494 research outputs found

    Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems

    Get PDF
    Millimeter wave signals and large antenna arrays are considered enabling technologies for future 5G networks. While their benefits for achieving high-data rate communications are well-known, their potential advantages for accurate positioning are largely undiscovered. We derive the Cram\'{e}r-Rao bound (CRB) on position and rotation angle estimation uncertainty from millimeter wave signals from a single transmitter, in the presence of scatterers. We also present a novel two-stage algorithm for position and rotation angle estimation that attains the CRB for average to high signal-to-noise ratio. The algorithm is based on multiple measurement vectors matching pursuit for coarse estimation, followed by a refinement stage based on the space-alternating generalized expectation maximization algorithm. We find that accurate position and rotation angle estimation is possible using signals from a single transmitter, in either line-of- sight, non-line-of-sight, or obstructed-line-of-sight conditions.Comment: The manuscript has been revised, and increased from 27 to 31 pages. Also, Fig.2, Fig. 10 and Table I are adde

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    3-D Hybrid Localization with RSS/AoA in Wireless Sensor Networks: Centralized Approach

    Get PDF
    This dissertation addresses one of the most important issues present in Wireless Sensor Networks (WSNs), which is the sensor’s localization problem in non-cooperative and cooperative 3-D WSNs, for both cases of known and unknown source transmit power PT . The localization of sensor nodes in a network is essential data. There exists a large number of applications for WSNs and the fact that sensors are robust, low cost and do not require maintenance, makes these types of networks an optimal asset to study or manage harsh and remote environments. The main objective of these networks is to collect different types of data such as temperature, humidity, or any other data type, depending on the intended application. The knowledge of the sensors’ locations is a key feature for many applications; knowing where the data originates from, allows to take particular type of actions that are suitable for each case. To face this localization problem a hybrid system fusing distance and angle measurements is employed. The measurements are assumed to be collected through received signal strength indicator and from antennas, extracting the received signal strength (RSS) and angle of arrival (AoA) information. For non-cooperativeWSN, it resorts to these measurements models and, following the least squares (LS) criteria, a non-convex estimator is developed. Next, it is shown that by following the square range (SR) approach, the estimator can be transformed into a general trust region subproblem (GTRS) framework. For cooperative WSN it resorts also to the measurement models mentioned above and it is shown that the estimator can be converted into a convex problem using semidefinite programming (SDP) relaxation techniques.It is also shown that the proposed estimators have a straightforward generalization from the known PT case to the unknown PT case. This generalization is done by making use of the maximum likelihood (ML) estimator to compute the value of the PT . The results obtained from simulations demonstrate a good estimation accuracy, thus validating the exceptional performance of the considered approaches for this hybrid localization system

    Adaptive AOA-Aided TOA Self-Positioning for Mobile Wireless Sensor Networks

    Get PDF
    Location-awareness is crucial and becoming increasingly important to many applications in wireless sensor networks. This paper presents a network-based positioning system and outlines recent work in which we have developed an efficient principled approach to localize a mobile sensor using time of arrival (TOA) and angle of arrival (AOA) information employing multiple seeds in the line-of-sight scenario. By receiving the periodic broadcasts from the seeds, the mobile target sensors can obtain adequate observations and localize themselves automatically. The proposed positioning scheme performs location estimation in three phases: (I) AOA-aided TOA measurement, (II) Geometrical positioning with particle filter, and (III) Adaptive fuzzy control. Based on the distance measurements and the initial position estimate, adaptive fuzzy control scheme is applied to solve the localization adjustment problem. The simulations show that the proposed approach provides adaptive flexibility and robust improvement in position estimation
    corecore