196 research outputs found

    Revisión del estado del arte del problema de ruteo de vehículos con recogida y entrega (VRPPD)

    Get PDF
    This paper presents a literature review of the state of the art vehicle routing problem with deliveries and collections (VRPPD: Vehicle Routing Problem with pickups and deliveries). Is performed a classification of the different variants of the problem, and the work and conducted research on the subject according to its authors, according to the models and the solution methods used. Also are analyzed future trends in modeling and solution techniques. The VRPPD is a problem of type MILP (Mixed Integer Linear Programming) involving whole and continuous quantities, and that turns out to be NP-Hard problems with a medium or large number of customers. The research does emphasis on variants of the problem involving variables associated with the environment, and in particular reducing the impact of greenhouse gases. The review notes that published until 2016.En este trabajo se realiza una revisión bibliográfica del estado del arte del problema de ruteo de vehículos con entregas y recogidas (VRPPD: Vehicle routing problem with pickups and deliveries). Se presenta una clasificación de las diferentes variantes del problema, y de los trabajos e investigaciones realizados sobre el tema según sus autores, los modelos utilizados y los métodos de solución usados. También se analizan las tendencias futuras en modelamiento y técnicas de solución. El VRPPD es un problema del tipo MILP (programación lineal entera mixta) que involucra cantidades enteras y continuas, y que resulta ser NP-Hard en problemas con un número mediano o grande de clientes. En la búsqueda se hace énfasis en las variantes del problema que involucran variables asociadas al medio ambiente, y en particular con la reducción del impacto de gases de efecto invernadero. La revisión observa lo publicado hasta el año 2016

    Non-Elementary Formulations for Single Vehicle Routing Problems with Pickups and Deliveries

    Get PDF
    We study the class of one-to-many-to-one single vehicle routing problems with pickups and deliveries, in which a single capacitated vehicle is used to serve a set of customers requiring a delivery, a pickup, or both. These problems have many real-world applications, including beverage distribution, courier service transportation, and reverse logistics. We first concentrate on a well-studied problem in this class, known as the single vehicle routing problem with deliveries and selective pickups (SVRPDSP), in which deliveries are mandatory but pickups are optional and generate a revenue if performed, and customers requiring both a delivery and a pickup (combined demand) can be visited either once or twice. Most exact algorithms in the literature solve SVRPDSP by looking for Elementary tours on an extended network which is obtained by transforming each combined demand customer into two different customers, one requiring only the delivery and the other one only the pickup. Because this can result in a significant loss in performance, in this work we focus instead on the original problem network and present formulations that can yield non-Elementary tours. Through the use of Benders Decomposition, valid inequalities, and tailored optimization techniques based on branch-and-cut frameworks, we develop exact algorithms that outmatch previous results in the literature and obtain proven optimal solutions for all benchmark instances. We then generalize the algorithms to solve several other vehicle routing problems with pickups and deliveries, including the cases of split deliveries, intermediate dropoffs, mandatory pickups, and multiple vehicles

    Application of an Open Source Spreadsheet Solver in Single Depot Routing Problem

    Get PDF
    The VRP has been broadly developed with additional feature such as deliveries, selective pickups time windows. This paper presents the application of an open source spreadsheet solver in single depot routing problem. This study focuses on Fast Moving Consumer Goods (FMCG) Company as a case study. The objective of this research is to minimize the distance travel. This research begins by collecting data from a respective FMCG Company. An FMCG company based in Jakarta, Indonesia provides drinking water packaged in the gallon. This FMCG Company has two distributions characteristic. Head office distribution was used in this case study due to highest internally rejected by the company such as un-routed order, no visit, not enough time to visit and transportation issue. Based on computational results, overall solutions to delivered 214 gallons to 26 customers having total distance traveled 56.76 km, total driving time 2 hour and 49 minutes, the total driver working time 7 hours and 57 minutes. Total savings of distances traveled between current route and the proposed solutions using open source spreadsheet solver is 7.25 km. As a result, by using open source spreadsheet solver in single depot routing problem can be implemented in FMCG Company

    Hybrid Genetic Algorithm for Multi-Period Vehicle Routing Problem with Mixed Pickup and Delivery with Time Window, Heterogeneous Fleet, Duration Time and Rest Area

    Get PDF
    Most logistics industries are improving their technology and innovation in competitive markets in order to serve the various needs of customers more efficiently. However, logistics management costs are one of the factors that entrepreneurs inevitably need to reduce, so that goods and services are distributed to a number of customers in different locations effectively and efficiently. In this research, we consider the multi-period vehicle routing problem with mixed pickup and delivery with time windows, heterogeneous fleet, duration time and rest area (MVRPMPDDR). In the special case that occurs in this research, it is the rest area for resting the vehicle after working long hours of the day during transportation over multiple periods, for which with confidence no research has studied previously. We present a mixed integer linear programming model to give an optimal solution, and a meta-heuristic approach using a hybrid genetic algorithm with variable neighborhood search algorithm (GAVNS) has been developed to solve large-sized problems. The objective is to maximize profits obtained from revenue after deducting fuel cost, the cost of using a vehicle, driver wage cost, penalty cost and overtime cost. We prepared two algorithms, including a genetic algorithm (GA) and variable neighborhood search algorithm (VNS), to compare the performance of our proposed algorithm. The VNS is specially applied instead of the mutation operator in GA, because it can reduce duplicate solutions of the algorithms that increase the difficulty and are time-consuming. The numerical results show the hybrid genetic algorithm with variable neighborhood search algorithm outperforms all other proposed algorithms. This demonstrates that the proposed meta-heuristic is efficient, with reasonable computational time, and is useful not only for increasing profits, but also for efficient management of the outbound transportation logistics system

    Survey on Ten Years of Multi-Depot Vehicle Routing Problems: Mathematical Models, Solution Methods and Real-Life Applications

    Get PDF
    A crucial practical issue encountered in logistics management is the circulation of final products from depots to end-user customers. When routing and scheduling systems are improved, they will not only improve customer satisfaction but also increase the capacity to serve a large number of customers minimizing time. On the assumption that there is only one depot, the key issue of distribution is generally identified and formulated as VRP standing for Vehicle Routing Problem. In case, a company having more than one depot, the suggested VRP is most unlikely to work out. In view of resolving this limitation and proposing alternatives, VRP with multiple depots and multi-depot MDVRP have been a focus of this paper. Carrying out a comprehensive analytical literature survey of past ten years on cost-effective Multi-Depot Vehicle Routing is the main aim of this research. Therefore, the current status of the MDVRP along with its future developments is reviewed at length in the paper

    GRASP with path relinking for the selective pickup and delivery problem

    Get PDF
    postprin

    Application of an Open Source Spreadsheet Solver in Single Depot Routing Problem

    Get PDF
    corecore