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Abstract—The application of cooperative localization in vehic-
ular networks is attractive to improve accuracy and coverage
of the positioning. Conventional distance measurements between
vehicles are limited by the need for synchronization and provide
no heading information of the vehicle. To address this, we present
a cooperative localization algorithm using posterior linearization
belief propagation (PLBP) utilizing angle-of-arrival (AoA)-only
measurements. Simulation results show that both directional and
positional root mean squared error (RMSE) of vehicles can
be decreased significantly and converge to a low value in a
few iterations. Furthermore, the influence of parameters for the
vehicular network, such as vehicle density, communication radius,
prior uncertainty, and AoA measurements noise, is analyzed.

I. INTRODUCTION

Vehicular localization with high precision is of great im-

portance for future applications such as autonomous driving.

Although the widely used localization technique global navi-

gation satellite system (GNSS) can provide position informa-

tion, it is limited by the poor signal penetration capabilities

and has inadequate performance in some specific scenarios

such as indoor environment. Cooperative localization [1] is a

promising technique to improve the positioning accuracy and

coverage. It enables vehicles to share orientation and position

information to neighbours, and infer their own positions using

these information. Generally, this inference process can be

implemented by message passing (MP) algorithms such as

Belief propagation (BP) [2]. In BP, messages are generated

based on positioning information from on-board sensors, such

as 5G front-end, radar, and stereo cameras [3], and then mes-

sages are propagated among vehicles’ neighbours. Utilizing

these BP messages, vehicles can update their local beliefs,

i.e., vehicles update their own position and orientation states

based on neighbours’ information. Cooperative localization

is particularly advantageous when vehicles have different

prior localization accuracy, because vehicles with high-quality

sensors can help vehicles with low quality sensors to reduce

their localization errors. The last point is practical in the

foreseeable future because vehicles with different levels of

sensing precision are expected to coexist [4].

The performance of cooperative localization is limited by

the underlying measurements. Conventional measurements

include distance and angle between vehicles. In terms of

Fig. 1: Geometric model of two vehicles. Vehicle i measures the AoA
[hij(xij)]1 from vehicle j, and vehicle j measures [hij(xij)]2.

distance measurements, radar can provide high accuracy, but

does not include identity information of the target, which

is required for MP algorithms. Measurements based on the

travel time of radio signals (time-of-arrival (TOA) and time-

difference-of-arrival (TDOA)) can provide such identity in-

formation [5]. However, TOA and TDOA are challenged by

the synchronization requirements due to the clock difference

between two vehicles, where even a small clock error can

lead to significant localization error [6]. Alternatively, the two-

way TOA can be used to avoid synchronization, but the delay

time is doubled because of the round-trip characteristic which

also increases the resource consumption. Besides, achieving a

ranging accuracy lower than 10 m with TOA/TDOA is very

challenging in vehicular environments [7]. In contrast, AoA

is readily available when the receiver is equipped with an

antenna array [8]–[11]: [10] has investigated the performance

of vehicle-to-vehicle (V2V) relative positioning using AoA

measurements from multiple receiving arrays on the vehicle,

and the achieved positioning accuracy met requirements of 5G

New Radio (NR) vehicle-to-everything (V2X) standardization.

While AoA measurements are attractive from a practical

point of view, the integration with MP is non-trivial. Because

the measurement function of the AoA measurement is non-

linear, it is not possible to perform analytical computation of

the messages in BP. One approach addressing this problem

is to use non-parametric BP [12], which uses particles to

approximates the BP messages. However, a large number of

particles are required to achieve accurate performance, which

increases the computation complexity dramatically. Another



solution is to perform linearization algorithm on the mea-

surement model such as posterior linearization (PL) [13],

so that the model can be integrated with parametric BP

algorithms. For instance, Gaussian parametric BP can repre-

sent the BP messages as closed-form Gaussian distributions

with the linearized observation model [14]. Reference [15]

performs posterior linearization belief propagation (PLBP)

in cooperative localization, and Gaussian parametric BP is

integrated with the linearization algorithm PL, which performs

statistical linear regression (SLR) on the distance measurement

model. However, the scenario of using angular measurement

model is not discussed, and only the position is considered as

an unknown state. [11] considers a target tracking scenario, but

angular measurements are represented by a von Mises-Fisher

(VMF) distribution rather than Gaussian distribution, and only

position errors are analyzed.

Extending the work in [15], we consider a cooperative

localization problem where vehicles’ positions and orientations

are both unknown and only angular measurements can be

observed. PLBP is also used to tackle the localization problem.

The linearization algorithm PL linearizes the model with

respect to the posterior state so that BP messages can be

generated in Gaussian forms and then propagated among

vehicles. Finally, these BP messages are used to update vehicle

position and orientation states. This PLBP procedure is iterated

until the posterior probability density function (PDF) of the

vehicle position and orientation converge.

The paper is organized as follows. In Section II, we

introduce the cooperative localization problem which includes

the nonlinear angular measurement model and the localization

algorithm. In Section III, we describe the implementation of

PLBP on solving the localization problem. Section IV details

the results of PLBP’s performance on a realistic scenario in

terms of both position and orientation accuracy. In Section V

we draw our conclusion.

Notation: In this paper, the following notation will

be used. The state of vehicle i will be denoted by xi and the

joint state of vehicle i and j will be denoted by xij . Vectors

will be written in bold and distributions such as pX(x) will

be abbreviated by p(x).

II. PROBLEM STATEMENT

We consider a network comprising a set of vehicles V =
{1, ..., N} and a set of communication links E ⊂ V × V to

connect each vehicle according to a communication radius r.

The neighbor set of vehicle i is denoted by Ni. Each vehicle

i ∈ V has a state xi ∈ R
3, comprising the 2D position

[xi, yi]
T and the heading θi ∈ (−π, π]. We denote the joint

state of vehicles i and j as xij = [xT

i x
T

j ]
T. Each vehicle

is assumed to have knowledge of its prior state by some

accessible positioning techniques, e.g., GNSS, assumed to be

a Gaussian density

pi(xi) = N (xi;µi,Pi), (1)

where N (xi;µi,Pi) denotes a Gaussian distribution in vari-

able xi with mean vector µi = [µx, µy, µθ]
⊺ and covariance

matrix Pi. The measurement model between two vehicles

is shown in Fig. 1. Each vehicle i is equipped with linear

arrays on its two sides, each of which provides a field of

view (FOV) ϕi with 0 < ϕi ≤ π. Signals with an AoA

measurements within the FOV of node can be measured. The

AoA measurement vector zij between vehicles i and j is

defined as a function of xi and xj with additive Gaussian

noise

zij = hij(xij) + ηij , (2)

where ηij represents the measurement noise, modeled as ηij ∼
N (0,Rij) and hij(xij) is defined as1

hij(xij) =

[

atan2 ((yj − yi), (xj − xi))− θi
atan2((yi − yj), (xi − xj))− θj

]

, (3)

in which atan2(y, x) calculate the four-quadrant inverse tan-

gent of y and x. However, the atan2 introduces problems

because of its discontinuity at the negative semi-axis of x,

i.e. atan2(x, 0) : x < 0. Instead of modeling the angular

measurements by VMF distribution, as [11] has done, we

adopt an ad-hoc correction from [17] due to simplicity of

implementation, which is described in Appendix A. We denote

the vector of all measurements by z = [zij ]i,j∈Ni
and the

vector of all vehicles’ states by x.

Our goal is to compute the marginal distribution pi(xi|z) for

each vehicle in this network, i.e., calculate the posterior state

of each vehicle with received nearby information and angular

measurements. To achieve this cooperative positioning goal,

we consider the combination of low-complexity Gaussian BP

with a linearization algorithm to approximate the nonlinear

angular measurement model.

III. BELIEF PROPAGATION AND POSTERIOR

LINEARIZATION

In this section we describe how the algorithm PLBP solves

the cooperative localization problem. In PLBP, BP is selected

as the MP algorithm, which is described in Section III-A. To

calculate the BP messages in Gaussian form, the lineariza-

tion algorithm PL linearizes the angular measurement model,

which is illustrated in Section III-B. Finally, PLBP integrates

the BP and PL together in an iterative way, presented in

Section III-C.

A. Belief Propagation Formulation

The joint PDF of a factor graph can be factorized into

p(x, z) = p(x)p(z|x) (4)

=

N
∏

i=1

pi(xi)
∏

j∈Ni,j>i

p(zij |xij), (5)

1For simplicity we consider the center points of the two arrays on each
vehicle to coincide. The effect of the relative position and orientation of the
antenna arrays is outside the scope of this paper and related work can be
found in [16].



and BP can be performed on this graph to compute approxi-

mations of the marginal posteriors pi(xi|z). The BP message

passing rules at iteration k are as follows (assuming j ∈ Ni)

[2]

b
(k−1)
j (xj) ∝ pj(xj)

∏

i∈Nj

m
(k−1)
i→j (xj) (6)

m
(k)
j→i(xi) ∝

∫

p(zij |xij)
b
(k−1)
j (xj)

m
(k−1)
i→j (xj)

dxj (7)

where b
(k−1)
j (xj) denotes the local belief of xj at iteration

k − 1, and m
(k)
j→i(xi) denotes the BP message from xj to

xi at iteration k. The BP process is initialized at k = 0

by b
(0)
j (xj) = pj(xj) and m

(0)
i→j(xj) = 1. The approximate

marginal posterior of xj at iteration k is pj(xj |z) ≈ b
(k)
j (xj).

Similarly, the joint posterior of xi,xj can also be approxi-

mated by [2]

b(k)(xij) ∝ p(zij |xij)
b
(k)
i (xi)b

(k)
j (xj)

m
(k)
i→j(xj)m

(k)
j→i(xi)

. (8)

However, due to the nonlinear observation model (2), in gen-

eral BP cannot be executed in closed form: neither the integral

(6) nor the product (7) can be computed exactly, except when

the observation model is linear with Gaussian noise [13]. This

motivates the following linearization procedure.

B. Posterior Linearization

The observation model can be linearized as

hij(xij) ≈ Cij x̃ij + eij , (9)

where eij ∼ N (0,Ωi,j), and x̃ij = [xT

ij 1
T]T. The target is to

find Cij that minimizes the mean square error (MSE) between

the measurement function hij(xij) and the approximated

function:

argmin
Cij

E{‖hij(xij)−Cij x̃ij‖2}, (10)

and we can calculate the MSE error Ωi,j = ‖hij(xij) −
Cij x̃ij‖2. To solve this optimization problem, PL [13] is

performed, which solves Cij by SLR [13] with respect to

the posterior PDF, and details are presented in Appendix A.

Fig. 2 provides an example to visualize the advantage of

posterior linearization. We observe that the model linearized

by posterior is closer to the true model than the model

linearized by prior because the posterior distribution are more

accurate to the true state, and the former linearized model

is shorter than the latter linearized model because of less

uncertainty in posterior PDF.

C. Belief Propagation with Linearized Measurement Models

Once all measurement models are approximated, BP can be

performed in Gaussian format. The likelihood function is of

the form

p(zij |xij) ∝ (11)

exp

(

−1

2
(zij −Cij x̃ij)

T
Σ

−1
ij (zij −Cij x̃ij)

)

,

10 20 30 40 50
xi of xi (m)

−1.0

−0.5

0.0

0.5

1.0

h i
j(x

ij) 
(ra

d)

True mean of xij

True hij(xij)
Prior mean of xij

Linearized hij(xij) w.r.t prior
Posterior mean of xij

Linearized hij(xij) by posterior

Fig. 2: An example of the true measurement model hij(xij) and its
approximations with respect to prior and posterior, as a function of the x-
position of xi. Compared to linearized model from the prior, the model
linearized from the posterior is more accurate and has less uncertainty (shorter
length).

where Σij = Ωij +Rij . This formulation allows closed-form

Gaussian messages passing using (6)–(7) and (8), and details

of this implementation are provided in the Appendix B.

The overall algorithm thus operates as described in Algo-

rithm 1. The algorithm requires a selection of K (the number

of linearization iterations) and M (the number of BP iterations

per linearization step). The overall complexity per vehicle is

approximately O(KMN̄D3), where D is the state dimension

and N̄ is the average number of neighbors.

Algorithm 1 : Iterative Cooperative Localization

for k = 1 to K do

Given the current beliefs b(k−1)(xij), solve (10) for each

(i, j) ∈ E to obtain (11).

Run M iterations of BP on the linearized model.

Compute joint beliefs b(k)(xij) at the current BP itera-

tion.

end for

Return marginal beliefs.

IV. SIMULATION RESULTS

In this section we simulated a vehicular network scenario

which is close to the situation in real life, and the performance

of Algorithm 1 is evaluated by the root mean squared error

(RMSE) in position and orientation. Then, based on this sce-

nario, we analyzed the impact of different network parameters

on the performance.

A. Simulation Scenario

The vehicular scenario is based on a road map in cen-

tral New York Manhattan (latitude: 40.71590 and longitude:

−73.99560). The map data is generated from Stamen Map [18]

at a zoom level of 18. Within this map, the scenario is shown

in Fig. 3, where 51 vehicles are possibly connected within

the communication radius (r = 30 m). The priors are set to



TABLE I: Setup parameters for the vehicular scenario.

r [m] ϕ [rad] σx [m] σy [m] σθ [rad] R [rad2]

30 π 5 5 0.35 0.10

Fig. 3: Scenario of the vehicular network before applying PLBP, and average
position and orientation RMSEs are 7.01m and 0.38 rad, respectively. The
interactive web map can be found at [20]. The convergence situation after
applying PLBP can be found at [19] with decreased average RMSEs, 1.49m
and 0.044 rad.

Pi = diag(σ2
x, σ

2
y, σ

2
θ). Among the vehicles, 6 are chosen as

anchors (vehicles or road side units with a very concentrated

prior density, set to diag(σ2
x, σ

2
y, σ

2
θ) = diag(0.01, 0.01, 0.01)),

and the selection of anchors is out of the scope of this

paper. The interactive web map is also provided2 in [20]. The

remaining parameters of this scenario are illustrated in Table

I, where R denotes the constant value of the measurement

variance (approximately 18 degrees standard deviation).

B. Results and Discussion

1) Convergence Speed: In order to examine the perfor-

mance of Algorithm 1, in Fig. 4 we plot the RMS position and

direction error against the number of linearization iteration K.

Notice the performance gap between the prior linearization

filter (LF) (dotted lines) and the posterior LF (solid lines).

After each belief propagation iteration, the posterior of each

vehicle is closer to the true state than the prior, so the

belief propagation has a better performance on the posterior

linearization measurement model. Both position RMSE and

direction RMSE converged for linearization iteration number

larger than 4. Meanwhile, increasing M from 1 to 3 provides

significant improvements for both position and orientation

estimation accuracy as the beliefs are more accurate. The

improvement becomes very small for M greater than 3.

2The convergence situation of Fig. 3 can be visualized by an interactive
web map in [19], where the red, blue, and green dots represent the true, prior
and estimated positions, respectively.
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Fig. 4: RMS position and direction error against the number of linearization
iteration k. The initial position and direction RMSE of vehicles are 7.01m
and 0.38 rad, respectively.
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Fig. 5: CDF of location and orientation errors, K = 10.

2) Localization Performance: While the above results show

the average RMSE of the position and direction, Fig. 5 shows

the cumulative distribution functions (CDFs) of the position

and direction errors for K = 10 for different values of M . We

observe that for M = 3 the performance is similar to M = 10
and that nearly all vehicles can be localized with a position

error less then 4 meters and an orientation error less than

0.15 radians (8 degrees). The advantageous performance of

posterior linearization BP over prior linearization BP is clear.

3) Impact of Network parameters: Here, we analyze the

impact of modifying the scenario parameters in Table I on

localization and orientation estimation performance. In Fig. 6,

we evaluate 4 parameters separately, namely communication

radius (r), measurement noise variance (R), prior uncertainty

in position (σp = (σ2
x + σ2

y)
1/2) and prior uncertainty in

orientation (σθ) in 4 sub-figures, by plotting the position and

direction RMSE as functions of one of them, while keeping
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Fig. 6: The impact of 4 vehicle network parameters on localization and
orientation performance. Lines with square and triangle markers represent
the position and orientation RMSE, respectively. K = 10, M = 10 and
posterior LF are applied.

the rest fixed to the values of Table I.

• The top left sub-figure shows the impact of the commu-

nication radius r. Both RMSEs are reduced rapidly by

increasing r from 10 m to 30 m since each vehicle has

more neighbors and the network connectivity increases

quickly, up to the point where all vehicles are in each

others’ communication range. We note that with increased

connectivity comes increased computational complexity.

• In the top right sub-figure, we vary the AoA measure-

ments noise variance R. We note that both direction and

position RMSE increase approximately linearly in
√
R.

This emphasizes the need for good measurements.

• The influence of the prior position uncertainty (
√
σx, σy)

is shown in the bottom left sub-figure. The red dashed

line describes the prior position RMSE. We notice the

increase of σp from 0 m to 10 m has small effect on both

position and direction performance (less than 2 m/0.05

rad), showing the good performance of the proposed

method. For position uncertainty over 10 m, Algorithm

1 is still able to improve performance over the prior

RMSE, but leads to progressively larger errors. This is

in contrast to range-based cooperative localization [1],

where no prior information was needed.

• The influence of the direction uncertainty (σθ) is shown in

the bottom right sub-figure, where we observe a rapid in-

crease in RMSE. This is because the AoA measurements

depend on the orientation of the receiving vehicles. For

larger prior orientation uncertainty, Algorithm 1 is less

affected.

V. CONCLUSION

We have applied PLBP to cooperative localization (position

and orientation estimation) of vehicles with AoA-only mea-

surements. Numerical results show that PLBP can perform

cooperative localization on vehicle networks with angular

observation model and AoA measurements, and has good

estimation performance in both position and orientation. Only

a few iterations are required for convergence, which makes

the algorithm attractive for real-time processing. Besides, the

impact of multiple network conditions, including commu-

nication radius, position and orientation uncertainties, and

measurement noise variance, has been analyzed. A comparison

to non-parametric BP is left for future work.
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APPENDIX A

STEPS OF THE POSTERIOR LINEARIZATION

This section illustrates the procedures of SLR on the

measurement model and the approximation of the parameters

(Cij ,Ωi,j) with respect to the joint posterior PDF p(xij |zij)
= N (xij ;µij ;Pij). First, according to the joint posterior

of xi,xj , we select L sigma-points X1, ...,XL and weights

ω1, ..., ωL using a sigma-point method such as the unscented

transform [21]. Then we calculate the transformed sigma

points by

Zl = hij(Xl) l = 1, ..., L (12)

However, as mentioned in Section II, the function arctan has

discontinuity problem at the negative x semi-axis. The sigma

points transformation needs an ad-hoc modification so that the

difference between angles Zl − zij must be bounded in ±π.

Zl can be corrected to Ẑl by the following transformation:

Ẑl = zij + π − modulo((zij −Zl) + π)2π (13)

where Ẑl denotes the corrected sigma point, zij is the AoA

measurements and modulo(·)2π represents the modulo opera-

tion.

Introducing Cij = [Aij bij ], so that

hij(xij) ≈ Aijxij + bij + eij , (14)

the solution of the approximation of Aij ,bij ,Ωi,j is

Aij = C
T

xzP
−1
ij (15)

bij = z̄ −Aijµij (16)

Ωi,j = Czz −AijPijA
T

ij (17)



where z̄, Cxz and Czz are approximated using the sigma-

points (13) and weights by

z̄ ≈
L
∑

j=1

ωjẐl (18)

Cxz ≈
L
∑

j=1

ωj(Xj − µij)(Ẑl − z̄)T (19)

Czz ≈
L
∑

j=1

ωj(Ẑl − z̄)(Ẑl − z̄)T. (20)

APPENDIX B

IMPLEMENTATION OF BP IN THE LINEARIZED MODEL

This section illustrates the derivation of equation (6)–(7)

and (8). Once we have the approximated linearization model

9, we can represent the BP message m
(k)
i→j by the Gaussian

format [15]

m
(k)
i→j(xj) ∝ N (α

(k)
ij ;H

(k)
ij xj ,Γ

(k)
ij ) (21)

where α
(k)
ij , H

(k)
ij and Γ

(k)
ij are

α
(k)
ij = [zij ]1 −Aiµ

(k−1)
ij − bij (22a)

H
(k)
ij = Aj (22b)

Γ
(k)
ij = Rij +Ωij +AiP

(k−1)
ij A

⊺

i (22c)

where [zij ]1 is the AoA measurement received by vehicle i,

Ai,Aj are defined at Section III-B and µ
(k−1)
ij and P

(k−1)
ij

are found from the relation

N (µ
(k−1)
ij ,P

(k−1)
ij ) ∝ N (xi;µi,Pi)

∏

j′∈Ni\j

m
(k−1)
j′→i (xi)

(23)

where the Kalman update step [15, Algorithm 1] is per-

formed to update each message m
(k−1)
j′→i (xi) on the prior state

N (xi;µi,Pi).

To get the local belief (6) at the k-th iteration, we can also

use Kalman filter update step to update the vehicle prior with

all its incoming messages.

b
(k)
j (xj) = N (xj ;µj ,Pj)×

∏

i∈Nj

m
(k)
i→j(xj) (24)

The k-th iteration joint posterior (8) is expressed as [15]

b(k)(xij) = N (xi;µi,Pi)
∏

j′∈Ni\j

m
(k)
j′→i(xi) (25)

×N (xj ,µj ,Pj)×
∏

i′∈Nj\i

m
(k)
i′→j(xj)p(zij |xi,xj)

where we can also apply Kalman filter update [15, Algorithm

1] as in (23).
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