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Abstract. Most logistics industries are improving their technology and innovation in competitive markets in 
order to serve the various needs of customers more efficiently. However, logistics management costs are one 
of the factors that entrepreneurs inevitably need to reduce, so that goods and services are distributed to a 
number of customers in different locations effectively and efficiently. In this research, we consider the multi-
period vehicle routing problem with mixed pickup and delivery with time windows, heterogeneous fleet, 
duration time and rest area (MVRPMPDDR). In the special case that occurs in this research, it is the rest area 
for resting the vehicle after working long hours of the day during transportation over multiple periods, for 
which with confidence no research has studied previously. We present a mixed integer linear programming 
model to give an optimal solution, and a meta-heuristic approach using a hybrid genetic algorithm with 
variable neighborhood search algorithm (GAVNS) has been developed to solve large-sized problems. The 
objective is to maximize profits obtained from revenue after deducting fuel cost, the cost of using a vehicle, 
driver wage cost, penalty cost and overtime cost. We prepared two algorithms, including a genetic algorithm 
(GA) and variable neighborhood search algorithm (VNS), to compare the performance of our proposed 
algorithm. The VNS is specially applied instead of the mutation operator in GA, because it can reduce 
duplicate solutions of the algorithms that increase the difficulty and are time-consuming. The numerical 
results show the hybrid genetic algorithm with variable neighborhood search algorithm outperforms all other 
proposed algorithms. This demonstrates that the proposed meta-heuristic is efficient, with reasonable 
computational time, and is useful not only for increasing profits, but also for efficient management of the 
outbound transportation logistics system. 
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1. Introduction 
 
Nowadays, most industries are rapidly developing 

their technology and innovating so that they can achieve 
industry 4.0. Hence, many companies are focusing on 
reforming the inbound and outbound systems for 
industries, including the production processes and services 
that lead to new products and new service structures, using 
advanced knowledge and high technology. Moreover, they 
are trying to enhance the value involving both products 
and services through the development of the logistics 
system. The logistics system is important to many 
industries in terms of continuous product flow, from 
inbound into outbound systems, which consist of 
transportation and distribution of materials and mass 
products by different modes: land, rail, water and air. Due 
to the variety of modern technologies, especially e-
commerce businesses, effective and fast transport and 
distribution of products on time to consumers is the key 
to business competitiveness nowadays. Also, with a variety 
of products and choices to access the ordering process so 
that consumers can access quickly, such as online 
shopping, online tracking, etc., there is a challenge that 
entrepreneurs face. Entrepreneurs who are ready for 
logistics will have an advantage over their competitors in 
the same business. The inevitable solution for 
entrepreneurs is the management of transport services to 
distribute products to consumers in many areas accurately, 
on time and effectively. One choice for transport 
management is to hire a third-party logistics provider 
(3PL), who is responsible for supply chain management to 
handle the transportation system efficiency. In the current 
situation, most entrepreneurs are tending to hire third-
party logistics providers to handle increased 
transportation and reduce transportation costs. 
 For the framework of this research, we considered 
problems encountered in vehicle routing with mixed 
pickup and delivery (VRPPD). The characteristic of the 
VRPPD problem is to determine the routing of product 
transfer, with pickups from one node for delivery at the 
second node. The objective is to find the optimal routes 
for maximizing profits, using a heterogeneous fleet from 
a central depot to serve multi-consumers to one (1-many-
1) with known constant demands. To increase such profits, 
in real practice, the vehicle may be allowed to have flexible 
mixed pickup and delivery, while customers have different 
time windows for each period. Each vehicle can accept 
pickups at the depot, according to product demand by 
customers, and the vehicle can service nodes for pickups 
or deliveries at any level of product in the vehicle, so a 
vehicle does not necessarily only pickup or deliver. When 
the vehicle returns to the depot, it must finish all shipping, 
leaving an empty vehicle, because this is efficient 
transportation management and is a policy. Moreover, the 
vehicle may be allowed to travel for several periods to 
support many customers based on the maximum duration 
of the existing route. Therefore, we must have a rest area 
for the vehicle to rest after working long hours during the 
transportation period. On the other hand, if 

transportation cannot meet the requirements of the 
customer within his time window, the customers may 
allow the vehicle to visit and service a customer outside 
his time window. In this case, the transport company will 
be responsible for penalties for late arrival, as a vehicle 
routing problem with semi-soft time windows constraint 
(VRPSSTW) and overtime for the drivers in case of 
exceeding normal working hours, which is a reason to 
consider both penalty costs and overtime costs. Therefore, 
this research proposes the multi-period vehicle routing 
problem with mixed pickup and delivery with time 
windows, heterogeneous fleet, duration time and rest area 
(MVRPMPDDR) as shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Illustration of the MVRPMPDDR problem. 
 

The MVRPMPDDR is a well-known NP-hard 
optimization problem and is highly complex for large-
sized problems, for which mathematical models are not 
available. Thus, we have generated the hybrid meta-
heuristic approach, using a hybrid genetic algorithm with 
variable neighborhood search algorithm (GAVNS) for 
solving MVRPMPDDR. The nature of a genetic algorithm 
(GA) is to search for answers based on the genetic 
selection mechanism from nature. The advantages of GA 
are its rapid computation, and that the process is not 
complicated. Therefore, integer encoding is applied to this 
problem because it is a simple process for the genetic 
algorithm, but its weakness is local search is not strong 
enough to find the optimal result. Consequently, a variable 
neighborhood search algorithm (VNS) was applied for a 
hybrid with the genetic algorithm. The VNS is a local 
search method to search the solution space systematically, 
while the conceptual characteristics of the neighborhood 
change to descend to local minima and escape from the 
valleys which contain them. 

Vehicle routing management has been attracting 
attention over the past years, as can be observed in the 
academic literature. It has expanded in many ways to deal 
with vehicle routing problems (VRP) in various industries, 
including third-party logistics providers (3PL) for real-life 
transportation situations, such as capacitated vehicle 
routing problems [1-3] and inventory open vehicle routing 
problems [4]. In particular, the vehicle routing problem 
with pickup and delivery (VRPPD) is a well-known 
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problem in the fields of operations research, logistics and 
transportation optimization. this problem is necessary for 
managing pickup and delivery activities within the capacity 
restriction of one vehicle's route, such as in the research 
study of Avci & Topaloglu [5], which proposed the 
heterogeneous vehicle routing problem with simultaneous 
pickup and delivery (VRPSPD). For its solution, a hybrid 
local search algorithm was developed in which a non-
monotone threshold adjusting strategy is integrated with 
tabu search. The objective minimizes the total costs. 
Dechampai et al. [6] developed a differential evolution 
(DE) that used self-organizing maps to cluster customers 
before finding the optimal solution of the capacitated 
vehicle routing problem with flexibility of mixing pickup 
and delivery services, and the maximum duration of a 
route, to determine routing in the poultry industry. The 
objective is to minimize the total cost. Ting et al. [7] 
presented three metaheuristic algorithms, tabu search 
(TS), genetic algorithm (GA) and scatter search (SS), for 
solving the multi-vehicle selective pickup and delivery 
problem (MVSPDP), in which the objective minimizes the 
total cost. There is also a vehicle routing problem with 
delivery and pickup with time window (VRPPDTW), 
which adds to the consideration of different visit times for 
customers. For example, Bhusiri et al. [8] introduces the 
vehicle routing problem with soft time windows 
(VRPSTW) by using the mathematical method and the 
Branch-and-Price method in a set partitioning master 
problem and its new subproblem. The objective function 
minimizes total costs. The proposed solutions have 
further been compared to the state-of-the-art literature of 
VRPSTW, VRPHTW and VRPSSTW, signifying the 
superiority of this issue. Wang et al. [9] proposed a general 
mixed-integer programming model and parallel simulated 
annealing (p-SA) by using the residual capacity and radial 
surcharge (RCRS) insertion heuristic for solving VRP with 
simultaneous delivery and pickup with time window 
(VRPSPDTW). The objective minimizes the routing cost. 
Ahkamiraad & Wang [10] proposed a mixed-integer linear 
programming model and a hybrid of the genetic algorithm 
and particle swarm optimization (HGP) for solving 
multiple cross-docked VRP with pickup, delivery and time 
windows. The purpose is to minimize transportation and 
fixed costs. 

In terms of  a multi-period vehicle routing problem 
with delivery and pickup (MPVRPPD), it is considered to 
be a customer service that has different time windows in 
multiple periods. The MPVRPPD is not only a 
combinatorial problem, but it is also more complex if  it 
considers both delivery and pickup, and a time window 
(MPVRPPDTW). There is research about multi-period 
VRPPDTW. For example, Mancini [11] studied the multi-
depot multi-period vehicle routing problem with a 
heterogeneous fleet (MDMPVRPHF). The goal of  the 
problem is to minimize the total delivery cost. The vehicles 
have a limit on the maximum route duration. A mixed 
integer programming (MIP) formulation was presented 
and an Adaptive large neighborhood search (ALNS) based 
metaheuristic approach was applied. Chami et al. [12] 

conducted a study on the multi-period pickup and delivery 
problem with time windows and paired demands (Mu-
PDPTWPD). The aim was to minimize the total traveled 
distance and the penalty cost simultaneously. The 
proposed solution is to create a mathematical model and 
develop a greedy randomized adaptive search procedure 
with a hybrid genetic algorithm (GRASP-HGA), which 
results in efficiency of  the calculation time compared to 
the Standard case (Benchmark Instances). Furthermore, 
Larrain et al. [13] presented the multi-period vehicle 
routing problem with due dates. The objective is to 
minimize the distribution costs and the costs related to 
delayed deliveries. For this method, the new branch-and-
bound algorithm was applied and a variable MIP 
neighborhood descent (VMND) algorithm developed to 
increase performance for problem resolution. In the 
special case that occurs in this research, it is the rest area 
for resting the vehicle after working long hours of  the day 
during transportation over multiple periods, for which 
with confidence no research has studied previously. 

The MVRPMPDDR problem is an NP-hard problem 
(Non-deterministic polynomial-time); it is extremely 
difficult to find the optimal solution. Therefore, the 
heuristic and/or meta-heuristic are available choices to 
guide searches more efficiently. Recently, a genetic 
algorithm has still been popular, which is a population-
based search technique. An important characteristic of  the 
genetic algorithm is finding methods that combine 
directed and stochastic search that can produce a balance 
between the exploration and exploitation of  the search 
space, its straightforward nature, and quick convergence in 
search of  the optimal solution. 

The Genetic algorithm (GA) is one of  the influential 
techniques that has been applied in various research fields 
such as vehicle routing problems [14-16], scheduling 
problems [17-18], Location–allocation problem [19] and 
supply chain [20]. Although the GA has been used in a 
variety of research areas, it has limitations when applied 
for solving a problem, as the solution process may not be 
complex enough to find the optimal solution. So, in order 
to improve the diversity of GA, the hybridization of the 
GA with other methods has been used to enhance the 
performance of the traditional GA. For example, Nguyen 
et al. [21] developed a hybrid generational genetic 
algorithm with a local search (the unified tabu search 
(UTS) and the random variable neighborhood Search 
(RVNS)) and improved the two crossover operators to 
seek diversification of the exploration in the solution 
space. For solving the periodic vehicle routing problem 
with time windows, the objective is to minimize total 
costs. Vidal et al. [22] proposed two alternative hybrid 
metaheuristic algorithms. The first algorithm is based on 
an iterated local search algorithm and the second 
algorithm is a hybrid genetic search (The Unified Hybrid 
Genetic Search). This problem is the clustered vehicle 
routing problem and the objective is to minimize total 
traveling costs. Xia et al. [23] introduced a hybrid genetic 
algorithm with variable neighborhood search (GAVNS) to 
solve dynamic integrated process planning and scheduling 
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Table 1. A comparison of  the literature on restrictions and approaches. 
 

Researchers 

Restrictions  Approaches 

Visit 
type 

Capacity 
Multi-
period 

Time 
windows 

Duration 
Rest 

area for 
vehicle 

Exact 
method 

Heuristic  
Meta-

heuristic 
Local  
search 

Joshi and Kaur 
(2015) 

D √      √   

Cinar et al.  
(2016) 

D √   √   √   

Amous et al. 
(2017) 

D √      √  √ 

Supithak  
(2018) 

D √       √  

Avci and 
Topaloglu (2016) 

PD √       √* √* 

Dechampai et al. 
(2017) 

P/D √   √   √ √  

Ting et al.  
(2017) 

P/D √  √     √  

Bhusiri et al. 
(2014) 

D √  √   √    

Wang et al.  
(2015) 

PD √  √   √  √  

Ahkamiraad and 
Wang (2018) 

Cross-
docked 

√  √   √  √*  

Mancini  
(2016) 

D √ √  √  √   √ 

Al Chami et al. 
(2018) 

P/D √ √ √ √  √  √* √* 

Larrain et al. 
(2019) 

D √ √  √  √ √   

Wang and Chen 
(2012) 

PD √  √   √  √  

Karakatic and 
Podgorelec (2015) 

D √       √  

Mohammed et al. 
(2017) 

D √       √  

Nguyen et al. 
(2014) 

D √  √     √* √* 

Vidal et al.  
(2015) 

D √       √* √* 

Arakaki et al. 
(2018) 

D √       √* √* 

Baniamerian et al. 
(2019) 

Cross-
docked 

√     √  √* √* 

Our study P/D √ √ √ √ √ √  √* √* 

 
 
(DPPS). The objective is to maximize the makespan and 
mean flow time. The results show that the proposed 
method has achieved significant improvement in solving 
the DIPPS. Arakaki et al. [24] introduced a hybrid genetic 
algorithm with feasibility and local search procedures for 
solving the open capacitated arc routing problem 
(OCARP). The objective is to find the lowest cost set of 
routes that services all edges with positive demand 
(required edges). Baniamerian et al. [25] proposed a mixed-
integer linear programming (MILP) model and developed 
a new hybrid metaheuristic algorithm based on the 
modified variable neighborhood search (MVNS) with four 
shaking and two neighborhood structures and a genetic 
algorithm (GA) to solve a profitable heterogeneous 
vehicle routing problem with cross-docking (PHVRPCD). 
The objective is to maximize the total profit of the system 
including the terms of the total revenue, purchasing and 

traveling costs. Furthermore, in Hnin et al. [26] the genetic 
algorithm (GA) is applied to adapt the hyperparameter of 
support vector regression, including particle swarm 
optimization (PSO) and Bayesian optimization (BO), in 
short-term load forecasting (STLF) in Thailand. The 
purpose of this paper is to improve forecasting accuracy 
by optimizing the hyperparameters of SVR. 
 Therefore, this research proposes a mathematical 
model for solving small-sized problems and develops the 
meta-heuristic approach using a hybrid genetic algorithm 
with variable neighborhood search algorithm (GAVNS) 
for solving large-sized problems of the multi-period 
vehicle routing problem with mixed pickup and delivery 
with time windows, heterogeneous fleet, duration time 
and rest area (MVRPMPDDR). The objective is to 
maximize total profit. In addition, the model of this 
research can be an alternative for various logistic 
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industries. There are published reports which explain 

various solutions as summarized in Table 1. 
 
2. Model Formulation 

 
2.1. Assumptions and Constraints  

 
The proposed formulation is based on the following 

assumptions:  
 (1) The logistic depot and rest area are known, and the 
customer points are also known.  
 (2) Each customer can receive pickup or delivery only 
and every customer receives service only once by one 
vehicle, but one vehicle can serve multiple customers on 
only a single path and there are no split shipments. 
 (3) Customers have different time windows for each 
period. Therefore, the vehicle should provide service 
within his time window, otherwise there will be penalties 
for late arrival. 
 (4) The demands for products are known and the 
products at the depot are unlimited. 
 (5) The product types are defined as a single 
commodity that is calculated from the weight of  the 
products. 
 (6) The customer requirement must make sure that 
the number of  products in the depot (Buffer stock) 
combined with pickup demands must be equal to delivery 
demands. The delivery demands must always be more than 
or equal to the pickup demands. 
 (7) Each vehicle takes the depot as its starting point, 
travels along the distribution route to the customer 
designated locations, then returns to the rest area or the 
depot within the time duration. Otherwise, there will be 
overtime costs. 
 (8) The vehicles can service multiple periods and are 
limited to the maximum duration time constraint of  a 
route.  
 (9) The capacity of  the vehicle is heterogeneous and 
the cumulative demands of  a customer must not exceed 
the maximum capacity of  the transport vehicle. 

 ( 10)  The numbers of  vehicles are unlimited and the 
speed of  a vehicle is determined by a constant. 

 (1 1)  Each vehicle can accept pickup demands at the 
depot, according to the customer requirements. 

 (1 2)  The vehicle can service pickups or deliveries at 
any level of  product in the vehicle, so a vehicle does not 
necessarily only pickup or deliver. 

 (1 3)  Before the vehicle returns to the depot, it must 
finish all shipping with an empty vehicle. 

 (1 4)  Rest areas do not allow activities for pickup or 
delivery to customers. 
 
2.2. Mathematical Model 

 
Indices 
i, j    indices of depots, customers and rest areas; 

𝑖, 𝑗 = 1,2,… , 𝑁,𝑁 + 1,… ,𝑀 

k     index of vehicles; 𝑘 = 1,2,… , 𝐺 

t     index of the period for vehicles; 

    𝑡 = 1,2,… ,𝑀𝐷𝑇 
 
Input parameters 
N     Maximum number of customers 
M   Maximum number of rest areas 
G   Maximum number of vehicles 
MDT  Maximum duration time of a route (periods) 
V   Number of depots, customers and rest areas 
pp    Product price for customers (cost/kg)  
fk    Fuel cost of vehicle k (cost/km) 
ovk   Cost of using a vehicle k (cost/unit) 
dw   Driver wage cost (cost/period) 
pc   Penalty cost for late arrival after the time  
   window by the customer (cost/hour)  
ot_ratet Overtime late cost (cost/hour) 
disi,j   Distance from customer i to customer j (km) 
trai,j   Traveling time from customer i to customer j  
   (hours) 
si   Service time of customer i (hours) 
pi   Demand of customer for pickup i (unit) 
di   Demand of customers for delivery i (unit) 
Cmaxk Maximum capacity of vehicle k (kg) 
Tvt   Maximum duration time that a vehicle that  can 

give service in each period t (hours) 
Ei,t   Open times of customers i (hours) during period 

t 
li,t   Closed times of customers i (hours) during  
   period t 
M   Very big number 
ECi,t  Delay time edge of closed time for customers  
   i (hours) that they allowed to occur during  
   period t 
l’i,t  Delay time edge of closed time compared  
 between the time of the customer i allowed  
 and the vehicle can be serviced during period  
 t 
 
Set 

Vw Set of  depots; 𝑉𝑤 = {𝑣1} 
Vc Set of  all customers;  

 𝑉𝑐 = {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑁} 
Vr Set of  rest areas;  

 𝑉𝑟 = {𝑣𝑁+1, 𝑣𝑁+2, 𝑣𝑁+3, … , 𝑣𝑀} 
Vwc Set of  depot and all customers;  

 𝑉𝑤𝑐 = 𝑉𝑤 ∪ 𝑉𝑐 = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑁} 
Vwr Set of  depot and rest areas; 𝑉𝑤𝑟 = 𝑉𝑤 ∪ 𝑉𝑟 =

{𝑣1, 𝑣𝑁+1, 𝑣𝑁+2, … , 𝑣𝑀} 
Vcr Set of  all customers and rest areas;  

𝑉𝑐𝑟 = 𝑉𝑐 ∪ 𝑉𝑟 = {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑀} 
Vwcr Set of  depot, all customers and rest areas;  

 𝑉𝑤𝑐𝑟 = 𝑉𝑤 ∪ 𝑉𝑐 ∪ 𝑉𝑟 = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑀} 
K Set of  available vehicles;  

 𝐾 = {𝑘1, 𝑘2, 𝑘3, … , 𝑘𝐺} 
T Set of  periods that vehicle can be serviced; 𝑇 =

{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑀𝐷𝑇} 
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Decision variables 
xk,i,j,t  A binary variable that takes the value 1 if  the 

route of  vehicle k is between customer i and 
j during period t; 0 otherwise 

yk  A binary variable that takes the value 1 if  the 
 vehicle k is active; 0 otherwise 

zk,t  A binary variable that takes the value 1 if  the 
vehicle k travels during period t; 0 otherwise 

bk,i,t  A real variable representing the starting 
service time of  vehicle k at the customer i 
during period t (hours) 

b_restk,i,t  A real variable representing the arrival time 
of  vehicle k at the rest area i during period t 
(hours) 

b_dek,1,t  A real variable representing the arrival time 
of  vehicle k at the depot during period t 
(hours) 

ilk,1,1  An integer variable representing the quantity 
of  products that are transferred to the vehicle 
k at the depot on the first period (unit) 

vlk,i,t  An integer variable representing the quantity 
of  the products on vehicle k when service 
customer i during period t is completed (unit) 

rl_sk,i,t+1 An integer variable representing the quantity 
of  the products on vehicle k at the rest area i 
when starting to service the customer in the 
next period (unit) 

rl_ek,i,t  An integer variable representing the quantity 
of  products on vehicle k at the rest area i at 
the end of  the service for that period (unit) 

wi,t  A real variable representing the late time 
when the vehicle to service the customer i is 
delayed, during period t (hours) 

wwk,i,t  A real variable representing the overtime for 
the vehicle k when the vehicle returned to 
depot or rest area i during period t (hours) 

uk,i,t  Decision variables for sub-tour 
 
Objective function 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑝𝑟𝑜𝑓𝑖𝑡 
 

= ∑ ∑ ∑∑(((𝑝𝑖 + 𝑑𝑖)𝑝𝑝) − (𝑓𝑘𝑑𝑖𝑠𝑖,𝑗)) 𝑥𝑘,𝑖,𝑗,𝑡
𝑡𝑘 𝑗 ∈ 𝑉𝑤𝑐𝑟𝑖 ∈ 𝑉𝑤𝑐𝑟

 

      −∑𝑦𝑘𝑜𝑣𝑘
𝑘

−∑∑𝑧𝑘,𝑡𝑑𝑤

𝑡𝑘

− ∑ ∑𝑝𝑐 𝑤𝑖,𝑡
𝑡𝑖 ∈ 𝑉𝑐

 

      −∑ ∑ ∑𝑜𝑡_𝑟𝑎𝑡𝑒𝑡 𝑤𝑤𝑘,𝑖,𝑡
𝑡𝑖 ∈ 𝑉𝑤𝑟𝑘

                                       (1) 

 
Constraints 

 

∑ ∑ ∑𝑥𝑘,𝑖,𝑗,𝑡
𝑡𝑖 ∈ 𝑉𝑤𝑐𝑟

= 1

𝑘 

        ∀ 𝑗 ∈ 𝑉𝑐                       (2) 

 

∑ ∑𝑥𝑘,1,𝑗,𝑡
𝑡𝑗 ∈ 𝑉𝑐

≤ 1                   ∀ 𝑘                                (3) 

 

∑ ∑𝑥𝑘,𝑖,1,𝑡
𝑡𝑖 ∈ 𝑉𝑐𝑟

≤ 1                  ∀ 𝑘                                (4) 

 

∑ 𝑥𝑘,𝑖,ℎ,𝑡
𝑖 ∈𝑉𝑤𝑐𝑟

− ∑ 𝑥𝑘,ℎ,𝑗,𝑡
𝑗 ∈ 𝑉𝑤𝑐𝑟

= 0  ∀ ℎ ∈ 𝑉𝑐, 𝑘, 𝑡   (5) 

 

∑ 𝑥𝑘,𝑖,ℎ,𝑡
𝑖 ∈ 𝑉𝑤𝑐𝑟

− ∑ 𝑥𝑘,ℎ,𝑗,𝑡+1
𝑗 ∈ 𝑉𝑤𝑐𝑟

= 0   

∀ ℎ ∈ 𝑉𝑟, 𝑘, 𝑡 < 𝑇                                                             (6) 
 

∑ ∑𝑥𝑘,𝑖,𝑗,𝑡
𝑘𝑖 ∈ 𝑉𝑤𝑐𝑟

≥ 0                 ∀ 𝑗 ∈ 𝑉𝑟, 𝑡 < 𝑇         (7) 

 

∑ ∑ 𝑥𝑘,𝑖,𝑗,1
𝑗 ∈𝑉𝑤𝑐𝑖 ∈ 𝑉𝑟

= 0                ∀ 𝑘                               (8) 

 

∑ ∑ ∑𝑥𝑘,𝑖,𝑗,𝑡
𝑡𝑗 ∈ 𝑉𝑟𝑖 ∈ 𝑉𝑟

= 0            ∀ 𝑘                              (9) 

 

∑ ∑ 𝑥𝑘,𝑖,𝑗,𝑇
𝑗 ∈ 𝑉𝑟𝑖 ∈ 𝑉𝑤𝑐𝑟

= 0              ∀ 𝑘                           (10) 

 

𝑧𝑘,𝑡 ≥ 𝑥𝑘,𝑖,𝑗,𝑡      ∀ 𝑖 ∈ 𝑉𝑤𝑐𝑟, 𝑗 ∈ 𝑉𝑤𝑐𝑟, 𝑘, 𝑡              (11) 
 

𝑦𝑘 ≥ 𝑧𝑘,𝑡            ∀ 𝑘, 𝑡                                                     (12) 
 

𝑏𝑘,𝑖,𝑡 + 𝑠𝑖 + 𝑡𝑟𝑎𝑖,𝑗 −𝑀(1 − 𝑥𝑘,𝑖,𝑗,𝑡) ≤ 𝑏𝑘,𝑗,𝑡         

∀ 𝑖 ∈ 𝑉𝑤𝑐, 𝑗 ∈ 𝑉𝑐, 𝑘, 𝑡                                                   (13) 
 

𝑏𝑘,𝑖,𝑡 + 𝑠𝑖 + 𝑡𝑟𝑎𝑖,𝑗 −𝑀(1 − 𝑥𝑘,𝑖,𝑗,𝑡) ≤ 𝑏𝑟𝑒𝑠𝑡𝑘,𝑗,𝑡  

∀ 𝑖 ∈ 𝑉𝑤𝑐, 𝑗 ∈ 𝑉𝑟, 𝑘, 𝑡 < 𝑇                                          (14) 
 

𝑒𝑖,𝑡 + 𝑠𝑖 + 𝑡𝑟𝑎𝑖,𝑗 −𝑀(1 − 𝑥𝑘,𝑖,𝑗,𝑡) ≤ 𝑏𝑘,𝑗,𝑡             

∀ 𝑖 ∈ 𝑉𝑟, 𝑗 ∈ 𝑉𝑤𝑐, 𝑘, 𝑡 > 1                                           (15) 
 

𝑏𝑘,𝑖,𝑡 + 𝑠𝑖 + 𝑡𝑟𝑎𝑖,1 −𝑀(1 − 𝑥𝑘,𝑖,1,𝑡) ≤ 𝑏𝑑𝑒𝑘,1,𝑡    

∀ 𝑖 ∈ 𝑉𝑐𝑟, 𝑘, 𝑡                                                                  (16) 
 

𝑒𝑖,𝑡 ≤ 𝑏𝑘,𝑖,𝑡 ≤ 𝑙𝑖,𝑡
′             ∀ 𝑖 ∈ 𝑉𝑐𝑟, 𝑘, 𝑡                       (17) 

 

𝑙𝑖,𝑡
′ ≤ 𝑚𝑖𝑛

{
 
 

 
 

(𝑁𝐸𝐺𝑂𝑖,𝑡),

(

 

𝑚𝑖𝑛

[

(𝑙ℎ,𝑡 − 𝑠𝑖 − 𝑡𝑟𝑎𝑖,ℎ) ∀ ℎ ∈ 𝑉𝑤𝑟,

(𝑙𝑖,𝑡 + 𝑠𝑖 + (
𝑓𝑘(𝑑𝑖𝑠ℎ,𝑖 + 𝑑𝑖𝑠𝑖,ℎ)

𝑝𝑐
) ∀ ℎ ∈ 𝑉𝑤𝑐𝑟)

]

)

 

}
 
 

 
 

 

∀ 𝑖 ∈ 𝑉𝑐, 𝑡 ∈ 𝑇                                                                          (18) 
 

𝑏𝑘,𝑖,𝑡 − 𝑙𝑖,𝑑 = 𝑤𝑖,𝑡            ∀ 𝑖 ∈ 𝑉𝑐, 𝑘, 𝑡                        (19) 
 

𝑏_𝑟𝑒𝑠𝑡𝑘,𝑖,𝑡 − 𝑇𝑣𝑡 = 𝑤𝑤𝑘,𝑖,𝑡    ∀ 𝑖 ∈ 𝑉𝑟, 𝑘, 𝑡 < 𝑇     (20) 
 

𝑏_𝑑𝑒𝑘,1,𝑡 − 𝑇𝑣𝑡 = 𝑤𝑤𝑘,1,𝑡      ∀ 𝑖 ∈ 𝑉𝑤, 𝑘, 𝑡             (21) 
 

𝑖𝑙𝑘,1,1 ≤ 𝐶𝑚𝑎𝑥𝑘               ∀ 𝑘                                         (22) 
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𝑣𝑙𝑘,𝑗,𝑡 ≤ 𝐶𝑚𝑎𝑥𝑘 +𝑀(1 − ∑ 𝑥𝑘,𝑖,𝑗,𝑡
𝑖 ∈  𝑉𝑤𝑐𝑟

)         

∀ 𝑗 ∈ 𝑉𝑐𝑟, 𝑘, 𝑡 < 𝑇                                                         (23) 
 

𝑖𝑙𝑘,1,1 + ∑ ∑ ∑𝑝𝑗𝑥𝑘,𝑖,𝑗,𝑡
𝑡𝑗 ∈ 𝑉𝑐𝑟𝑖 ∈ 𝑉𝑤𝑐𝑟

= ∑ ∑ ∑𝑑𝑗𝑥𝑘,𝑖,𝑗,𝑡
𝑡𝑗 ∈ 𝑉𝑐𝑟𝑖 ∈ 𝑉𝑤𝑐𝑟

  ∀ 𝑘                               (24) 

 

𝑣𝑙𝑘,𝑗,𝑡 ≥ 𝑖𝑙𝑘,1,1 − 𝑑𝑗 + 𝑝𝑗 −𝑀(1 − 𝑥𝑘,1,𝑗,𝑡)           

∀ 𝑗 ∈ 𝑉𝑐, 𝑘, 𝑡                                                                    (25) 
 

𝑣𝑙𝑘,𝑗,𝑡 ≥ 𝑣𝑙𝑘,𝑖,𝑡 − 𝑑𝑗 + 𝑝𝑗 −𝑀(1 − 𝑥𝑘,𝑖,𝑗,𝑡)            

∀ 𝑖 ∈ 𝑉𝑐, 𝑗 ∈ 𝑉𝑐, 𝑘, 𝑡                                                      (26) 
 

𝑟𝑙𝑒𝑘,𝑗,𝑡 ≥ 𝑣𝑙𝑘,𝑖,𝑡 − 𝑑𝑗 + 𝑝𝑗 −𝑀(1 − 𝑥𝑘,𝑖,𝑗,𝑡)          

∀ 𝑖 ∈ 𝑉𝑐, 𝑗 ∈ 𝑉𝑟, 𝑘, 𝑡 < 𝑇                                              (27) 
 

𝑣𝑙𝑘,𝑗,𝑡 ≥ 𝑟𝑙𝑠𝑘,𝑖,𝑡 − 𝑑𝑗 + 𝑝𝑗 −𝑀(1 − 𝑥𝑘,𝑖,𝑗,𝑡)          

∀ 𝑖 ∈ 𝑉𝑟, 𝑗 ∈ 𝑉𝑤𝑐, 𝑘, 𝑡 > 1                                           (28) 
 

𝑣𝑙𝑘,𝑗,𝑡 − 𝑣𝑙𝑘,𝑖,𝑡 + 𝑑𝑗 − 𝑝𝑗 +𝑀(1 − 𝑥𝑘,𝑖,1,𝑡) ≥ 0    

∀ 𝑖 ∈ 𝑉𝑐, 𝑗 ∈ 𝑉𝑤𝑐𝑟, 𝑘, 𝑡                                                 (29) 
 

𝑣𝑙𝑘,𝑗,𝑡 − 𝑟𝑙𝑠𝑘,𝑖,𝑡 + 𝑑𝑗 − 𝑝𝑗 +𝑀(1 − 𝑥𝑘,𝑖,1,𝑡) ≥ 0  

∀ 𝑖 ∈ 𝑉𝑟, 𝑗 ∈ 𝑉𝑤𝑐, 𝑘, 𝑡 > 1                                           (30) 
 

𝑟𝑙𝑠𝑘,𝑖,𝑡+1 − 𝑟𝑙𝑒𝑘,𝑖,𝑡 = 0    ∀ 𝑗 ∈ 𝑉𝑟, 𝑘, 𝑡 < 𝑇             (31) 

 

𝑢𝑘,𝑖,𝑡 − 𝑢𝑘,𝑗,𝑡 + (𝑁 − 1)(𝑥𝑘,𝑖,𝑗,𝑡) ≤ 𝑁 − 2             

∀ 𝑖 ∈ 𝑉𝑐, 𝑗 ∈ 𝑉𝑐, 𝑘, 𝑡                                                      (32) 
𝑏𝑘,𝑖,𝑡, 𝑏𝑟𝑒𝑠𝑡𝑘,𝑖,𝑡, 𝑏𝑑𝑒𝑘,1,𝑡, 𝑖𝑙𝑘,1,1, 𝑣𝑙𝑘,𝑖,𝑡, 𝑟𝑙𝑠𝑘,𝑖,𝑡+1, 

𝑟𝑙_𝑒𝑘,𝑖,𝑡, 𝑤𝑖,𝑡, 𝑤𝑤𝑘,𝑖,𝑡 , 𝑢𝑘,𝑖,𝑡 ≥ 0  ∀ 𝑖 ∈ 𝑉𝑐𝑟, 𝑘, 𝑡        (33) 
 

𝑥𝑘,𝑖,𝑗,𝑡, 𝑦𝑘 , 𝑧𝑘,𝑡  ∈ {0,1}                                                  (34) 
 
The objective function Eq. (1) maximize profits of 
revenue after deducting fuel costs, the cost of using a 
vehicle, driver wage cost, penalty cost and overtime cost. 
Equation (2) ensures that any customer j is visited only 
once by one vehicle k. Equations (3)-(4) guarantee that 
each route of the vehicle k must start and finish at a depot 
during period t. Equations (5)-(6) ensure that the routing 
continuity for each vehicle visits the customer and rest 
area in each period. Equation (7) ensures the rest areas 
allow more than one vehicle to visit. Equation (8) 
guarantees that vehicle k cannot begin traveling from the 
rest area to customer i in the first period. Equation (9) 
ensures that vehicle k cannot travel between the rest area 
i and rest area j during the same period t. Equation (10) 
guarantees that vehicle k cannot travel from depot or 
customer i to rest area j on the last period. Equations (11)-
(12) are used to update the numbers of vehicle k during 

period t. Equations (13)-(16) are used to update starting 
service and arrival times. Equation (17) explains the time 
window constraints which are acceptable times for the 
customer. Equation (18) explains the calculation of the 
time window that ensures that the service is never delayed 
beyond the acceptable time limit specified by the 
customer. Equation (19) is the time of vehicle k arriving 
at the customer late, which is outside the time window 
condition. Equations (20)-(21) are the times for overtime. 
Equation (22) ensures that the initial load at the depot 
must not exceed the vehicle capacity. Equation (23) 
ensures that the loads when traveling between routes must 
be less than or equal to the vehicle capacity. Equation (24) 
ensure that the initial loads combined with the total pickup 
loads must be equal to the total delivery loads on each 
vehicle route. Equation (25) is used to update the load on 
the vehicle k leaving the depot to visit the first customer 
during period t. Equation (26) is used to update the load 
on the vehicle k visiting between customer i and customer 
j during period t. Equations (27)-(28) are used to update 
the load on the vehicle k visiting the rest area. Equations 
(29)-(30) guarantee that the vehicle must finish all shipping 
with the empty vehicle before completion at the depot. 
Equation (31) ensures the adjustment of the balanced load 
at rest area i before transfer to the next period. Equation 
(32) ensures sub-tour conditions. Equation (33) is for 
continuous decision variables. Equation (34) is for binary 
decision variables. 
 
3. Hybrid Genetic Algorithm with Variable 

Neighborhood Search Algorithm (GAVNS) 
 
3.1. Genetic Algorithm 
 
 For problems that are too large-sized and too 
complicated to be solved by exact solution methods, in 
this research, the meta-heuristic using a Genetic 
Algorithm (GA) is applied. A Genetic Algorithm is a class 
of  models that mimics natural evolution aiming to find 
methods that combine directed and stochastic search that 
can produce a balance between exploration and 
exploitation of  the search space. The GA was pioneered 
in 1975 [27]. Although there are newer algorithms 
currently available, GA is still accepted, especially when 
applying the hybrid method with another algorithm [17]. 
The general structure of  a genetic algorithm has operators 
that consist of  encoding, decoding, crossover, mutation 
and selection. This algorithm can be described as shown 
in Fig. 2. 
 

procedure: Traditional Genetic Algorithm 
input: MVRPMPDDR data, GA parameters (popSize, 
maxGen, pc, pm) 
output: the best route 
begin 
 t ← 0; // t: generation number 
 - initialize P(t) by chromosomes operation-based  
   encoding procedure; // P(t): population 
 - evaluate P(t) by chromosomes operation-based  
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   decoding procedure and keep the best solution; 
 while t ≤ maxGen // maxGen: maximize generation 
  - generate F(t) from P(t) by Weight mapping  
    crossover; // F(t): offspring 
  - generate F(t) from P(t) by Swap mutation  
    procedure; 
  - evaluate F(t) by chromosomes operation-based  
    decoding procedure and keep the  
    best solution; 
  - select P(t+1) from P(t) and F(t) by roulette  
    wheel selection; 
  t ← t+1; 
 endwhile 
end 

 
Fig. 2. Illustration of Traditional Genetic Algorithm. 
 
3.1.1. Initial population 
 
 In the encoding procedure, the number of  the 
population is the number of  chromosomes that will be 
used in a genetic algorithm iteration. The initial 
chromosome population is randomly generated as an 
integer number according to the customer number in each 
chromosome, because it is easily encoded for the 
conventional operators in the genetic algorithm. For the 
encoding procedure in this research, the nodes are 
arranged alternately between a customer’s requirement for 
pickup and delivery, by arranging the pickup node first, 
followed by the delivery node, until achieving the needs of  
all customers, as shown in Fig. 3. 
 
 
 
 
 
 
 
Fig. 3. Example of  encoding procedure. 
 
 In the decoding procedure, chromosomes are 
decoded to evaluate the fitness, with the constraints of  the 
multi-period vehicle routing problem with mixed pickup 
and delivery and considering constraints consisting of  the 
time windows for customers, capacity of  fleet, multi-
periods, rest area for fleet and penalty costs as shown in 

Fig. 4. From this Fig., we can describe the operation as 
follows. 
 

procedure: Decoding Procedure 
input: MVRPMPDDR data 

output: the best route 
begin 
Step 1:{U} ← randomly generated in the integer number  
  for the customer i unvisited  
   // U: set of the undefined sequence of  
   customers i 
    i ← 1; // i: the customers i 
    k ← 1; // k: the vehicle number 

    tk  ← 1; // tk: period of service by vehicle k 

Step 2: while {U} ≠ ∅ do 
    for i = 1: U 
     if check time window constraints of  
     customer j 
      - update cumulative time of vehicle k  
      (cti,k,t) 
      if check capacity constraints of the vehicle  
      k for pickup j or delivery j 
      - update cumulative products on vehicle  
        k (cvi,k,t) 
     endif 
    endif 
    if check duration time constraints of the  
    vehicle k should be returned to rest area  
    or depot 
     - update cumulative time of vehicle k  
       returned to rest area (ctrest,k,t) or depot  
      (ctdepot,k,t) 
     if the vehicle k returned to rest area  
     (tk < MDT) // MDT: maximum duration  
     time 
      tk  ← tk+1; 
     else the vehicle k returned to depot  
     (tk = MDT) 

   tk  ← 1; 
   k ← k+1; 

     endif 
     - update customers i to {S} and delete  
       customers i in {U}  
      // S: set of the defined sequence of  
      customers i 
    endif 
    i ← i+1; 
    endfor 
   endwhile 
Step 3: if check cumulative products on vehicle k  
   returned to depot (cv depot,k,t) > 0 do 
   - repair set {S} → set {U} then return to step 2  
   endif 
Step 4: update size of set of the vehicles k 

Step 5: fitness evaluation by objective function 
Step 6: trade-off between allowed penalty costs or vehicle  
      costs for using the new vehicle 
Step 7: select the best solution 
End  
return route {S}; 

 
Fig. 4. Illustration of Decoding Procedure. 
 
Step 1: Generate an initial solution; it is randomly  
  constructed in the integer number according  
  to the customer number in the chromosome and  
  adds to undefined sequences in set U. 
Step 2: The customer constraints in set U are considered. 

in order to be chosen for the route of            the 
vehicle k with the following steps: 

  - Check time window constraints of  existing  

  customers. 
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 - Check current capacity constraints of  the  
 vehicle (loading or unloading of  vehicle). 

  - Check maximum duration time constraints of   
  the vehicle route (check period). 

- Update customers i to the defined sequence in  
set S and delete customers i in set U. 

    - Repeat until the route is complete (set U=∅). 
Step 3: Check cumulative products on vehicle that must  
  be empty at the end of  the trip.  
  If  loading vehicles are not empty, the defined  
  sequence must be repaired in set S, then  
  return to step2. 
Step 4: Update fleet size. 
Step 5: Fitness evaluation by objective function. 
Step 6: Trade-off  objective function between allowing 

penalty cost or vehicle cost for using the new 
vehicle. 

Step 7: Select the best solution. 
 
3.1.2. Crossover procedure 
 
 For the crossover procedure, a weight-mapping 
crossover (WMX) was developed in the genetic algorithm 
because is easier than a one cut-point crossover, since the 
chromosome repair process is created mechanically in the 
weight-mapping crossover. By pairing all parent 
chromosomes, a cut-point is picked randomly and 
designated as a crossover point. The decision for 
crossover is randomly generated as a uniform number 
within [0,1). If  the random value is within the range of  the 
crossover rate, it will create the offspring by using the 
segment of  own parent to the left of  the cut-point, then 
sort the nodes from ascending and remapping for the right 
segment of  other parents [28] as shown in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Example of  Weight Mapping Crossover (WMX). 
 
3.1.3. Mutation procedure 
 
 The mutation procedure helps avoiding being trapped 
in local minima. In this research, a swap mutation is used. 
Similar to the crossover procedure, a cut-point is picked 
randomly and designated a mutation point for two allele 
values in a string. If  the random value from a uniform 
number is within the range of  the mutation rate, there will 
be an exchange of  two allele values within the 

chromosome. Furthermore, determining the number of  
mutant points must be considered according to the 
chromosome length in proportion. Therefore, the 
proportion of  mutation points should be determined 
according to the chromosome length. 
 
3.1.4. Selection procedure 
 
 One of  the major genetic operator components is the 
selection procedure, because it significantly affects the 
best solution. the roulette wheel selection was used in this 
research. It will generate the wheel according to the 
cumulative probability of  each chromosome, then the 
survival chromosome is chosen by randomly selecting the 
points in the zone of  the probability wheel, which survives 
for the next evolution procedure. 
 
3.2. Variable Neighborhood Search Algorithm 
 
 The Variable neighborhood search algorithm (VNS) 
is a meta-heuristic that uses a local search principle to 
systematically search solution space, with the concept of  
the neighborhood change which has more than one type 
of  neighborhood structure. The change of  neighborhood 
handles descent to a local minimum and escaping from the 
valley which contains it. The VNS method begins with the 
initial solution and improves it by applying operations in 
two nested levels, consisting of  shake and local search. 
The shaking level is used for diversifying the search in the 
solution space, while the local search level is used for 
intensifying the search within the current local 
neighborhood [25]. The basic VNS pseudo-code is 
explained in Fig. 6. 
 
 

procedure: Variable Neighborhood Search 
input: VNS parameters (maxGen, kmax, Nk); 
output: the best route 
begin 
 t ← 0; // t: generation number 
 - initialize F(t) by chromosomes operation-based  
 encoding procedure to find the initial solution. 
 While t ≤ maxGen 
  for i ← 1 : NP chromosomes 
   k ← 1 
   While k ≤ kmax 

    - generate F’(t) from F(t) by shaking:  
      Generate a random point F’ in  
      neighborhood structures  
      (F’(t) ∈ Nk(F(t))); 
    - evaluate F’(t) by a chromosome  
      operation-based decoding procedure  
      and keep the best solution; 
    While F”(t) ≥ F’(t) 
     - generate F”(t) from F’(t) randomly  
       in the local search structures; 
     - evaluate F”(t) by chromosomes  
       operation-based decoding  
       procedure and keep the best  
       solution; 
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     if F”(t) > F’(t) 
      -update F’(t) from F”(t) 
     endif 
    endwhile 
    if F’(t) > F(t) 
     -update F(t) from F’(t) and k ← 1; 
    else 
     k ← k+1; 
    endif 
   endwhile 

   i ← i+1 
  endfor 
  t ← t+1 
 endwhile 
end 

 
Fig. 6. Illustration of Variable Neighborhood Search. 
 
3.2.1. Shake and local search procedure 
 
 The shake procedure is used to select neighborhood 
structures that are used to find the solution. In this paper, 
we designed neighborhood structures for the proposed 
VNS with four neighborhood structures. The step for 
neighborhood selection is chosen sequentially in the 
neighborhood structure (Nk). When an improved solution 
obtained from the shaking procedure is entered into the 
step of  the local search, the result is compared with the 
result of  the initial solution. If  the result is better, it will 
be updated instead of  the result of  the initial solution, in 
order to be the result for comparison in the next iteration. 
The stopping criteria are considered from the result of  a 
current neighborhood that is not improved when 
compared to the result of  the initial solution. Then 
neighborhoods are moved to the search space of  the next 
neighborhood (Nk+1), which iterates until all the 
neighborhoods are complete. 
 After the shaking procedure, the local search is 
applied to intensify the search within the current local 
neighborhood. In this research, four types of  local 
searches were used. The steps to solve the problem are the 
same procedure as the four shaking in the neighborhood 
structure, but one of  these operators is randomly selected 
for application. After that, the result is compared with the 
results of  the current neighborhood. If  the result is better, 
it will be updated instead of  the result of  the current 
neighborhood in order to be the result for comparison in 
the next iteration local search. The stopping criteria are 
considered from the result of  local search that is not 
improved when compared to the result of  current 
neighborhoods. Therefore, the result has been made more 
effective before searching for results in the search space 
of  the next neighborhood structure. 
 
Neighborhood Structures N1 (Swap) 
 The swap principle is the exchange of  the node 
positions by randomly selecting a cut-point and choosing 
two different nodes i1 and i2, then exchanging between i1 
and i2, in which the iteration of  the swap depends on 15% 

of  the number of  customers as shown in Fig. 7. 
 
Neighborhood Structures N2 (Insert) 
 The insert principle is to move a node to another node 
by randomly selecting a cut-point and choosing two 
different nodes i1 and i2, then removing node i1 to the 
position of  i2, in which the iteration of  the insert depends 
on 15% of  the number of  customers as shown in Fig. 8. 
 
Neighborhood Structures N3 (K cyclic move) 
 The K cyclic move principle is a systematic motion by 
selecting a cyclic point randomly. The nodes are 
systematically removed to replace other positions nodes, 
in which the number of  nodes of  the move depends on 
30% of  the number of  customers (it equals 15% for the 
iterations of  the swap, insert and transpose) as shown in 
Fig. 9. 
 
Neighborhood Structures N4 (Transpose) 
 The transpose principle exchanges adjacent positions 
by selecting a cut-point randomly and choosing two 
adjacent position nodes i1 and i2, then adjacent positions 
are exchanged with node i1 to the position of  i2, in which 
the iteration of  the transpose depends on 15% of  the 
number of  customers as shown in Fig. 10. 
 
 
 
 
 
 
 
 
Fig. 7. Illustration of Neighborhood Structures N1  
(Swap). 
 
 
 
 
 
 
 
 
 
Fig. 8. Illustration of Neighborhood Structures N2  
(Insert). 
 
 
 
 
 
 
 
 
 
Fig. 9. Illustration of Neighborhood Structures N3  
(K cyclic move). 
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Fig. 10. Illustration of Neighborhood Structures N4  
(Transpose). 
 
3.3. Hybrid GA-VNS Algorithm 
 
 The structure of  the hybrid genetic algorithm with 
variable neighborhood search algorithm consists of  an 
initial solution, crossover operator, mutation operator and 
selection with the roulette wheel. The variable 
neighborhood search algorithm is specially applied instead 
of  the mutation operator, because we want to reduce 
duplicate solutions of  the algorithms that increase the 
difficulty and are time-consuming. This approach 
significantly decreases computational time and leads to 
better results. The initial solution of  the genetic algorithm 
is used in the first step of  the variable neighborhood 
search. This algorithm can be described as shown in Fig. 
11. 
 

procedure: Hybrid Genetic Algorithm 
input: MVRPMPDDR data, GA parameters (popSize, 
maxGen, pc, pM), VNS parameters (maxGen, kmax, Nk) ; 
output: the best route 
begin 
 t ← 0; // t: generation number 
 - initialize P(t) by chromosomes operation-based  
   encoding procedure; // P(t): population 
 - evaluate P(t) by chromosomes operation-based  
   decoding procedure and keep the best  
   solution; 
 while t ≤ maxGen // maxGen: maximize generation 
  - generate F(t) from P(t) by Weight mapping  
    crossover; // F(t): offspring 
  - evaluate F(t) by chromosomes operation-based  
    decoding procedure and keep the  
    best solution; 
  - Variable Neighborhood Search Algorithm 
  - select P(t+1) from P(t) and F(t) by roulette  
    wheel selection; 
  t ← t+1; 
 endwhile 
end 

 
Fig. 11. Illustration of Hybrid GA-VNS algorithm. 
 

4. Experiment and Results 
 
4.1. Computational Framework 
 
 In order to test the model of  the hybrid genetic 
algorithm with the variable neighborhood search 
algorithm we solve the multi-period vehicle routing 
problem with mixed pickup and delivery with time 
windows, heterogeneous fleet, duration time and rest area 
to maximize profits to the entrepreneur. In this section the 
algorithm is tested with 3 sub-algorithms which are VNS, 
GA, and GAVNS; it was also validated by comparing the 
solutions with the optimal solution obtained by Lingo v.17 
for Windows software and the proposed algorithms were 
run with MATLAB R2017a on a 2.5 GHz PC, with 12.00 
GB of  RAM and Windows 10 Pro operating system. The 
performance of  the proposed methods was tested using 2 
sizes of  problem instances. Details of  generated data are 
shown in Table 2. 
 
Table 2. Size of  tested problems. 
 

Problem 
Data 

set 

Problem 

size 

No. of nodes 

Pickup Delivery 
Rest 

area 

1 

A S 3 4 1 

B S 3 4 1 

C S 3 4 1 

2 

A S 4 6 2 

B S 4 6 2 

C S 4 6 2 

3 

A S 5 7 2 

B S 5 7 2 

C S 5 7 2 

4 

A S 7 8 2 

B S 7 8 2 

C S 7 8 2 

5 

A L 10 10 3 

B L 10 10 3 

C L 10 10 3 

6 

A L 13 17 5 

B L 13 17 5 

C L 13 17 5 

7 

A L 17 23 6 

B L 17 23 6 

C L 17 23 6 

8 

A L 24 26 8 

B L 24 26 8 

C L 24 26 8 

9 

A L 27 33 9 

B L 27 33 9 

C L 27 33 9 

10 

A L 35 45 12 

B L 35 45 12 

C L 35 45 12 

 
 Table 2 shows that 10 problem instances were used to 
test the algorithm. Each problem is separated into 3 sub-
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problems (A, B and C problems). So, in total there were 
30 problems that consist of  small and large instances 
divided into 12 and 18 respectively. The numbers of  
pickup, delivery, and rest area nodes are assigned according 
to the problem size. The time windows with starting and 
ending times are defined between 2 to 4 hours for each 
customer. If  the customer is not served in his time 
window, the entrepreneur will be responsible for penalty 
costs according to the delay time rate. And the duration 
time for each vehicle to give service is 5 periods, with a 
period of  giving service of  8 hours. If  the service time of  
any vehicle exceeds 8 hours, it will affect overtime costs. 
For the assigned parameters of  the GA experiment, the 
maximum generation is 500, population size (NP) is 10, 
the crossover rate (Pc) is 0.8, and the mutation rate (Pm) is 
0.2, which is the value used mostly in the literature. 
Furthermore, the assigned parameters of  the VNS 
experiments, the maximum number of  neighborhoods 
(kmax) and neighborhood structures (Nk) are set to 4. All 

proposed algorithms are derived from the calculation of  5 
replications. 
 
4.2. Computational Results 

 
 In this section, computational results are presented by 
the profit values obtained from the optimal solutions of  
the mathematical model using mixed-integer linear 
programming and the profit values obtained from the best 
solutions of  the proposed algorithms and computational 
time, as shown in Table 3 for all-sized problems. A 
comparison of  the percentage efficiency and relative 
improvement of  the solution generated by the proposed 
algorithms is shown in Table 4. The final result is the 
performance analysis of  each algorithm, which was tested 
by statistical tests for all-sized problems as shown in Table 
5. 

 
Table 3. Computational results for all-sized problems. 
 

Problem 
Data 
set 

Problem 
size 

Profits (unit) Computational time (sec.) 

Optimal VNS GA GAVNS Optimal VNS GA GAVNS 

1 

A S 4,204  4,204  4,204  4,204 3.41  4.50  5.30  43.06  

B S 6,279 6,279  6,279  6,279 2.90  9.43  10.46  85.40  

C S 7,264 6,274  6,274  6,274  8.07 42.93  7.71  59.61  

2 

A S 8,933 8,888  8,888  8,888  52.44  11.72  11.53  107.26  

B S 13,392  13,338  13,338  13,338 93.70  11.91  13.76  100.75  

C S 13,969 13,900  13,900  13,900  1,055.41 99.65  14.78  129.32  

3 

A S 14,281 14,232  14,232  14,232 303.34  12.68  23.91  121.93  

B S 13,892 13,816  13,816  13,816 781.45  21.88  24.19  301.20  

C S 16,862 15,701  15,707  15,707  5,255.46 32.22  40.34  354.79  

4 

A S 18,446 18,446  18,446  18,446  31,900.63  19.17  36.79  166.42  

B S 17,502  17,290  17,277  17,290 22,735.13  34.94  33.33  330.19  

C S 16,287 16,211  16,211  16,211  2,123.24 22.06  43.61  263.53  

5 

A L - 19,894  17,465  19,894  - 49.74  44.09  213.58  

B L - 19,001  18,283  19,001  - 62.84  71.93  892.09  

C L - 17,824  17,786  17,824  - 64.51  68.46  784.75  

6 

A L - 24,514  24,359  24,677  - 161.49  129.08  1,064.20  

B L - 26,901  26,702  26,917  - 111.95  148.77  2,191.60  

C L - 27,563  26,690  26,892  - 167.55  188.91  2,416.80  

7 

A L - 24,491  22,943  24,647  - 121.71  184.89  2,354.20  

B L - 25,080  24,860  26,493  - 195.52  301.06  4,431.30  

C L - 25,861  23,393  26,157  - 286.73  246.24  4,182.20  

8 

A L - 38,234  36,852  38,838  - 494.86  404.02  8,116.30  

B L - 40,142  39,687  40,930  - 635.59  615.88  7,031.00  

C L - 37,856  35,601  37,958 - 812.11  782.56  11,219.00 

9 

A L - 57,279  55,626  61,060  - 424.81  380.54  4,947.90  

B L - 64,351  60,411  65,422  - 990.86  740.15  15,265.00  

C L - 63,084 62,269 64,383 - 871.30 780.95 12,339.00 

10 

A L - 66,082  62,793  67,547  - 742.87  526.76  9,141.10  

B L - 72,870  70,075  75,671  - 908.67  1,068.10  12,413.00  

C L - 70,970 67,877 71,126 - 1,526.80 1,533.90 20,321.00 
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 In Table 3, all proposed algorithms were able to find 
comparable results to the optimal solution for the small-
sized problems. In with some problem instances, 
proposed algorithms achieved the optimal solution in a 
better computational time than the calculation of  the 
mathematical model. For the large-sized problems, the 
mathematical model could not find the optimal solution. 
We can see the best solution for the GAVNS algorithm 
showed better profit than the VNS and GA algorithms, 
but the computational times are longer due to the complex 
search logic. Table 4 shows a comparison of  percentage 
efficiencies of  the profits from the best solution of  the 
proposed algorithms and the optimal solution using the 
mathematical model as determined by Eq. (35). In 
problem instances 1 to 4 for the small-sized problems, the 
comparison of  the average efficiency between the best 
solution of  the VNS algorithms with the optimal solution 
is 97.959%, the comparison result of  the GA algorithms 
with the optimal solution is 97.956% and the comparison 

result of  GAVNS algorithms with the optimal solution is 
97.962%. The results show that GAVNS algorithms can 
find the results closest to the optimal solution. In problem 
instances 5 to 10 for the large-sized problems, an optimal 
solution cannot be obtained by the mathematical model, 
due to the multi-period vehicle routing problem with 
mixed pickup and delivery being NP-hard, and the 
solution being highly complex. Therefore, we used the 
proposed algorithms, which gave an acceptable solution 
compared to the optimal solution for solving large-sized 
problems. The results of  the average relative improvement 
of  the solution generated by the proposed algorithms 
were determined by Eq. (36). It shows that in a 
comparison between the GAVNS and the VNS 
algorithms, the relative improvement in the profits 
averaged 0.79% and in a comparison between the GAVNS 
and GA algorithms, the relative improvement in the 
profits averaged 3.18%. So, this shows that the GAVNS 
algorithm is better than the VNS and GA algorithms. 

 
Table 4. Percentage efficiency and relative improvement of  the solution generated by proposed algorithms. 
 

Problem 
Data 

set 

Efficiency (%) RI (%) 

VNS GA GAVNS 
GAVNS 

& VNS 

GAVNS 

& GA 

1 

A 100.00  100.00  100.00  0.00 0.00 

B 100.00  100.00  100.00  0.00 0.00 

C 86.36  86.36  86.36  0.00 0.00 

2 

A 99.50  99.50  99.50  0.00 0.00 

B 99.60  99.60  99.60  0.00 0.00 

C 99.51  99.51  99.51  0.00 0.00 

3 

A 99.66  99.66  99.66  0.00 0.00 

B 99.45  99.45  99.45  0.00 0.00 

C 93.12  93.15  93.15  0.04 0.00 

4 

A 100.00  100.00  100.00  0.00 0.00 

B 98.79  98.72  98.79  0.00 0.08 

C 99.53 99.53 99.53 0.00 0.00 

5 

A - - - 0.00 13.91 

B - - - 0.00 3.93 

C - - - 0.00 0.21 

6 

A - - - 0.66 1.31 

B - - - 0.06 0.81 

C - - - 0.22 3.50 

7 

A - - - 0.64 7.43 

B - - - 5.63 6.57 

C - - - 1.14 11.82 

8 

A - - - 1.58 5.39 

B - - - 1.96 3.13 

C - - - 0.27 6.62 

9 

A - - - 6.60 9.77 

B - - - 1.66 8.29 

C - - - 2.06 3.39 

10 

A - - - 2.22 7.57 

B - - - 3.84 7.99 

C - - - 0.22 4.79 

Average (%) 97.959 97.956 97.962 0.79 3.18 
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𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐸𝐹(%) =
𝑅𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑅𝑂𝑃𝑇
 × 100   (35) 

 
where 

 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐸𝐹(%) = Efficiency of  the VNS,  

     GA, and GAVNS (%) 

 𝑅𝑂𝑃𝑇 = The result of the mixed integer linear  
  programming 

 𝑅𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛              = The result of the VNS,  

     GA, and GAVNS 
 

𝑅𝐼(%) =
(𝑅𝑓𝑖𝑟𝑠𝑡 − 𝑅𝑠𝑒𝑐𝑜𝑛𝑑)

𝑅𝑠𝑒𝑐𝑜𝑛𝑑
 × 100                                    (36) 

 
where 

 𝑅𝐼(%)  = Relative improvement compared  

   between 𝑅𝑓𝑖𝑟𝑠𝑡 and 𝑅𝑠𝑒𝑐𝑜𝑛𝑑 

 𝑅𝑓𝑖𝑟𝑠𝑡, 𝑅𝑠𝑒𝑐𝑜𝑛𝑑 = The result of the VNS, GA, and  

  GAVNS 
 
 The statistical test was performed using IBM SPSS 
Software V.26 using the paired samples t-test at a statistical 
significance of  0.05. The result is shown in Table 5. The 
results of  the statistical tests show that the solutions 
obtained from the proposed algorithms compared with 
the optimal solution of  the mathematical model for small-
sized problems were not significantly different at α = 0.05. 
This means that we can conclude that our proposed 
algorithms are efficient. In large-sized problems, we 
compare the solutions of  the proposed algorithm 
consisting of  the VNS, GA and GAVNS. The results of  
the tests showed the solutions obtained from the three 
algorithms were significantly different at α= 0.05, with the 
GAVNS algorithm showing a better result than the VNS 
and GA algorithms. This has demonstrated the 
performance of  the search results for GAVNS algorithm. 
 
Table 5. Statistical test for all-sized problems. 
 

P-value 

 Small-sized problems Large-sized problems 

Method VNS GA GAVNS VNS GA GAVNS 

Optimal 0.075 0.074 0.075 - - - 

VNS - 0.646 0.339 - 0.000 0.011 

GA - - 0.339 - - 0.000 

 
5. Discussion 
 
 This research focuses on the multi-period vehicle 
routing problem with mixed pickup and delivery with time 
windows, heterogeneous fleet, service duration time of  
vehicles and rest area for vehicles (MVRPMPDDR). The 
objective is to sequence the pickup and delivery nodes of  
vehicles to maximize profits, which are comprised of  
revenue after deducting fuel cost, the cost of  using a 
vehicle, driver wage cost, penalty cost and overtime cost. 
We present a mixed-integer linear programming model 
that can handle small-sized problems (instances 1 to 4). 

For large-sized problems (instances 5 to 10), a solution 
could not be found using LINGO, since the vehicle 
routing problem with pickup and delivery is NP-hard, so 
the solution is highly complex, and the numbers of  
variables were excessive. So, a genetic algorithm (GA) was 
applied to solve the problems. In addition, we developed 
a hybrid algorithm that is a hybrid genetic algorithm with 
a variable neighborhood search algorithm (GAVNS) to 
increase the efficiency in finding the solution of  the 
algorithm. 
 In our research, the development of  the GAVNS 
algorithm is due to inserting the VNS algorithm for 
solution search for the GA algorithm, which is applied 
instead of  the mutation operator to increase the diversity 
of  the local search space systematically. For GAVNS 
operators, including the initial population, the crossover 
used the weight mapping crossover, while the mutation 
instead used the VNS algorithm, and the selection 
procedure used roulette wheel selection. The VNS 
method begins with the initial solution provided by the 
GA algorithm. and improves it by applying operations in 
two nested levels consisting of  shake and local search by 
shake first, then local search. The shake procedure was 
designed for four neighborhood structures (Nk) consisting 
of  Swap, Insert, K cyclic move and Transpose. The local 
search procedure was designed in the same way as the four 
neighborhood structures of  the shake procedure. The 
results for the proposed algorithm show that the GAVNS 
algorithm outperforms the VNS and GA algorithms. In 
this paper, mathematical and heuristics models have been 
developed to solve the multi-period vehicle routing 
problem with mixed pickup and delivery with time 
windows, heterogeneous fleet, duration time and rest area, 
and this method should prove to be beneficial to other 
transportation industries in Thailand and around the 
world by increasing profits for transportation 
entrepreneurs from an efficient transportation 
management system. 
 
6. Conclusions 
 
 This research is the multi-period vehicle routing 
problem with mixed pickup and delivery with time 
windows, heterogeneous fleet, service duration time of 
vehicles and rest area for vehicles (MVRPMPDDR). 
Mixed-integer linear programming gave the optimal 
solution for small sized problems (instances 1 to 4), but 
for large-sized problems (instances 5 to 10), the solution 
could not be found using LINGO because there were 
many variables and limitations. Accordingly, we developed 
a hybrid algorithm that is a hybrid genetic algorithm with 
a variable neighborhood search algorithm (GAVNS) to 
increase the solution efficiency to be comparable to that 
of mixed-integer linear programming for solving the 
problems. The results for the GAVNS algorithm were 
better than both the VNS and GA algorithms by 0.79% 
and 3.18% respectively. The GAVNS algorithm could find 
the best solutions efficiently and was the nearest to the 
optimal solution. However, we believe that this issue can 
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be extended to other real-world problem models and will 
be valuable in the future. There are many limitations to 
this study that can be improved to develop approaches 
with vehicle routing in real-world problems. Future 
development will expand product categories to multiple 
products and the total demand of customers receiving 
pickups and deliveries from more than one vehicle (split 
demand). Furthermore, we will consider pickup and 
delivery activities occurring at the rest area. Moreover, we 
may consider traffic density for vehicle route restrictions. 
The proposed method modifications and development 
approaches using the GAVNS algorithm and other meta-
heuristics or hybrid methods may improve the solution 
efficiency. 
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