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Abstract

This manuscript studies the positioning problem based on two-way time-of-arrival (TW-TOA) measurements

in semi-asynchronous wireless sensor networks in which the clock of a target node is unsynchronized with the

reference time. Since the optimal estimator for this problem involves difficult nonconvex optimization, two

suboptimal estimators are proposed based on the squared-range least squares and the least absolute mean of

residual errors. We formulated the former approach as an extended general trust region subproblem (EGTR)

and propose a simple technique to solve it approximately. The latter approach is formulate as a difference of

convex functions programming (DCP), which can be solved using a concave-convex procedure. Simulation

results illustrate the high performance of the proposed techniques, especially for the DCP approach.

Keywords: Positioning, two-way time-of-arrival (TW-TOA), clock imperfection, convex optimization,

trust region subproblems, concave-convex procedure.

1. Introduction

Location aware services are becoming vital requirements for many wireless systems. Due to some draw-

backs of using GPS receivers at wireless nodes for some scenarios, self-position recovery has been proposed

as an alternative approach and extensively investigated in the literature [1, 2, 3, 4, 5, 6]. Positioning based

on range estimates between nodes is a popular technique in the literature. For synchronous networks, the5

time-of-arrival (TOA) technique provides a good estimate of the distance between two nodes for reason-

able signal-to-noise ratios. A huge number of algorithms have been proposed in the literature to address

the positioning problem based on range measurements, e.g., the maximum likelihood estimator [2], linear

least-squares [7, 8, 9], squared-range least squares [10], projection onto convex sets [11, 12, 13], and convex

relaxation techniques [14, 15, 16, 17, 18].10
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In asynchronous networks, the range estimate based on the TOA is highly sensitive to clock imperfections.

Therefore, the positioning accuracy can be considerably degraded in the presence of clock imperfections. In

particular, for an affine model describing the clock behavior, the accuracy of the positioning techniques

based on the TOA measurements is affected by non-ideal clock offset and clock skew. The clock of a target

node can be synchronized with a reference time (clock) with a synchronization technique using, e.g., the15

MAC layer time stamp exchange, e.g., see, [19, 20, 21, 22, 23] and references therein. Motivated by pairwise

synchronization techniques, the authors in [24] formulate a joint synchronization and positioning problem

in the MAC layer. If the major part of the delay is the fixed delay due to propagation through the radio

channel, the joint position and timing estimation technique works well. In [25], the positioning problem is

studied in the presence of clock imperfection, which is only due to the clock offset. Considering the effects of20

an imperfect clock on distance estimates in the physical layer, the authors in [26] investigate the positioning

problem using time-difference-of-arrival (TDOA) measurements in the presence of clock imperfections. The

TDOA technique effectively removes the clock offset, but still suffers from the clock skew. Another popular

approach for estimating the distance between sensor nodes is to use a so-called two-way time-of-arrival (TW-

TOA) or time-of-flight based technique, which is an elegant approach in removing the effect of the clock offset25

on range measurements [9]. TW-TOA based positioning has an important advantage over the conventional

TOA and TDOA based positioning techniques in terms of implementation complexity. This is due to the

fact that TOA based positioning requires synchronization among all reference nodes and the target node,

and TDOA based positioning requires synchronization among all reference (anchor) nodes. On the other

hand, no synchronization is required for TW-TOA based positioning.30

Range estimates obtained via TW-TOA are affected by the clock skew and a processing delay called the

turn-around time [27]. A number of researchers have tackled the positioning problem or distance estimation

based on TW-TOA in fully or partially asynchronous networks [28, 29, 30, 31]. The authors in [32] propose

an approach to refine the position and clocks of the reference nodes during positioning and synchronization.

To improve the range estimation via TW-TOA, an effective technique based on a new clock counter scheme35

is proposed in [33]. The authors in [29] study the positioning problem in the presence of clock imperfections

for a TW-TOA based technique and propose a linear least squares based approach to solve the problem. The

proposed approaches work well in some scenarios, e.g., when there is a sufficient number of reference nodes

at known positions. In general, the previously proposed approaches require modifications to be effectively

applied to the positioning problem in which the clock skew and turn around times are also unknown. In40

addition, for practical applications the proposed algorithms may not be robust against outliers and non-

line-of-sight errors. In this study, we consider the positioning of a single target node based on TW-TOA
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measurements in the presence of clock imperfections. In this approach, a target node transmits a signal to

a reference node located at a known position and the reference node responds to the received signal after

an unknown turn-around time delay. As it is common in the literature, we assume that the reference node45

measures the turn-around time by a loop back test and transmits the estimate to the target node [34, 33].

The target node then computes the round-trip delay based on an estimate of the turn-around time. Assuming

an affine model for the clock of the oscillator, it is observed that the range estimation using the TW-TOA

measurement is affected by an unknown clock skew of the target node. Modeling the measurement errors

as Gaussian random variables, we obtain the optimal estimator to find the clock skew, and the location of50

the target node, and the turn-around times for the reference nodes. The optimal estimator poses a high

dimensional optimization problem and needs more than one distance estimate for every link to provide good

estimates of the unknown parameters. We, then, omit the effect of the turn-around times using a linear

transformation and consequently obtain a near-optimal estimator to find the location and clock skew of

the target node. Both the optimal and near-optimal estimators for the positioning problem considered in55

this study are nonconvex and difficult to solve. Using some approximations, we obtain two suboptimal

estimators. In the first approach, we consider the squared-range least-squares approach and formulate the

problem as an extended general trust region subproblem (EGTR)– a quadratic programming with two

nonconvex constraints. In general, EGTR is difficult to solve; hence, we modify the proposed technique in

[35] to approximately solve EGTR. In the second approach, we minimize the residual errors based on the60

`1 norm and arrive at a nonconvex problem in the form of the difference of convex functions programming

(DCP). The estimator based on `1 norm minimization of the residual can be an effective approach when

there are outliers or when the measurement errors deviate from the Gaussian distribution. For example in

practical scenarios, the direct path may be blocked and the measured distance may be larger than the actual

distance, resulting in positive bias and non-Gaussian errors. In the positioning literature the DCP approach65

was first applied to TDOA based positioning in [36]. We employ a similar concave-convex procedure as in

[36] to solve the problem. Note that the latter approach is robust against outliers. Simulation results indicate

the high performance of the proposed techniques, especially the DCP.

In summary, we extend our previous work [35] with the following main contributions:

• an approximate MLE (AMLE) to estimate the location and clock skew of the target node; (The MLE70

was first investigated in the previous work [35].)

• a suboptimal estimator based on extended general trust region subproblem (EGTR) for squared-range

measurements; (The proposed approach is different from GTR in [35] since EGTR considers two
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constraints as opposed to a single constraint in GTR proposed in [35].)

• a suboptimal estimator formulated as DCP that can be solved using a concave-convex procedure.75

The remainder of the manuscript is organized as follows. Section 2 explains the signal model considered

in this study. In Section 3 and 4 the localization algorithms are studied. Complexity analyses of different

approaches are discussed in Section 5. Simulation results are presented in Section 6. Finally, Section 7 makes

some concluding remarks.

Notation: The following notations are used in this manuscript. Lowercase Latin/Greek letters, e.g.,80

a, b, β, denote scalar values and bold lowercase Latin/Greek letters represent vectors. Matrices are shown

by bold uppercase Latin/Greek letters. IM is the M by M identity matrix. The operator E{·} is used to

denote the expectation of a random variable (or vector). The `p norm of a vector is denoted by ‖ · ‖p. The

diag(X1, . . . , XN ) is a diagonal matrix with diagonal elements X1, . . . , XN . For two matrices A and B,

A � B means A−B is positive semidefinite. 5g(a) denotes the gradient of g(x) at x = a. The set of all85

N -vector with positive components are denoted by RN+ . We use ⊗ to denote the Kronecker product.

2. System Model

Consider a two dimensional network 1 with N reference (anchor) nodes located at known positions

ai = [ai,1 ai,2]T ∈ R2, i = 1, ..., N . Suppose that one target node is placed at unknown position x =

[x1 x2]T ∈ R2. We assume that the target node estimates the distance to a reference node by performing

a TW-TOA measurement. We further assume that the clock value of an imperfect clock follows an affine

relation with the true (global) time t [37, 19, 20, 22, 23]. That is, the clock value of reference node i is

hi(t) , wit+ θi (1)

where wi is the skew and θi is the offset associated with the ith node clock. Note that a perfectly synchronized

clock has wi = 1 and θi = 0. In practice, wi is a number close to 1. For convenience, we denote the target

clock as h(t), where h(t) = wt+ θ.90

A TW-TOA measurement between the target node and the ith reference node for the kth round (time)

is carried out as follows: (a) the target sends a message to the reference node at (global) time tki,1, (b) the

message arrives at the reference node at time tki,2, (c) the reference node sends a return message at time tki,3,

and (d) the return message arrives at the target node at time tki,4. Clearly, tki,2 − tki,1 = tki,4 − tki,3 = di/c,

where c is the propagation speed and di , d(x,ai) , ‖x − ai‖2 is the distance between the target and ith

1The generalization to a three dimensional network is straightforward, but is not explored in this study.
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reference node. Moreover, tki,3 = tki,2 + Ti, where Ti is the turn-around time in the ith reference node, which

is assumed to be fixed during the positioning process. The TWO-TOA measurement is computed in the

target local clock as

zki =
1

2

[
h(tk4,i)− h(tk1,i) + nki

]
= w

di
c

+ w
Ti
2

+
nki
2
, k = 1, 2, . . . ,K (2)

where nki is the TW-TOA measurement error, which we model it as a zero-mean Gaussian with standard

deviation σi, i.e., nki ∼ N (0, σ2
i ), and K as the number of the TW-TOA measurements during the positioning

process.

The unknown parameter Ti either might be extremely small and can be neglected [20], (e.g., for a small

network when there are no strict constraints on the MAC layer delay) or it needs to be estimated. One way

to deal with the unknown parameter Ti is to jointly estimate it along with the location of the target node

[38]. It can also be estimated by reference node i using a loop back test and is sent back to the target node

[33]. In this study, we consider the latter approach. The estimate of Ti is

T̃ ki = hi(t
k
3,i)− hi(tk2,i) + εki = wiTi + εki , k = 1, 2, . . . ,K (3)

where we model the estimation error as ε ∼ N (0, γ2i ).

In the sequel, we assume that the reference nodes are synchronized with a reference clock, e.g., via a GPS

signal.2 Therefore wi ≈ 1 and we can write T̃ ki ≈ T̂ ki , where

T̂ ki , Ti + εki (4)

or equivalently

Ti = T̂ ki − εki . (5)

Estimating the turn around time in reference nodes involves TOA measurements (in a loopback based95

test); hence, it is subject to TOA estimation errors [33].

We now replace Ti in (5) with that in (2) and obtain an approximate (transformed) model for measure-

ments

zki = w
di
c

+ w
T̂ ki
2

+
nki
2
− wε

k
i

2
. (6)

As mentioned, the approximation is good in the (reasonable) case when the reference nodes are equipped

with accurate clocks.

2There error of synchronization using GPS signals is on the order of 10 nanoseconds or less [39, 40].
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In the following sections, we use the input data
{
{zki , T̂ ki }Ni=1

}K
k=1

to obtain the optimal estimator based

on models (2)–(4) or suboptimal estimators according to (6). The parameters w and Ti, i = 1, 2, . . . , N , are100

considered as unknown nuisance parameters, while σi, γi, and ai are assumed to be known for i = 1, 2, . . . , N .

3. Maximum Likelihood Estimator

We define the measurement vector

m ,



m1

m2

...

mK


, (7)

where

mk ,

[
zk1 zk2 · · · zkN T̂ k1 T̂ k2 · · · T̂ kN

]T
. (8)

To obtain the MLE for joint estimation of the position and clock skew of the target node, the following

optimization problem needs to be solved [41]:[
x̂T ŵ t̂

T

a

]
= arg max
w∈R+; ta∈RN

+ ;x∈R2

p(m;w, ta,x) (9)

where p(m;w, ta,x) is the probability density function (pdf) of vector m indexed by the vector [x̂T w tTa ]T

and ta = [T1 T2 . . . TN ]T . Since the TOA measurement errors are assumed to be independent and identically

distributed random variables, the pdf of m can be calculated from (2) and (4) as

p(m;w, ta,x) =

K∏
k=1

N∏
i=1

√
2

πσ2
i

exp

(
−2(zki − wTi/2− wd(x,ai)/c)

2

σ2
i

)√
1

2πγ2i
exp

(
− (T̂ ki − Ti)2

2γ2i

)
. (10)

Then, the MLE is obtained as[
x̂T ŵ t̂a

]T
= arg max
x∈R2;w∈R+; ta∈RN

+

p(m;w, ta,x)

= arg min
x∈R2;w∈R+; ta∈RN

+

K∑
k=1

N∑
i=1

2

σ2
i

(
zki − w

Ti
2
− wdi

c

)2
+

(T̂ ki − Ti)2
2γ2i

. (11)

For the MLE formulated in (11) there are N + 3 unknowns. Therefore, for low numbers of messages

K, the MLE problem can be ill-posed. To alleviate the difficulty for solving the optimal MLE in (11), we

investigate another approximate MLE based on the model obtained in (6). In fact in the MLE we use both105

measurements and prior knowledge about Ti to jointly estimate the location, clock skew, and turn-around

times, while, relying on the estimate of turn-around time, we can use the approximate model in (6) (a

transformed model) to only estimate the location and clock skew.
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We collect zki from (6) in a vector ma = [z11 . . . z1N . . . zK1 . . . zKN ]T . Next, we compute the pdf of ma

as

p(ma;w,x) =

K∏
k=1

N∏
i=1

√
2

π(σ2
i + w2γ2i )

exp

(
−2(zki − wdi/c− wT̂ ki /2)2

(σ2
i + w2γ2i )

)
. (12)

We then find an approximate MLE (AMLE)3 as[
x̂T ŵ

]T
= arg max
x∈R2;w∈R+

p(ma;w,x)

= argmin
x∈R2;w∈R+

K∑
k=1

N∑
i=1

2

(σ2
i + w2γ2i )

(
zki − w

T̂ ki
2
− wdi

c

)2
+

1

2
ln(σ2

i + w2γ2i ). (13)

It is observed that the search domain in the AMLE in (13) is limited to the location x and the clock skew

w, thus a lower dimensional search compared to that of the MLE in (11).110

It is also noted that both the MLE and AMLE formulations in (11) and (13) pose difficult global opti-

mization problems. To avoid the drawbacks in solving these problems, we propose two suboptimal estimators

in the next section.

4. Proposed techniques

In this section, we propose two techniques based on squared-range least squares and `1 norm minimization

of residuals. First, we divide both sides of (6) by w (we safely assume that w 6= 0) and express the model as

zki α−
T̂ ki
2

=
di
c

+
nki
2
α− εki

2
, i = 1, 2, . . . , N, k = 1, 2, . . . ,K (14)

where α = 1/w.115

In the following, the model in (14) is employed in order to derive the proposed suboptimal estimators.

4.1. Squared-Range measurement Least Squares

In this section, we assume that the measurement noise αnki /2 − εki /2 is small compared to di/c. Then,

taking the square of both sides of (14) and dropping the small terms yield

(zki α)2 +
(T̂ ki )2

4
− zki T̂ ki α '

1

c2
(xTx− 2aTi x+ ‖ai‖22) + νki , (15)

where νki = di(αn
k
i −εki )/c. Now, we apply a weighted least squares criterion to the model in (15) and obtain

the following minimization problem:

minimize
x∈R2; α∈R+

K∑
k=1

N∑
i=1

1

d2i (α
2σ2
i + γ2i )

(
1

c2
xTx− 2

c2
aTi x− (zki )2α2 + zki T̂

k
i α+

1

c2
‖ai‖22 −

(T̂ ki )2

4

)2

. (16)

3We call the MLE in (13) as AMLE because it is based on the approximate model (6) instead of the original measurements

in (7).
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The problem in (16) can be expressed as a quadratic programming problem

minimize
y

‖W 1/2(Ay − b)‖22

subject to yTD1y + 2fT1 y = 0

yTD2y + 2fT2 y = 0 (17)

where matrices W , A, D1, and D2 and vectors b, f1, f2, and y are defined as

W = IK ⊗ diag

(
1

d21(α2σ2
1 + γ21)

, . . . ,
1

d2N (α2σ2
N + γ2N )

)
,

A ,



1
c2 − 2

c2a
T
1 −(z11)2 z11 T̂

1
1

...
...

...
...

1
c2 − 2

c2a
T
N −(z1N )2 z1N T̂

1
N

...
...

...
...

1
c2 − 2

c2a
T
1 −(zK1 )2 zK1 T̂

K
1

...
...

...
...

1
c2 − 2

c2a
T
N −(zKN )2 zKN T̂

K
N



,

b ,



− 1
c2 ‖a1‖22 +

(T̂ 1
1 )

2

4

...

− 1
c2 ‖aN‖22 +

(T̂ 1
N )2

4

...

− 1
c2 ‖a1‖22 +

(T̂K
1 )2

4

...

− 1
c2 ‖aN‖22 +

(T̂K
N )2

4



,

D1 , diag(0, 1, 1, 0, 0),

f1 ,

[
−1

2
0 0 0 0

]T
D2 , diag(0, 0, 0, 0, 1)

f2 ,

[
0 0 0 − 1

2
0

]T
y ,

[
‖x‖22 xT α2 α

]T
. (18)

Note that since the weighting matrix W depends on the unknown distance di and α, we first replace

W with the identity matrix and find an estimate of the location and α as described above. Then, we

reconstruct the distance considering the estimate x̂ as d̂i = ‖x̂−ai‖2 and form a new approximate weighting120
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matrix. This approach can be continued for a number of iterations; however, as we have observed through

simulations, after two updates, the estimation accuracy improves only slightly via additional iterations. For

i.i.d. measurement errors, σi = σ and γi = γ, the weighing matrix will be simplified and only be dependent

on distances.

The constraints in (17) equivalently express two constraints on elements of y, i.e., xTx = ‖x‖22 and

αα = α2. The problem in (17) minimizes a quadratic function over two quadratic constraints. This type of

problems is called the extended trust region problem (EGTR) or two trust region problem and is generally

difficult to solve [42, 43]. For special cases, the EGTR problem can be exactly solved [44]. In the previous

work, by dropping the second constraint in (17), the problem was formulated as a trust region subproblem

(GTR) [35] that can be solved under mild conditions [45]. It has also been known that the GTR has zero

duality gap and the optimal solution can be extracted from the dual solution [46, 44, 45]. However, in

this study, we consider both constraints and propose an algorithm to approximately solve the problem in

(17) by modifying the GTR approach in [35]. The performance of the proposed approach requires further

investigations in future work, but as investigated through the simulations, the algorithm provides good

performance in various situations. The proposed approach relies on a fact about the structure of the problem

and tries to adjust iterations toward a reasonable solution. To this end, we first omit the second constraint

and consider a GTR similar to [35]. For GTR, a necessary and sufficient condition for y∗ to be optimal in

(17) is that there exists a µ ∈ R such that [46]

(ATWA+ µD1)y∗ = (ATWb− µf1),

(y∗)TD1y
∗ + 2fT1 y

∗ = 0,

(ATWA+ µD1) � 0. (19)

Under the conditions considered in (19), the solution to the problem of (17) is given by

y(µ) = (ATWA+ µD1)−1(ATWb− µf1). (20)

In such a situation to find µ, we simply replace (20) into constraint yTD1y + 2fT1 y = 0, i.e.,

φ(µ) = yT (µ)D1y
T (µ) + 2fT1 y(µ) = 0, µ ∈ I (21)

where the interval I consists of all µ such that ATWA+ µD1 � 0. The interval I is given by [10]

I = (−1/µ1,∞), (22)

with µ1 representing the largest eigenvalue of (ATWA)−1/2D1(ATWA)−1/2 [45]. Next in order to force125

the solution to satisfy the second constraint, we check the last two components of y(µ) to see if they
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are close to each other. If not, we replace the values of [y(µ)]4 and [y(µ)]5 by their average, [y(µ)]4 =

([y(µ)]4 + ([y(µ)]5)2)/2 and [y(µ)]5 =
√

[y(µ)]4.

In summary, the suggested algorithm to (approximately) solve the problem in (17) is expressed as

• Use a bisection search to find a root of φ(µ) = 0, say µ∗. Note that φ(µ) is a strictly decreasing130

function with respect to µ [45]. In every step of the bisection search, if |[y(µ)]4 − [y(µ)]5| ≥ ς (ς is a

predetermined small value), then replace [y(µ)]4 by ([y(µ)]4 + ([y(µ)]5)2)/2 and [y(µ)]5 by
√

[y(µ)]4.

• Replace µ∗ into (20) to obtain y∗ = y(µ∗).

• Estimate the unknown parameters as x̂ = [y∗]2:3 and ŵ = 1/[y∗]4, with [v]i:j denoting the ith to the

jth elements of vector v.135

The details of the algorithm are shown in Algorithm 1.

Algorithm 1 EGTR
1: Initialization: λ1 = −1/µ1 and λ2 = 1/µ1 and set values of ς and s

2: for k = 0 until convergence or predefined number K do

3: Compute y(λi), i = 1, 2 from (20)

4: If |[y(λi)]4 − [y(λi)]5| ≥ ς (ς is a predetermined small value), then replace [y(λi)]4 by ([y(λi)]4 +

([y(λi)]5)2)/2 and [y(λi)]5 by
√

[y(λi)]4.

5: Compute φ(λi), i = 1, 2 from (21)

6: if φ(µ1)φ(µ1) > 0 then

7: λ1 = λ2 and λ2 = sλ2

8: else

9: λ′ = (λ1 + λ2)/2

10: compute φ(λ′)

11: if φ(λ′)>0 then

12: λ1 = λ′

13: else

14: λ2 = λ′

15: end if

16: end if

17: end for

The main difference between the GTR approach in [35] and the EGTR in this work is in the step four of

Algorithm 1. Namely, this step is not present in our previous work. In the simulation section, we compare
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the performance of the EGTR in this study and the GTR in [35] and observe that the proposed approach

generally outperforms the previous algorithm.140

Remark 1. Yet another approach to approximately solve the problem in (17) is to break the problem into

two GTR problems. That is, we consider two sperate GTRs with the same objective functions but different

constraints, one with the first constraint and the other with the second constraint. We then solve GTRs in

parallel, but for every iteration, we make sure both solutions are close to each other. That is, we force both

solutions to agree on their components. We will not investigate this technique since it is more complex than145

the approach proposed above.

Another estimator based on a linear least squares (LLS) approach obtained in Appendix 8.1 can be

alternatively applied to the model in (15). Note that the algorithm derived in Appendix 8.1 is similar to the

one proposed in [29], except the correction technique introduced in this study. As will be observed in the

simulations section the proposed approach in this section, i.e., EGTR, has better performance than the LLS150

approach, especially for low number of reference nodes.

4.2. A concave-convex procedure (CCCP)

In this section, we take the `1 norm minimization of residual errors into account and propose a technique

to solve the positioning problem. Namely, based on (14), we consider the following `1 norm minimization

problem:

minimize
x∈R2; α∈R+

‖r‖1 (23)

where r = [r11 . . . r
1
N . . . r

K
1 . . . rKN ]T with rki = zki α − T̂ ki /2 − di/c. Note that for high signal-to-noise ratios

(low standard deviations of noise), the `2 and `1 minimization approaches have similar performance [47].

Moreover, the `1 norm minimization in (23) is robust against outliers [47]. Outliers in the positioning process

may arise due to various reasons; e.g., blockage of the direct path can lead to outliers in some situations.

The optimization problem in (23) can be written (in the epigraph form) as [47, 36, 48]

minimize
x∈R2;α∈R+;t∈RN

+

K∑
k=1

N∑
i=1

tki

subject to zki α− T̂ ki /2− di/c ≤ tki

zki α− T̂ ki /2− di/c ≥ −tki . (24)
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The nonconvex problem in (24) is reminiscent of a well-known nonconvex problem called difference of convex

functions programming (DCP) [49]. The general form of DCP is as follows:

minimize
x

f0(x)− g0(x)

subject to wi(x)− gi(x) ≤ 0, i = 1, . . . ,M (25)

where f0(x), wi(x), and gi(x) are smooth convex functions for i = 1, . . . ,M . A method to solve (25) is to

sequentially solve the problem. That is, we first approximate the concave function (−gi(x)) with a convex

one by an affine approximation. Let us consider a point xj in the domain of the problem in (25), linearize

the concave function around xj and write the optimization problem in (25) as

minimize
x

f0(x)− g0(xj)−5g0(xj)T (x− xj)

subject to wi(x)− gi(xj)−5gi(xj)T (x− xj) ≤ 0. (26)

The convex problem in (26) can now be solved efficiently. Denote the solution of (26) as xj+1. Next we

go for further improving the solution by convexifing (25) for the new point xj+1 similar to the procedure

employed for xj . This sequential programming procedure, called concave-convex programming (CCCP),155

continues for a number of iterations. The convergence of the CCCP to a stationary point has been shown in

the literature, e.g., [49, 50] and references therein.

Applying the CCCP technique to the problem in (24), we get the following optimization problem:

minimize
x∈R2;α∈R+;t∈RN

+

K∑
k=1

N∑
i=1

tki

subject to zki α− hTi,jx− bji,k − tki ≤ 0

1

c
‖x− ai‖2 − zki α+

T̂ ki
2
− tki ≤ 0 (27)

where

hi,j = (xj − ai)/(cd(ai,x
j))

bji,k = T̂ ki /2− hTi,jxj + d(ai,x
j)/c. (28)

The optimization problem in (27), which is called second order cone programming (SOCP), can be efficiently

solved. We call the corresponding CCCP as CCCP-SOCP. Algorithm 2 shows a high level implementation

of the algorithm.160
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Algorithm 2 CCCP-SOCP
1: Initialization: choose initial value for x0

2: for j = 0 until convergence or predefined number J do

3: Compute hi,j and b
j
i,k from (28)

4: Solve problem (27) and denote the solution xo

5: set xj+1 = xo

6: end for

5. Complexity analysis

In this section, we study the complexity of the proposed techniques in terms of floating point operations

(flops) and also running time in Matlab. We compare the complexity of the MLE, LLS, EGTR, and CCCP-

SOCP. To compute the complexity of the MLE, we assume that a good initial point is available, and an

iterative algorithm such as the Gauss-Newton (GN) method converges to the global minimum after a number

of iterations. Of course, finding a good initial point for the MLE is a challenging problem and this study

also aims to tackle it. For the problem at hand the complexity of the MLE for every Newton step can

be computed as O(K2N3)). For the AMLE, the complexity for every Newton step can be computed as

O((KN)2). The corresponding LLS needs an order of O(KN) to implement. For the EGTR, we need to

use a bisection search to solve (21), which is the most complex part of the algorithm. Suppose the bisection

search takes ksq steps, then the total cost of the the proposed approach can be approximated as O(ksqKN).

In the simulations, we have observed that the bisection search algorithm usually takes 20 to 30 iterations to

find the optimal value of γ. Note that we need to run the LLS and EGTR twice. Thus the corresponding

complexities are increased by a factor of two. Finally, the complexity of the CCCP-SOCP can be computed

as follows. Consider a general form of the SOCP problem as

minimize
x∈Rn

cTx

subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m,

‖x‖2 ≤ R (29)

where Ai ∈ Rki×n, bi ∈ Rki , and di ∈ R. Note that the constraint on the norm of x ensures the strong

convexity of the centering problem in the barrier approach [47]. The worst-case complexity of the problem

in (29) can be computed as O((1+m)1/2n(n2 +m+
∑m
i=1 k

2
i ) log (1/ε)) [51], where ε is an accuracy tolerance

in solving the problem.165

13



The complexity of the CCCP-SOCP for every estimate xj can now be approximated as

O((KN)3.5 log (1/ε)).

As mentioned before we need to solve the problem in kcccp steps, hence the total cost isO(kcccp(KN)3.5 log (1/ε)).

As we observe, a small number of updatings, usually three, kcccp = 3, is enough to obtain the solution. Table

1 summarizes the complexity of the different approaches.

We have also measured the average running time of different algorithms for a network consisting of 6

reference nodes as considered in Section 6. In the simulations, we set K = 2 and σi = γi = 10. The170

algorithms have been implemented in Matlab on a MacBook Pro (Processor 2.3 GHz Intel Core i7, Memory

8 GB 1600 MHz DDR3). The MLEs are implemented by Matlab function fminsearch initialized with the

true values of the target position, the clock skew, and turn-around times. It is noted that the function

fminsearch is based on the Nelder-Mead simplex algorithms, which does not compute gradients or Hessians

to find; hence, its complexity might not be the same as the complexity of Newton-type algorithms. The175

CCCP-SOCP is implemented by the CVX toolbox [52]. We use three updatings to get an estimate.

We run the algorithms for 500 realizations of the network and compute the average running time in ms.

The results are shown in Table 2. Considering the complexity analysis and average running time in Tables 1

and 2, respectively, we can conclude that the proposed approach has reasonable complexity and running

time. Although CCCP-SOCP takes a longer amount of time than MLE, it does not need a good initial180

point. While for the MLE with an arbitrary initial point, the algorithm may converge to a local minimum

resulting in a large position error. As we will see in the next section, the CCCP-SOCP outperforms both

the LLS and EGTR approaches in terms of the root-mean-squared-error.

6. Numerical results

In this section, we evaluate the performance of the proposed approaches through computer simulations.

We consider a 1600 m by 1600 m area and a number of reference nodes that are located at fixed positions

a1 = [800 800], a2 = [800 − 800], a3 = [−800 800], a4 = [−800 − 800], a5 = [800 0], a6 = [0 800], a7 =

[−800 0], and a8 = [0 − 800]. In the simulations, we pick the first N reference nodes, i.e., a1, . . . ,aN . One

target node is randomly distributed inside the area. The turn-around time is set to 0.001 ms. The clock

skew is assumed to be unknown and is set to 100 PPM, i.e., w = 1.0001. Such a value for clock skew is

common for a practical oscillator. For example for a center carrier frequency fc = 100 MHz and a frequency

offset ∆f = 10 kHz, the actual frequency is given by fc ±∆f . Therefore, the period of the oscillating signal
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(versus the nominal period T0 = 1/fc) is given by

T =
1

fc ∓∆f
≈ 1

fc
(1± ∆f

fc
) = To(1± 0.0001) (30)

which shows how the clock of the oscillator is scaled with respect to the nominal clock To.185

To compare different approaches, we use the root-mean-squared-errors (RMSEs) defined as

RMSE ,
√

E‖x̂− x‖22. (31)

We compare the proposed techniques (CCCP-SOCP, which is implemented using CVX, and EGTR) with

the MLE and AMLE in (11) and (13), respectively, (which are implemented by Matlab function fminsearch

initialized with the true values of the target location, turn-around times, and clock skew), the GTR in [35],

the LLS derived in Appendix 8.1, and the Cramér-Rao lower bound (CRLB) as derived in Appendix 8.2. In

the simulations, we assume that σi = γi = σ, i = 1, . . . , N . We randomly initialize the CCCP-SOCP inside190

the network and we also set kcccp = 3. We use 2000 Monte-Carlo simulations to generate the results. To

simulate the range measurements and estimates of turn around times, we use models (4) and (2), respectively.

To implement the bisection search, we consider an interval defined by Ilower and Iupper and investigate if the

zero crossing of φ(µ) in (21) occurs in the interval. To check if the solution lies in the interval, we simply

check the sign of φ(µ) at Ilower and Iupper. No change in sign means that the solution lies outside of the195

current interval. For initialization, we set Ilower = −1/µ1 and Iupper = 1/µ1. If the solution of φ(µ) = 0 is

not found in the interval, we change the interval as I ′lower = Iupper and I ′upper = 10Iupper (s = 10 in Algorithm

1). If the solution lies in an interval, we bisect the interval and investigate which subinterval contains the

solution. We also set ς = 0.05.

Fig. 1 shows the RMSEs of location estimates for different approaches for various numbers of reference200

nodes. In the simulations, we set K = 2. It is observed that the proposed approach, CCCP-SOCP, achieves

good performance very close to the optimal estimator MLE and the CRLB, especially for low number of

reference nodes and high signal-to-noise ratios. From the figure, it is noted that the EGTR proposed in

this study generally outperforms the previous GTR and LLS, especially for low numbers of reference nodes.

As the number of reference nodes increases, the LLS, GTR, and EGTR show similar performance. We205

have observed a similar behavior for other network deployments. In general, EGTR provides more robust

and accurate estimates than GTR, especially for small number of measurements (small K or N). It is

also observed that for large numbers of reference nodes, the least squares based approach shows better

performance compared to the CCCP-SOCP approach for the low standard deviation of noise. The reason is

that for low measurement errors, the squared term (vki )2 is negligible and thus the approximation in (15) is210
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more likely to be valid. In addition for a larger number of reference nodes, matrix A will be well-conditioned

and thus numerical roundoff errors will decrease.

Next, we study the effects of NLOS measurements on the performance of estimators. We assume that a

range measurement can be affected by NLOS errors with probability 0.2. For every NLOS measurement, we

add a uniform noise to the measurements as follows:

zki = w

(
di
c

+
Ti
2

)
+ qiu

k
i +

nki
2

(32)

where we assume that uki ∼ U [0, 5/c] and qi ∈ {0, 1} are iid Bernoulli random variables with Pr{qi = 1} = 0.2.

The uniform distribution is commonly used to model NLOS error, e.g., [53, 54, 12].

Fig. 2 depicts the performance of different approaches in NLOS conditions for K = 2. It is observed that215

the CCCP-SOCP achieves high performance compared to the other approaches, especially for low standard

deviations of noise, and it is robust against outliers as expected. For small σ, the dominant perturbation

is outlier disturbance and consequently the MLE derived in this study is not optimal, explaining why the

MLE is worse than the CCCP-SOCP approach. For large standard deviations of noise, which indicates

the Gaussian measurement noise is dominant, the CCCP-SOCP seems to outperform the MLE. This can220

be explained by the fact that the MLE is only guaranteed to be asymptotically optimal, i.e., for low noise

standard deviation or large number of measurements. Note that we have employed the MLE computed in

(11) and (13) to study their robustness against NLOS conditions. It may be possible to derive an MLE to

deal with NLOS measurements if the distribution of outliers is known. From the figure, it is observed that

the proposed EGTR outperforms GTR and LLS, especially for low numbers of reference nodes. In general,225

for a fixed network, the performance of algorithms is affected by two perturbations: measurement noise and

NLOS errors. As the measurement error becomes smaller, the performance is mainly affected by NLOS

errors. Since NLOS statistics are fixed in the simulation, we expect a kind of flat behavior for RMSE.

We now study the convergence of CCCP-SOCP through simulations. Fig. 3 depicts the convergence speed

of the proposed approach for 50 random initializations. In the simulations, we set K = 2. For every estimate230

given by CCCP-SOCP, we compute the residual ‖r‖1, where r is given by (23). It is observed that the

CCCP-SOCP approach converges very fast, approximately in three sequential updatings.

Finally we briefly compare the performance of EGTR with GTR-based algorithm without considering

the clock skew. The signal model of (2) can be expressed as

zki =
di
c

+
Ti
2

+
nki
2

+ ρ(
di
c

+
Ti
2

)︸ ︷︷ ︸
,bi

, k = 1, 2, . . . ,K (33)

where ρ is the clock skew deviation from one, i.e., w = 1 + ρ. It is observed that imperfect clock skew
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causes a bias bi in the measurement compared to the ideal scenario, i.,e., for ρ = 0. For very small bi,

estimating the clock skew parameter along with the location estimate may result in large location errors.235

However, when the bias is considerable compared to the measurement error nk
i

2 , the joint estimation leads

to improve accuracy. Considering the model in (33), we may need to take into account different issues to

design an algorithm. For example, since the mean of the perturbation is nonzero, we may need to estimate

and subtract the mean from the measurement for designing an algorithm such as least squares. Here, we

employ a localization algorithm proposed for the ideal scenario when the model actually comes form (33).240

In particular, the proposed GTR algorithm for ideal clock is compared with EGTR for different values of ρ.

Fig. 4 shows the RMSE of EGTR and GTR without clock skew consideration. It is observed that the

joint estimation of the location and clock skew for high SNR improves the accuracy of localization. For low

SNRs, the accuracy mainly depends on the variance of measurement noise. It is also observed that as the

clock skew deviation from one increases, the performance of the traditional approach without considering the245

clock parameter degrades drastically, especially for high SNRs. The performance of EGTR remains almost

the same as ρ changes. This figure also shows an improved performance for EGTR compared to GTR. In

fact, it can be observed that EGTR is more robust than GTR.

7. Conclusions

In this manuscript, TW-TOA based positioning has been studied in a semi-asynchronous network in250

which the clock of the target node is not synchronized with a perfect clock. Since the optimal ML estimator

is highly nonconvex and difficult to solve, two efficient suboptimal estimators have been obtained for the

problem under some approximations and conditions. The first method is based on the squared-range least

squares that is formulated as an extended general trust region subproblem (EGTR). A simple approach has

been proposed to solve EGTR. The second approach is derived by replacing the `2 norm minimization of255

residuals by an `1 norm minimization, which in turn can be formulated as difference of convex programming

(DCP). A concave-convex procedure has been employed to solve the resulting DCP. Simulation results show

the high performance of the proposed techniques, especially the DCP approach. It has also been observed

through simulations that the DCP approach is robust against NLOS errors. The future work considers the

extension of the approaches studied in this manuscript to cooperative scenarios. Simulation results show a260

promising performance for EGTR, in terms of robustness and accuracy. Although we have not encountered

any convergence problems of the proposed EGTR approach, an extensive study of the convergence properties

of EGTR is left as a topic for future work.
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8. Appendices

8.1. Linear Least Squares (LLS)265

In this section we obtain an LLS estimator similar to [8, 28]. We consider the following linear model

(originated from (15)):

b = Ay + ν, (34)

where ν = [ν11 . . . ν1N . . . ν
K
1 . . . νKN ]T , A, b, and y are given in (18). We assume that A has full column

rank. A necessary condition for this is that KN ≥ 5.

The unconstrained weighted least squares solution to (34) is given by [41]

ŷ = (ATWA)−1ATWb. (35)

where W is as in (18). The covariance matrix of ŷ can be computed as

Cŷ = (ATWA)−1. (36)

Note that for a large network, matrix A can be ill-conditioned [28]. Then, we can use a regularization

technique to resolve the drawback in the least squares solution [47, 28].

We can further improve the location estimate by applying a correction technique similar to [8, 28]. We

consider the following relations:

[y]1 = ‖x‖22 + ξ1,

[y]4 = α2 + ξ4,

[y]2 = x1 + ξ2,

[y]3 = x2 + ξ3,

[y]5 = α+ ξ5, (37)

where ξ = [ξ1 . . . ξ5]T is the estimation error. Assuming small estimation errors, we take the squares of

both sides of last three equations in (37) and obtain the following expressions:

[y]22 ' x21 + 2x1ξ2,

[y]23 ' x22 + 2x2ξ3,

[y]25 ' α2 + 2αξ5. (38)

Based on (37) and (38), we obtain a linear model as

h = Bθ + Pξ, (39)

18



where

B =



1 1 1

1 0 0

0 1 0

0 0 1


, P =



1 0 0 0 1

0 2x1 0 0 0

0 0 2x2 0 0

0 0 0 2α 0



h =



[y]1 + [y]4

[y]22

[y]23

[y]25


, θ = [x21 x

2
2 α

2]T . (40)

The least squares solution to (39) is given by

θ̂ = (BTC−1
θ̂
B)−1BTC−1

θ̂
h, (41)

where the covariance matrix Cθ can be computed as

C θ̂ = PCŷP
T . (42)

To compute the matrix P , we use the estimate of x̂ obtained in (35) instead of unknown vector x.270

Finally the location estimate can be obtained as

x̃i = sgn([y]i+1)

√
|[θ̂]i|, i = 1, 2, (43)

where sgn denotes the signum function defined as

sgn(x) =

 1 if x ≥ 0;

−1 if x < 0.
(44)

The covariance matrix of the estimate in (43) can be obtained similar to [28].

8.2. Cramér-Rao Lower Bound (CRLB)

Considering the measurement vector in (7) with mean µK = 1K⊗µ and covariance matrix CK = IK⊗C

where

µ =

[
f

(
d1
c

+
T1
2

)
. . . f

(
dN
c

+
TN
2

)
T1 . . . TN

]T
,

C = diag
(
σ2
1

4
, . . . ,

σ2
N

4
, γ21 , . . . , γ

2
N

)
, (45)

the elements of the Fisher information matrix can be computed as [41, Ch. 3]

Jnm = [J ]nm =

[
∂µK
∂ψn

]T
C−1K

[
∂µK
∂ψm

]
, n,m = 1, 2, . . . , N + 3, (46)
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where

ψn =


xn, if n = 1, 2

w, if n = 3

Tn, if n > 3.

(47)

From (45), ∂µK/∂ψn can be obtained as follows:[
∂µK
∂ψn

]
= 1K ⊗

[
∂µ1

∂ψn
. . .

∂µN
∂ψn

]T
, n = 1, 2, . . . , N + 3, (48)

where

∂µi
∂ψn

=



w
xn−a1,n
c d(ai,x)

, if n = 1, 2, i ≤ N

di
c + Ti

2 , if n = 3, i ≤ N

0, if n = 1, 2, or 3, i > N

w
2 , if n > 3, i ≤ N

1, if n > 3, i > N.

(49)
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After some calculations, the entries of the Fisher information matrix can be computed as follows:

J11 = 4Kw2
N∑
i=1

(
x1 − ai,1
σicd(ai,x)

)2

,

J22 = 4Kw2
N∑
i=1

(
x2 − ai,2
σicd(ai,x)

)2

,

J33 = 4K

N∑
i=1

(
di/c+ Ti/2

σi

)2

,

Jjj = K

(
2w2

σ2
j

+
1

γ2j

)
, j > 3

J12 = J21 = 4Kw2
N∑
i=1

(
x1 − ai,1
σic d(ai,x)

)(
x2 − ai,2
σic d(ai,x)

)
,

J13 = 4Kw

N∑
i=1

(
x1 − ai,1
σicd(ai,x)

)(
di/c+ Ti/2

σi

)
,

J23 = 4Kw

N∑
i=1

(
x2 − ai,2
σicd(ai,x)

)(
di/c+ Ti/2

σi

)
,

Jj1 = J1j = K

(
w

x1 − ai,1
σ2
i cd(ai,x)

)
,

Jj2 = J2j = K

(
w
x2 − ai,2
σ2
i c(.ai,x)

)
,

Jj3 = J3j = 4Kw

N∑
i=1

(
x1 − ai,1
σic d(ai,x)

)(
di/c+ Ti/2

σi

)
,

Jij = Jji = 0, i 6= j, i, j > 3 (50)

The CRLB, which is a lower bound on the variance of any unbiased estimator, is given as

Var(ψ̂i) ≥ [J−1]i,i . (51)
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Figure 1: The RMSE of different approaches for K = 2 for (a) five reference nodes, (b) six reference nodes, (c) seven reference

nodes, and (d) eight reference nodes.
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Figure 2: The RMSE of difference approaches for NLOS conditions (K = 2) for (a) five reference nodes and (b) six reference

nodes.
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Figure 3: Convergence of proposed approaches for 50 random initializations for cσ = 10 and K = 2 for (a) 6 reference nodes,

(b) 8 reference nodes.

28



−10 −5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 log 1
(c σ)2 [dBm2]

R
M

SE
[m

]

GTR
EGTR

(a)

−10 −5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 log 1
(c σ)2 [dBm2]

R
M

SE
[m

]

GTR
EGTR

(b)

−10 −5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 log 1
(c σ)2 [dBm2]

R
M

SE
[m

]

GTR
EGTR

(c)

−10 −5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 log 1
(c σ)2 [dBm2]

R
M

SE
[m

]

GTR
EGTR

(d)

Figure 4: The RMSE of EGTR and GTR omitting clock skew for K = 2 for different values of ρ (a) ρ = 0.0001, (b) ρ = 0.0002,

(c) ρ = 0.0003, and (d) ρ = 0.0004.
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