177,709 research outputs found

    An optimization method for dynamics of structures with repetitive component patterns

    Get PDF
    The occurrence of dynamic problems during the operation of machinery may have devastating effects on a product. Therefore, design optimization of these products becomes essential in order to meet safety criteria. In this research, a hybrid design optimization method is proposed where attention is focused on structures having repeating patterns in their geometries. In the proposed method, the analysis is decomposed but the optimization problem itself is treated as a whole. The model of an entire structure is obtained without modeling all the repetitive components using the merits of the Component Mode Synthesis method. Backpropagation Neural Networks are used for surrogate modeling. The optimization is performed using two techniques: Genetic Algorithms (GAs) and Sequential Quadratic Programming (SQP). GAs are utilized to increase the chance of finding the location of the global optimum and since this optimum may not be exact, SQP is employed afterwards to improve the solution. A theoretical test problem is used to demonstrate the method

    Meta-Heuristics for Dynamic Lot Sizing: a review and comparison of solution approaches

    Get PDF
    Proofs from complexity theory as well as computational experiments indicate that most lot sizing problems are hard to solve. Because these problems are so difficult, various solution techniques have been proposed to solve them. In the past decade, meta-heuristics such as tabu search, genetic algorithms and simulated annealing, have become popular and efficient tools for solving hard combinational optimization problems. We review the various meta-heuristics that have been specifically developed to solve lot sizing problems, discussing their main components such as representation, evaluation neighborhood definition and genetic operators. Further, we briefly review other solution approaches, such as dynamic programming, cutting planes, Dantzig-Wolfe decomposition, Lagrange relaxation and dedicated heuristics. This allows us to compare these techniques. Understanding their respective advantages and disadvantages gives insight into how we can integrate elements from several solution approaches into more powerful hybrid algorithms. Finally, we discuss general guidelines for computational experiments and illustrate these with several examples

    A MOS-based Dynamic Memetic Differential Evolution Algorithm for Continuous Optimization: A Scalability Test

    Get PDF
    Continuous optimization is one of the areas with more activity in the field of heuristic optimization. Many algorithms have been proposed and compared on several benchmarks of functions, with different performance depending on the problems. For this reason, the combination of different search strategies seems desirable to obtain the best performance of each of these approaches. This contribution explores the use of a hybrid memetic algorithm based on the multiple offspring framework. The proposed algorithm combines the explorative/exploitative strength of two heuristic search methods that separately obtain very competitive results. This algorithm has been tested with the benchmark problems and conditions defined for the special issue of the Soft Computing Journal on Scalability of Evolutionary Algorithms and other Metaheuristics for Large Scale Continuous Optimization Problems. The proposed algorithm obtained the best results compared with both its composing algorithms and a set of reference algorithms that were proposed for the special issue

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Parallel Algorithms for Graph Optimization using Tree Decompositions

    Get PDF
    Although many NP\cal{NP}-hard graph optimization problems can be solved in polynomial time on graphs of bounded tree-width, the adoption of these techniques into mainstream scientific computation has been limited due to the high memory requirements of the necessary dynamic programming tables and excessive runtimes of sequential implementations. This work addresses both challenges by proposing a set of new parallel algorithms for all steps of a tree decomposition-based approach to solve the maximum weighted independent set problem. A hybrid OpenMP/MPI implementation includes a highly scalable parallel dynamic programming algorithm leveraging the MADNESS task-based runtime, and computational results demonstrate scaling. This work enables a significant expansion of the scale of graphs on which exact solutions to maximum weighted independent set can be obtained, and forms a framework for solving additional graph optimization problems with similar techniques

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained
    corecore