if their bids are too low, they may 

not be able to purchase. 

In the bilateral contracts model, the supplier and the customer trade 

directly with each other by signing a contract that defines the kind of service they 

desire at the price they desire. However, in power market, this model has some 

drawbacks: Because of its failure to be stored, electricity is extremely price 

volatile in times of peak demands; hence the market has difficulty in reaching the 

equilibrium. Moreover, due to the sharing of common transmission network, the 

transmission losses caused by the action of one participant can affect all others. 

Because of these negative points, the simulation and analysis of power market 

often make use of the PoolCo model.  

The hybrid model combines features of two previous models. The 

participants can choose to sign bilateral contracts or to be served by the power 

pool. Under this mechanism, true customer choice is offered and a variety of 

services and pricing options to best meet individual customer needs is created. 

 

1.2 Motivation of the research 

The   deregulation  of  the  electricity power  industry  has  already  been  
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accomplished  in  many  countries and remarkable changes in the management of 

power systems are introduced. A new environment  for  the  market participants 

was created  since  the  electricity  price  is  now  set  by  an  auction  mechanism. 

In the global competitive market, electricity buyers are no longer price 

taker since they are able to influence the market by using different bidding 

strategies as well as cooperating with other buyers. Therefore it is necessary to 

develop and investigate individual and cooperative strategies of electricity buyers. 

That is the inspiration and motivation of this project.  

 

1.3 Structure of the thesis 

The thesis is organized in 9 chapters.  

Chapter 1 gives an overview on the deregulated power market and the motivation 

of the research. 

In Chapter 2, we give a literature review of different approaches to model power 

market, with highlights on applying Evolutionary Algorithms in a Multi-Agent 

framework. 

Chapter 3 presents the methodology of the research and gives a brief background 

on computational tools that will be applied such as Evolutionary / Co-evolutionary 

Algorithms and Cooperative Game.  

In Chapter 4, we propose a single-node model for simulating power market with 

generators and buyers as two types of participants. The bidding model and market 

clearing mechanism are also presented. 

Chapter 5 presents the simulation results of the proposed single-node model. 
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Different scenarios of the market are taken into account and economic aspects of 

the results are investigated. 

Chapter 6 develops a multi-node model of the power market where all physical 

constraints are taken into account. The Optimal Power Flow problem is introduced 

as a market clearing engine. 

Chapter 7 presents the details of the multi-node model implementation, such as 

the physical power network and market participants’ parameters.   

Chapter 8 summarizes the simulation results of the multi-node model and 

discusses the findings with different perspectives. 

Chapter 9 concludes this thesis. 
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Chapter 2: REVIEW OF POWER MARKET MODELS 

 

 

 

The electricity market is characterized by complex practical aspects, such as 

imperfect competition, strategic interaction, asymmetric information, and the 

possibility of multiple equilibria [2]. Traditional economic modeling techniques 

face difficulties when taking into account these factors. Therefore, Computational 

Intelligence is intensively applied to economy, especially economic theories. 

Recent advances in this field have allowed simulating artificial societies and thus 

studying economic models by running computer simulations. The concept of 

“Agent” in computer science is close to that of economic theories [3].  Under a 

Computational Intelligence framework, the interactions between intelligent agents 

can be observed and analyzed.  With these efficient modeling and simulation 

tools, researchers are able to investigate economic theories in a complementary 

framework to the standard analysis.  

 

2.1 Background of Agent Based Technology 

From the last decade, information technology growths with an amazing speed. 

Today, transmission / processing capabilities and networked information resource 

storage actively interact in the distributed computing paradigm [4] to serve its 

needs. The current  trend  in  software  engineering  methodology  to  build  
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software system  is  the object  oriented  methodology.  With the ability to 

structure data based  on inheritance  and  composition  structures,  the ability to 

account for the generic characteristic of behaviors or concepts, the reusability  

property  of  objects,  object  oriented  methodology become very attractive for 

software implementation. 

In real world, both  the  computer  system  and  the  problems  to  be  

solved are  also  often  physically  distributed  over  a  wide  area;  therefore a  

large  number  of  experts  in different domains is required, coordinating their 

knowledge and their local view of the problem to reach a global solution.  Multi-

agent technology can be considered as an extension of the object oriented 

technology, accounting for the distributed nature of systems and problems. 

MAS allows artificially reproducing real life system through autonomous, 

independent and interacting agent objects. Examples of successful application of 

MAS to many fields include traffic control simulation, robotics, ecological 

simulations, videogames…In  particular,  MAS  makes  it  possible  to  study  

individual behaviors and to link them to observations at the macro level, thus 

allow  having  a  new  insight  in  the  field. Indeed, since most collective 

phenomena result from individual decisions, there is a need to account for 

phenomena emerging from interaction of individual behaviors.  

Agent technology is also commonly used to assist or replace humans in 

numerous complex tasks. The need for effective  and  quick  decision  taking 

procedures  in  the  increasing  global  competition  involves  the  support  of  

intelligent systems. Agent-based technologies and international standards 

developed [5] have taken great steps over the years. The new agent-based 

approach using object-oriented frameworks [6] and agent-oriented programming 
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paradigms is far more superior to classical methods in modeling autonomous 

nature and decision making of market participants. 

Multi Agent Systems (MAS) is one of the fastest growing and most 

interesting fields in agent based technology that models autonomous decision 

making entities. Recently, encouraging results was produced in a novel approach 

to duel with multi-player interactive systems [7].  

 

2.2 Multi-Agents in economics 

Traditional analytical methods typically have to impose strong and constraining 

assumptions on the agents of system being studied, so that the models can be 

tracked mathematically. Therefore, the agent based approach is suitable for 

simulating and validating the decision making process of various participants in 

deregulated electricity market. Each agent represents an autonomous participant 

with independent bidding strategies and responses to market outcomes. 

As we saw in the previous section, MAS used in economics is a very 

particular framework of a fully decentralized economy. The study about this type 

of economic models comes from the desire of some economists to get out of the 

standard analytical framework that describes a centralized economy and ignores 

the interactions between agents. This conventional model functions following the 

simplifications that do not allow apprehending a number of phenomena, including 

those rising from the cooperation among agents. The development of MAS 

follows the development of new economic reflection with game theory as a main 

tool. Multi-agent simulation is a powerful approach. Indeed, agents are more 

realistic because they take into account more parameters. 
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The advantage of using MAS is the ability to show how the collective 

phenomena arise from the interaction and adaptation of a population of 

autonomous and heterogeneous agents. These models based on agents are also 

used as supporting decision tool for firms. These models allow the testing of 

several market configurations and studying the consequences of individual actions 

of market participants. 

Cooperation and trust between agents, with trust and profit as the 

determinants of the relationship was investigated using agent-based computational 

economics in [8]. Similarly, in [9], the agents cooperate with the condition that 

there is not a reduction in their own benefits. 

In [10], it was shown that the joint effort of all rational individuals 

involved in the economic activities will lead to equilibrium through a sequence of 

events. The analogy can be applied for a multi agent system, where the concept of 

rationality can be imbedded into the agents through certain sets of instructions. 

The agents follow these rules and further develop this rationality by applying 

penalties or benefits to their actions during their learning process. 

It was indicated in [11] that classical economics and computational 

intelligence are dissimilar because the former is based on mathematical analysis 

with related simplifications; while the latter is inspired from natural principles and 

deriving its conclusions by simulating real-world data. Nevertheless, these two 

approaches are complementary to each other because a convergence in 

computational intelligence algorithms is equivalent to equilibrium in economics.  

For that reason, the economic analysis helps to understand the simulation results.  
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2.3 Multi-Agents in power systems 

Particularly, the multi-agent system (MAS) approach is suitable for simulating 

and validating the participation of various participants in deregulated energy 

market. Individual entities in the market are represented as agents. Each agent 

models an autonomous participant with independent bidding strategies and 

responses to market outcomes. Agents are able to function autonomously and 

interact actively with their environment. These specific characteristics of agents 

can be best employed in simulation of autonomous entities as in the situation of 

the restructured energy market. The administration role of Independent System 

Operator (ISO) in the restructured energy market can also be considered by an 

agent entity with decision making policies and market rules to manage efficiently 

the allocation and dispatch of energy resources on the network. This section gives 

an overview on the modeling and simulation of energy market and subsequently 

the application of this thesis using agent based technology.  

Multi-agents have been widely applied in power systems. We can find an 

example of real-world agent representation of power market in [12]. A multi-agent 

framework was used to realize switching operations of a power system in [13] by 

considering protective equipment and transmission as agents. A similar multi-

agent approach to coordinate secondary voltage control during system 

contingencies and to create an adaptive over current protection was presented in 

[14] and [15] respectively.  

In [16] was developed an efficient real time power management system 

using various types of agents to represent the elements of the network. In [17], the 

competition among intelligent agents was modeled with the goal of obtaining the 
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quantity of power desired by looking for the optimal electricity energy path.  

Chazelas [18] designed a multi-agent electricity market simulator and developed 

an evolutionary algorithm to solve for unit commitment and dispatch in real-time. 

 

2.4 Power market modeling using Evolutionary Algorithms in 

Agent-based framework 

Intelligent agents possess the capability to learn and evolve from experience; 

therefore evolutionary algorithms are frequently integrated to model competitive 

market. In [19], Curzon showed that Genetics Algorithms (GAs) have a high 

performance in simulating simple standard games. The author also interpreted 

how GA process discovers the equilibria.  

In [20], a refined genetic algorithm was employed to get greatest benefit 

supplier by finding optimal parameters of linear supply functions. In [21], Richter 

and Sheblé verified the evolution of bidding strategies of generation companies 

against the static strategy of a distribution company, without taking into account 

the transmission constraints.  In [22], the optimal selling price for generators was 

found while taking into account diverse issues such as tariffs, pricing strategy, 

discount scheme and the elasticity of customer demand. 

In [23], Fuji et al. considered a learning multi-agent model to assess 

different types of generator plants while taking into account real time reserve 

markets as well as the fluctuation of seasonal and hourly demand. Contreras et al. 

implemented a simulator for power exchange market in [24] which may be 

extended to deal with different market clearing mechanisms and incorporate more 

market rules. 
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In [25] a Cooperative Co-evolutionary Algorithm was presented, 

emphasizing on its potential applications to power systems. Cau and Anderson 

described in [26] another co-evolutionary approach where the agents learn and 

improve their strategies. Anderson described in [27] another co-evolutionary 

approach where the agents learn and improve their strategies. They showed that 

implicit collusion happened even with very limited information available to 

participants.  Chen et al. [28] analyzed supply function equilibrium models of an 

oligopolistic power market by considering both linear and piece-wise linear 

supply functions. The results show a robust convergence towards the equilibrium. 

Adaptive agent based algorithms have also been applied to find equilibria of 

complex double auction game in a discriminatory pricing electricity market [29]. 

It was underlined in [30] that a combination of a multi-agent system and 

an evolutionary algorithm cannot permit the agents to adapt efficiently due to the 

limitations of the evolutionary algorithm which is set as the external layer. 

Alternatively, each sub-population or agent should be modeled more similarly to 

real-world agents who can evolve on their own. The multi-agent system 

framework should concentrate on providing an environment for the agents to 

interact. This is the inspiration of the Co-evolutionary Algorithm that will be 

discussed further.  

Although the number of buyers is significantly more than the number of 

sellers, most of the researches have been concentrating on the supply side. In a 

competitive market, the agents of both supply side and demand side continuously 

adapt their strategy according to their objectives. An Agent Based Evolutionary 

Model can therefore model the double bid auction market. The optimal bidding 

strategies for generators and large consumers in competitive market was studied in 
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[31] using the Monte Carlo approach.  

Srinivasan et al. [32] focused on minimizing the LMP of buyers using 

different evolutionary algorithms. In [33], the result was improved by adding a 

game theoretic decision module. The alliance strategy of buyers was studied in 

[34] and it was shown that the buyers can lower their costs by evolving their 

group sizes and memberships.  

 

2.5 Cooperative Game and Optimal Coalition  

Game theory provides important concepts and methods when studying the 

interaction of different agents in competitive markets. In particularly, cooperative 

game theory provides tools to solve the conflicts arising in the interaction, such as 

in allocating of transmission costs [35]. The solution mechanisms of this approach 

appreciate fairness, efficiency, and stability in distribution the payoffs among 

agents. Besides, extensive efforts have been devoted to the area of coalition 

formation. One direction of research is to partition the agents into coalitions such 

that the sum of payoffs to all the coalitions is maximized. This is the problem of 

Optimal Coalition Structure Generation (OCSG).  

There are two main classes of available algorithms that have been 

designed for OCSG problem: exact algorithms use integer programming or 

dynamic programming, and non-exact algorithms use heuristic or genetic 

algorithms. In [36], a dynamic programming (DP) that can be directly applied to 

the OCSG problem with the complexity of (3 )nO  was developed. This complexity 

is significant less than exhaustive enumeration that runs in ( )nO n time (n is the 

number of agents). Later, the authors in [37] developed an Improved Dynamic 
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Programming (IDP) algorithm that requires fewer operations and less memory 

than DP. However, both DP and IDP are not anytime algorithms, meaning they 

cannot be interrupted at any time to observe the best solution found so far. Given 

large numbers of agents, this property is a major drawback because agents, usually 

being limited in time, wouldn’t be able to wait until the end of the execution of the 

algorithm. To overcome this weakness, the first anytime algorithm for coalition 

structure generation was introduced in [38] by producing solutions within a finite 

bound from the optimal, and was further improved in [39]. More recently, the 

OCSG problem was formulated as a mixed integer programming problem and can 

be solved efficiently in [40].  

Non-exact algorithms do not guarantee finding an optimal solution, but 

they simply offer “good” solutions very quickly, compared to other algorithms. 

Given larger numbers of agents in this problem, this feature often makes these 

algorithms more practical. In [41], the authors have proposed an Order Based 

Genetic Algorithm for optimal coalition structures; the results showed that it 

surpasses existing deterministic algorithms. Both coalition structure generation 

and payoff distribution in competitive environments were addressed in [42, 43], 

where a bound from the optimal can be guaranteed if a kernel-stability is met [43]. 

More recent research has also modeled dynamic environments, where there are 

uncertainties; for example the coalition value is not fixed, but it is dependent on 

context [44]. 

 

2.6 Chapter conclusions  

This chapter discusses different approaches to model deregulated power. In 
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particular, agent-based technology and cooperative game concepts have been 

highlighted. The overview introduced in this chapter form the grounding for a 

good and accurate understanding and modeling of the deregulated power market 

in the later chapters in which two different market simulator frameworks will be 

developed. Bidding and cooperation strategies of buyers will be implemented and 

tested on this framework. 
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Chapter 3: PROPOSED METHODOLOGY FOR 

MODELING POWER MARKETS 

 

 

 

In the global competitive market, electricity buyers are no longer price takers 

since they are able to influence the market by using different bidding strategies as 

well as cooperating with other buyers. Therefore it is necessary to develop and 

investigate individual and cooperative strategies of electricity buyers. However, as 

mentioned above, most of the research efforts have been targeted at power 

generation and transmission; whereas research in demand side has not been 

sufficiently forthcoming. Moreover, to the best of our knowledge, OCSG problem 

has not been studied for electricity market, although many applications of this 

problem arise from e-commerce; for example, coalitions allow buyer to benefit the 

price discounts by purchasing in bulk [45].  

In that perspective, we seek to understand the cooperative behavior of 

electricity buyers using evolutionary approach in a cooperative game framework. 

In this study, a theorem was proved and served as a link between the payoff 

distribution problem in cooperative game theory and the OCSG problem, thus 

forming a theoretically fundamental background for the proposed methodology. 

Moreover, while existing literature over-simplifies the market model by 

introducing only a few participants (typically less than 6), our studies can handle 

much larger number of buyers, taking fully into account the physical and technical 

constraints of the power network. 
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This research seeks to understand the cooperative behavior of electricity 

buyers through two situations: deterministic situation and stochastic situation. In 

the deterministic situation as presented in Figure 3.1, buyers co-evolve and find 

out the optimal bidding strategies to maximize their payoffs. The solution to the 

problem corresponds to a particular market state, which is the outcome from the 

market simulation. A market state includes information about the bidding 

strategies of players, the generated and dispatched electric power, the nodal prices, 

as well as the payoffs of players.  

 

 

 

Figure 3.1: Co-evolutionary approach for deterministic situation 

 

In the stochastic situation as presented in Figure 3.2, a market database consisting 

of different market states has been generated. Using the information from this 

database, buyers co-evolve and find out the optimal cooperation strategy to hedge 

against the risk of low payoffs. The quality of a coalition is measured through a 

characteristic function that depends on the nature and purpose of cooperation. 

After different coalitions are formed, members in each coalition can use a fair 

scheme to share the payoffs among themselves. A theorem will be proved to 

clarify the rational link between these two stages. 
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Figure 3.2: Cooperative Game approach for stochastic situation 

 

In perspective of modeling the market using agent based approach and 

cooperative game, we use the terms “agent” and “player” interchangeably in the 

contexts without potential confusion. Similarly, the term “payoff” is used 

alternatively with “profit”. Moreover, these terms correspond to buyers since we 

always focus on demand side. 
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3.1 Co-evolutionary approach for deterministic situation  

Standard evolutionary algorithms are highly simplified models inspired from the 

famous Darwinian theory of natural selection. They are applied directly on a well-

defined objective function: all individuals are evaluated using the same objective 

function. In a more complicated manner, co-evolution between individuals of 

different species in their environment can give various feedback mechanisms to 

computing complex objective functions. The purpose of co-evolution in computer 

science is to produce a dynamic similar to that of the arms race. Informally, the 

arms race best performance is achieved by each species while incrementing the 

performance of other species. The idea behind this concept is that a system may 

evolve better through reciprocal performance. In a co-evolutionary system, the 

evolution of different species must be considered simultaneously, because the 

evolutionary adaptation of a species can force the adaptation of others.  

 

3.1.1 Principles of Evolutionary Algorithms 

The idea of Evolutionary Algorithms is simply to build a random population of 

potential solutions to the problem. The “individuals” are then evaluated to 

encourage the reproduction of the fittest individuals, i.e. those who are closest to 

the optimal solution. The mechanisms of selection, recombination of most adapted 

individuals and mutation permit to gradually approach the desired solution. 

Evolutionary Algorithms have common core mechanism: it consists of making a 

population evolving by random transformation of some of its elements and 

application of the natural selection principle [46]. The principle of problem 
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solution using Evolutionary Algorithms is summarized in Figure 3.3. 

 

Figure 3.3: Problem solving using Evolutionary Algorithms 

 

The representation space that we actually study (where the evolution operators 

operate, also called the genotypes space) is often different from space in which the 

fitness is calculated (phenotypes space). To move from phenotypes space to 

genotypes space, an additional modeling or coding step is necessary. The 

representation or coding of an individual has to include fundamental 

characteristics of the problem. It must also be easily to be manipulated by 

recombination and mutation operators, allow easy transformation on the search 

space and generate feasible solutions. Coding can be binary or real valued. In 

general, the N individual population P(0) = {X1,. . . XN} is initialized through 

uniform drawing from the search space E while ensuring that all individuals meet 

the constraints. 

The Darwinian part of Evolutionary Algorithm consists of two steps: the 

reproduction step where parents are selected to recombine and the replacement 

step which replaces the worse individuals by better ones. The selection is an 

essential operator whose principle is to allow the best individuals of a population 

to reproduce. The adjustment of this mechanism is critical in the performance 
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of the Evolutionary Algorithm. If the individuals of a population are too similar, 

the following next generations may become more and more homogeneous. In this 

case, the evolution of a population may be summarized in the evolution of a single 

dominant individual, thus less exploration the search space. To perform an 

efficient search, we have to maintain a balance between the exploitation of good 

solutions found so far and the exploration of unknown areas of the search 

space. Excessive exploitation can lead to stagnation in a local optimum (premature 

convergence) while as an excessive exploration could lead to an almost random 

search (no convergence). 

In Evolutionary Algorithms, the exploration is realized by variation 

operators, which aim to generate new individuals from those previously selected. 

We distinguish between recombination and mutation. The principle of 

recombination is analogous to biological reproduction: The children inherit the 

qualities from their parents. Recombination is usually called crossover for binary 

representation. Mutation has the general idea of introducing variability in the 

population. This operator modifies one or more genes of the selected individual 

with a certain probability pm (0 ≤ pm ≤1). Mutation ensures ergodicity property 

(the capacity to cover the whole search space) for the Evolutionary Algorithms 

and the reintroduction of lost diversity. 

 

3.1.2 Towards Co-evolution 

In ecology a living individual is not only influenced by its own environment but 

also by other individuals in the environment as well as other processes as changes 

in climate or geographical structure. The notion of mutual dependence or inter-
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specific relationship between different species is named co-evolution. In a co-

evolutionary system, the evolution of a species must be considered 

simultaneously, because the evolutionary adaptation of a species can force the 

adaptation of others.  

Co-evolutionary algorithms are based on the principle of subjective 

function, where the fitness of an individual becomes estimation for other 

individuals interacting with it [47]. In co-evolutionary algorithms, individuals are 

evaluated based on their interactions with others. The nature of these interactions 

depends on the problem to be solved. In many problems, the individuals or 

populations compete with one another. This is called competitive co-evolution, 

which is widely applied in game playing strategies. On the other hand, an 

individual is rewarded when it contributes well in cooperation with other 

individuals in cooperative co-evolution. 

 

 

Figure 3.4: Framework of Co-evolutionary Algorithms 
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The mechanism in which a participant determines its collaborators or competitors 

is among the most important factors for a successful application of co-

evolutionary algorithms. The most obvious (and computationally expensive) 

method to evaluate an individual is to let it interact with all potential collaborators 

or competitors, this is sometimes called pair-wise or complete interaction. 

Alternatively, collaborators / competitors can be selected by a variety of ways: 

uniformly random methods or methods based on fitness [48].  

The framework of Co-evolutionary Algorithm is represented in Figure 3.4. 

In this framework, every buyer is represented by a species, which is also an 

intelligent learning agent. The species interact with one another in the ecosystem, 

which in this case is the electric power market being simulated. They learn from 

the interaction and evolve. The fitness of an individual of a species is calculated 

when it interacts with other representatives from other species. The fitness 

function depends on different simulation scenarios. It is important to make a clear 

distinction between the stochastic nature of the proposed co-evolutionary 

approach and the deterministic nature of the situation being studied. As mention 

earlier, the co-evolutionary process leads to a particular market state, which is 

referred by being “deterministic”. This approach ultimately results in an 

equilibrium strategy vector that represents an ideal solution. However, in practice 

uncertainty is always present. For example, when a player varies its strategy even 

by a small amount, there could be large impact on the payoffs of all players. This 

fact is due to the physical constraint of the system and the incompleteness of 

information. Therefore, a practical study requires risk to be taken into account. 

That is also the motivation of the second approach in this paper. 
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3.2 Evolutionary Cooperative Game approach for stochastic 

situation 

3.2.1 Cooperative game concepts 

In this section, we introduce several concepts of cooperative game theory that will 

be later used. A cooperative game is a game where players can communicate 

freely with each other and enforce cooperative behavior by forming coalitions 

(e.g. in form of contract). Hence competition appears at level of coalitions of 

players, rather than between individual players. 

Let {1,2,..., }N n=  be a finite set of N players. A coalition S is a subset of 

N, in which the player members of S cooperate together. An empty coalition is a 

null set; a singleton coalition has only one member whereas the grand coalition is 

the set N of all players. The collection of coalitions can be formed by N players is 

denoted by 2N
, which is actually the power set of N. A game ( , )N v  on N is 

defined by a characteristic function : 2Nv →ℝ , where ( )v S  represents the 

collective payoff that coalition S can assure by cooperation among its member, 

and is independent of the strategies of other coalitions. If the domain of the 

characteristic function v is restricted on a specific non-empty set 2S
 instead of 2N

, 

by abusing the notation v, we have a subgame ( , )S v  defined on S. We note that 

the grand coalition of the subgame ( , )S v  is the set S. 

The game ( , )N v  is called superadditive if its characteristic function 

satisfies the following property for all S and T subsets of N: 

( ) ( ) ( )v S T v S v T∪ ≥ +                                      (3.1) 

Superadditivity tells that a union coalition of player is at least as efficient as the 
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ensemble of disjoint separate coalitions. We note that in a supperadditive game, 

the grand coalition will form since it is the most efficient. On the other hand, the 

game is subadditive if   

( ) ( ) ( )v S T v S v T∪ ≤ + .                                    (3.2) 

In this case, singleton coalitions will form, where all player act individually. 

Classically, it is often assumed that the characteristic function is 

superadditive in a cooperative game. However, in this study, we will consider 

both cases of superadditive and non-superadditive characteristic functions. 

In a Transferable Utility Game [49], the goal of cooperation is to 

maximize the total gain of the grand coalition and then distribute this amount 

among the members. A challenging problem in a cooperative superadditive game 

is the distribution of gains from cooperation. A payoff that satisfies individual and 

global rationality conditions is called an imputation – a distribution that benefits 

each player who cooperates in a game. Moreover, an imputation that satisfies 

group rationality is said to lie in the core of the game – a collection of stable 

imputations that no coalition can improve upon.   

In an alternative approach to the core theory, Shapley proposed a 

distribution of gains from the grand coalition of n players that calculates the 

payoff a player could reasonably expect before the game begins. Being the unique 

solution concept of a cooperative game which holds the axioms of symmetry, 

efficiency, additivity, and dummy player, the Shapley value is considered to be 

“fair” in that sense [50]. The Shapley value ( )i vϕ  of the game ( , )N v  for player i 

is calculated as the average of its marginal contribution to all possible coalitions: 
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= −∑                (3.3) 

 

3.2.2 Optimal Coalition Structure Generation problem 

As we have seen previously, the grand coalition will be formed in case of a 

superadditive characteristic function. In reality, the characteristic function can be 

non-superadditive, giving rise to the problem of finding optimal coalition structure 

where different coalitions can be formed.  

Let consider the game ( , )N v  of n players and characteristic function v as 

defined above. A partition of N into disjoint and exhaustive coalitions is called a 

coalition structure. For example, a coalition structure CS of 5 players can be 

{(1,2),3, (4,5)}CS =  where (1, 2) , (3) and (4,5)  are three coalitions. The value 

of a coalition structure is defined in term of its social welfare  

( ) ( )
k

k

S CS

V CS v S
∈

= ∑ .                                         (3.4) 

Where ( )
k

v S  is the value of coalition k
S , calculated using the characteristic 

function of the game. The OCSG problem seeks to find a coalition structure CS* 

that maximizes its social welfare 

* arg max ( )CS V CS= .                                  (3.5) 

It is natural to ask whether the optimal coalition structure, found from a 

single objective optimization problem, is a reasonable group formation that can be 

accepted by all players. 
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Theorem:  Each coalition in the optimal coalition structure defines a 

cooperative superadditive subgame.  

Proof:   Let the optimal coalition structure of a game ( , )N v  be 

1 2* { , ,..., }
k

CS S S S= . We need to prove that each iS  defines a cooperative 

superadditive subgame ( , )
i

S v . We will prove by contradiction. 

Assume that there exists a coalition iS  such that the subgame ( , )
i

S v  is 

non-superadditive. That means we can partition iS  into 1iS  and 2iS  such that 

1 2( ) ( ) ( )
i i i

v S v S v S+ > . Let’s consider a new coalition structure CS’ by replacing 

iS  with 1iS  and 2iS . It is obvious that ( ') ( *)V CS V CS> , which means CS* is 

not the optimal coalition structure. Therefore, the theorem is proved by 

contradiction. 

 

This theorem is theoretically fundamental to our methodology. In this study 

about optimal cooperation strategies, we need to solve two problems 

simultaneously: The first problem is how players partition into coalitions, and the 

second problem is how the gains are fairly distributed among group members. To 

solve the second problem using Shapley value, each coalition must be 

superadditive, and this condition is satisfied by solving the first problem – optimal 

coalition structure generation. Figure 3.5 depicts our approach: Given a 

cooperative game ( , )N v , we first find the optimal coalition structure. Then 

Shapley allocation is applied for each coalition to provide its players with 

reasonable payoff shares. In particular, the characteristic function v is context 

defined since it depends on what the buyers seek for when cooperating. That 
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feature makes our approach universal. 

 

 

Figure 3.5: Shapley allocation for Optimal Coalition Structure 

 

Our approach is very general in the sense that it can be applied for any 

characteristic function, whether superadditive or otherwise. 

 

3.3     Value at Risk and group characteristic function 

In financial industry, the most popular risk measure is Value at Risk (VaR), which 

is essentially a quantile on a loss distribution. In particular, Value at Risk (VaR) 

estimates how much a portfolio could lose due to market uncertainty over a time 

horizon and within a given confidence interval. In this study, the VaR is defined as 

the expected minimum profit for a given confidence level (1 )α− : 

Pr( ) 1VaRπ α≥ = − . 

Under this perspective, the VaR can be recognized as downside risk 

measure. The VaR is more efficient than a symmetric risk measure such as the 

variance because the later also includes the case where the profit values are better 
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than the expected profit.  

The confidence level depends on the extent of the player’s risk-aversion. 

Normally, a 95% confidence level is adopted by a player with moderate risk-

aversion. Under normal distribution assumption, the variance – covariance 

approach calculates the VaR of the payoff π  by  

1( ) ( ) ( )VaR E z απ π σ π−= −      (3.6) 

( )E π is the expected value of the pay off, ( )σ π  is the standard deviation of the 

payoff, 1z α−  depends on the confidence level. For 95% confidence level, 1z α−  is 

equal to 1.65. ( )E π  and ( )σ π  are calculated from our random simulation 

database.  

As stated in Section II, our approach is very general in the sense that it can 

be applied for any characteristic function. In this part, we propose an explicit form 

of the characteristic function for the game:  

( 1) ( 1)

1( ) ( ). [ ( ) ( )].
a S a S

S S

S i

i S

v S VaR S e E z eαπ σ π

π π

− − − −

−

∈

= = −

= ∑   (3.7) 

S is a coalition of buyer, which is a subset of N, Sπ  is the total payoff of coalition 

S and S  is the number of members in S. The first factor of the characteristic 

function is the VaR of the total payoff of this coalition S, while the second 

measures the effect of group size through parameter a. Larger value of a means 

higher transaction cost among the group and thus having negative effect the 

characteristic function of the coalition. When parameter a is equal to zero, the 

transaction cost is zero and thus the grouping environment is ideal. This setting is 
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reasonable since in a larger group more transaction and communication cost is 

incurred; thus there exists a certain negative effect of the group size on the group 

efficiency.   

 

3.4    Chapter conclusions 

This chapter presents a general methodology to simulate power markets and study 

the behaviors of economic participant. Concepts of evolutionary / co-evolutionary 

algorithms and Cooperative Game theory have been highlighted. The following 

chapter will introduce the first model in this research, where the interactions in 

only one bus are considered.  
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Chapter 4: SINGLE-NODE POWER MARKET MODEL 

 

 

 

In this section, we build a single-node power market model with uniform non-

discriminatory pricing, which means buyers and generators on only one bus are 

studied. Since the power market is supposed to be single-nodal, we do not take 

into account the congestion of transmission lines. Therefore, the local marginal 

prices are equal to the market clearing price. Moreover, since we focus on 

studying the behavior of the electricity buyers, the bidding strategies of the 

generators are assumed to be fixed. 

 

4.1 The single-node power market model 

The PoolCo model is chosen among the three models described in Chapter 2. The 

reasons of this choice are as follows:  

- PoolCo allows a greater number of autonomous agents than Bilateral 

Contracts model.  

- PoolCo model is more complex and dynamic than Bilateral Contracts 

model 

- PoolCo model can validate the proposed co-evolutionary methodology 

more efficiently than the Hybrid model, which is too complicated within 

the framework of this research. 

 



34 
 

The operation of the electricity spot market takes place every hour from days to 

days. This is modeled as a repeated game in which the players compete against 

one another to maximize its own profit or cooperate to maximize the total profit of 

the group. A group here may include several buyers or all buyers.  

At the start of each round, the participants submit their bidding curves, and 

the Independent System Operator clears the market by intersecting the aggregated 

demand curve of buyers and the aggregated supply curve of generators. Each 

generator is paid at the market clearing price for the quantity of power they have 

supplied, and each buyer has to pay at the market clearing price for the quantity of 

power they have received.  

 

4.2 Generator and buyer models 

We approximate the total production cost of a generator as a quadratic function: 

CG(Q) = b0 + b1Q + b2Q
2
  (bj > 0 ∀j)          (4.1)  

Q is the quantity the generator sells in this round, and bj are the cost coefficient of 

this generator. Each generator has its minimum and maximum power output. The 

data of 4 generators used in this work is given in the table below: 

 

Table 4.1: Data of generators 

Generators b0 b1 b2 QGmin 

(MWh) 
QGmin 

(MWh) 

1, 2 3000 32 0.0065 200 3000 

3, 4 2000 30 0.0060 200 3000 

4, 6 1500 35 0.0077 200 3000 
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A buyer is characterized by the revenue function     

R = a1Q - a2Q
2    

(aj > 0 ∀j)           (4.2)  

The revenue function of a buyer stands for its performance. Intuitively, the 

revenue function tells us how much profit a buyer can make using the quantity of 

power Q it has purchased. 

The efficiency level of each buyer is determined by the coefficients a1 and 

a2. A buyer is efficient if he has large value of a1 and small value of a2. 

The coefficients used in this work are: 

 

Table 4.2: Data of buyers 

Buyers a1 a2 

1, 2 61 0.002 

3, 4, 5, 6, 7, 8 60 0.002 

9, 10, 11, 12, 13, 14 59 0.002 

15, 16, 17, 18, 19, 20 58 0.002 

 

 

The reason of dividing 20 buyers into 4 groups of efficiency level is to 

facilitate the observation of their strategic behavior. We expect that the buyers 

with same level of efficiency will behave similarly throughout the simulation. 

If the MCP of the current round is λ and the quantity of power the buyer received 

is Q, the buyer will earn a profit of 

π (Q, λ) = a1Q + a2Q
2  

- λQ          (4.3) 
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This profit depends on both the market clearing price λ and the quantity Q that the 

buyer receives from the auction (the market equilibrium is the intersection point of 

the aggregated demand function and the aggregated supply function). The buyers 

will play a bidding game to find out the strategy that maximizes their profit. 

 

4.3 The bidding model and market calculation 

The bidding curve of a participant in the market is a piece-wise linear function 

with K segments. For simplification, K prices are defined in advance, and are the 

same for all participants. The participants only bid K quantities corresponding to 

K fixed prices to form a decreasing demand curve or an increasing supply curve. 

In this work, the predefined prices are 45, 50, 55, 60, 65, 70 ($/MW).  A seller 

bids increasing supply curve and a buyer bids decreasing demand curve. The 

illustration of bidding curves of sellers and buyers are shown below. 

 

Figure 4.1: Bidding curve of sellers 
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Figure 4.2:  Bidding curve of buyers 

 

As discussed previously, the sellers keep their bidding strategy unchanged. 

We suppose that they follow marginal bidding procedure, i.e. at a given price P, 

the sellers bid a power quantity: Q = b1 + 2b2P. If the corresponding quantity Q 

excesses the generator capacity, it will bid QGmax. The buyers are allowed to bid 

any quantity between 0 and 700 MW, which is their maximum capacity. 

So far, we have only taken into account the bidding curves of just one 

seller and of just one buyer.  Usually there are many sellers and buyers with 

deferent supply and demand functions who participate in the market.  To compute 

the market equilibrium, we have to aggregate these curves into one aggregated 

supply function and one aggregated demand function. The aggregated curves will 

be used to calculate the Market Clearing Price (MCP) and the total traded power 

volume. First we consider the combining of supply functions followed by the 

combining of demand functions. 

The purpose of combining the supply functions is to find out how much 
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energy the generators are willing to sell at most to a certain per-unit price.  

Therefore, at each price the quantities bid by all generators have to be added.  Due 

to the capacity limit of the generators and the piece-wise linear form of the 

bidding curves, a compact formula cannot express the supply functions. 

Consequently, it is not easy to do the aggregation symbolically. An efficient 

solution is to discretize the prices and aggregate all quantities at each discrete 

price value. Figure 4.3 shows an example where CG1inc and CG1inc are aggregated 

to get CG1inc at the price λG. 

 

Figure 4.3: Aggregation of demand curves 

 

The only difference between demand curves and supply curves is that a demand 

curve has negative slope. The aggregation procedure for demand curves is exactly 

the same as for supply curves. 

 Once we have obtained the aggregated supply and demand curves, we can 

apply the method of computing the MCP and the total traded volume as in the spot 
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market model. The aggregated incremental supply and demand curves are 

presented in the same graph. The per-unit price at the intersection of the two 

curves is the MCP. The power-value at this point corresponds to the total 

produced and purchased power. The intersection determines the MCP and the total 

traded volume because it is where the quantities of sellers and consumers match. 

We also have to take note that sometimes the aggregated curves do not 

intersect. This is the case when the maximum power the buyers want to purchase 

is smaller than the minimum power the generators produce. Another case where 

there is no intersection is when the minimum power volume the buyers want to 

purchase is bigger than the maximum volume the generators are able to produce. 

If one of these two cases happens, there is no solution for this market round. 

 

Figure 4.4: Calculation of Market Clearing Price 

 

4.4 The co-evolution model 

In this simulation model, every buyer is represented by a species, which is also a 

continuous learning agent. The species interact with one another in the ecosystem, 
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which is the competitive power market. They “learn” from the interaction and 

evolve. The fitness of an individual of a species is calculated when it interacts 

with other representatives from other species. The fitness function depends on 

different simulation scenarios. If a buyer i tries to maximize his own profit, his 

fitness function is simply given by (3): 

Fitnessi  =  π (Q,  λ) = (a1Q - a2Q
2
)
  
- λQ                    (4.4) 

On the other hand, if buyer i cooperates in a group G with L members, G = { j1, j2, 

…jL }, his fitness function is the total profit of all buyers in this group: 

Fitnessi  =  ∑ πj(Qj , λ)     with  j ∈ G                       (4.5) 

Each species is a population consisting of a number of chromosomes.  The length 

of the chromosomes is the number of pairs power quantify – price in one bid; each 

chromosome encodes one bidding strategy of that buyer species.  

We build a simple market clearing block. The input to the market clearing 

block will be each bidding strategy of the buyer we are considering, combined 

with the representative strategies from the rest, together with the fixed bidding 

strategies of the sellers. The output from the market clearing block is the market 

clearing price (MCP) and power received by each buyer corresponding to the 

above situation. Base on this information, we can calculate the benefit of every 

buyer, which will serve in calculating the fitness of the corresponding strategy 

chromosome. Here, in order to facilitate good convergence of the co-evolutionary 

algorithm, we choose heuristically the best chromosome of each species to be the 

representative. The pseudo code of the algorithm is as follow: 
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Initialization: 

t = 1 

For each buyer 

    Randomly initialize a sub population of strategies for round t = 1 

    Choose a representative strategy for this round 

End 

  

Main loop: 

While not stop do 

     t = t +1 

    For each buyer i 

               Evaluate the fitness of each strategy j  

                      (Based on the representatives from round t - 1)  

              Choose the representative strategy for this round t         

              Evolution of buyer i: selection, crossover, mutation 

   End for 

   All representative strategies are combined to get the market output of this 

round t   

End while 

 

 

Figure 4.5: Pseudo code of the proposed Co-evolutionary Algorithm 

 

The key of co-evolutionary algorithms is the choice of the representatives. At 

generation t, a buyer has to forecast the strategies that other buyers will use in this 

generation. In competitive co-evolution, each buyer only knows the fitness of his 

own strategies. Therefore, each buyer assumes that the rest will use their most 

updated strategies, which are the strategies from previous round t-1. In 
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cooperative co-evolution, each buyer in the group evolves one after another, and 

the strategies to be used in this round are gradually made available within the 

group. After going through evolution, a buyer will inform other buyers in the 

group his best fitness strategy of this round. 
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Chapter 5: SIMULATION OF SINGLE-NODE POWER 

MARKET MODEL 

 

 

 

This chapter simulates the proposed single-node market model. In our 

implementation, one buyer is associated with a population of 20 chromosomes. 

Intermediate recombination is used to generate new individuals form the selected 

parents. We also use elitism by replacing the worst strategy in each generation 

with the best strategy found so far. The mutation rate is set as 0.1 Moreover, we 

allow each buyer to realize a total of 2 evolutionary generations against the 

representatives strategy of other players, before the evolution of the next buyer 

takes place. This is called sub-evolution, and it aims to accelerate the convergence 

of the algorithm. 

 

5.1 Competition scenario 

In this scenario, all buyers play individually to maximize their own profits. The 

fitness of each buyer is calculated using (4). Since all bids are submitted 

individually, each buyer has no information about the bids of other participants in 

this round, only the bids from previous rounds are known. Thus, each buyer 

forecasts that others will use their previous round strategies. This is actually his 

choice of representatives. We have run a simulation of 500 generations with 6 

generators and 20 buyers and the results are described in Figures 5.1, 5.2 and 5.3. 

We observed that buyers with similar level of efficiency behave similarly; 
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therefore we choose to report the evolution of buyers 1, 3, 9 and 15. 

We observe that the profits of all buyers decrease compare to what they 

gain in the first randomly initialized generation. All buyers try to adjust their bids 

to get maximum profits in response to their opponents’ strategies. Therefore there 

is a competition between them that leads to an equilibrium situation. As expected, 

all buyers with same efficiency level will behave similarly, and thus get quite 

similar profits. Buyers 1 and 2 who are most efficient get highest profits. Next are 

buyers 3 to 8, then following by buyers 9 to 14 and buyers 15 to 20 get least 

profits because they are least efficient.  

The reason of the reduction in profit is the increasing of the market 

clearing price as we can see on Figure 5.2. Because all buyers want to gain more 

profit, they bid more quantities at the same price as before. This also means a right 

shift of the aggregated demand curve, which results in a higher equilibrium price. 

We observe that efficient buyers 1 to 8 could manage to get the maximum power 

of 700 MW while less efficient buyers cannot get their maximum capacities. The 

low efficient level of these buyers has limited their quantity bidding: higher 

market clearing price will just cause them a loss. 

 

Figure 5.1: Evolution of profits (Competition scenario) 
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Figure 5.2: Evolution of MCP (Competition scenario) 

 

 

Figure 5.3: Evolution powers dispatched (Competition scenario) 

 

5.2 Verification of Nash equilibrium 

An interesting question is whether the equilibrium is a Nash equilibrium. Nash 

equilibrium is the situation where every buyer has no incentive to unilaterally 

change his current strategy, which is the strategy that maximizes his payoff 

whatever the strategies played by the others.  

 We can give an answer to this question by using co-evolutionary 

approach, in which we let one buyer evolve while the strategies of others are 
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fixed. If the evolving buyer cannot get a better situation than his equilibrium 

profit, the stable situation is Nash equilibrium. A typical case when buyer 1 

evolves and other buyers use their stable strategies is shown in Figure 5.4.  

It is found that the whole system gets back to its stable situation in less 

than 15 generations. The result shows that the evolving buyer cannot get more 

than what he got in the equilibrium (2380.00$). The tests for other buyers give 

similar result. Thus we have strong evidence to believe that the equilibrium is 

Nash equilibrium. 

 

 

Figure 5.4: Evolution of buyer 1’s profit (Nash equilibrium) 

 

5.3 Cooperation scenario 

In this scenario, all buyers cooperate with the goal of maximizing the total profit. 

Therefore, the fitness of a strategy chromosome which is calculated using (5) is 

the total profit of all buyers when the buyer in consideration uses that strategy. 

This is equivalent to solving a multi-objective optimization problem, where each 

objective is to maximize the profit of one buyer. The choice of maximizing the 

total profit of all buyers is equivalent to using an aggregate objective function, 
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which is in the form of a non-weighted linear sum.   

Since all buyers cooperate, the information about the bid to be submitted 

this round is made available step by step. With this mechanism, a worse total 

profit due to the ill-cooperation of the buyers can be avoided. In our 

implementation this is modeled as following: The first buyer evolves according to 

the bids from previous round (that means he assumes that the representatives of 

other buyers are their bids from previous round), then he informs his best strategy 

– the strategy he will submit this round to other buyers. The second buyer evolves 

according the bid from previous round, plus the “sure to happen” strategy of buyer 

1 who has just informed him. The information gradually becomes certain and the 

last buyer can evolve with complete knowledge of the strategies of other buyers in 

this round. This approach is somehow similar to elitism: the buyers who evolve 

later keep track of the best strategies so far found by those evolved before him. 

The results of the simulation are shown in Figures 5.5 and 5.6. We note 

that it takes longer time to reach equilibrium in this case. To facilitate the 

comparison, we report in Table 5.1 the profits and powers dispatched at the 

generation 500 in the cooperation scenario, together with the percentage change 

compared to the equilibrium situation in the competition scenario. As expected, 

the total profit keeps increasing. The total profit in this case is 81996.85$, which 

increases 262.02% compared to the previous competition case. It is clear that the 

cooperation helps to increase the total profit. 

But it is also interesting to look at individual profits. We see that while the 

profits of almost every buyer increase, the profit of buyer 19 decreases by 79.7%. 

We note that this buyer is of lowest level of efficiency. A possible explanation is 

that the worst buyers will “sacrifice” by limit their quantity bids to help increase 



48 
 

the total profit of the group, which is now the common goal. It is clear that the 

result reflects real life fact. If we consider all buyers as a population, with the total 

profit as the fitness, the disappearance of least efficient buyers reflects the core 

principle of evolution: only the best will survive.  

Moreover, the profits of the buyers with same level of efficiency may vary. 

That is because of the goal is no more maximizing individual profits, but the total 

profit of all buyers. 

 

 

Figure 5.5: Evolution of total profit (Cooperation scenario) 

 

 

Figure 5.6: Evolution of MCP (Cooperation scenario) 
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The reason for an increase in profits is the decrease of MCP. All buyers 

have cooperated to pull down the MCP by decreasing their quantity bids. In other 

words, they have tried to make the MCP lower by shifting the aggregated demand 

function to the left. That is why the power dispatched decreases. 

 

Table 5.1: Equilibrium profits and powers dispatched (Cooperation scenario) 

 

Buyers Profits ($) 
% Change 
in profits 

Powers 
Dispatch-ed 

(MW) 

% Change 
in Powers 

Dispatched 

1 9386.70 294.40% 647.10 -7.56% 

2 8658.04 263.78% 592.40 -15.37% 

3 5800.18 245.25% 415.20 -40.69% 

4 4819.61 186.88% 341.40 -51.23% 

5 4876.00 198.37% 345.60 -47.46% 

6 7405.01 354.56% 539.70 -17.40% 

7 7021.42 319.46% 509.50 -26.59% 

8 6480.59 286.63% 467.40 -32.86% 

9 4198.68 341.84% 319.00 -44.82% 

10 3037.28 222.82% 227.60 -59.36% 

11 4054.39 345.51% 307.50 -40.06% 

12 3408.12 272.54% 256.50 -50.63% 

13 3248.13 238.26% 244.00 -59.37% 

14 3634.86 279.36% 274.30 -53.94% 

15 592.14 58.95% 46.60 -85.55% 

16 1549.06 308.23% 123.40 -63.38% 

17 1507.20 293.49% 120.00 -65.24% 

18 1217.82 224.6% 96.60 -70.52% 

19 75.45 -79.7% 5.90 -98.18% 

20 1026.17 157.1% 81.20 -79.46% 

Total 81996.85 262.02% 5960.90 -45.41% 
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5.4 The free rider problem 

So far we have observed the scenarios where all buyers compete against one other 

or cooperate together.  In this section, we simulate the case of incomplete 

cooperation where buyer 1 plays individually while others cooperate. Since we 

have observed the effect of different buyer’s efficiency levels, in this experiment 

we choose to simulate 20 similar buyers in term of efficiency level to facilitate the 

observation of results. The 6 generators are kept unchanged and 20 buyers are 

copies of buyer 1 in Table 4.2. In order to compare different scenarios, we run a 

simulation with 1400 generations as followed: Competition from generation 1 to 

100, complete cooperation from generation 101 to 700, competition from 

generation 701 to 800 and incomplete cooperation from generation 801 to 1400. 

The reason to insert a scenario of competition in the beginning and between 

complete and incomplete scenarios is to give a same starting point for all buyers. 

Since all buyers have similar revenue functions, we report the results of buyer 1 – 

the buyer playing alone in incomplete cooperation scenario and the average result 

of other buyers. 

We observe in Figure 5.7 that when all buyers cooperate, they get better 

profits compared to competition. However, when buyer 1 plays individually 

against the cooperation of others, he gets even more profit. As we have known 

form previous experiments, when buyers cooperate they try to pull down the MCP 

by limit their quantity bids. On the other hand, buyer 1 who is now playing 

individually doesn’t need to limit his quantity bids, but he still enjoys the low 

MCP thanks to the cooperative effort of other buyers. That is why buyer 1 gets 

very high profit in this case. He is called a free rider.  
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We see in Figure 5.8 that the MCP in incomplete cooperation scenario is 

lightly higher than in complete cooperation case, that’s because of the non-

cooperation of buyer 1. Therefore the average profit of other buyers is slightly less 

in this case compared to complete cooperation. 

 

 

Figure 5.7: Evolution of profit (different scenarios) 

 

 

Figure 5.8: Evolution of MCP (different scenarios) 
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Figure 5.9: Evolution of powers dispatched (different scenarios) 

 

The simulation results can lead to a situation similar to the prisoner 

dilemma. A buyer, desiring to become a free rider to get very high profit, will play 

individually with the hope that others will cooperate. Since every buyer has 

incentive to do so, the market will ultimately become completely competitive, and 

thus all buyers get low profit. 

 

5.5 Cooperation schemes for small buyers 

In previous experiments, every buyer can bid any quantity from 0 to 700 MW 

which is their capacity limits. In this section, buyers 3 to 20 are chosen to be small 

buyers, they can bid maximum 200 MW; buyers 1 and 2 are kept unchanged 

because they are large buyers. All coefficients of buyers’ revenue functions are as 

in Table 4.2. We propose 3 algorithms to study different cooperation schemes of 

small buyers: 

- Algorithm 1: This is the algorithm we have been using so far in our 

simulations. 
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- Algorithm 2: This is a modification of algorithm 1. In this algorithm, a group 

is coded by a chromosome. A chromosome thus represents the strategies of all 

buyers in the group. 

- Algorithm 3: This is another modification of algorithm 1. The small buyers 

will cooperate to form a large buyer representing their group. That means 

instead of bidding individually, the group will bid the total power of every 

buyer in the group, then the received power will be shared to the members 

proportionally to their maximum capacity. 

The simulation results of 3 algorithms after 500 generations where the small 

buyers 3-20 cooperate and large buyers 1, 2 play individually are reported and 

compared with the competition scenario in Table 5.2. We observe that cooperation 

has helped most small buyers get higher profits in all three algorithms. Algorithm 

1 gives best total profit of small buyers, followed by algorithms 2 and 3. We recall 

that in algorithm 2, a chromosome represents a group of small buyers.  Therefore, 

the co-evolution happens actually among large buyers 1, 2 and the group of small 

buyer. In algorithm 3, the co-evolution is again among large buyers 1, 2 and the 

newly formed large buyer representing the group of 18 small buyers.  
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Table 5.2: Profits of small buyers in different cooperation schemes ($) 

Buyers Competition Algorithm 1 Algorithm 2 Algorithm 3 

1 1334.16 6510.00 6230.00 7140.00 

2 1315.94 6493.40 6230.00 7140.00 

3 471.16 1860.00 1667.45 760.97 

4 480.00 1860.00 844.92 760.97 

5 480.00 1693.77 1586.02 760.97 

6 480.00 1721.57 1329.11 760.97 

7 480.00 1738.59 1316.04 760.97 

8 480.00 1860.00 1635.78 760.97 

9 280.00 1041.48 304.36 688.18 

10 280.00 460.57 721.27 688.18 

11 280.00 0.00 871.50 688.18 

12 280.00 24.34 85.28 688.18 

13 280.00 199.90 397.03 688.18 

14 260.71 7.83 198.05 688.18 

15 64.69 53.03 199.96 615.39 

16 59.15 108.94 6.57 615.39 

17 53.92 0.00 759.58 615.39 

18 61.53 65.31 430.09 615.39 

19 53.27 241.32 206.43 615.39 

20 63.91 115.81 122.80 615.39 

Total profits 

Of small buyers 

(3 to 20) 

4888.34 13052.47 12682.23 12387.18 

 

 

Although algorithm 3 gives less total profit of small buyers than algorithm 

1 and 2, it ensures a good sharing of the electricity power received for less 

efficient small buyers. In algorithms 1 and 2, inefficient buyers could get very low 
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profits (buyers 11 and 17 get zero profit in algorithm 1 and buyer 16 get 6.57 $ of 

profit in algorithm 2). Therefore, small buyers with low level of efficiency (buyers 

9 to 20) would highly appreciate the scheme of cooperation as in algorithm 3 

where they get high profits thanks to the efficiency of their group mates. On the 

other hand, efficient small buyers (buyers 3 to 8) would appreciate the cooperation 

schemes as in algorithm 1 and 2, where they are ensured high profits thanks to 

their efficiency. 

 

5.6 Summary of result analysis 

With the simulations of the single-node power market model, we have examined 

some important issues in the bidding strategies of buyers in electricity market. In 

the first scenario where all buyers play individually, a competition among them 

takes place and pull up the MCP due to their large quantity bids. The result is that 

the market comes to equilibrium where everybody gets low profit compared to 

other scenarios.  Moreover, we have shown that the equilibrium is actually a Nash 

equilibrium by evolving the strategy of one buyer and letting other buyers play 

their equilibrium strategies. In the second scenario where all buyers cooperate, we 

can see a significant drop in MCP thanks to the reduction in quantity bids of all 

buyers. Therefore, most of buyers get better profits. The first lesson taken from 

these two simulations is that trying to get more quantity is not always a good 

choice because this can make the MCP become very high. A better strategy is to 

cooperate by limiting the quantity bids and thus get lower MCP, which can lead to 

very high profits. The second lesson is that inefficient buyers might not want to 

cooperate with efficient buyers to maximize the total profit, because cooperation 
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in a group can also mean to sacrifice by giving the priority of bidding large 

quantities to efficient buyers in order to maximize the total profit of the group. 

In the third scenario where there is one buyer plays individually against the 

cooperation of others, we find that the free rider problem arises. The free rider is 

the buyer who does not cooperate. Without cooperation, the free rider doesn’t 

have to limit his quantity bids, but still enjoys the low MCP thanks to the 

cooperation of others. It’s true that cooperation helps each buyer to get more 

profit, but it is actually the free rider who benefits the most. We also point out that 

this result might affect the decision to cooperate or not of the buyers through a 

mechanism similar to the prisoner dilemma. In fact, since the free rider benefits 

the most, all buyers hope to be a free rider. As a consequence, none of them will 

cooperate, and the market will be completely competitive, which is the least profit 

situation for most of the buyers. 

In the last section, three different cooperation schemes for small buyers 

have been proposed. It is found that efficient buyers would appreciate the 

cooperation scheme where they can draw more profits thanks to the “sacrifice” in 

the bid quantities of inefficient small buyers. Another cooperation scheme for 

small buyers is to form a large buyer by bidding their total quantities demanded, 

and then share the quantities received. This scheme of cooperation is highly 

appreciated by inefficient small buyers because they are equally shared the power 

quantities and enjoy good MCP thanks to the high performance of efficient small 

buyers. However, the formation of a new large buyer from small buyers may not 

be easily feasible. 
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Chapter 6: MULTI-NODE POWER MARKET MODEL 

 

 

  

We build a multi-node model of a power market, which means buyers and 

generators are located on different buses. Therefore it is necessary to take into 

account the technical constraints and congestion limits of the transmission 

network. The spot prices depend on buses - the locations of generators / buyers in 

the network, and are called local marginal price (LMP) or nodal price. Moreover, 

since we focus on studying the behavior of electricity buyers, the bidding 

strategies of generators are assumed to be fixed.  

 

6.1 The multi-node power market model 

In this paper, the PoolCo model is chosen because of the same reasons as in the 

single-node model. We simulate the power market using spot pricing theory [51]. 

In each bidding round, generators and buyers submit bid curves to the pool 

operator which runs an optimization routine to determine the power dispatch 

results, which are generation, load dispatchs and spot prices.  Generators are then 

paid a price according to their bids and consumers must pay a price according to 

their bids. 

The operation of the power spot market is modeled as a game in which the 

actual players are electricity buyers, because generators use fixed strategies. 

Players can choose to compete against one another or cooperate to accomplish 
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their goal in an optimal way. 

 

6.2 Generator and buyer models 

As usually seen in power system studies, the total production cost of a generator j 

is approximated as a quadratic function:  

2

0 1 2( )j j j j j j jC s b b s b s j G= + +       ∀ ∈     (6.1) 

G is the set of generators, js  is the electric power that generator j supplies in this 

round, and 0jb , 1jb , 2jb  are the cost coefficients of this generator j. The cost 

coefficients are positive and each generator has its minimum and maximum power 

output. 

A buyer i is characterized by the revenue function, which is symmetric to 

the cost function of a generator.     

2

1 2( )i i i i i iR d a d a d i L= −       ∀ ∈     (6.2) 

L is the set of buyers, id  is the electric power that buyer i is dispatched in this 

round, and 1ia , 2ia   are the revenue coefficients of this buyer i. The cost 

coefficients are positive and each buyer also has its minimum and maximum 

power demand as will be discussed further in this section. In a particular round, if 

the LMP of buyer i is λ
i  and the electricity power received is id , this buyer will 

earn a profit of 

2

1 2( , ) ( )i i i i i i i i id a d a d dπ λ λ= − −     (6.3) 

Since the profit depends on both the LMP and the power received, each buyer has 
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to choose an optimal bidding strategy to maximize their profits. 

The revenue function of a buyer stands for its intrinsic performance. 

Intuitively, the revenue function tells us how much profit a buyer can make using 

the electricity power it has purchased. The efficiency level of each buyer is 

determined by the coefficients 1ia  and 2ia . A buyer is efficient if it has large value 

of 1ia  and small value of 2ia  . However, in this study we assume that buyers are 

homogenous, which means they all have the same revenue function. The 

convenience of this is, besides simplicity, a better interpretation of the interaction 

among buyers in different bus on the network. 

In reality, the electricity power id  a buyer can buy is bounded and consists 

of a fixed amount miniQ  and a variable amount dispiq  which is the dispatchable 

electricity power: 

min maxi i dispi id Q q Q= + ≤                         (6.4)  

The variable   miniQ  is the minimum electricity power that the buyer needs to 

maintain a certain level of production or to satisfy certain consumption demand, 

maxiQ  is the maximum electricity power it can buy. By this mechanism, buyer i is 

assured to receive at least miniQ  MW, and the extra dispatchable electric power 

dispiq  depends on the dispatch results, which in its turn depend partially on the bids 

of the players.  The revenue of a buyer i is therefore 

2

1 min 2 min

2 2

1 min 2 min 1 2 min 2

( ) ( ) ( )

( ) ( 2 )

i i i i dispi i i dispi

i i i i i i i dispi i dispi

R d a Q q a Q q

a Q a Q a a Q q a q

= + − +

= − + − −
   

(6.5) 

We note that the term 2

1 min 2 min( )i i i ia Q a Q−  is constant and the revenue actually 

depends on the dispatchable electricity power dispiq . 
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6.3     The bidding model and market calculation 

In our model, each generator is allowed to bid a supply function and each buyer is 

allowed to bid a demand function to the system operator. A supply function ( )j jP s

represents the price at which a generator i is ready to sell if the power it has 

produced is js  . Similar interpretation is applied for buyers. 

  Base on the bidding information as well as the network configuration, the 

operator solves an optimal power flow (OPF) problem to determine the 

generation, load dispatch and LMPs while satisfying physical and operational 

constraints. The objective of OPF problem is to maximize the social welfare W, 

which is equal to the total buyer benefits minus the total generator costs.  

, ,max ( ) ( ) ( )

. . ( )

( )

x s d i i j j

i L j G

W R d C s

s t

∈ ∈

   = −

      =

≤

∑ ∑s,d

h x, s,d 0

g x, s,d 0
   (6.6) 

x  is the state vector consisting of system voltages and angles, s is the vector of 

generated power, d is the vector of dispatched power, ( )h x, s, d are equality 

constraints such as the power flows equations, ( )g x, s,d are inequality constraints 

such as line flow limits. Details on OPF problem could be found in textbooks 

about electrical power system.  

It is well known from microeconomics theory that in a market with perfect 

competition, the social welfare is maximized when the players bid their marginal 

cost / revenue function. However, in an electric power market, the physical 

constraints of the network gives certain market power to some players and thus 

discourage them from bidding marginally. 
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In this study, the bids of generators are assumed to be fixed. More specifically, the 

generators always bid their true marginal cost functions as supply functions: 

1 2

( )
( ) 2

j j

j j j j j

j

C s
P s b b s

s

∂
= = +

∂    (6.7) 

Buyers bid strategically rather than bid their true marginal revenue function. A 

strategy or a bid of a certain buyer is defined by a coefficient ik  that is multiplied 

to the true marginal revenue function to get demand function: 

1 2

( )
( ) ( 2 )

j i

i i i i i i i

i

R d
P d k k a a d

d

∂
= = −

∂
   (6.8) 

We note that a rational buyer would bid 1ik ≤ . This method of bidding also 

means to multiply the revenue function used in OPF formulation by ik . In fact, 

from the view of the pool operator, submitted bids are considered to reflect the 

true marginal curves of the participants. Therefore, the revenue function of buyer i 

as being viewed by the pool operator is:  

2

1 min 2 min

2

1 2 min 2

( ) ( ) ( )

( 2 )

bid

i i i i i i i i i

i i i i dispi i i dispi

R d k R d k a Q a Q

k a a Q q k a q

= = −

+ − −

   (6.9) 

For a specific strategy ik , the constant 2

1 min 2 min( )i i i i ik a Q a Q−  can be excluded from 

the OPF problem. The objective function of the maximization problem is 

therefore: 

2

1 2 min 2( ) ( 2 ) ( )i i i i dispi i i dispi j j

i L j G

W k a a Q q k a q C s
∈ ∈

= − − −∑ ∑disps,d       (6.10) 

Note that the objective function depends on the supply and dispatchable power.  

New constraints must be included to take into account the fixed power required 
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miniQ . 

A black box simulator is built to integrate bidding strategies and solve 

OPF problem. The input to OPF solver consists of a network configuration, the 

cost function coefficients of generators, the maximum powers of generators, the 

revenue function coefficients of buyers, the must serve powers miniQ  and max 

capacities maxiQ  of buyers. The output from the simulator consists of the LMPs 
iλ  

and dispatchable powers dispiq  for each buyer. 
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Chapter 7: IMPLEMENTATION OF MULTI-NODE 

POWER MARKET MODEL  

 

 

7.1 Test network 

Using the multi-node power market model as proposed in previous chapter, we 

implement an IEEE 14-bus network with 7 generators representing electricity 

sellers and 18 loads representing electricity buyers. This test network is chosen 

because it integrates physical and technical constraints as in practice and consists 

of a large enough number of seller / buyer agents to validate the proposed 

approach. Besides, our approach will also be tested on a IEEE 30 bus system. The 

14 bus network is shown in Figure 7.1, where loads are represented by arrows and 

generators are represented by circular objects. Power is delivered into and drawn 

from the network busbars. Busbars are interconnected via transmission lines 

which have an upper limit to the amount of power they can transmit.  

 

Figure 7.1: IEEE 14 bus test system 
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To observe the influence of the physical network on players’ performance, 

we suppose that all buyers are homogenous, which means they have the same 

revenue function. The common revenue function is characterized by 1 1 80ia a= = ,  

 for all buyers. Other parameters of buyers are summarized in Table 7.1. 

The last column, which will be discussed later, is the profits of buyers when they 

all bid marginally ( 1.0
i

k =  for all buyers). 

 

Table 7.1: Data of Buyers 

Buyer Bus 
Must serve 

Power (MW) 

Max   
Power   
(MW) 

Dispatchable  
Power (MW) 

Marginal 
bid profit 

($) 

1 2 45.0 67.5 22.5 2186.72 

2 2 49.0 73.5 24.5 2336.99 

3 2 55.0 82.5 27.5 2548.9 

4 4 48.0 72.0 24.0 2177.76 

5 4 50.0 75.0 25.0 2245.99 

6 6 44.0 66.0 22.0 773.48 

7 6 55.0 82.5 27.5 830.72 

8 6 47.0 70.5 23.5 794.49 

9 6 50.0 75.0 25.0 811.45 

10 8 42.0 63.0 21.0 266.58 

11 8 55.0 82.5 27.5 214.95 

12 8 46.0 69.0 23.0 273.57 

13 10 50.0 75.0 25.0 1004.35 

14 10 54.0 81.0 27.0 1036.1 

15 10 55.0 82.5 27.5 1042.91 

16 12 50.0 75.0 25.0 453.72 

17 14 48.0 72.0 24.0 350.63 

18 14 55.0 82.5 27.5 366.22 

    Total 19715.53 



65 
 

7.2  Market database 

Firstly, a database of the power market was constructed. This will provide the 

reference case for studying the deterministic situation and permit the calculation 

of characteristic function in the stochastic situation.  The database can be viewed 

as historical data of a market in which agents possess no intelligence. We have 

performed 100 thousands random simulations using the proposed model with 

strategies ik  of buyers uniformly distributed between 0.3 and 1. The rationale for 

that choice of as follow: We ran 60, 70, 80, 85, 90, 95 and 100 thousands random 

simulations sequentially. It was observed that the relevant statistics (average 

values and standard deviations of powers dispatched, LMPs and profits) converge 

from the number of 85 thousands samples. Therefore it is convincible that 100 

thousands random simulations could statistically represent the system with high 

confidence level. 

The average dispatchable power, the average LMP as well as the average 

and standard deviation of profits of buyers are reported in Table 7.2. The 

fluctuation index, which is equal to the standard deviation value divided by the 

average value, is also calculated for ease of comparison. This index reflects the 

relative profit fluctuation, measured in percentage of the average value. A low 

value of fluctuation index indicates a stable payoff, while a high value of 

fluctuation index indicates a highly sensitive payoff.  
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Table 7.2: Results from 100 000 Random Simulations 

Buyer 
Average 

Dispatchable 
power (MW) 

Average 
LMP 

($/MW) 

Average 
payoff ($) 

Payoff   
Sdv ($) 

Fluctuation 
index 

1 18.08 38.84 2187.95 254.67 0.12 

2 19.94 38.84 2350.45 260.41 0.11 

3 22.69 38.84 2579.89 267.20 0.10 

4 18.46 40.00 2204.33 274.21 0.12 

5 19.39 40.00 2280.75 277.15 0.12 

6 14.77 45.22 1683.94 271.91 0.16 

7 19.23 45.22 2008.07 299.81 0.15 

8 15.96 45.22 1776.64 280.82 0.16 

9 17.17 45.22 1866.12 288.78 0.15 

10 7.10 51.57 1151.19 362.62 0.31 

11 11.15 51.57 1406.51 413.55 0.29 

12 8.31 51.57 1241.03 387.07 0.31 

13 16.57 44.95 1867.01 262.74 0.14 

14 18.12 44.95 1980.73 265.88 0.13 

15 18.52 44.95 2008.50 267.01 0.13 

16 8.19 55.62 1028.89 501.05 0.49 

17 4.16 59.80 768.00 396.94 0.52 

18 4.44 59.80 830.60 455.01 0.55 

  Total 31220.60   

 

 

As can be observed from Table 7.2, buyers who are in the same bus in the 

network have similar fluctuation indices. This observation suggests the high 

influence of the physical constraints to the payoff of buyers. In fact, due to the 

particular location on the network, a buyer may have some market power - which 

is the ability to alter the electricity price with its strategy. On the other hand, a 

buyer in a location with high fluctuation index highly depends on the strategies of 
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others. Moreover, we can see a correlation between fluctuation indices and LMPs, 

which also vary largely among bus. On buses with low LMPs, buyers can make 

more profit by buying larger amount of electric power; therefore the average 

dispatchable powers are higher in these buses. 

In brief, a bus is considered stable if the fluctuation indices and the LMP 

of buyers on this bus are low, leading to high dispatchable powers.  Bus 2 (buyers 

1, 2, 3) is a typically stable bus. Contrarily, a bus with high fluctuation indices is 

considered unstable, such as bus 14 (buyers 17, 18). This simple statistical 

analysis has provided a very good overview on the performance of buyers in the 

network. In reality, buyers may have this kind of knowledge by learning through 

experience, and the large number of bidding simulations in this study actually 

models a long period the players participate in the market. Moreover, comparison 

between the last column of Table I and the 4th column of Table 7.2 proposes that 

even random bidding can return in better profits than marginal bidding. This 

observation confirms the incomplete competitive nature of the market. 

 

7.3 Chromosome structures 

Co-evolutionary algorithm was used in the deterministic situation. The fitness 

function depends on different simulation scenarios. If buyer i cooperates in a 

group S having l members, 1 2{ , ,..., }lS i i i= , its fitness function is the total profit of all 

buyers in this group: 

( ) ( , )k k k

k S

Fitness i dπ λ
∈

= ∑      (7.1) 

Each species is a population consisting of a number of chromosomes.  Each 
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chromosome is a real number in the interval [0.3, 1] that represents the coefficient 

ik  in the bid demand function and encodes one bidding strategy of that buyer 

species. 

In the stochastic situation, each chromosome encodes a coalition structure. 

More specifically, the length of a chromosome is the number of buyers n in the 

market. The value of the ith   allele of the chromosome, which can be any number 

between 1 and n, represents the coalition that buyer i is joining. It is noted that two 

different chromosomes can actually represent one coalition structure. Let’s take an 

example where there are 5 buyers: the chromosomes chrom1 = [11232] and 

chrom2 = [22141] both represent the coalition structure CS = {(1, 2), (4), (3, 5)} 

with 3 coalitions in total. While the search space is significantly inflated with this 

representation, such many-to-one mappings simplify the problem and guards 

against disruptive crossover. The fitness of a chromosome c is the value of the 

coalition structure it encodes: 

( ) ( ) ( )
k

k

S CS

Fitness c V CS v S
∈

= = ∑     (7.2) 

CS is the coalition structure coded by chromosome c and the sets kS  are the 

coalitions in CS. 
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Chapter 8: SIMULATION OF MULTI-NODE POWER 

MARKET MODEL 

 

 

 

To validate the proposed approach, the system was simulated in different 

scenarios. The deterministic situation was studied firstly though individual 

bidding. Then players were allowed to cooperate by different schemes, where 

cooperation occurs in the whole player set or in smaller groups, and the condition 

to cooperate is or is not imposed. In the stochastic situation, the cooperation 

strategies were studied with different characteristic functions representing 

different group properties.   

 

8.1 Deterministic situation 

8.1.1 Individual bidding 

In this scenario, all buyers bid individually to maximize their own profits. The 

fitness of each buyer is calculated using (18), where each group C contains only 

one member. Since all bids are submitted individually, each buyer has no 

information about the bids of other participants in this round; therefore they are 

considered as competitive bidders. Each buyer chooses the previous round 

strategies of their rivals as representatives to evaluate the fitness function in the 

co-evolution process.  
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Figure 8.1: Comparision of random bidding and competitive bidding 

  

The co-evolutionary progress doesn’t lead to a stable state. It is observed 

that the payoffs of buyers fluctuate around certain average values. In this scenario 

where all players bid individually, there is strong competition among them for 

highest possible payoffs. Similar to real life deregulated markets, no players have 

enough market power to dominate the market; thus the strategic bidding progress 

is just like a fight with no winner. That’s why the market is not settled to a perfect 

equilibrium, but rather some kind of “dynamic equilibrium” around certain 

average values. The mean and standard deviation of payoffs in the competitive 

scenario is compared with the reference case in Figure 8.1. Unlike the reference 

case when all players bid randomly (in other word, they don’t have intelligence), 

in this competition, every player learns and evolves to choose the best strategy. 

Therefore the fluctuation of payoffs is smaller than the one in the random bidding 

case, as can be seen on Figure 8.1. It is also noted that some buyers can manage 

for better profits compared to random bidding, while the rest get lower profits. 
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With intelligence, certain players can make use of physical advantage, which 

depends on the location on the network, to improve the payoffs (buyers 1, 2, 3, 4, 

5, 16, 17, 18) while others, even with intelligence, perform worse because they 

don’t have that much advantage. Referring to Table 7.2, it is also interesting to 

note that players who perform better all have either lowest or highest fluctuation 

indices. 

 

8.1.2  Total cooperation 

In this scenario, all buyers cooperate with the goal of maximizing the total profit. 

The total cooperation is modeled by two key points: Cooperation in goal and 

cooperation in information. The common goal is reflected the fitness of a strategy 

chromosome, which is the total profit of all buyers when the buyer in 

consideration uses that strategy. Therefore the sum in (18) is taken over the whole 

set of buyers. This is similar to solving a multi-objective optimization problem, 

where each objective is to maximize the profit of one buyer. The choice of 

maximizing the total profit of all buyers is equivalent to using an aggregate 

objective function, which is in the form of a non-weighted linear sum of payoffs.  

Secondly, the cooperation in information is modeled as follows: the strategies of 

buyers are informed to the whole group and the optimal strategy vector is chosen 

under the agreement of all members. 

The best total profits over generations of one simulation are shown in 

Figure 8.2. It takes about 80 generations to reach equilibrium in this case. As 

expected, the total profit keeps increasing. The total profit in this case is 37846.61 

$, which increases by 20% compared to the reference case. It is clear that 
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cooperation helps to increase the total profit. 

But it is also interesting to look at individual profits reported in Table 8.1. 

We see that while the profits of almost every buyer increase, the profits of buyers 

7, 9, 13, 15 decrease. This fact suggests an improved cooperation scheme that can 

assure acceptable payoff for every player. 

 

 

Figure 8.2: Evolution of total profit under total cooperation 

 

8.1.3 Total cooperation with Pareto improvement 

Pareto efficiency is a concept in economics with many applications in 

engineering. Given an initial allocation of payoff among a set of players, a Pareto 

improvement is defined as a change in the allocation that makes at least one 

individual better off and no worse for any other. An allocation where no further 

Pareto improvements can be made is called Pareto efficiency. In a multi criteria 

decision making problem, there are usually many different Pareto efficient 

allocations and they form the Pareto frontier. However, seeking for that frontier is 
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not our objective. In this part about total cooperation, we only seek for a Pareto 

improvement that is good as possible, compared to the reference case.  

The common objective function, which is the total payoff of all buyers, 

remains the same as previous simulation. The selection process in the co-evolution 

is modified as followed to integrate Pareto constraint: 

- Between two strategy vectors that both lead to Pareto improvements, the 

one with higher fitness will be chosen. 

- A strategy vector that leads to a Pareto improvement will always be 

preferred to a strategy vector that does not, regardless of its fitness value. 

 

A typical simulation result is shown in Figure 8.3. In the first 25 generations, there 

are rises and drops in total profits. Each drop in total profit marks a discovery of a 

new strategy vector that leads to Pareto improvement, and thus being the 

replacement for previous strategy vectors (that do not satisfy Pareto condition). 

From Table 8.1, we observe that the payoffs in the end of the simulation are 

Pareto-improved compared to the reference case. More specifically, buyers 7, 9, 

13, 15 who had worse payoff than the reference case in previous cooperation now 

achieve better results. Of course, the tradeoff is slightly lower profits for other 

buyers compared to the previous cooperation without Pareto constraint. Nerveless, 

all players still have considerably better payoffs than in the reference case. Pareto 

constraint in some sense has implied the redistribution of payoffs, which makes 

this cooperation scheme acceptable and equitable for all players. 

 



74 
 

 

Figure 8.3: Evolution of total profit under total cooperation with Pareto 

improvement 

 

8.1.4 Group cooperation 

As we have seen in previous simulations, cooperation with the participation of all 

players leads to better outcome compared to the reference case. However, in 

really, the number of players could be very large and such total cooperation would 

be impracticable. In fact, cooperation naturally happens among smaller groups in 

which members have close relationship are share common goal.  

To verify this assumption, statistical analysis on the market database has 

been carried out. Firstly, for each buyer, we implemented a linear regression of the 

payoff on the strategies of all buyers in the market. Mathematically, with n buyers, 

we want to find coefficients jc  in the regression equation: 

0

1

n

i j j

j

c k cπ
=

= +∑      (8.1) 

The regression coefficients measure the sensitivity of a particular player payoff 

versus the strategies of others. The larger the absolute value of jc is, the higher the 
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influence of player j on player i is. Secondly, for each player, we calculated the 

correlations between its payoff and others’ payoffs. It is observed that the 

statistical analysis results are similar for all buyers; therefore only the results for 

buyer 3 are reported. The regression coefficients jc  have been normalized for easy 

comparison.  

 

 

Figure 8.4: Statistical analysis of buyer 3’s correlation with others 

 

From the analysis results, the profit of a buyer is most affected by the 

strategies of other buyers on the same bus. Specifically, Figure 8.4 shows that the 

payoff of buyer 3 is highly affected by buyers 1 and 2 – those on the same bus. 

Moreover, the profits of buyers on the same bus are highly correlated. In fact, 

these buyers have common LMP and share a number of network technical 

parameters. This proximity suggests that they should form a group. Since buyers 

are located on 7 buses, we assume that 7 groups will be formed: group 1 consists 

of buyers 1, 2, 3; group 2 consists of buyers 4, 5 and so on.  
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Similarly to the total cooperation scheme, the fitness function of a buyer is 

now the total profit of buyers within the bus, and the bidding information is shared 

among group mates.  As in first simulation of total cooperation without Pareto 

constraint, while the total profit of a group increases, the profit of some members 

could be worse off. This fact is shown on Table 8.1. The profit of buyer 6 is less 

than in reference case. 

 

Table 8.1: Results of different cooperation schemes 

Buyer 
Average 
profit ($) 

Total coop. 
($) 

Total coop. 
with Pareto 

impr. ($) 

Group 
coop. ($) 

Group coop. 
with redistr. of 

power ($) 

1 2187.95 2338.47 2257.16 2259.05 2259.05 

2 2350.45 2502.24 2413.69 2415.76 2415.76 

3 2579.89 2734.38 2635.00 2637.32 2637.32 

4 2204.33 2451.76 2355.53 2345.41 2345.41 

5 2280.75 2531.42 2431.18 2420.63 2420.63 

6 1683.94 2176.76 1947.09 1445.03 1901.18 

7 2008.07 1874.46 2297.73 2391.81 2259.96 

8 1776.64 2293.45 2048.12 2128.51 2003.65 

9 1866.12 1729.06 2145.10 2230.63 2102.65 

10 1151.19 1591.61 1546.07 2034.17 1626.71 

11 1406.51 2792.24 1953.12 1819.87 2036.17 

12 1241.03 1724.79 1674.92 1563.47 1757.43 

13 1867.01 1758.98 2272.84 2137.32 2137.32 

14 1980.73 2598.45 2302.21 2259.7 2259.7 

15 2008.50 1907.38 2438.24 2289.17 2289.17 

16 1028.89 1600.34 1417.23 1484.12 1484.12 

17 768.00 1528.22 1435.27 1391.68 1391.68 

18 830.60 1712.59 1606.08 1556.13 1556.13 

Total 31220.60 37846.61 37176.55 36809.78 36884.04 
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An improved version of group cooperation is achieved when we integrate a 

method for redistribution of dispatchable power. More specifically, after the OPF 

solver decides the power to be dispatched, buyers on same bus will receive their 

minimum power required miniQ  and share the total dispatchable power 

proportionally to their maximum capacity maxiQ . This redistribution of 

dispatchable power makes use of technical advantages of power transmission in 

same bus. It is also necessary to emphasize that the redistribution is consistent 

because we assume homogeneous buyers. In fact, the common revenue function 

of buyers evaluates one MW of electricity the same way no matter it belongs to 

which buyer.  

The last column of Table 8.1 shows the outcome of group cooperation 

with redistribution of power. As expected, buyer 6 has improved the profit to 

1901.18$. We also note that the total profit in this case is slightly higher than in 

previous case without power redistribution (36884.04$ versus 36809.78$). The 

explanation is that power redistribution has allocated the resource in a better way.  

 

8.1.5 Comparison of different schemes of cooperation 

To evaluate the performance and stability of the proposed cooperation schemes, 

each of them was simulated 100 times; then the mean and standard deviation 

values of outcome payoffs were calculated. Each mean value is divided by the 

corresponding value in reference case to get the coefficient of improvement, and 

each standard deviation value is normalized by the corresponding mean value to 

get the coefficient of variation. These indices are plotted in Figure 8.5. 
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Figure 8.5: Evaluation of different cooperation schemes 

 

The coefficient of improvement reflects how much a player is better off 

compared to the reference case. From the plot we observe that buyers in unstable 

buses such as buyer 10, 11, 12 (bus 8), buyer 16 (bus 12), buyers 17, 18 (bus 14) 

benefit the most by cooperation schemes. Other buyers with stable payoffs don’t 

have much improvement. The coefficients of improvement under total cooperation 

vary a lot from buyers to buyers, while total cooperation with Pareto constraint 

and group cooperation have restricted that variation. In other words, the two later 

schemes are more equitable for all players.  
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The coefficient of variation measures the stability of the algorithm. It is 

clear that the coefficients of variation under total cooperation scheme without 

Pareto constraint are high for most players, which means this scheme is unstable 

for most of them. Two other cooperation schemes assure good stability with 

variations in payoff of less than 5% for all players. 

 

8.2 Stochastic situation 

8.2.1 Test on IEEE 14 bus system 

We implement the evolutionary algorithm for finding optimal coalition structure 

on IEEE 14 bus network. Firstly, the parameter a in the characteristic function 

(17) is set to zero, which means there are no transaction cost for grouping and no 

restriction of the group size. Figure 8.6 depicts the evolution process. 
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Figure 8.6: Evolution of coalition structure (case without group size effect) 

 

The best coalition structure value of 27605.30$ was achieved after about 

120 generations. The number of coalition decreases over generations, and 

ultimately there is only one coalition – the grand coalition. This is an expected 

result. In fact, when the parameter a is set to zero, the characteristic function is 

supperadditive and the optimal coalition structure is the grand coalition, as noted 

in part B - Section II.  

We run a second simulation where parameter a is set to 0.05. In this case, 

there exist transaction costs when forming a group and the group size causes 

certain negative effect on the coalition value. This simulation tests the capability 

of the proposed algorithm when dealing with non-supperadditive characteristic 



81 
 

function. The results are plotted in Figure 8.7. 

 

 

Figure 8.7: Evolution of coalition structure (case with group size effect) 

 

The evolutionary algorithm reaches the optimal coalition structure value of 

26269.78$ after nearly 200 generations. Due to the negative effect of group size, 

the optimal coalition structure is lower compared to previous case. Moreover, 

since the characteristic function is no longer supperadditive, the grand coalition 

was not formed, but 3 different coalitions.  The members of 3 coalitions and their 

location on the network are reported in Table 8.2. 
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Table 8.2: Distribution of optimal coalition structure 

 
 Buyer members 

(bus) 

 

Coalition 1  6 

(6) 

8 

(6) 

13 

(10) 

14 

(10) 

15 

(10) 
  

Fluctuation indices 0.16 0.16 0.14 0.13 0.13   

Coalition 2  1 

(2) 

2 

(2) 

3 

(2) 
10 (8) 

12 

(8) 

16 
(12) 

18 
(14) 

Fluctuation indices 0.12 0.11 0.10 0.31 0.31 0.49 0.55 

Coalition 3  4 

(4) 

5 

(4) 

7 

(6) 

9 

(6) 
11 (8) 

17 
(14) 

 

Fluctuation indices 0.12 0.12 0.15 0.15 0.29 0.52  

 

 

Since the characteristic function is based on a measure of risk in payoff, 

buyers on the same bus with low fluctuation indices prefer to form coalition. In 

fact, buyers 1, 2, 3 (bus 2) who have lowest fluctuation indices all join one 

coalition (coalition 2); the same strategy is observed with buyers 4, 5 (bus 4) and 

13, 14, 15 (bus 10). With group size effect, grouping decision has to take into 

account the number of members to join the coalition; therefore those with stable 

payoffs are the first to form coalitions. Other buyers with high fluctuation indices 

have to distribute themselves in existing coalitions so that they can also hedge 

against the risk making use of the payoff stability of their group mates.   

After partitioning the buyers into coalitions, we apply Shapley distribution 

within each coalition.  The Shapley values of buyers in three different situations 

are plotted in Figure 8.8. When there is no coalition formation among buyer, the 

Shapley value of a buyer is simply the Value at Risk of its payoff. Two other 
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situations of coalition with or without group size limit were discussed above.  

 

 

Figure 8.8: Shapley values for different coalition structures 

 

From the plot, we see that coalition helps to increase the Shapley value 

compared to the case of playing individually. That means buyers can better hedge 

against risk by forming coalition. The ideal grand coalition results in highest 

Shapley values, while Shapley values decrease because of restriction in group 

size. 

 

8.2.2 Test on IEEE 30 bus system 

To check to efficiency of the proposed method, simulation was performed on 

IEEE 30 bus system. In this implementation, there are 6 generators and 90 buyers 

in total. The buyers are equally distributed on 30 buses so that on each bus there 

are three buyers. The single line diagram for IEEE 30 bus system is shown in 
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Figure 8.9. 

 

Figure 8.9: IEEE 30 bus test system 

 

A market database was also built using random bids from buyer agents. As in the 

previous test on IEEE 14 bus system, it is observed that the fluctuation indices 

highly effect the formation of coalitions. Since all buyers in a same bus have very 

close fluctuation indices, we define the fluctuation index of a bus as the average of 

the fluctuation indices of the buyers on that bus. High attention is reserved for the 

buses where buyers cooperate to form coalition; therefore we make a distinction 

between those buses and other buses where buyers have to distribute themselves 
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in different existing coalitions. The fluctuation indices of 30 buses of the system, 

coupled with the proposed distinction are reported in Figure 8.10. 

 

 

Figure 8.10: Fluctiation indices of different buses in the test system 

 

It is clear that on buses with low fluctuation indices, buyers tend to 

cooperate to form coalition by themselves because they already have the 

advantage of stability in payoffs. On the other hand, buyers on buses with high 

fluctuation indices need to cooperate with buyers in other more stable buses to 

hedge against this fluctuation. Therefore a highly unstable bus doesn’t become a 

coalition, while a stable bus likely does. 

 

8.3 Summary of result analysis 

The proposed power market model has been simulated through deterministic and 

stochastic situation. The results show various aspects on the bidding and 
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cooperation strategies of electricity buyers. 

When buyers bid individually, their payoffs fluctuate around certain 

average values and the co-evolution progress doesn’t lead to a stable state due to 

the strong competition among them for highest possible payoffs. The market is 

driven to some “dynamic equilibrium”.  

On the other hand, total cooperation happens when all buyers cooperate to 

maximize the total profit. As expected, cooperation helps to increase the total 

profit; however, some buyers may not fairly enjoy the advantage of cooperation 

since their payoffs decrease. This fact suggests an improved scheme of 

cooperation which allows redistribution of payoffs and itself acceptable and 

equitable for all players: total cooperation with Pareto improvement. 

Since the profits of buyers on the same bus are highly correlated (these 

buyers have common LMP and share a number of network technical parameters), 

it is suggested that they should form a group. This cooperation helps to increase 

the total profit of a group, but similarly to the first simulation of total cooperation 

without Pareto constraint, the profit of some members could be worse off. 

Therefore, certain method for redistribution of dispatchable power could be used. 

In the stochastic situation where buyers cooperate to hedge against the risk 

of unstable payoffs, coalition helps to increase the Shapley value compared to the 

case of playing individually. It is noted that when the characteristic function is 

supperadditive, the optimal coalition structure is the grand coalition. The ideal 

grand coalition results in highest Shapley values, while Shapley values decrease 

because of restriction in group size.  The implicit factor that drives the cooperation 

progress is the fluctuation indices: Buyers on the same bus with low fluctuation 

indices prefer to form coalition, while other buyers with high fluctuation indices 
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have to distribute themselves in existing coalitions so that they can also hedge 

against the risk by making use of the payoff stability of their group mates.   
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Chapter 9: CONCLUSION 

 

 

 

In deregulated power markets, consumers are given more choices through flexible 

bidding and cooperation strategies, but they have to consider the transmission 

network and its physical limitations. Therefore, active demand side participation 

in the market is both a reasonable requirement and an economic necessity for 

greater efficiency. In this research, bidding and cooperation strategies of buyers in 

a deregulated electricity market have been studied through designing different 

simulations by incorporating co-evolutionary algorithms in an agent based 

framework.  

 

9.1 Contributions 

In order to fully develop the electricity market, this research proposes and 

evaluates a single-node model and a multi-node model. It was found from the 

simulations of the single-node model that a competitive market can lead to 

equilibrium, which has been shown to be a Nash equilibrium. We also found that 

cooperation helps to increase the profit of most buyers. The strategy used in 

cooperation is to limit the quantity bids and thus get lower MCP. However, 

inefficient buyers have a risk of being limited in bidding large quantities and get 

low profits. The free rider problem when one buyer plays individually against the 

cooperation of others was also investigated. The free rider doesn’t have to limit 

his quantity bids, but still enjoys the low MCP thanks to the cooperation of others 
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and thus benefits the most. This result can lead to a situation similar to the 

prisoner dilemma, where all buyers hope to be a free rider and play individually.  

The multi-node model was then developed by taking into account the 

physical limitations of the system. Moreover, besides the payoff, another 

estimation of buyers’ performance was proposed to capture the risks while trading 

in a very volatile environment like electricity market. In this multi-node model, all 

physical and technical constraints of the network were taken into account by using 

an IEEE 14 bus test system and an Optimal Power Flow solver. The first finding is 

that players should not bid marginally but strategically, since the Local Marginal 

Price depends heavily on the physical location. 

In the deterministic situation, we also found that cooperation helps to 

increase the profit of most buyers, while individual bidding introduces a 

competitive environment and prevents the market from getting to an equilibrium 

state. Moreover, total cooperation with Pareto constraint can assure an 

improvement in profits for all buyers and make it somehow more equitable and 

globally acceptable. In reality, total cooperation is difficult to achieved, therefore 

group cooperation was investigated, where buyers formed groups and bid 

strategically to maximize the profit of the group. Similarly to the total cooperation 

case, it has been shown that a payoff redistribution in group cooperation is 

necessary. The performance and stability of different cooperation schemes have 

also been analyzed and verified statistically.   

Stochastic situation was modeled by building a database that represents the 

historical data of buyers in the market. The theoretical base of the approach was 

studied in the framework of an optimal coalition structure problem. In this study, 

we assume that buyers cooperate to hedge against the risk in low payoffs. Both 
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mathematical and simulation results show that when there are no limitation of 

coalition size, the grand coalition is optimal. It is then shown that when there are 

limitations of coalition size, such as the transaction cost in practice, different 

coalitions will be formed. The partitioning way of buyers in coalitions was also 

discovered: Buyers in the same bus with stable payoffs tend to form coalition by 

themselves, while buyers with highly fluctuating payoffs have to join existing 

coalitions to make use of the stability of others.  The efficiency and applicability 

of the proposed evolutionary algorithm were verified by an additional test on a 

much larger system of 30 buses and 90 buyers. 

 

To summarize, we list down the main contributions of this research: 

• The proposed agent based co-evolutionary framework has been 

demonstrated to be especially suitable for modeling market participants. In 

fact, the restructured electricity market with its large number of 

participants is spread over wide geographical areas, and the interactions 

and coordination of independent participants have been effectively 

simulated using this approach.  

• The simulation results have successfully illustrated common observations 

in bidding and cooperation strategies of electricity buyers. The 

practicability of the proposed methodology is also verified by successfully 

dealing with large number of buyers. 

• We proved an important theorem that serves as a link between the 

problems of payoff distribution in cooperative game theory and optimal 

coalition generation in combinatorial optimization theory. The main 
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advantage of the approach is that this methodology is general and any 

characteristic function can be applied. 

• This study would be helpful for electric power buyers in finding attractive 

cooperative strategies, while assuring certain payoff stability in a volatile 

trading environment. For power market operators and policy makers, our 

findings give a deeper and more dynamic view into the deregulated 

electricity market. 

 

9.2 Suggestions for future work 

In this study, cooperative buyers are assumed to have unconditional trust among 

them, which does not fully reflect the real world situation. Therefore, conditional 

trust should be modeled, where cooperative buyers may have the possibility to 

turn their backs on their groups in order to gain greater benefits. As such, 

modeling conditional and fuzzy trust is one possible area for further research and 

development. 

Another suggestion for future research is to consider different characteristic 

functions in the Cooperative Game model. As we have seen, a characteristic 

function models the rationale and motivation for cooperation, which can vary 

through different market situations.  Therefore, considering different 

characteristics function may help to discover implicit reasons and mechanism of 

cooperation. 

Thirdly, we have introduced the problem of Optimal Coalition Structure 

Generation as a tool for studying cooperation between buyers. In future research, 

more effort should be spent to develop an efficient algorithm to solve the above 
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problem. Optimal Coalition Structure Generation is an important and difficult 

combinatorial optimization problem that has close relation with multi-agent 

systems. Therefore, we strongly believe that an agent-based evolutionary 

framework could be a potential candidate.  
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APPENDIX  

 

A. From Evolutionary Algorithms to Co-Evolutionary 

Algorithms 

 

 

This section helps us understand and distinguish the artificial evolution and 

artificial co-evolution. Two main models of co-evolution are cooperative and 

competitive co-evolution although many variations can be used. Many researchers 

have used these co-evolutionary optimization models in which the evaluation of 

fitness of an individual is subjective i.e. it depends on the relations with other 

individuals. It is reported that such models give higher values of fitness and 

require a lower computational cost than the classical evolutionary models. 

A.1 Evolutionary algorithms 

Many optimization problems broad areas of research have no direct “analytical 

solutions”. The idea of Evolutionary Algorithms is simply to build a random 

population of potential solutions to the problem. The “individuals” are then 

evaluated to encourage the reproduction of the fittest individuals, i.e. those who 

are closest to the optimal solution. The mechanisms of selection, recombination of 

most adapted individuals and mutation permit to gradually approach the desired 

solution.  

Evolutionary Algorithms have common core mechanism: it consists of 

making a population evolving by random transformation of some of its elements 

and application of the natural selection principle. Several techniques have been 

elaborated. The main ones are as follows: 
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- Genetic Algorithms: they are probably the best known algorithms in 

evolutionary computation. They were developed in the 60s to study the complex 

adaption process of natural species. 

- Evolution Strategies were developed to solve numerical optimization problems 

in the space of real parameters 

- Programming Evolutionary first appeared in the finite state automata space for 

the prediction of time-series.  

- Genetic Programming is to evolve structures of trees representing programs. 

Although the applications of evolutionary algorithms are varied and they have 

given good results in different areas, the mathematical study of these algorithms is 

still very limited due to their theoretical complexity. It was until the 90s that 

complete and rigorous proofs of convergence in probability are 

established. Nevertheless, these theoretical results are difficult to use in practice. 

To optimize a given objective function F (also known as performance or 

fitness) defined over a search space E, a population of individuals (points of E) is 

subjected to a series of generations (the initial population is randomly chosen in 

E). A generation begins with the selection of the most adapted individuals 

(relative to F) for reproduction. These individuals generate offspring using 

stochastic operators called crossover for binary operators, and mutations for unary 

operators (applying to a single individual). Finally, some of the descendants 

replace some of the parents to complete the process of generation. The selection 

and replacement paradigms which represent the Darwinian rule of survival of the 

fittest may be stochastic or determinist. As in natural evolution, it is hoped to 

observe the gradual emergence of more and more adapted individuals: the best 
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individuals in the final population should be close to solutions of the optimization 

problem.  

The representation space that we actually study (where the evolution 

operators operate, also called the genotypes space) is often different from space in 

which the fitness is calculated (phenotypes space). To move from phenotypes 

space to genotypes space, an additional modelling or coding step is necessary. 

 

Figure A.1: Operation of Evolutionary Algorithms 

 

 The stopping criterion can take several forms: for example, the maximum number 

of evaluations or satisfaction in the objective value of the best individual. If the 

individuals of a population are too similar, the following next generations may 

become more and more homogeneous. In this case, the evolution of a population 

may be summarized in the evolution of a single dominant individual, thus less 

exploration the search space. To perform an efficient search, we have to maintain 

a balance between the exploitation of good solutions found so far and the 

exploration of unknown areas of the search space. Excessive exploitation can lead 

to stagnation in a local optimum (premature convergence) while as an excessive 

exploration could lead to an almost random search (no convergence). 
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A.2 Representation of an individual 

The representation or coding of an individual has to include fundamental 

characteristics of the problem. It must also be easily to be manipulated by 

recombination and mutation operators, allow easy transformation on the search 

space and generate feasible solutions. A good coding is as follow: 

- Facilitate the development and application of variation operators (recombination, 

mutation) to adequately cover the space of individuals; 

- Be simple in its construction and consistent with the addressed problem  

- Provide simple and effective transition to the search space (and vice versa). 

A.2.1 Binary representation 

By analogy with the natural genetics, evolutionary algorithms use bits by tradition 

to represent the chromosomes. Indeed, biological genes are encoded by nucleotide 

sequences built from four varieties: adenine (A), guanine (G), cytosine (C) and 

thymine (T). Biological genes allow the synthesis of amino acid sequences, i.e. 

proteins in charge of the phenotype of an individual. For an optimization problem 

on n integer variables Xi , we can represent each of these variables by a binary 

string of ki bits and we obtain the chromosome of size ∑ �����..	  

The first results on convergence were established on such sequences of 

bits, and showed that the coding of chromosomes with genes whose alphabet has 

low cardinal was theoretically more efficient. Binary encoding also gives 

Evolutionary Algorithms good robustness because it is independent from the 

domain of the problem and standard operators can be used systematically. 

However, this type of coding has some drawbacks: 
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- Two elements close in search space does not necessarily decode two 

neighbouring individuals in terms of Hamming distance (the number of different 

bits). We can avoid this problem by using Gray coding [31] which maintains a 

Hamming distance of “1” between two consecutive individual voters.  

- Additionally, for problems requiring high precision, the binary encoding can 

quickly become inadequate. 

A.2.2 Real valued presentation 

The principle of this representation is to directly encode the variables of the 

problem in the individual without using the binary coding means. Thus, the 

individuals are no longer strings of bits bit but real vectors. One major advantage 

of this representation is to keep variables of the problem in the coding itself, thus 

allowing it to take better account of the structure of the problem. This direct 

representation using real parameters requires defining new specific operators. 

A.3 Initialization of the population 

In general, the N individual population P(0) = {X1,. . . XN} is initialized through 

uniform drawing from the search space E while ensuring that all individuals meet 

the constraints. Moreover, if we have priori information about a region where the 

optimal solution is likely located, it is obvious to manually add good solutions into 

the initial population, while ensuring a sufficient diversity of population. The 

initial population can also be the result of a previous evolution. 

A.4 Artificial Darwinism and evolution engine 

The Darwinian part of Evolutionary Algorithm consists of two steps: the 

reproduction step where parents are selected to recombine and the replacement 
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step which replaces the worse individuals by better ones. 

The selection is an essential operator whose principle is to allow the best 

individuals of a population to reproduce. The adjustment of this mechanism 

is critical in the performance of the Evolutionary Algorithm: an excess 

of selection leads to a loss of diversity and results in unreachable areas 

in the search space, and an insufficient selection can lead random walk, thus no 

convergence. We can find in literature a large number of selection strategies that 

are more or less adapted to the problem they address. We present here the most 

popular selection procedures [31]. 

A.4.1 Proportional selection 

There are two popular proportional selection methods: Roulette wheel selection 

and stochastic universal sampling. 

 The Roulette wheel selection represents each individual of the population 

P(t) = {X1,. . . , XN} on a contiguous segments of a line such that the individual’s 

segment is proportional to their fitness. A random number is generated and the 

individual whose segment spans the random number is selected. We repeat the 

process until the desired number of individuals is obtained. This method is similar 

to a roulette wheel with each slice size proportional to the fitness. The expected 

number of copies of an element Xi of the current population is given by:  

																																														�� =	

.�(��)

∑ �(��)���..�
                                               

This method of selection favours the best individuals, but the bad ones also have 

chance of being selected. However, the cost of execution is high and the minimum 

spread (minimum range of possible values for the number of offspring of an 
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individual) is not guaranteed. Moreover, the loss of diversity is possible because 

the copies produced only from the best individuals can represent the whole the 

next population. 

Stochastic universal sampling bases on roulette wheel selection, except 

that a deterministic aspect is added. Here we place equally spaced pointers over 

the line; the number of pointers is the number of individuals to be selected. Let M 

be this number, then the distance between the pointers are 1/M and the position of 

the first pointer is given by a randomly generated number in the range [0, 1/M]. 

The interest of this selection method is that it reduces the spread. 

A.4.2 Tournament selection 

The tournament selection also uses comparisons between individuals, and does 

not even require sorting the fitness of the population. The results depend on the 

size T of the tournament. To select an individual, we draw T individual uniformly 

in the population, and we select the best of them. Over a generation ago, the 

number of individuals to be selected is the number of tournaments. This method is 

characterized by a selection pressure that is in general stronger than the 

proportional method (for a less adapted individual to be selected, it is necessary 

that its tournament opponents are even worse). Moreover, this method is the 

cheapest in terms of execution cost and the selection pressure is easily 

configurable by the value of T. However, it does not guarantee minimum spread. 

A.4.3 Reinsertion 

Various reinsertion strategies can be used, the principle is to replace the old 

population by new, after applying recombination and mutation. In standard 

genetic algorithms, the children simply replace the parent 
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population. Nevertheless, there exist alternative strategies: 

- Replacing a percentage of the parents by the best children;  

-The systematic replacement of the worst individual; 

-The random replacement (while maintaining a coherent research strategy). 

The goal is to increase the speed of convergence of simple Genetic Algorithm, but 

reinsertion can still produce a premature convergence towards local optima. 

Another technique is deterministic replacement, widely used in evolution 

strategies (ES). The purely deterministic characteristic plays a key role in 

evolution as it guides the search towards areas with better individuals. Two 

distinct versions were introduced:  

- The scheme (µ, λ)-ES: µ denotes the number of parents in the population that 

generates    λ > µ new individuals (by recombination and mutation). The 

reinsertion takes place by selecting the µ best individuals among λ children and 

replacing µ parents with µ chosen children.  

- The scheme (µ + λ)-ES: This scheme looks at the best µ individuals from the 

union of µ parents and λ children.  

The (µ + λ) scheme is called elitism and it guarantees a monotonic improvement 

of the fitness of best individual through generations, but it fits poorly with a 

possible change of environment. On the other hand, with the (µ, λ) scheme we 

may lose the best individual, but the algorithm is more flexible in dynamic 

optimization where the environment changes. It should be noted that elitism is 

often used. This mechanism keeps the best individuals (often only the best one) of 

the population in generation t for the next population in generation t +1 if there 

are no better children. 
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A.5 Variation operators 

Variation operators aim to generate new individuals from those previously 

selected. We distinguish between recombination and mutation. 

A.5.1 Recombination 

The principle is analogous to biological reproduction: The children inherit the 

qualities from their parents. Recombination is usually called crossover for binary 

representation. The standard form of the recombination operator is  c: E × E → E 

× E (E is the search space), that recombines two parents P1, P2 with a certain 

probability pc (0 ≤ pc ≤ 1). Other forms of recombination are available such as 

when one child is produced by more than two parents. Among different types of 

recombination, there are: 

- Binary crossover: 

This is an operator on E × E → E × E, with E = {0, 1}.  It corresponds to an 

exchange of genes (bits) between the two parents. There are three most popular 

variants: single point crossover, multi-point crossover and uniform crossover. 

Single point crossover is the simplest and the most classical recombination 

technique of Genetic Algorithms. It randomly selects a breakpoint in each of the 

two parents P1 and P2, and builds two offspring by exchanging their genes on both 

sides of this point. 

 

Figure A.2: Single-point crossover 
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Choosing a single cross point biases the effect of crossover: if the chosen point is 

close to one end of the chromosome, the children will be almost identical to the 

parents. On the other hand, if the chosen point in the middle, they will be 

very different from their parents. 

Multi-point crossover avoids the problem above by considering the 

chromosome as circular rather than linear, and by choosing k breakpoints. Figure 

A.3 shows an example of multi-point crossover with k = 3. 

 

Figure A.3: Multi-point crossover 

Uniform crossover uses a randomly generated binary mask with the same size as 

the chromosomes to indicate which parent will provide the gene at each locus. 

Other crossover operators exist, they can either make modifications to those 

presented above, or be specific to a class of problems, but nevertheless they obey 

to a common principle: the exchange of information between individuals. 

- Real valued recombination 

The standard real valued recombination is very close to the crossover described 

for binary coding in the previous section. It differs from binary crossover only by 

the nature of the genes altered. Bits are no longer exchanged, but the actual 

values. The real valued representation allows us to develop a new mating type 

which is called arithmetic recombination, mainly based on linear combination of 

two individuals that are now real vectors. It consists of choosing two genes P1(i) 
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and P2(i) in each parent at the same position i, and define the corresponding genes 

E1(i) and E2(i) of the children using linear combination: 

E1(i) = α P1(i) + (1 - α) P2(i)          (3.2) 

E2(i) = (1 - α) P1(i) + α P2(i)                      (3.3) 

Where α is a uniform random variable belonging to the interval [0, 1]. It is also 

possible to generate individuals outside the segment joining the two parents by 

choosing the parameter α in [-d, 1 + d], with caution to stay within the bounds of 

the problem domain. 

 

Figure A.4: Possible area of the offspring after intermediate recombination 

 

A.5.2 Mutation 

The general idea of mutation is to introduce variability in the population. This 

operator modifies one or more genes of the selected individual with a certain 

probability pm (0 ≤ pm ≤1). Mutation ensures ergodicity property (the capacity to 

cover the whole search space) for the Evolutionary Algorithms and the 

reintroduction of lost diversity. 

- Binary Mutation  

Binary mutation is a random modification of the gene values that happens with a 
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fixed probability pm by individual. The most frequently used binary mutations are:  

- Single-bit mutation chooses randomly a position in the chromosome and changes 

the value of the corresponding bit. 

- c/l – mutation changes the bit value of each position independently with 

probability c/l, where l is the length of the chromosome and c > 0. 

- Real valued mutation  

The principle of real valued mutation is generally to add a random Gaussian 

perturbation to the various components of the individual X: 

  Xi: = Xi + s.N (0, 1)            (3.4) 

where s is the standard deviation of the mutation and N (0, 1) is a random normal 

standard variable. 

The difficulty of this approach is the adjustment of the standard deviation 

s. Indeed, if the standard deviation is too small, the movement in the search space 

is insufficient, thus the algorithm can be stuck near to a local optimum and cannot 

visit new areas. On the other hand, if the standard deviation is high, the algorithm 

can reach to the region containing the optimum, but the convergence quality will 

not be good. Thus at the beginning of the evolution, the standard deviation s 

should be high enough to quickly explore the search space, and ultimately become 

a lower for better exploration of solutions. 

A.6 Properties of Evolutionary Algorithms: 

At each step of the Evolutionary Algorithm, we must make a trade-off between 

exploring the search space to avoid getting stuck in local optima and exploiting 

the best individuals obtained in order to achieve better solutions. Exploration in 
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Evolutionary Algorithms is done with mutation and exploitation is done with the 

selection and recombination. We can therefore adjust exploration and exploitation 

through various algorithm parameters.  

The term genetic diversity indicates the variety of genotypes in the 

population. It is a key feature of Evolutionary Algorithms. Genetic diversity 

becomes zero when all individuals are identical, and when diversity is very low, 

there is very little chance that it increases again. If the loss of diversity occurs too 

early, the convergence takes place to a local optimum. 

The advantage of Evolutionary Algorithms is to that they can be applicable 

to wide classes of problems: multi nodal, convex or non-convex problems.... 

Moreover, they are able to work on any space research: continuous, discrete, or 

mixed-space...  However, the success and search execution time depend heavily 

on the representation (genotype space) and variation operators (recombination, 

mutation) selected. Also, the choice of the fitness function is a crucial point since 

the algorithm requires a large number of evaluations of the objective function.  

The computation time required to obtain significant results on real 

problems leads to the use of other techniques such as parallelization: Distribution 

of calculation on a set of synchronous or asynchronous processors, using island 

and distributed population models. 

A.7 Towards Co-evolutionary Algorithms 

As mentioned before, in ecology a living individual is not only influenced by its 

own environment but also by other individuals in the environment as well as other 

processes as changes in climate or geographical structure. The notion of mutual 

dependence or inter-specific relationship between different species is named co-
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evolution. 

A.7.1 Definition of Co-evolution 

In classical evolutionary algorithm, each individual evolves independently, which 

is not the case in real ecosystems. In an ecosystem, the fitness of an individual is 

defined according to its interactions with other individuals. Co-evolution arises 

because of interactions between different species. In a co-evolutionary system, the 

evolution of a species must be considered simultaneously, because the 

evolutionary adaptation of a species can force the adaptation of others. In other 

word, the actions of each species affect all other species in the same physical 

environment. 

Co-evolution has many advantages that can renew the evolutionary 

performance of system. It is based on the principle that when a population 

becomes superior to the other, the later has to amplify the selection pressure and 

evolve more quickly to survive. The class of Co-evolutionary Algorithms is an 

extension of classical Evolutionary Algorithms to solve problems that are 

potentially complex, with too large search space or problems without an objective 

function such as strategy games. Co-evolutionary Algorithms are based on the 

principle of subjective function, where the fitness of an individual becomes 

estimation for other individuals interacting with it [32]. 

In co-evolutionary algorithms, individuals are evaluated based on their 

interactions with others. The nature of these interactions depends on the problem 

to be solved. In many problems, the individuals or populations compete with one 

another. This is called competitive co-evolution, which is widely applied in game 

playing strategies. On the other hand, an individual is rewarded when contribute 
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well in cooperation with other individuals in cooperative co-evolution. 

A.7.2 Interaction and selection of collaborators 

The mechanism in which a participant determines its collaborators or competitors 

is among the most important factors for a successful application of algorithms co 

evolutionary. The most obvious (and computationally expensive) method to 

evaluate an individual is to let it interact with all potential collaborators or 

competitors, this sometimes called pair-wise or complete interaction. 

Alternatively, collaborators / competitor can be selected by a variety of ways: 

uniformly random methods or methods based on fitness. 

A.8 Properties of Co-evolutionary Algorithms 

The scope of Co-evolutionary Algorithms is extremely broad. It can approach 

problems with large search space, or having no intrinsic objective function or with 

complex structure. To obtain better results, it is therefore reasonable to divide a 

large search into sub-spaces. It is also more efficient to divide a complex structure 

into simple structures that co-evolve.  

Co-evolutionary Algorithms are more difficult to control compared to 

classical Evolutionary Algorithms. The reasons often stem from the complicated 

internal dynamics of co-evolutionary systems. Sometimes, this can lead to a 

system behaving in an incomprehensible manner, and whose progress is difficult 

to diagnose. 

 


