130 research outputs found

    HIGH ORDER SHOCK CAPTURING SCHEMES FOR HYPERBOLIC CONSERVATION LAWS AND THE APPLICATION IN OPEN CHANNEL FLOWS

    Get PDF
    Many applications in engineering practice can be described by thehyperbolic partial differential equations (PDEs). Numerical modeling of this typeof equations often involves large gradients or shocks, which makes it achallenging task for conventional numerical methods to accurately simulate suchsystems. Thus developing accurate and efficient shock capturing numericalschemes becomes important for the study of hyperbolic equations.In this dissertation, a detailed study of the numerical methods for linearand nonlinear unsteady hyperbolic equations was carried out. A new finitedifference shock capturing scheme of finite volume style was developed. Thisscheme is based on the high order Pad?? type compact central finite differencemethod with the weighted essentially non-oscillatory (WENO) reconstruction toeliminate non-physical oscillations near the discontinuities while maintain stablesolution in the smooth areas. The unconditionally stable semi-implicit Crank-Nicolson (CN) scheme is used for time integration.The theoretical development was conducted based on one-dimensionalhomogeneous scalar equation and system equations. Discussions were alsoextended to include source terms and to deal with problems of higher dimension.For the treatment of source terms, Strang splitting was used. For multidimensionalequations, the ?? -form Douglas-Gunn alternating direction implicit(ADI) method was employed. To compare the performance of the scheme withENO type interpolation, the current numerical framework was also applied usingENO reconstruction.The numerical schemes were tested on 1-D and 2-D benchmark problems,as well as published experimental results. The simulated results show thecapability of the proposed scheme to resolve discontinuities while maintainingaccuracy in smooth regions. Comparisons with the experimental results validatethe method for dam break problems. It is concluded that the proposed scheme isa useful tool for solving hyperbolic equations in general, and from engineeringapplication perspective it provides a new way of modeling open channel flows

    A relaxed a posteriori MOOD algorithm for multicomponent compressible flows using high-order finite-volume methods on unstructured meshes

    Get PDF
    In this paper the relaxed, high-order, Multidimensional Optimal Order Detection (MOOD) framework is extended to the simulation of compressible multicomponent flows on unstructured meshes. The diffuse interface methods (DIM) paradigm is used that employs a five-equation model. The implementation is performed in the open-source high-order unstructured compressible flow solver UCNS3D. The high-order CWENO spatial discretisation is selected due to its reduced computational footprint and improved non-oscillatory behaviour compared to the original WENO variant. Fortifying the CWENO method with the relaxed MOOD technique has been necessary to further improve the robustness of the CWENO method. A series of challenging 2-D and 3-D compressible multicomponent flow problems have been investigated, such as the interaction of a shock with a helium bubble, and a water droplet, and the shock-induced collapse of 2-D and 3-D bubbles arrays. Such problems are generally very stiff due to the strong gradients present, and it has been possible to tackle them using the extended MOOD-CWENO numerical framework

    High-order methods for diffuse-interface models in compressible multi-medium flows: a review

    Get PDF
    The diffuse interface models, part of the family of the front capturing methods, provide an efficient and robust framework for the simulation of multi-species flows. They allow the integration of additional physical phenomena of increasing complexity while ensuring discrete conservation of mass, momentum, and energy. The main drawback brought by the adoption of these models consists of the interface smearing, increasing with the simulation time, therefore, requiring a counteraction through the introduction of sharpening terms and a careful selection of the discretization level. In recent years, the diffuse interface models have been solved using several numerical frameworks including finite volume, discontinuous Galerkin, and hybrid lattice Boltzmann method, in conjunction with shock and contact wave capturing schemes. The present review aims to present the recent advancements of high-order accuracy schemes with the capability of solving discontinuities without the introduction of numerical instabilities and to put them in perspective for the solution of multi-species flows with the diffuse interface method.Engineering and Physical Sciences Research Council (EPSRC): 2497012. Innovate UK: 263261. Airbus U

    Coupling of time integration schemes for compressible unsteady flows

    Get PDF
    This work deals with the design of a hybrid time integrator that couples spatially explicit and implicit time integrators. In order to cope with the industrial solver of Ariane Group called FLUSEPA, the explicit scheme of Heun and the implicit scheme of Crank-Nicolson are hybridized using the transition parameter : the whole technique is called AION time integration. The latter is studied into details with special focus on spectral behaviour and on its ability to keep the accuracy. It is shown that the hybrid technique has interesting dissipation and dispersion properties while maintaining precision and avoiding spurious waves. Moreover, this hybrid approach is validated on several academic test cases for both convective and diffusive fluxes. And as expected the method is more interesting in term of computational time than standard time integrators. For the extension of this hybrid approach to the temporal adaptive method implemented in FLUSEPA, it was necessary to improve some treatments in order to maintain conservation and acceptable spectral properties. Finally the hybrid time integration was also applied to a RANS/LES turbulent test case with interesting computational time while capturing the flow physics

    Compact-Reconstruction Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

    Get PDF
    A new class of non-linear compact interpolation schemes is introduced in this dissertation that have a high spectral resolution and are non-oscillatory across discontinuities. The Compact-Reconstruction Weighted Essentially Non-Oscillatory (CRWENO) schemes use a solution-dependent combination of lower-order compact schemes to yield a high-order accurate, non-oscillatory scheme. Fifth-order accurate CRWENO schemes are constructed and their numerical properties are analyzed. These schemes have lower absolute errors and higher spectral resolution than the WENO scheme of the same order. The schemes are applied to scalar conservation laws and the Euler equations of fluid dynamics. The order of convergence and the higher accuracy of the CRWENO schemes are verified for smooth solutions. Significant improvements are observed in the resolution of discontinuities and extrema as well as the preservation of flow features over large convection distances. The computational cost of the CRWENO schemes is assessed and the reduced error in the solution outweighs the additional expense of the implicit scheme, thus resulting in higher numerical efficiency. This conclusion extends to the reconstruction of conserved and primitive variables for the Euler equations, but not to the characteristic-based reconstruction. Further improvements are observed in the accuracy and resolution of the schemes with alternative formulations for the non-linear weights. The CRWENO schemes are integrated into a structured, finite-volume Navier-Stokes solver and applied to problems of practical relevance. Steady and unsteady flows around airfoils are solved to validate the scheme for curvi-linear grids, as well as overset grids with relative motion. The steady flow around a three-dimensional wing and the unsteady flow around a full-scale rotor are solved. It is observed that though lower-order schemes suffice for the accurate prediction of aerodynamic forces, the CRWENO scheme yields improved resolution of near-blade and wake flow features, including boundary and shear layers, and shed vortices. The high spectral resolution, coupled with the non-oscillatory behavior, indicate their suitability for the direct numerical simulation of compressible turbulent flows. Canonical flow problems -- the decay of isotropic turbulence and the shock-turbulence interaction -- are solved. The CRWENO schemes show an improved resolution of the higher wavenumbers and the small-length-scale flow features that are characteristic of turbulent flows. Overall, the CRWENO schemes show significant improvements in resolving and preserving flow features over a large range of length scales due to the higher spectral resolution and lower dissipation and dispersion errors, compared to the WENO schemes. Thus, these schemes are a viable alternative for the numerical simulation of compressible, turbulent flows

    Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation

    Get PDF
    Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum

    Progress on unstructured-grid based high-order CFD method

    Get PDF
    Several new methods have been developed to meet the critical and diversified challenges in the state-of-art unstructured-grids based high-order methods for 3D real-world applications, including 1) parameter-free high-order generalized moment limiter for arbitrary mesh; 2) efficient line implicit method; 3) efficient quadrature-free SV method; 4) novel high-order mesh generation method for 3D hexahedral mesh. The parameter-free high-order generalized moment limiter does not need any user-specified free parameter to detect the discontinuities and exclude the smooth extrema. The present limiter has been designed to be naturally generic, compact, and efficient, which can be applied for arbitrary mesh and general unstructured-grids based high-order methods. The present low-storage line implicit BLU-SGS method significantly overcomes the anisotropy stiffness due to highly stretched wall grids in high Reynolds number flows. Improved robustness and up to 3 times of savings on CPU time have been demonstrated comparing with the cell BLU-SGS solver. This line implicit method preserves the favorable feature of high compactness from the cell BLU-SGS method, and can be programmed as a black box so as to be easily applied in general high-order methods. The quadrature-free SV method has improved the original SV method by replacing the large number of quadrature for face integrals in 3D case with many less nodal operations based on analytical shape functions. Finally for high-order unstructured mesh generation, the present novel and fully automatic algorithm guarantee to resolve the self-intersection problem for non-linear quadrilateral or hexahedral mesh with strong robustness. The algorithm also offers the advantage of correcting grid self-intersection without changing the basic aspect ratio of the original grids or degrading the original grid quality

    Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations

    Full text link
    High-speed turbulent flows are encountered in most space-related applications (including exploration, tourism and defense fields) and represent a subject of growing interest in the last decades. A major challenge in performing high-fidelity simulations of such flows resides in the stringent requirements for the numerical schemes to be used. These must be robust enough to handle strong, unsteady discontinuities, while ensuring low amounts of intrinsic dissipation in smooth flow regions. Furthermore, the wide range of temporal and spatial active scales leads to concurrent needs for numerical stabilization and accurate representation of the smallest resolved flow scales in cases of under-resolved configurations. In this paper, we present a finite-difference high-order shock-capturing technique based on Jameson's artificial diffusivity methodology. The resulting scheme is ninth-order-accurate far from discontinuities and relies on the addition of artificial dissipation close to large gradients. The shock detector is slightly revised to enhance its selectivity and avoid spurious activations of the shock-capturing term. A suite of test cases ranging from 1D to 3D configurations (namely, shock tubes, Shu-Osher problem, isentropic vortex advection, under-expanded jet, compressible Taylor-Green Vortex, supersonic and hypersonic turbulent boundary layers) is analysed in order to test the capability of the proposed numerical strategy to handle a large variety of problems, ranging from calorically-perfect air to multi-species reactive flows. Results obtained on under-resolved grids are also considered to test the applicability of the proposed strategy in the context of implicit Large-Eddy Simulations

    Ideal GLM-MHD - a new mathematical model for simulating astrophysical plasmas

    Get PDF
    Magnetic fields are ubiquitous in space. As there is strong evidence that magnetic fields play an important role in a variety of astrophysical processes, they should not be neglected recklessly. However, analytic models in astrophysical either do often not take magnetic fields into account or can do this after limiting simplifications reducing their overall predictive power. Therefore, computational astrophysics has evolved as a modern field of research using sophisticated computer simulations to gain insight into physical processes. The ideal MHD equations, which are the most often used basis for simulating magnetized plasmas, have two critical drawbacks: Firstly, they do not limit the growth of numerically caused magnetic monopoles, and, secondly, most numerical schemes built from the ideal MHD equations are not conformable with thermodynamics. In my work, at the interplay of math and physics, I developed and presented the first thermodynamically consistent model with effective inbuilt divergence cleaning. My new Galilean-invariant model is suitable for simulating magnetized plasmas under extreme conditions as those typically encountered in astrophysical scenarios. The new model is called the "ideal GLM-MHD" equations and supports nine wave solutions. The accuracy and robustness of my numerical implementation are demonstrated with a number of tests, including comparisons to other schemes available within in the multi-physics, multi-scale adaptive mesh refinement (AMR) simulation code FLASH. A possible astrophysical application scenario is discussed in detail
    corecore