80,495 research outputs found

    STAN4 : a hybrid planning strategy based on subproblem abstraction

    Get PDF
    Planning domains often feature subproblems such as route planning and resource handling. Using static domain analysis techniques, we have been able to identify certain commonly occurring subproblems within planning domains, making it possible to abstract these subproblems from the overall goals of the planner and deploy specialized technology to handle them in a way integrated with the broader planning activities. Using two such subsolvers our hybrid planner, stan4, participated successfully in the Fifth International Conference on Artificial Intelligence Planning and Scheduling (AIPS'00) planning competition

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods

    Get PDF
    Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied

    An Effective Multi-Population Based Hybrid Genetic Algorithm for Job Shop Scheduling Problem

    Full text link
    The job shop scheduling problem is a well known practical planning problem in the manufacturing sector. We have considered the JSSP with an objective of minimizing makespan. In this paper, a multi-population based hybrid genetic algorithm is developed for solving the JSSP. The population is divided in several groups at first and the hybrid algorithm is applied to the disjoint groups. Then the migration operator is used. The proposed approach, MP-HGA, have been compared with other algorithms for job-shop scheduling and evaluated with satisfactory results on a set of JSSPs derived from classical job-shop scheduling benchmarks. We have solved 15 benchmark problems and compared results obtained with a number of algorithms established in the literature. The experimental results show that MP-HGA could gain the best known makespan in 13 out of 15 problems

    A Hybrid Approach to Process Planning: The Urban Traffic Controller Example

    Get PDF
    Automated planning and scheduling are increasingly utilised in solving evsery day planning task. Planning in domains with continuous numeric changes present certain limitations and tremendous challenges to advanced planning algorithms. There are many pertinent examples to the engineering community; however, a case study is provided through the urban traffic controller domain. This paper introduce a novel hybrid approach to state-space planning systems involving a continuous process which can be utilised in several applications. We explore Model Predictive Control (MPC) and explain how it can be introduce into planning with domains containing mixed discrete and continuous state variables. This preserves the numerous benefits of AI Planning approach by the use of explicit reasoning and declarative modelling. It also leverages on the capability of MPC to manage numeric computation and control of continuous processes. The hybrid approach was tested on an urban traffic control network to ascertain it practicability on a continuous domain; the results show its potential to control and optimise heavy volumes of traffic

    A novel approach for planning of shipbuilding processes

    Get PDF
    Shipbuilding is acknowledged as an uncertain, complex, and unique industrial effort that yields massive products consisting of numerous parts and is vulnerable to unexpected events. The industry is also dominated by customer requirements through designs tailor-made for a specific ship. Planning in shipbuilding is therefore considered a formidable process. Consequently, many studies have been conducted to develop a planning framework for the industry to efficiently handle planning process. Yet none of these studies are deemed substantial enough to be regarded as holistic, straightforward, well-accepted, and compatible with the nature of shipbuilding. This study is therefore an important contribution by presenting a novel, hybrid, and integrated general-purpose planning framework applicable to all shipbuilding processes. The novel method exploits historical ship construction scheduling data, synthesizing hierarchical planning, dynamic scheduling, and discrete-event simulation, which is validated through an empirical study in this paper

    An Effective Multi-Population Based Hybrid Genetic Algorithm for Job Shop Scheduling Problem

    Get PDF
    The job shop scheduling problem is a well known practical planning problem in the manufacturing sector. We have considered the JSSP with an objective of minimizing makespan. In this paper, a multi-population based hybrid genetic algorithm is developed for solving the JSSP. The population is divided in several groups at first and the hybrid algorithm is applied to the disjoint groups. Then the migration operator is used. The proposed approach, MP-HGA, have been compared with other algorithms for job-shop scheduling and evaluated with satisfactory results on a set of JSSPs derived from classical job-shop scheduling benchmarks. We have solved 15 benchmark problems and compared results obtained with a number of algorithms established in the literature. The experimental results show that MP-HGA could gain the best known makespan in 13 out of 15 problems

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested
    corecore