9 research outputs found

    Hybrid TW-TOA/TDOA positioning algorithms for cooperative wireless networks

    Get PDF
    The problem of positioning an unknown target is studied for a cooperative wireless sensor network using hybrid two-way time-of-arrival and time-difference-of-arrival measurements. A maximum likelihood estimator (MLE) can be employed to solve the problem. Due to the non-linear nature of the cost function in the MLE, a numerical method, e.g., an iterative search algorithm with a good initial point, should be taken to accurately estimate the target. To avoid drawbacks in a numerical method, we instead linearize the measurements and obtain a new two-step estimator that has a closed-form solution in each step. Simulation results confirm that the proposed linear estimator can attain Cramer-Rao lower bound for sufficiently high SNR. © 2011 IEEE

    Cooperative localization with angular measurements and posterior linearization

    Get PDF
    The application of cooperative localization in vehicular networks is attractive to improve accuracy and coverage of the positioning. Conventional distance measurements between vehicles are limited by the need for synchronization and provide no heading information of the vehicle. To address this, we present a cooperative localization algorithm using posterior linearization belief propagation (PLBP) utilizing angle-of-arrival (AoA)-only measurements. Simulation results show that both directional and positional root mean squared error (RMSE) of vehicles can be decreased significantly and converge to a low value in a few iterations. Furthermore, the influence of parameters for the vehicular network, such as vehicle density, communication radius, prior uncertainty, and AoA measurements noise, is analyzed

    Cooperative Localization with Angular Measurements and Posterior Linearization

    Get PDF
    The application of cooperative localization in vehicular networks is attractive to improve accuracy and coverage. Conventional distance measurements between vehicles are limited by the need for synchronization and provide no heading information of the vehicle. To address this, we present a cooperative localization algorithm using posterior linearization belief propagation (PLBP) utilizing angle-of-arrival (AoA)-only measurements. Simulation results show that both directional and positional root mean squared error (RMSE) of vehicles can be decreased significantly and converge to a low value in a few iterations. Furthermore, the influence of parameters for the vehicular network, such as vehicle density, communication radius, prior uncertainty and AoA measurements noise, is analyzed.Comment: Submitted for possible publication to an IEEE conferenc

    Positioning algorithms for cooperative networks in the presence of an unknown turn-around time

    Get PDF
    This paper addresses the problem of single node positioning in cooperative network using hybrid two-way time-of-arrival and time-difference-of-arrival where, the turn-around time at the target node is unknown. Considering the turn-around time as a nuisance parameter, the derived maximum likelihood estimator (MLE) brings a difficult global optimization problem due to local minima in the cost function of the MLE. To avoid drawbacks in solving the MLE, we obtain a linear two-step estimator using non-linear pre-processing which is algebraic and closed-form in each step. To compare different methods, Cramér-Rao lower bound (CRLB) is derived. Simulation results confirm that the proposed linear estimator attains the CRLB for sufficiently high signal-to-noise ratios. © 2011 IEEE

    Cooperative Wireless Sensor Network Positioning via Implicit Convex Feasibility

    Get PDF
    We propose a distributed positioning algorithm to estimate the unknown positions of a number of target nodes, given distance measurements between target nodes and between target nodes and number of reference nodes at known positions. Based on a geometric interpretation, we formulate the positioning problem as an implicit convex feasibility problem in which some of the sets depend on the unknown target positions, and apply a parallel projection onto convex sets approach to estimate the unknown target node positions. The proposed technique is suitable for parallel implementation in which every target node in parallel can update its position and share the estimate of its location with other targets. We mathematically prove convergence of the proposed algorithm. Simulation results reveal enhanced performance for the proposed approach compared to available techniques based on projections, especially for sparse networks

    TW-TOA based positioning in the presence of clock imperfections

    Get PDF
    This manuscript studies the positioning problem based on two-way time-of-arrival (TW-TOA) measurements in semi-asynchronous wireless sensor networks in which the clock of a target node is unsynchronized with the reference time. Since the optimal estimator for this problem involves difficult nonconvex optimization, two suboptimal estimators are proposed based on the squared-range least squares and the least absolute mean of residual errors. We formulated the former approach as an extended general trust region subproblem (EGTR) and propose a simple technique to solve it approximately. The latter approach is formulated as a difference of convex functions programming (DCP), which can be solved using a concave–convex procedure. Simulation results illustrate the high performance of the proposed techniques, especially for the DCP approach

    TDOA based positioning in the presence of unknown clock skew

    Get PDF
    Cataloged from PDF version of article.This paper studies the positioning problem of a single target node based on time-difference-of-arrival (TDOA) measurements in the presence of clock imperfections. Employing an affine model for the behaviour of a local clock, it is observed that TDOA based approaches suffer from a parameter of the model, called the clock skew. Modeling the clock skew as a nuisance parameter, this paper investigates joint clock skew and position estimation. The maximum likelihood estimator (MLE) is derived for this problem, which is highly nonconvex and difficult to solve. To avoid the difficulty in solving the MLE, we employ suitable approximations and relaxations and propose two suboptimal estimators based on semidefinite programming and linear estimation. To further improve the estimation accuracy, we also propose a refining step. In addition, the Cramer-Rao ´ lower bound (CRLB) is derived for this problem as a benchmark. Simulation results show that the proposed suboptimal estimators can attain the CRLB for sufficiently high signal-to-noise ratios

    TDOA Based Positioning in the Presence of Unknown Clock Skew

    Get PDF
    This paper studies the positioning problem of a single target node based on time-difference-of-arrival (TDOA) measurements in the presence of clock imperfections. Employing an affine model for the behaviour of a local clock, it is observed that TDOA based approaches suffer from a parameter of the model, called the clock skew. Modeling the clock skew as a nuisance parameter, this paper investigates joint clock skew and position estimation. The maximum likelihood estimator (MLE) is derived for this problem, which is highly nonconvex and difficult to solve. To avoid the difficulty in solving the MLE, we employ suitable approximations and relaxations and propose two suboptimal estimators based on semidefinite programming and linear estimation. To further improve the estimation accuracy, we also propose a refining step. In addition, the Cramér-Rao lower bound (CRLB) is derived for this problem as a benchmark. Simulation results show that the proposed suboptimal estimators can attain the CRLB for sufficiently high signal-to-noise ratios
    corecore