1,150,777 research outputs found

    Hybrid Geometric Reduction of Hybrid Systems

    Get PDF
    This paper presents a unifying framework in which to carry out the hybrid geometric reduction of hybrid systems, generalizing classical reduction to a hybrid setting

    Hybrid Mechanical Systems

    Full text link
    We discuss hybrid systems in which a mechanical oscillator is coupled to another (microscopic) quantum system, such as trapped atoms or ions, solid-state spin qubits, or superconducting devices. We summarize and compare different coupling schemes and describe first experimental implementations. Hybrid mechanical systems enable new approaches to quantum control of mechanical objects, precision sensing, and quantum information processing.Comment: To cite this review, please refer to the published book chapter (see Journal-ref and DOI). This v2 corresponds to the published versio

    Hybrid and Intelligent Energy Storage Systems in Standalone Photovoltaic Applications.

    Get PDF
    Remote systems such as communication relays or irrigation control installations cannot usually be powered by the electrical grid. One of the alternatives is to power these systems through solar panels, in what is known as standalone photovoltaic applications.Most of these systems need a continuous operation, but a standalone photovoltaic installation cannot be powered during the night. For this reason, they use batteries to store excess energy during the day. These storage systems have been traditionally based on Valve Regulated Lead Acid (VRLA) batteries, but some effects can alter their performance in terms of reliability, operation cost and maintenance. One of the key issues that alter the energy behavior of the photovoltaic off-grid systems is the Partial State of Charge (PSoC) effect: Batteries cannot be completely charged as manufacturers indicate due to the day-night cycle. This gets the battery into an intermediate state of charge that effectively reduces its capacity, even halving it in some cases. To mitigate the impact of these effects on the installation, batteries tend to be oversized with some security margins. These oversizing factors can be incredibly high and have a huge impact on the deployment and maintenance cost of the facility.The first part of this thesis highlights some of these key concepts, analyzing which of them are critical in specific design cases, modeling them into a simulation tool, and as an outcome, establishing optimal sizing regions for the installations. After the analysis, different ways of improving the performance of the installations are proposed. One idea to mitigate PSoC is to combine different storage technologies in a Hybrid Energy Storage Systems (HESS). HESSs have traditionally combined high energy density elements as batteries with high power density elements as ultracapacitors. An iteration of this idea is carried out throughout this thesis, where different types of batteries are combined. Each of them is best fitted to different power patterns in the application, such as daily cycles or emergency periods. It is possible to further increase the performance by using intelligent algorithms to improve the functionalities of the Battery Management Systems embedded in these applications. To this end, failure prediction and health estimation algorithms are proposed as contributions of this work. These new algorithms endow the HESS with tools to predict possible energy disruption events and to anticipate aging, and thus, act accordingly.<br /

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    A Vision of Collaborative Verification-Driven Engineering of Hybrid Systems

    Get PDF
    Abstract. Hybrid systems with both discrete and continuous dynamics are an important model for real-world physical systems. The key challenge is how to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires significant human guidance, since hybrid systems verification tools solve undecidable problems. It is thus not uncommon for verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) modeling hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks.

    Dynamics of Controlled Hybrid Systems of Aerial Cable-Ways

    Full text link
    Dynamics of the hybrid systems of aerial cable-ways is investigated. The eigenvalue problems are considered for such hybrid systems with different assumptions. An overview of different methods for eigenvalue problems is given. In the research, the method of the normal fundamental systems is applied, which turns out to be very effective for the considered problems. Changes of dynamical characteristics of the systems depending on the controlled parameter are studied.Comment: Accepted (15-May-2006) to the Proceedings of the "International Conference of Hybrid Systems and Applications", The University of Louisiana, Lafayette, LA, USA, May 22-26 2006, to be published in the journal "Nonlinear Analysis: Hybrid Systems and Applications
    corecore