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ABSTRACT OF DISSERTATION 
 
 
 

HIGH ORDER SHOCK CAPTURING SCHEMES FOR HYPERBOLIC 
CONSERVATION LAWS AND THE APPLICATION IN OPEN 

CHANNEL FLOWS 
 
 

Many applications in engineering practice can be described by the 
hyperbolic partial differential equations (PDEs). Numerical modeling of this type 
of equations often involves large gradients or shocks, which makes it a 
challenging task for conventional numerical methods to accurately simulate such 
systems. Thus developing accurate and efficient shock capturing numerical 
schemes becomes important for the study of hyperbolic equations. 

  
In this dissertation, a detailed study of the numerical methods for linear 

and nonlinear unsteady hyperbolic equations was carried out. A new finite 
difference shock capturing scheme of finite volume style was developed. This 
scheme is based on the high order Padé type compact central finite difference 
method with the weighted essentially non-oscillatory (WENO) reconstruction to 
eliminate non-physical oscillations near the discontinuities while maintain stable 
solution in the smooth areas. The unconditionally stable semi-implicit Crank-
Nicolson (CN) scheme is used for time integration.  

 
The theoretical development was conducted based on one-dimensional 

homogeneous scalar equation and system equations. Discussions were also 
extended to include source terms and to deal with problems of higher dimension. 
For the treatment of source terms, Strang splitting was used. For multi-
dimensional equations, the δ -form Douglas-Gunn alternating direction implicit 
(ADI) method was employed. To compare the performance of the scheme with 
ENO type interpolation, the current numerical framework was also applied using 
ENO reconstruction.   

 



The numerical schemes were tested on 1-D and 2-D benchmark problems, 
as well as published experimental results. The simulated results show the 
capability of the proposed scheme to resolve discontinuities while maintaining 
accuracy in smooth regions. Comparisons with the experimental results validate 
the method for dam break problems. It is concluded that the proposed scheme is 
a useful tool for solving hyperbolic equations in general, and from engineering 
application perspective it provides a new way of modeling open channel flows. 
 
 
KEYWORDS: Essentially Non-Oscillatory Scheme, Weight Essentially Non-
Oscillatory Scheme, Compact Scheme, Hyperbolic Conservation Laws, Shallow 
Water Equations 
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Chapter 1   

Introduction 

 
 
1.1 Background 

 
As more water resources projects are appearing in engineering practice such as flood 

control, sediment management in rivers and lakes, water quality monitoring, and coastal 

circulation modeling, etc., the study of free surface flow is receiving increasing attention. 

Mathematical modeling of rivers and estuaries is an essential part in carrying out those 

projects as it provides a predictive tool in evaluating the effectiveness of those projects. 

Since modeling such systems usually involves large temporal and spatial scales, generally, 

numerical techniques have to be relied on for solutions.  

 

Many real-life problems in hydraulic engineering involve flows that change abruptly 

with time. A typical example is the dam break problem. The failures of dams or levees 

have occurred in many parts of the world and can be disastrous in terms of damages to 

human lives and properties. As the occurrence of such event is devastating, it is of 

significance to accurately predict the consequences of such phenomena. Considering the 

failure of a dam, people are usually concern about the magnitude of the resultant waves, 

the speed of the wave front, and the amount of water that will be flooded to the nearby 

plains. Accurate prediction of the spatial and temporal evolution of the flood after a dam 

failure is crucial in hydraulic structure design and important for practitioners in making 
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decisions as to what measures can be taken against such event. In addition, accurate 

forecast of flood consequences can help the administrations to assess public safety and 

provide accurate damage estimation. 

 

1.2 Related Work 

 
In modeling rivers and open channel flows, the well known non-hydrostatic, three-

dimensional incompressible Navier-Stokes equations are often used. The merit of this 

model is that it can predict flows at realistic Reynolds numbers in complex geometries. 

However, although being physically based, the Navier-Stokes equations are difficult to 

solve problems with large spatial and temporal scales due to the high computation cost. 

Therefore people introduced certain simplifications to this system. By averaging the 

flows over time, one obtains the so called Reynolds-Averaged Navier-Stokes equations 

(RANS), whereby the effects of turbulence are related to the mean flow. The RANS 

model has been widely used in fluid simulations, but it is still computationally demanding. 

Sometimes in the situations where the flow has a far larger scale in the longitudinal 

direction than that in the vertical direction, the component of momentum in the vertical 

direction is negligible. Therefore, by integration over depth, the Navier-Stokes equation 

can be simplified to two-dimensional shallow water equations. This model adequately 

describes the hydrodynamics of a river or a channel where the water depth is relatively 

low compared to the scales in the longitudinal directions. Mathematically, the shallow 

water equations are time-dependent, nonlinear partial differential equations (PDEs) of 

hyperbolic type. This type of equations also arise in many other engineering models such 
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as the Euler equation of aerodynamics, the Hamilton-Jacobi equation of electronics  and 

the Maxwell equations of electromagnetic fields.  

 

It is well known that the hyperbolic system accepts both smooth as well as 

discontinuous solutions. A discontinuous solution, also referred to as shock, is 

characterized by large gradients in the solution quantities such as velocity, density, depth 

or pressure. Even with smooth initial conditions, discontinuities may develop within 

finite time. In solving hyperbolic equations with the presence of discontinuities, 

traditional numerical methods usually yield large errors by either generating nonphysical 

oscillations or producing numerical diffusions [52]. Hence there is high motivation to 

develop shock capturing methods. 

 

In the past few decades, a large number of shock capturing schemes of first or second 

order have been proposed [12, 32, 36, 39, 84]. Recently, increasing research efforts have 

focused on developing high order numerical methods for shocks. Those high order 

methods are attractive to problems with long computational time or with high order 

accuracy requirement. Although such schemes slightly increase the computational 

complexity, they can achieve comparable results with a coarser spatial resolution. Among 

those, one class of the methods is the high order essentially non-oscillatory (ENO) 

scheme [38] and the weighted essentially non-oscillatory (WENO) scheme [57]. Both 

schemes have demonstrated very promising shock capturing capabilities. Because they 

can achieve user defined high order accuracy while avoid spurious oscillations, these 

schemes have been widely used for shock capturing. However, drawback still exists with 

these schemes that waves of small amplitude might be damped. On the other hand, the 
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compact schemes, a family of high order schemes, are known to be able to capture weak 

turbulence and aero acoustic waves [22]. However, when it is applied to problems 

containing discontinuities, non-physical oscillations may be generated. Based on those 

facts, the attempt of using a hybrid of ENO/WENO algorithm with the compact scheme 

seem to provide a way by which shock-turbulence interactions can be efficiently 

computed since such a scheme combines the advantages of high order compact scheme 

that can give good approximations for smooth regions and the ENO/WENO scheme that 

can well represent large gradients near discontinuities. 

 

The idea of hybrid scheme was proposed by Adams et al. [4] and adopted by Wang 

[87], in which coupling of the compact scheme and the ENO scheme was carried out by 

pre-computing the node-based flux derivatives using the ENO scheme. Those algorithms 

have been successfully applied to the direct numerical simulation (DNS) of a turbulent 

compression ramp flow [3] and the simulation of compressible and incompressible flows 

in aerodynamics [87]. Similar ideas but with different approaches, usually involving the 

switch between one sub-scheme to another, are also proposed [20, 21, 48]. A recent paper 

by Pirozzoli [61] employed the hybrid compact-WENO scheme, which used the explicit 

formulation for the approximation of fluxes. To the best knowledge of the author, no 

research has been reported following a hybrid idea of using compact scheme with WENO 

type interpolation for implicit point-wise derivative evaluations Hence, it will be a 

valuable practice to develop a new hybrid scheme based on compact scheme with WENO 

reconstruction for flux derivatives using implicit method.  
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Besides the desire to develop a new hybrid scheme, there are also some other 

concerns that motivate the current research. First, of those hybrid schemes developed, 

most use flux splitting method, by which the numerical flux functions are evaluated in a 

component by component manner. Although this approach is quite simple and efficient, 

its resolution power is not as good as the characteristic decomposition approach, and it 

can cause excessive smearing of the shear waves [65]. In this work, a characteristic based 

approach is used, which couples the Roe type approximate Riemann solver to solve 

system of conservation laws. This method is expected to provide an efficient approach for 

solving hyperbolic equation, especially the system equations. Secondly, although the 

hybrid idea has been applied in aerodynamic applications and simulations successfully, it 

is still new to hydraulic engineering fields. Therefore, introducing and exploring such 

algorithm is expected to contribute by providing a new tool for modeling rivers and open 

channel flows. Furthermore, since the ENO scheme and the WENO scheme are being 

increasingly recognized and used, comparison of the performances of these two schemes 

in the context of hybrid schemes would be a valuable practice in a comparative 

evaluation of schemes.    

 

In this dissertation, the behavior of linear and nonlinear hyperbolic equations are 

investigated, with the focus given on deriving a better high order shock capturing scheme 

with a WENO-type interpolation for point-wise derivatives based on the characteristic 

approach. The new compact-WENO scheme, together with the compact-ENO scheme, 

will be applied to a number of benchmark test problems, particularly for modeling open 

channel flows. It is expected that this method will provide a new approach for solving 



 6

hyperbolic equations, in general, and make an efficient tool for hydraulic engineering 

simulations. 

 

1.3 Organization of Dissertation 

 
Two schemes are studied in this dissertation, namely the ENO-Padé scheme and the 

WENO-Padé scheme. Theoretical background of numerical wave modeling under the 

condition of abrupt change in the flow condition is provided. The core part of the 

presentation is devoted to scheme development and implementations. To evaluate the 

performance, numerical experiments are conducted and the simulated results are 

presented.  

 

The dissertation is organized as follows. Chapter 2 presents a literature review of the 

numerical techniques for hyperbolic conservation laws. Numerical difficulties with the 

traditional numerical methods are discussed. The state-of-the-art shock capturing 

numerical methods are introduced. Then a survey on the applications of shock capturing 

schemes for shallow water equations is given. Chapter 3 presents the theory of hyperbolic 

conservation laws, including the relevance of the Rankine-Hugoniot discontinuous 

condition and the Riemann problem. The focus is given on the well known Godunov 

scheme with Roe type approximate Riemann solver. Then, the shallow water equations 

are introduced, with the general characteristic approach for solutions outlined. In Chapter 

4, the complete numerical scheme is formulated, including a detailed discussion of the 

semi-implicit time discretization method. The implementation of two types of boundary 

conditions is provided. Chapter 5 contains the numerical experiments on a number of 
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one-dimensional benchmark test cases. For each case, details of model setup are given. 

The results of the ENO-Padé and the WENO-Padé scheme are compared against the 

available analytical solutions to disclose their predictive capabilities. Those schemes are 

also quantitatively evaluated through the error analysis and convergence test. Model 

validations are carried out by running a field simulation and comparing with the 

measured data. In Chapter 6, the algorithm is extended to include source terms and to 

deal with two-dimensional problems. Operator splitting technique and the δ -form 

Douglas-Gunn Alternating Direction Implicit (ADI) algorithm [24] are used for such 

extensions. Chapter 7 presents the numerical experiments for the extensions given in 

Chapter 6 on non-homogeneous and two-dimensional hyperbolic equations. Experiment 

details are given and the results comparisons and discussions are also provided. In 

Chapter 8, a summary of the present work is provided. Conclusions are formulated with 

an outlook for future research described. 
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Chapter 2    

 

Literature Review - Shock Capturing Methods  

 

The general one-dimensional hyperbolic equation, also known as hyperbolic 

conservation laws, can be written as:  

0=
∂
∂

+
∂
∂

x
F

t
Q                                                    (2.1) 

 
where Q is the vector of conservative variables to be advected and F is the flux vector, 

which is usually a function ofQ . If the vector consists of a single conservative variable q , 

then Eq. 2.1 becomes a scalar hyperbolic equation denoted by 

 0=
∂
∂

+
∂
∂

x
f

t
q                                                     (2.2) 

where f is the scalar flux corresponding to the variable q .  

 

As mentioned in Chapter 1, the above type of PDEs may involve shocks in the 

solutions, which usually can not be captured by traditional finite difference methods. 

Therefore, much research effort has been made in developing special numerical 

techniques to deal with shocks. Such shock capturing methods have the property of 

tracking the discontinuities while maintaining the accuracy and stability in smooth 

regions. In this chapter, a literature review is carried out on classical and recent shock 

capturing methods for hyperbolic equations. Then focus is given on a review of the high 

order schemes including the ENO scheme, the WENO scheme, and the compact Padé 
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scheme. Finally an overview of the shock capturing methods for shallow water equations 

is provided.  

 

2.1 Shock Capturing Methods 
 

Due to the numerical challenges posed by the presence of shocks or discontinuities in 

the solution of hyperbolic equations with a general form given in Eq. 2.1, research have 

been conducted on developing numerical methods that can track discontinuities without 

significant oscillations as well as can provide accurate approximation to smooth areas. In 

the past few decades, a number of shock-capturing methods have been developed for 

solving hyperbolic conservation laws. 

 

Traditional shock capturing schemes use first or second order finite difference 

methods. Among the first order schemes, an important family is the upwind methods. In 

such methods, the spatial derivatives are discretized in a way that is consistent with the 

direction of the wave propagation, thus this class of method is more physically sound. 

The most popular upwind scheme is the Godunov scheme [27]. In this method, the 

solution is represented by a series of piecewise constant states, which provides a close 

representation of the true solution near discontinuities The solution of this method is 

evolved from considering the nonlinear interaction between piecewise constants, which, 

if viewed individually, constitutes a problem called Riemann problem. To solve the 

Riemann problem, different approaches, either exact [32] or approximate [25, 37, 66, 74, 

78] have been proposed. Due to the high computational cost of the exact solver, most 

numerical methods use approximate solvers. In those methods, solution to the Riemann 



 10

problem is based on the characteristics of the Jacobian matrix of the system. Among 

those, the Osher scheme [25] determines the direction of the flux by choosing the sign of 

the eigenvalues. The Roe scheme [74], also referred to as flux difference splitting scheme, 

approximates the Jacobian matrix using an average of the state variables calculated from 

either side of the Riemann interfacial values. The HLL scheme [37], unlike the other 

Riemann solvers, considers only the left and the right characteristics and expresses the 

middle region in terms of the interfacial values.  The HLLC flux scheme [78], an 

improved variant of the HLL flux, contains the middle (contact) wave in the Riemann 

problem solution. In the flux vector splitting approach [74], the flux is split into two parts 

with the upwind direction automatically determined based on the sign of the flux. Among 

those methods discussed above, the Roe scheme is the most widely used approach as a 

shock capturing operator. So it is selected in this work for the calculation of fluxes. 

Details of this method, and the related Godunov scheme, are presented in Chapter 3. 

 

The upwind schemes, even though being robust and stable in solving discontinuities, 

are only first order accurate, also strong diffusion can cause significant smearing in the 

solutions. Additionally, if the conservation laws are nonlinear, the waves contain 

components that propagate in either direction. In such situation, the direction has to be 

identified a priori, which makes the numerical methods become more complex.  However, 

because of its obvious advantages, this type of methods has been widely used, and later 

improvements have lead to many high resolution schemes. The improved schemes either 

employ higher order interpolation functions or they post-process the Riemann solutions 

before averaging to find the updated solution.  
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Besides the first order methods, there is a class of second order methods, such as the 

Lax-Wendroff scheme [50], the Beam Warming scheme [8], and the McCormack scheme 

[91]. Those second order schemes do not require the explicit knowledge of the 

characteristic of the system, and have the advantage of being non-dissipative. However, 

they are prone to generating spurious oscillations across discontinuities in the solutions 

[53, 92]. It is known that the conventional finite difference methods of second order 

accuracy based on fixed stencil interpolation always introduce spurious oscillations in the 

vicinity of large gradients. If the numerical oscillations are too large, then the numerical 

scheme becomes insufficient to resolve the solutions.  

 

Usually, the finite difference method requires structured (mostly Cartesian or Non-

Cartesian via a coordinate transformation) grids, which make it inflexible to be applied to 

irregular domains. Whereas, the finite volume method (FVM), which is based on the 

integration of the governing equation over non-overlapping cells, has the advantage over 

the finite difference method that it has the flexibility to be applied to both structured and 

unstructured meshes of any geometrical shape of elementary cells for space discretizaton. 

Another advantage of FVM consists in the guarantee of conservation of physical 

properties by the integral formulation. As the FVM method is becoming a widely used 

modeling strategy, the number of papers describing this method is large [35, 44, 54, 55, 

63]. The finite volume method is usually cast in staggered grid formulations on which 

shock capturing methods can be designed by solving a series of one dimensional 

Riemann problems on the boundary of each cell. Using FVM, evaluation of the numerical 

flux functions at the edge of each cell is required to update the cell averages. This can be 

achieved by extracting information on point values from the cell averages, for which high 
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order approximations can be used. The drawback of FVM is found in applications that 

require an accuracy of higher than second order. In addition, FVM space discretizations 

are not suited for the construction of implicit methods because the computation of the 

average of the source couples the cells and makes an implicit treatment of the source less 

efficient [62]. Since the finite volume and the finite difference methods are equivalent in 

1-D, often, depending on the type of discretization and grid used, they are applied mixed 

[86], whereby the conservative variables are stored at the nodes of the mesh, while the 

fluxes are stored at the center of the control volume. Considering such attractive features, 

in this work a finite volume style high order finite difference numerical method is used.  

 

Besides the finite difference and the finite volume methods, shock capturing methods 

also includes the finite element approach. A popular one is the Discontinuous Galerkin 

(DG) Finite Element Method (FVM) [15, 64], in which a higher order piecewise 

continuous polynomial representation is used in a weighted residual finite element 

approach. Cockburn and Shu [17] introduced the first Runge-Kutta DG (RKDG) method, 

which uses an explicit Total Variation Diminishing (TVD) second-order Runge-Kutta 

discretization and modifies the slope limiter to maintain the formal accuracy of the 

scheme at the extrema. Another approach is the Residual Distribution method (RD) [1, 2, 

19], which allows upwinding by using a continuous, eventually high order, finite element 

representation. Although more physically based, the finite element methods are 

computationally expensive in nature, thus are not suitable for a lot of simulations 

involving large temporal and spatial scales.  
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2.2 High Resolution Schemes 
 

In the past several decades, attempts to devise numerical methods that can accurately 

capture shocks have lead to the development of many high resolution schemes. “High 

resolution methods” refers to the method that is at least second order accurate on smooth 

solutions and non-oscillatory at discontinuities [52].  

 

In order to develop a numerical method of higher order, non-oscillatory, and capable 

of capturing shocks, it is necessary to introduce a definition for oscillation. Generally a 

measure of oscillation is the total variation (TV) given by 

∑
∞

−∞=
−−=

i

n
i

n
i

n QQQTV 1)(                                                  (2.3) 

Here TV is the summation of the variation between two consecutive points for all the 

points in the domain, n
iQ is the approximated value of point i at time level n. It is easy to 

see from Eq. 2.3 that oscillations in the computed result will increase the total variation.  

Any numerical scheme for which the total variation of the solution decreases with time is 

called Total Variation Diminishing (TVD) scheme. Therefore, if a scheme is TVD, it 

implies that )()( 1+≤ nn QTVQTV is satisfied, and thus oscillations are avoided.  

 

The feature of the TVD requirement makes it possible to derive higher-order accurate 

methods. Many high order schemes have been proposed based on this principle, among 

which, a common one is to add artificial diffusion. In this approach, the artificial 

diffusion is tuned to introduce enough dissipation near discontinuities but made small 

enough to be negligible in smooth regions. An example of artificial diffusion method is 
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the McCormack scheme, in which numerical viscosity is added to reduce the oscillations 

[28]. However, the difficulty with this approach is that it is hard to determine the amount 

of dissipation needed without causing unnecessary smearing.  

 

For this reason, the high-resolution methods developed more recently have used more 

direct approaches to impose the nonoscillatory requirement. One approach is to use 

limiters to the flux. The flux limiter works by imposing constraint to the gradient of the 

flux function. Such approach is developed to overcome the drawback of those high order 

methods that are accurate in smooth regions but behave poorly near discontinuities. The 

idea behind this approach is to combine high order flux with low order flux via the limiter 

such that high order scheme is used in smooth regions, while switching to low order 

method near discontinuities. Using non-linear limiters during the estimation of conserved 

quantities at the cell interface, the oscillations that would have led to a local extreme 

could be suppressed. Depending on how to select the limiter, different methods are 

obtained. One of the earliest attempts is the Flux Corrected Transport (FCT) scheme of 

Boris and Book [12]. It stems from the upwind method but is modified to create a higher 

order scheme in smooth regions, which then is reduced to a more robust first order 

algorithm near discontinuities by adding some anti-diffusion flux. The FCT scheme, 

although being high order in smooth area, gives artificial diffusion at region with large 

gradient, and is basically of first order accuracy in that location. Yee [94] extended the 

FCT scheme where the TVD property is maintained at discontinuities while second order 

accuracy is achieved in smooth regions. Different choices of limiters include the 

Superbee limiter of Roe [67], a smoother limiter by van Leer [83], the Woodward limiter 

[18], the Minmod limiter [18], and the Monotone Upstream-centered Schemes for 
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Conservation Laws (MUSCL) of van Leer [18], etc. Among them, the MUSCL scheme is 

the most widely applied. It uses a linear reconstruction to process the Riemann solutions 

to achieve second order accuracy. However, the slope of the piecewise linear distribution 

is limited [91], thus unless smooth interpolation is used near discontinuities, oscillation 

will be introduced. Details of the above limiters are given in Appendix A. 

 

The above discussed schemes, although capable of suppressing spurious oscillations, 

in some cases, may result in diffusion due to the over-suppressing. Although TVD 

conditions have been applied in many schemes, they are known to degenerate to first 

order accuracy at local maximum and minimum points. Additionally, the process by 

which the low order and high order methods are combined owes little to the nonlinear 

processes associated with real flow discontinuities. Therefore the numerical solution can 

often exhibit unphysical behavior [56]. 

 

To remedy such problems and to produce globally higher-order accuracy, Harten and 

Osher [39] developed the essentially non-oscillatory (ENO) scheme which allows the loss 

of the amplitude at one time step to be gained at another [38]. Later, Liu and Osher [57] 

proposed the weighted essentially non-oscillatory (WENO) scheme for improvement. 

ENO/WENO spatial operator is able to achieve user defined order of accuracy in smooth 

regions with monotone shock transition. The major advantages with these schemes 

include no oscillation raised near large gradients and ease in higher-order extensions. Of 

these two schemes, the ENO scheme has been widely applied to solve hyperbolic 

equations; while the WENO scheme, although not as popular, is gaining increasing 

attention. Literature survey shows that comparison of the performances of these two 
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schemes has been rarely reported. Therefore, it is well worth to explore the evaluation 

and comparison of these two schemes to get a better understanding of their applicability 

and effectiveness in solving hyperbolic equations.  

 

2.3 ENO and WENO Schemes 
 

The ENO scheme was initially proposed by Harten et al. [39] in the finite volume 

framework, in which the cell reconstructions are approximated by a high order essentially 

non-oscillatory interpolation of a cell average function. The basic idea of this method is 

that by shifting among all candidates, a “smoothest” stencil can be selected that yields 

non-oscillatory behavior with uniformly high order accuracy. In the original finite 

volume formulation, nonlinear reconstruction of the point values is computed from the 

cell-average that serves to compute the numerical fluxes. Such formulations are effective 

for one-dimensional problems but become fairly expensive while extending to higher 

dimensions because of the complexities in computing point values from cell-averaged 

solutions. To overcome this difficulty, Shu and Osher [73] proposed the finite difference 

ENO method. By this method, the computation of numerical fluxes can be performed in a 

dimension splitting fashion. In contrast to the piecewise linear cell reconstruction, which 

are second order accuracy at most, the ENO scheme can construct a polynomial that is 

accurate to a higher order.  

 

The WENO scheme was propose by Liu and Osher [57], in which they pointed out 

that the ENO interpolation of choosing the smoothest stencil overshoots the smooth 

regions. The first WENO scheme is constructed based on the finite volume ENO scheme 
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by taking a convex combination of the ENO approximation candidates with properly 

chosen weights. Later, Jiang and Shu [47] employed the finite difference approach and 

constructed the improved third and fifth order WENO scheme. They also outlined a 

general framework for the design of the smoothness indicators and nonlinear weights.  

 

Both the ENO and the WENO schemes are built upon the idea of adaptive stencils in 

the reconstruction procedure, and can automatically achieve high-order accuracy and 

non-oscillatory property near discontinuities by making adjustments according to local 

smoothness. These two schemes have demonstrated very good shock-capturing 

capabilities. However, they are usually not optimal for computing turbulent flows or for 

aero acoustics applications because they exhibit poor resolution qualities in high field 

gradient [87] compared to the linear compact schemes. Attempts to improve the 

properties include the work of Wang [88] and Weirs et al. [90], in which the requirement 

for the formal order of accuracy of the scheme to achieve better resolution properties at 

high frequencies is relaxed. 

 

2.4 Compact Scheme  
 

The compact schemes are a family of central type finite difference methods that 

involve two or three grid points and treat the function and its derivatives as unknowns at 

the grid nodes. The basic idea of those schemes is to optimize the coefficients of the 

compact scheme to improve their resolution properties in order to resolve with high 

accuracy waves whose wavelength is small with respect to the computational grid. 
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Generally the central methods do not explicitly require the provision of wave 

propagation information, and thus are easy to understand and implement. Among the 

central compact schemes, the Padé scheme is a family of high order implicit schemes. It 

is inherently non-dissipative and is more accurate compared to the explicit schemes. Lele 

[51] introduced a series of higher-order compact schemes that are the generalization of 

the Padé scheme. It gives the freedom in choosing mesh geometry, and offers a 

computationally efficient finite difference form by solving tridiagonal matrix as apposed 

to the more complex coefficient matrix resulted from other methods. These useful 

features make it particularly applicable for the simulation of waves with high frequency. 

Like the other compact schemes, the Padé scheme is accurate in smooth regions with 

spectral-like resolution, but has been found to cause oscillations when applied directly to 

flow with discontinuities. To suppress the spurious oscillation and the nonlinear 

instability, Cockburn and Shu [16] developed the nonlinearly stable compact schemes for 

shock calculations, which used a limiter to stabilize the compact scheme. In the work of 

Tolstykh [77] and Zhuang [100], upwind compact scheme was used for which careful 

design is needed to introduce the appropriate amount of dissipation.  

 

It is recognized from the above discussion that the compact scheme and the shock 

capturing ENO/WENO scheme have mutual advantages and deficiencies. Thus they 

naturally give rise to an alternative that combines these two ideas to form a hybrid 

scheme. In such hybrid scheme, the non-oscillatory reconstruction is employed to prevent 

oscillations from the discontinuity regions and the compact scheme is used to provide 

numerical accuracy in the smooth areas outside the shocks. Adams and Shariff [4] 
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proposed the hybrid compact-ENO scheme, which couples a non-conservative compact 

upwind scheme with a shock-capturing ENO scheme that is turned on only around 

discontinuities. Deng and Maekawa [20] developed nonlinear compact schemes based on 

an adaptive mechanism of selection among different compact stencils and the 

interpolation is carried out based on the smoothness properties of the function. Pirozzoli 

[61] derived a hybrid compact-WENO scheme in which a conservative compact scheme 

is coupled with the WENO scheme. Ren [65] later improved Pirozzoli’s work by using 

the weighted average of two sub-schemes based on characteristic decomposition. Wang 

[87] combined the Padé compact finite difference scheme with the ENO interpolation for 

solving compressible and incompressible Navier-Stokes equations. Being successfully 

applied in aerodynamic modeling, this hybrid scheme has not appeared in other 

engineering fields, especially, the hydraulic engineering applications. So it is valuable to 

introduce this model to a wider spectrum of real world applications. Also, investigation 

of hybrid schemes composing high order compact differencing with the ENO/WENO 

interpolation would be a significant contribution to the study of hyperbolic equations. In 

this research, a new scheme based on the hybrid idea is developed which uses the WENO 

scheme with compact finite difference scheme to solve hyperbolic equations.  

 
2.5 Time Discretization Method 
 

Time integration methods make vast use of explicit methods, mostly two step 

predictor-corrector or Runge-Kutta, and are common place. However, a well known 

limitation with the explicit schemes is the restriction to small time step governed by the 

Courant-Friedrichs-Levy (CFL) condition to maintain stabilities. Usually the CFL 
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condition is more stringent than what is needed for time accuracy. The Crank-Nicolson 

(CN) method, a semi-implicit time evolution scheme, on the other hand, is known to be 

unconditionally stable and allows for larger temporal integration step. But due to its high 

programming complexity, this method has not become popular in high resolution 

schemes to solve hyperbolic equations, especially the system equations. With its obvious 

advantage, this dissertation uses the CN scheme as the time integration method.  

 

2.6 Shock Capturing Schemes for Shallow Water Equations 
 

Since the primary application of this work is to resolve open channel flow problems 

by solving the shallow water equations, it is necessary to conduct a literature survey of 

the shock capturing numerical methods for solving this particular class of PDEs.  

 

Fennema and Chaudhry [28], Yost [97] applied the FCT scheme to open channel 

flows. Fair results were obtained but with quite bit of dissipation. Nujic [59], Yang [93] 

and Yost [96] used the ENO scheme for solving one-dimensional dam break problem. 

Zoppou and Roberts [102] used second-order approximate Riemann weighted average 

flux scheme with a van Leer type limiter to solve dam break problems. Cao [14] used the 

weighted average flux method in conjunction with the HLLC approximate Riemann 

solver and the Superbee limiter to study dam-break hydraulics over an erodible sediment 

bed. 

 

Besides one-dimensional applications, the 2-D shallow water equations have also 

been investigated by researchers. Zhao et al. [98] reported the implementation of an 
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approximate Riemann solver with the Osher scheme in finite volume, and later extended 

that work by including flux-vector splitting and flux difference splitting [99]. Tseng [81] 

used a class of Roe, TVD and ENO scheme to simulate two-dimensional rapidly varied 

open channel flow. His results demonstrated that these schemes are accurate, robust and 

highly stable even in flows with strong gradients. Sanders [69] proposed a Godunov-type 

finite volume scheme to achieve a nonoscillatory and second-order accurate solution. Jha, 

Akiyama, and Ura [45] used first-order accurate Roe’s numerical flux with Harten and 

Hyman’s entropy condition and a second-order accurate Lax-Wendroff scheme to solve 

two-dimensional flood flows. Gottardi and Venutelli [33] used second order central-type 

scheme in a three-step Runge-Kutta time stepping scheme for two-dimensional shallow 

water flows. In this scheme, the reconstruction is performed in the middle cell such that 

no approximate Riemann solver is needed. Wang, He and Ni [85] used TVD scheme with 

an optimum-selected limiter to evaluate the flux at element interfaces and utilized a two-

step Runge-Kutta method for integration of the conservative shallow water equations on 

arbitrary quadrilateral meshes. Schwanenberg and Harms [70] used Runge-Kutta 

discontinuous Galerkin finite-element method to solve 2-D shallow water equations.  

 

In this dissertation, the proposed numerical schemes are investigated for solving 1-D 

and 2-D shallow water equations. For 2-D equations, the operator splitting techniques and 

the treatment of source terms are thoroughly studied. Then the Crank Nicolson-ADI 

method with improved order of accuracy is discussed. Finally, the schemes are tested for 

the ideal and benchmark 1-D and 2-D dam break problems. 

 

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASCERL&possible1=Schwanenberg%2C+D.&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASCERL&possible1=Harms%2C+M.&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
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Chapter 3   

 

Hyperbolic Conservation Laws and Shallow 

Water Equations 

 
In this chapter hyperbolic conservation laws and the commonly used numerical 

methods for this type of PDEs are discussed. The presentation begins with discontinuous 

solution and associated properties, followed by the definition of Riemann problem and an 

outline of its solution procedure. Then the Godunov scheme is presented for scalar and 

system hyperbolic equations. Finally the shallow water equations are introduced in this 

chapter. 

 

3.1 Hyperbolic Conservation Laws 
 

Considering the hyperbolic equations given by Eq 2.1 and Eq. 2.2, assume a uniform 

mesh is used on the x-t plane with staggered grid. The staggered grid is known to be more 

attractive than the nonstaggered grid as it gives sharper resolution for the same cell size 

[57]. The grid is defined as 

 
xixi Δ= , Ni ,,2,1 L= ;   tnt n Δ= , L,2,1=n                         (3.1) 

 
where xΔ and tΔ denote the grid spacing in space and time, i is the index of the nodes, N is 

the total number of nodes. The cell for ix , denoted by iI  , is bounded by the boundaries 
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2
1

+= Ni .  

 

As is known, the main characteristic of hyperbolic PDEs is that they admit smooth as 

well as discontinuous solutions. If the mechanism of wave propagation leads to the 

formation of shocks, discontinuity will be present in the solution. From mathematics 

point of view, the conservation laws for hyperbolic PDEs can be expressed in differential 

or integral form. For the former one, smoothness in the solution is generally assumed. 

But if a problem contains discontinuities, the derivatives in the governing equations 

become undefined. To circumvent this problem, the more fundamental integral form 

should be considered because it requires less smoothness of the solution across the 

discontinuity.  

 
Consider the hyperbolic scalar equation given in Eq. 2.2. Integration on the 
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Written in difference form, Eq. 3.2 becomes 
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where n

iq  is the spatial average over the cell iΩ  and is given as 
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Eq. 3.3 is the basic form of hyperbolic conservative laws, which states that the rate of 

change in the conservative variable q in a cell is equal to the difference in the fluxes f 

entering the cell.  

 

3.2 Discontinuous Solution 
 

For hyperbolic equation, a solution that satisfies the integral form of the equation is 

often referred to as ‘weak solution’. If a discontinuity exits in the domain, by integrating 

over the discontinuity, the following condition, known as the Rankine-Hugoniot 

condition, is satisfied: 

( )lrlr qqsff −=−                                                 (3.7) 
 

where s is the moving speed of discontinuity given by  
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For a hyperbolic system to admit discontinuous solutions, the governing equations 

must be formulated in integral form and must satisfy the Rankine-Hugoniot condition.  
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It should be noted that even though the integral form allows less regularity than the 

differential form, not all solutions are viable solutions to the physical problem because 

weak solutions are not unique. Usually, an additional physical-based condition must be 

posed to single out the real solution. Such condition is called “entropy condition”, which 

states that the solution must be the vanishing viscosity solution, i.e. the limiting solution 

of the viscous equation as the viscous coefficient 0→ε .  

 
3.3 Riemann Problem 

 

In dealing with discontinuities, a special type of problem is considered, known as the 

Riemann problem. It describes two constant states initially separated by a discontinuity. 

For Eq. 2.2, the Riemann problem is defined as:  
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where λ  is the speed of the propagation, l and r denote the left and right side of a 

discontinuity as depicted in Figure 3-1. 

 
 

 

 

 

 
Figure 3-1 Illustration of the initial data for the Riemann problem 
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On the x-t plane, the solution to the Riemann problem consists of similarity solutions. 

At time t, the initial discontinuity at x=0 is expected to propagate a distance d. It is easy 

to see that the initial discontinuity propagates with the speedλ . On the characteristic 

curve plane, the left characteristic curves, where the solution takes on the value of lq , are 

separated from the right characteristic curves, where the solution takes on the value of rq . 

Depending on the values of lq  and rq , the solution may be of the following forms:  

 
1) lq < rq , the characteristic curves on both sides of the wave go into the shock wave 

and the two states lq  and rq are connected through a single jump, thus forming a shock 

wave. The unique weak solution in this case is 
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where s is the speed of discontinuity given by Eq. 3.8. Such relationship is represented in 

Figure 3-2. 

 

 

 

 

 
 
 
 

Figure 3-2 Characteristics of shock wave 
 

 

2) lq > rq , the speeds of a characteristic family increase from left to right. This 

corresponds to a rarefied wave for which infinite weak solutions exist. The solution that 
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satisfies the entropy condition is the weak solution called “rarefaction wave” and is given 

as 
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In this case, the characteristics on the left and the right of the wave diverge. The two 

states lq and rq are connected through a smooth transition as depicted in Figure 3-3.  

 

 

 

 

 

 
Figure 3-3 Characteristics of rarefaction wave 

 

3) lq = rq , the characteristics are parallel and the two states are connected through a 

single jump discontinuity referred to as contact discontinuity. The characteristic curve is 

depicted in Figure 3-4.  

 

 

 

 

 

Figure 3-4 Characteristics of contact discontinuity 
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A Riemann solution may be of any particular characteristic family depending on the 

initial condition. On the x-t plane, since the characteristic curve must be unique for any 

point, the characteristic speeds of a Riemann problem could be connected to the outside 

solution through a shock, a rarefaction or a contact discontinuity as needed. Transition 

between two characteristics can be viewed as waves emanating from the initial 

discontinuity because the solution only varies across the transition. For system equations, 

since more than one characteristic curves are consisted, the solution is a combination of 

those characteristic families and therefore contains multiple transitions. The Riemann 

solution for system equations will be discussed in Section 3.6.2.   

 

For general hyperbolic equation, if a discontinuity in the solution is characterized by 

the left and the right side values, the relevance of the Riemann problem can be seen by 

assuming a piece-wise constant solution of a cell average in each computational cell 
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The local Riemann problem can be solved exactly by solving the nonlinear flux 

function, which leads to fairly high computational cost. An alternative is to solve the 

local Riemann problem in an approximate approach, which will be discussed in Section 
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3.6.3. By this approach, the interfacial value 
2
1

+i
q is first approximated, and then the 

fluxes )(
2
1

±i
qf  can be evaluated by solving the Riemann problem using a conservative 

method. In Section 3.4, an important conservative method – the Godunov scheme is 

discussed. 

 

3.4 Godunov Scheme 
 

As mentioned earlier, numerical difficulties arise in hyperbolic type of PDEs, which 

necessitates special treatments of discontinuities. In dealing with such problems, a 

numerical method is expected to be conservative, i.e. the variable q in Eq. 2.2 should be 

conserved. It is recognized that traditional numerical methods based on the general first 

or second order methods for PDEs can lead to spurious oscillations near a shock wave, or 

the propagation of waves at wrong speeds. In the classical work of Lax and Wendroff 

[50], it was found that a conservative numerical method, if convergent, will converge to 

the weak solution of the conservation laws. Hou and LeFloch [42] proved that if a non-

conservative method is used, it converges to the wrong solution if it contains a shock 

wave. Recall the conservation laws in Eq. 3.3, for a numerical method to be conservative, 

the fluxes 
2
1

±i
f must be the true averages of the fluxes across the boundaries over a time 

step. There are many choices for the computation of 
2
1

±i
f that give conservative 

numerical methods. Among them, the Godunov scheme was a successful early attempt 

and has been shown to be robust and accurate in dealing with the difficulties in the 

hyperbolic conservation laws. 
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Consider 
2
1

+i
f as an example and note that the same principle applies to

2
1

−i
f , in the 

Godunov scheme, the flux 
2
1

+i
f is computed at the interface using the solution 

2
1

+i
q obtained at the interface by solving a local Riemann problem described in Section 

3.3. This is accomplished first by estimating lq and rq via interpolation, the order of 

which determines the order of accuracy of the scheme. Consider the first order 

interpolation for instance, a piecewise constant value is used and the state variables are 

il qq = and 1+= ir qq . With the obtained lq and rq , the local Riemann problem can be 

solved using an exact or approximate method. The results from these separate Riemann 

problems are then averaged to update the solution.  

 

3.5 Hyperbolic Scalar Equation 
 

In this section, the conservation laws for hyperbolic scalar equation given by Eq.2.2 is 

considered. Two typical examples of this type of PDEs are the linear advection equation, 

for which auf =  with a being a constant, and the inviscid Burger’s equation, for 

which 2uf = .  

 
Using first order interpolation, the numerical flux can be computed by 
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i
                                           (3.13) 

 
 
where a, referred as the “Roe speed”, is defined by 
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It is easy to note that the scheme switches sign depending on the sign of a, which is 

an indicator of the local wave direction. Specifically, the wave propagates from left to 

right if a is positive, and the reverse if a is negative. This is in fact the first order upwind 

scheme.  

 

3.6 Hyperbolic System Equations 
 

In the previous section, the hyperbolic theory is discussed for scalar equation. It 

becomes more complicated when applied to hyperbolic system equations. For the system 

given by Eq.2.1, if the derivatives of the flux exist, the system can be rewritten as: 

 

0=
∂
∂

+
∂
∂

x
QA

t
Q                                                  (3.15) 

 

where A is the Jacobian matrix
Q
FA
∂
∂

= . This system is hyperbolic if matrix A is 

diagonalizable and has a complete set of real eigenvalues and eigenvectors. Since the 

characteristic of the system matrix determines the mathematical character of the 

governing equations, first it is necessary to discuss the properties of the Jacobian matrix 

through the characteristic theory. 

 

3.6.1 System Characteristics 

 
Consider the matrix form of the hyperbolic system equations given by Eq. 3.15. If the 



 32

vector Q consists of n variables, then the Jacobian matrix A is an nn*  matrix, 

where iλ denotes an eigenvalue and ir denotes the corresponding right eigenvector. If 

matrix A is diagonalizable, it can be expressed as  

1−Λ= RRA                                                        (3.16) 
 

where ),,,( 21 ndiag λλλ L=Λ is the diagonal matrix consisting of the eigenvalues, R is the 

right eigenmatrix ),,,( 21 nrrrR L= made up of the corresponding right eigenvectors. 

 

Define a new variable ),,,( 21 mvvvV L via the following transformation  

QRV 1−=                                                      (3.17)  
 
then substitution of Eq. 3.17 into Eq. 3.15 yields: 
 

0=Λ+ xt VV                                                  (3.18) 
 
HereV is called the vector of characteristic variable. Since the matrixΛ is diagonalized, 

Eq. 3.18 is equivalent to the following:  

nk
x

v
t

v k
k

k ,,2,1,0 L==
∂
∂

+
∂
∂

λ                              (3.19)  

 

In Eq. 3.19, the system is decoupled into n scalar Riemann problems, each being a 

linear advection equation of a characteristic variable iv . Every equation is associated with 

a particular eigenvalue corresponding to the characteristic speed of the individual wave 

component, and holds along the characteristic curve idt
dx λ= . Converting to the original 

variable, the linear scalar equation with constant coefficient has a solution in the form 

 
))((),( 0

1 txqRtxv kk λ−= − ,   nk ,,2,1 L=                            (3.20) 
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After solving the n local Riemann problems, the original solution can be found by inv

ersing the changed variable RVQ = and is given by  

∑∑
=

−

=

−==
n

k
kkk

n

k
kk ttxqRtvtxq

1
0

1

1

))((),( λ                             (3.21) 

 
3.6.2 Solution Structure 

 
In this section discussion is given on the solution structure of system equations. For a 

linear system, consider a Riemann problem with an initial single discontinuity 

⎩
⎨
⎧

=
r

l

Q
Q

xQ )0,(   
0
0

>
<

x
x

                                              (3.22) 

 
Take a system of two equations for example. Since it has two eigenvalues, the 

structure of the solution includes two waves emanating from the origin, each for one 

eigenvalue. Such solution structure results in three states as depicted in Figure 3-5: the 

original state to the left lQ , the one to the right rQ , and a middle state mQ between the 

two waves. Among them, the left and the right going waves are two shocks. In the middle 

region, the state is resulted from the passage of two waves emerging from the origin of 

the initial discontinuity. With constant initial values, each wave travels from the initial 

interface at the characteristic velocities 1λ and 2λ . Recall the decoupled system given by 

Eq. 3.19, the initial profile of every characteristic variable simply advects at its 

characteristic speed. The jump across each propagating discontinuity satisfies the 

Rankine-Hugoniot condition with each corresponding to an eigenvalue.  
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Figure 3-5 Characteristic of two waves 
 
 

For a nonlinear system, the wave speeds from neighboring cells are usually different, 

thus another situation may exist in which two states are connected through a smooth 

transition in a genuinely non-linear field by a rarefaction wave. Therefore, four possible 

wave patterns may occur for the Riemann problem. The combinations, depicted in Figure 

3-6, include (a) two shock waves, (b) two rarefaction waves, (c) left shock with right 

rarefaction waves, and (d) left rarefaction with right shock waves. 

 
 

 
 
 
 
 

 
 
 
 
 
 

Figure 3-6 Characteristic of nonlinear waves 
 

In this structure, the left and right regions are either shock waves or rarefaction waves. 

The mid region, under the interaction of the left and right state, forms a shear wave.  
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3.6.3 Roe’s Approximate Riemann Solver 
 
 

As demonstrated in Section 3.2, the Riemann problem based on the Godunov method 

for scalar equation is rather straightforward. In the situation of system equations, however, 

the computation of the flux becomes complex. Solving the Riemann problems exactly 

involves the solution of nonlinear equations, for which an iterative procedure is always 

involved, thus resulting in demanding computational expense. Moreover, the possible 

combinations to connect the states lQ  and rQ  will drastically increase the amount of 

computations due to the step for determining the solution structures with different 

patterns. On the other hand, since the cell averaging by the Godunov method already 

reduces the accuracy, it would be adequate to use an approximate approach rather than 

the costly exact solver. Such approximate approach is expected to simplify the solution 

procedure and be more efficient. Generally, the approximate approach involves finding 

an approximation state 
~
A to the Jacobian matrix A that gives the exact solution in the case 

of a single shock, which can be expressed as: 

)()()(
~

lrlr QFQFQQA −=−                                      (3.23)  
  

Recall the Rankine-Hugoniot condition given by Eq. 3.7, it can be seen that a single 

shock is an eigenvector of 
~
A . As discussed in Section 2.1, past researches have proposed 

a number of efficient approximate Riemann solvers [11, 25, 29, 66]. In this work, the 

most popular and robust Roe’s approximate Riemann solver is used. 

 

For a scalar conservation laws, the numerical flux of the Roe scheme is given by Eq. 

3.13 and Eq. 3.14. For a system equation, since the Riemann problem is locally defined, 
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the nonlinear part should be treated in local characteristic fields. This can be achieved by 

“freezing” the Jacobian matrix of the flux function on the local cells. Thereby the original 

Riemann problem is replaced by the approximate Riemann problem, which can thus be 

solved exactly. The solution obtained from such replacing still retains the initial data. The 

resultant Jacobian matrix is a constant matrix which satisfies the Rankine-Hugoniot 

condition: 

)()()( 1

~

2
11 iiiii QQAQFQF −=− +

+
+                                     (3.24) 

Such intermediate matrix is called the “Roe matrix”. To maintain the conservative as 

well as the hyperbolic properties, the “Roe matrix”
~
A is required to satisfy the following 

conditions: 

1)
~
A has real eigenvalues and a complete set of linearly independent right eigenvectors 

2)
~
A is consistent with the exact Jacobian matrix 

)(),(
~

QAQQA =                                                  (3.25) 

3)
~
A ensures conservation across discontinuities 

)()()(
~

lrlr QQAQFQF −=−                                       (3.26) 

 

The construction of a matrix satisfying Eq. 3.24 through Eq.3.26 can be quite 

complicated. The values consisted in such matrix are called “Roe average”. It should be 

noted that there is no unique choice for the average. In the original Roe’s approach, an 

intermediate parameter vector was introduced where both the conserved variable and the 

flux were expressed in terms of it. The average was obtained by simply taking the 
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arithmetic means of the variables. Later, Roe and Pike [68] proposed a simpler method, 

which avoids constructing the Roe matrix explicitly. In Section 3.7.3, the Roe matrix for 

the shallow water equations will be discussed.  

 

By approximating ),( txQ  with a piecewise constant function, a local Riemann 

problem is solved at each time step. This allows for the decomposition of the fluxes at the 

cell interfaces into waves determined by the eigenvectors of the Jacobian matrix. The 

Roe’s scheme decomposes the Jacobian matrix, as given by Eq. 3.16, and then the 

Jacobian matrix can be written in terms of the averaging state as: 
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RRA                                              (3.27) 

 
 

Recall the characteristic theory presented in Section 3.6.1, the decomposition, 

together with the change of variables, results in a series of linear advection equations 

with each propagating at a characteristic speed of the corresponding eigenvalue of the 

“Roe matrix”. Instead of treating the equations as individual scalar linear advection 

equations, one can solve the system as a whole by performing matrix operations. Also it 

is noticed that the three matrices on the right hand side of Eq. 3.27 are approximations to 

the interface quantities, and should be evaluated with the ‘averaged’ values.  

 

With the Roe matrix and the Roe average, the interfacial flux can be calculated using 

the approximate Riemann solver: 
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From the decomposition given in Eq. 3.16, it is easy to verify that the absolute value 

of the Roe matrix satisfies 

1

2
1

2
1

2
1

2
1

−
++++

Λ= iiii RRA                                     (3.29) 

 
with the absolute diagonal matrix given by  
 

),,(
2

1
2

11
2

1 +++
=Λ inii diag λλ L                             (3.30) 

Eq. 29 and Eq.30 can be substituted into Eq. 28 to calculate
2
1

+i
F . It is noted that Eq. 

3.28 is in fact the generalized form of the first-order upwind scheme.  

 

3.7 Shallow Water Equations 
 
 
3.7.1 Governing Equation 
 
 

The mathematical model of incompressible fluid flow is based on the three-

dimensional fully dynamic Navier-Stokes equations. For flows in rivers or open channels 

of mild slopes, usually the depth of water is far less than that in the longitudinal and 

latitudinal dimensions, therefore the vertical component of the velocity and the 

corresponding shear stress are small enough to be neglected. Hence the pressure gradient 

is independent of the vertical level z, implying a hydrostatic pressure distribution. By 

assuming incompressible, inviscid and hydrostatic pressure, the shallow water equations 

can be derived by integrating the Navier-Stokes equations over depth. The general two-

dimensional shallow water equations then take the form: 

 
0)()( =++ yxt hvhuh                                               (3.31) 



 39

)()()()( 2
fxxyxt SZghhuvhuhu +−=++                             (3.32) 

)()()()( 2
fyyyxt SZghhvhuvhv +−=++                             (3.33) 

 
where h is water depth; u is depth averaged velocity in the x-direction; v is depth 

averaged velocity in the y-direction; g is acceleration due to gravity; Zx is bed slope in the 

x-direction; Zy is bed slope in the y-direction; Sfx is bottom friction in the x-direction; Sfy is 

bottom friction in the y-direction. Generally, the bottom friction can be estimated using 

Manning’s formula: 

3
4

222

h

vuunS fx
+

= ,
3

4

222

h

vuvnS fy
+

=                               (3.34) 

 
where n is Manning’s roughness coefficient. 

 

In this system, Eq. 3.31 represents the conservation of mass by enforcing the balance 

of total volume of water. Eq. 3.32 and Eq. 3.33 constitute the momentum equations in x- 

and y-direction, respectively. The shallow water equations can also be written in an 

equivalent matrix form as:  

)()()( QS
y
QE

x
QF

t
Q

=
∂

∂
+

∂
∂

+
∂
∂                                   (3.35) 

 
where Q denotes a vector containing the conservative variables h , u and v ; 

)(QF and )(QE are vectors of the flux tensor and are functions of Q ; )(QS is the source 

or sink term. Expressed in terms of the primary variables, the vectors are written as:  
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with xx ZS −=0 , yy ZS −=0 . 
 
 
3.7.2 Characteristic Speeds 
 
 

Similar to other hyperbolic systems, the shallow water equations may contain shocks 

in the solution. As discussed earlier, a generalization of the hyperbolic equations that 

contain shocks is the Riemann problem. Therefore, to study the solution structure of the 

shallow water equations, it is necessary to look at its characteristic field first. Since this 

system consists of three equations, it has three distinct eigenvalues 21,λλ and 3λ with each 

associated with one wave. The three eigenvalues form four states lQ , lQ* , rQ* and rQ as 

depicted in Figure 3.7.  

 

 

 

 

 

 

Figure 3-7 Wave structure of shallow water equations 

 
By examining the regions separated by the characteristics, it is found that the 

following wave possibilities may exist: between the states lQ and lQ* , the left wave can 
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be a rarefaction or shock wave; between the states lQ* and rQ* , there is always a shear 

wave and between rQ* and rQ , the right wave could be a right rarefaction or shock wave. 

Notice that the first and the third eigenvalues correspond to that of the one-dimensional 

shallow water equations, which are shock or rarefaction. The second eigenvalue arises 

from the latitudinal velocity component v , which only changes across the eigenvalue, 

while the water depth h and the longitudinal velocity u are not affected. Hence the 

overall solution structure is a combination of the left and the right shock or rarefaction 

waves, with a shear wave in the middle. 

 

It is obvious that the directions of the characteristics determine how the wave 

information is transmitted: if both the left and the right characteristics have the same sign, 

the information transmits in the positive direction, hence the waves move only in the 

downstream direction, which corresponds to a supercritical flow; if one characteristic 

speed is positive and one is negative, the information transmits in both directions 

representing a subcritical flow, by which the information propagates both upstream and 

downstream. 

 
 
3.7.3 Roe’s Approximate Riemann Solver for Shallow Water Equations 
 
 

Based on the discussion of the approximate Riemann solvers in Section 3.6.3 for 

hyperbolic system equations, this section presents an outline of the Roe’s scheme for 

solving the shallow water equations. Consider the one-dimensional homogeneous shallow 

water equations 
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The vector flux F can be linearized with respect to the vector of variables Q through 

the Jacobian matrix expressed as 
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QQA
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∂

∂ )()(                                                 (3.39) 

 
Here Eq. 3.39 assumes AQF = . This can be true only if xx AQF = . This property is 

called the homogeneous property of functions. Specifically, the function )(QF is said to 

be homogeneous of degree one in the variableQ . Mathematically, if a function )(QF is 

homogeneous to degree k inQ , it has the following relation 

 
)()( QFQF kαα =                                                   (3.40) 

 
First order degree homogeneity is valid for systems such as the Euler equations of 

aerodynamics. However, this is not true for the shallow water equations. In fact, the 

shallow water equations are shown to be a homogeneous function of order two [101]. 

Hence the Jacobian matrix is not applicable in this case. Instead, a matrix G needs to be 

constructed which satisfies GQF = . In the work of Berger and Stockstill [9], G is shown 

to be: 
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This matrix has two eigenvalues 

 
2/1 cu +=λ , 2/2 cu −=λ                                      (3.42) 
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They are the two characteristic speeds along which the wave is transmitted. Now the 

corresponding eigenvectors can be computed. By carrying out a similar procedure as 

given in Section 3.6.1, the diagonal matrix together with the left and the right matrices 

can be obtained as:  
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To keep consistency of the notation throughout the dissertation, the symbol ‘ A ’ and 

the term ‘Jacobian matrix’ are maintained to denote the homogeneity satisfying matrixG . 

Note that matrix 
2
1

+i
A in Eq. 3.29 requires the evaluation of Eq. 3.43 through Eq. 3.45 at 

the cell interface 
2
1

+i
x , which are functions of the Roe average. Roe [66] constructed the 

averages in terms of the states lQ and rQ , which allows for conservative evaluation of 

flux vector. For the shallow water equations, Roe’s average is given by: 
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where ghc = is the celerity. The subscripts l  and r  refer to the left and right states.  
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This numerical flux, together with the conservative form of the conservation laws, 

forms the Godunov scheme of first order accuracy. To obtain solutions of high order 

accuracy, high order difference formulations and flux approximations must be used. That 

will be discussed in Chapter 4. 
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Chapter 4    
 
 

High Resolution Numerical Scheme 
 
 

In this chapter, a high order non-oscillatory shock capturing finite difference scheme 

on uniform cell-centered grids is developed. The scheme is based on the high order 

compact central type Padé scheme with ENO/WENO reconstructions. The semi-implicit 

Crank-Nicholson scheme is used for temporal discretization. First, the discussion of the 

numerical scheme is presented for scalar equation, then it is generalized to system 

equations.  

 

4.1 High Order Reconstruction 

 
Consider the scalar hyperbolic equation given by Eq. 2.2, by performing 

reconstruction using the information of the conservative variable q at some other 

locations, accurate information about this variable can be obtained. As stated in Section 

3.1, conservative numerical methods are constructed by discretizing the domain into cells 

featuring piece-wise constant state iq between the positions of
2
1

−i
x and 

2
1

+i
x , which result 

in a series of Riemann problems. For solving these Riemann problems, the Roe’s 

approximate solver has the general form:  
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where the superscripts l and r represent the left and the right interfacial states of 
2
1

+i
x , 

α is the characteristic velocity. For scalar case, α is the Roe speed given by Eq. 3.14. For 

system equations, α  is the local Jacobian matrix at the cell interface 
2
1

+i
x .The 

computation of the flux function for system equations is similar to that for scalar equation. 

Difference lies only in that the evaluation of the Roe flux for system equations requires 

the computation of the absolute value of the Jacobian matrix.  

 

Using high order approximations for those terms of the interfacial quantities on the 

right side of Eq. 4.1, high order approximation to the flux 
2
1

+i
f  can be achieved.  In this 

work, the ENO and the WENO scheme are employed to do such interpolation, as 

discussed below.   

 

4.1.1 ENO Scheme   

 
Generally, to obtain high order accuracy of a function, the interpolation stencil must 

contain more nodal points as compared to that for a lower order approximation. For a 

high order interpolation on a stencil of multiple points, if the interpolation function 

contains discontinuities, such traditional fixed stencil approximation may not be adequate 

near the discontinuities because large gradient inside the stencil may cause over- or 

under-shoot of the actual values. This phenomenon is known as “Gibbs phenomena” [79]. 

Attempt to overcome this problem motivates the usage of an “adaptive stencil”. By 

shifting the stencils across a large gradient region, one expects to avoid those stencils 
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containing large gradients. The ENO scheme is based on such adaptive stencil idea, in 

which, stencils composed of an arbitrary number of points can be used for high order 

approximation. The basic idea of the ENO approximation is to shift the stencil among all 

candidate stencils and select the one that produces the smoothest reconstruction of the 

function. The reconstruction procedure is described as follow. 

 

Assume a variable quantity is defined on the staggered grid configuration as 

described in Section 2.1. A polynomial can be obtained to approximate this quantity on a 

certain cell ],[
2
1

2
1

+−
=

iii xxI using interpolation. With the designed order of accuracy n, an 

n+1 point stencil is to be used to produce a polynomial )(xp n
i of degree n. The objective 

is to find a stencil of n+1 consecutive point which contains ix , such that the interpolation 

polynomial )(xf from this stencil is the smoothest compared to the other possible stencils. 

For example, for the left quantities l

i
f

2
1

+
 and l

i
q

2
1

+
in Eq. 4.1 on cell iI , the procedure to 

compute such a polynomial consists of choosing a stencil with k points to the left and 

n+1-k to the right of
2
1

+i
x . Then the available stencils of an nth-order interpolation 

consists of the following consecutive stencils ],,,[ 1 inini xxx L+−− , ],,,[ 121 ++−+− inini xxx L ,…, 

and ],,,[ 1 niii xxx ++ L , from which one stencil is to be selected. This stencil group 

determines a total of n different nth-order polynomials. By shifting stencils, the 

discontinuous cell that may exist can be avoided. Figure 4-1 illustrates the stencil group 

of a fourth order interpolation for the left quantities as an example.  
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Figure 4-1 Stencil candidates of interpolation polynomial of fourth order 

reconstruction   

 

To achieve this effect, Newton interpolation polynomial is considered. Newton’s 

interpolation uses divided difference to construct the polynomial. In Newton method, the 

zero order degree polynomial is defined as )()(0
ii xfxP = for ni ,,1,0 L= . Given the 

following substitution )(][ ii xfxf = , the divided difference of a function is defined as:   
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Then an nth degree interpolation polynomial can be expressed using Newton divided 

difference as:  
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The advantage of Newton method is that the order of the polynomial can be increased 

from n to n+1 by simply adding one term. More importantly, the divided difference has 

the following property as long as the function is smooth on the stencil: 

],[,
!

)(],,[
)(

jii

j

jii xx
j

fxxf ++ ∈= ξ
ξ

L                                   (4.4) 

 
If there is discontinuity at some point inside the stencil, it is easy to verify that  

)1(],,[ jjii x
xxf

Δ
=+ οL                                            (4.5) 

 
This property indicates that the divided difference can be used as a measure of 

smoothness of the function inside the stencil.  

 

Note that the interfacial flux 
2
1

+i
f in Eq. 4.1 also involves the approximations of the 

quantities on the right of the interface
2
1

+i
x , i.e. r

i
f

2
1

+
 and r

i
q

2
1

+
. For these two quantities, a 

similar procedure can be followed as for l

i
f

2
1

+
 and l

i
q

2
1

+
. The only difference lies in the 

candidate stencils for the interpolations. It is easy to understand that the stencil group 

should be one point right shifted from the left stencil group, i.e. it includes the stencils of 

],,,[ 121 ++−+− inini xxx L , ],,,[ 232 ++−+− inini xxx L ,…, and ],,,[ 121 ++++ niii xxx L . 

 

From the procedure described above, it is obvious that the minimum number of points 

in a stencil for interpolation should be two. To find an n-point stencil, a series of steps 

should be performed in the selecting process, starting from two points and adding one 
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into the stencil at each step. The steps can be carried out as follows. Starting from a 

stencil ],[ 1+ii xx , the first order interpolation polynomial can be obtained as:  

)](,[][)( 1
2
1 iiiii

xxxxfxfxf −+= +
+

                               (4.5) 

For the next step, there are only two possibilities for a second order polynomial: add 

either the left neighbor point 1−ix or the right neighbor point 2+ix  to expand the stencil. To 

decide which one to be included, the two corresponding divided differences, which serve 

as the indicator of the relative smoothness of the two polynomials, should be compared. 

The smoother one, represented by a smaller absolute value, is then selected. Repeated this 

procedure until the number of nodes is reached for the polynomial. The resultant stencil 

is thus used for the reconstruction.  

 

In performing ENO reconstructions, it is possible that an adaptation in the smooth 

region may occur due to the trivial round off errors of the solution near zero, and thus 

changing the stencils. Such adaptation is thought to be unnecessary. To remedy this 

problem, a ‘biased’ stencil can be used. Typically this bias might be a central or one node 

upwind to start the shift. The basic idea is to stay as close as possible to the preferred 

stencil unless an alternative stencil is a factor of b (b>1) better in smoothness.   

 

4.1.2 WENO Scheme 
 

As indicated in previous section, the ENO interpolation is uniformly high order 

accurate. However, some improvements can be made for it. In the ENO scheme, an nth 

order interpolation stencil covers 2n-1 cells, but with only one cell being actually used. It 
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is expected that if all these 2n-1 cells are used, a (2n-1)th order of accuracy can be 

achieved. In addition, the selection procedure of the ENO scheme needs a lot of “if” 

branches, which results in high computational cost and is less efficient. 

 

Based on these facts, the WENO scheme was developed. Instead of using only one 

optimal stencil as the ENO scheme does, the WENO scheme uses a convex combination 

of all the possible stencils with a properly selected weight for each individual stencil. The 

weights, denoted as rω , are designed to adapt to the relative smoothness of the candidate 

stencils. If the function f has discontinuities in one or more of the stencils, the 

corresponding weight(s) rω is essentially 0, implying that its effect on the reconstruction 

is minimized. The way of selecting the weights reflects the contribution of each stencil 

according to their smoothness, and ensures that the reconstructions are built from those 

stencils without discontinuities. With a stencil group of k available candidate stencils, the 

selected weights by the WENO scheme are superposed in a way such that the maximal 

accuracy can be achieved and the spurious oscillations are prevented. In doing so, the 

WENO scheme emulates to the ENO scheme near the discontinuities while evolves to 

central schemes in smooth regions. 

 

The general form of the weights of the WENO scheme is given as  
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The constants rγ  depend on the particular quantity that must be reconstructed with 

high order accuracy, and rβ is the smoothness indicator of the stencil. The stencil is 

biased to the smooth stencil, thus avoiding the oscillations. If the function is smooth 

within a stencil, then the smooth indicator is order of two ( )( 2xr ΔΟ=β ). If 

discontinuity exists in the stencil, the smooth indicator is basically order of one. Here a 

small value of ε is used to avoid division by 0. In this work, ε  is set with a value of 610− . 

Obviously the weights should satisfy the following relationship for consistency:  

1,0
1

=≥ ∑
=

k

r
rr ωω                                                    (4.8) 

 
Consider an nth order reconstruction about the cell iI , a total of 2n+1 points are 

contained in the candidate stencils. In smooth regions, a stencil formed by these 2n+1 

points could be used since the reconstructed functions are smooth regardless of the stencil 

selected, therefore, an order of accuracy of 2n+1 can be obtained. Hence, the accuracy is 

improved in smooth areas.  

 

For WENO type reconstruction, third and fourth order formulations have been well 

formulated and are widely used. In the current work, third order is selected based on the 

accuracy and efficiency considerations for the applications in this work. The third order 

scheme is described below. Details of the fourth order scheme are given in Appendix B. 

 

For third order WENO scheme, the numerical flux 
2
1

+i
f is defined as follows: 
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where ( )p

i
f

2
1

+
 are the three third order fluxes on three different stencils, and are given as: 
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The nonlinear weights iω are given by 
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with iα determined by 
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Values for the three linear weights are [21]: 

10
1,

5
3,

10
3

321 === γγγ                                            (4.15) 

 
A complete table of the optimal linear weights up to seventh order is given in 

Appendix C. 

 
The smoothness indicator iβ  is computed with the following formula:  
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  ( ) ( )212
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It should be noted that the optimal stencil has a one point upwind bias (to the left), 

which is suitable for the upwind flow with a moving direction from left to right. If the 

flow has a reverse direction, the corresponding symmetric formulation should be used.  

 

4.1.3 ENO/WENO Scheme for Hyperbolic System Equations 

 
The high order reconstructions presented in Section 4.1.1 and Section 4.1.2 are based 

on hyperbolic scalar equation. In the case of system equations, the approximate Riemann 

solver given by Eq. 3.28 can be used to build the interfacial flux
2
1

+i
F . The conservative 

variables l

i
Q

2
1

+
and r

i
Q

2
1

+
are first approximated by the ENO/WENO reconstruction in a 

component-wise manner, then the fluxes )(
2
1

l

i
QF

+
and )(

2
1

r

i
QF

+
can be evaluated with the 

approximations obtained.  

 

For nonlinear hyperbolic system, as mentioned earlier, the approximate Riemann 

solver should be carried out on local characteristic fields. This corresponds to finding an 

average state
2
1

+i
Q , i.e. the Roe averages, on which the three components

2
1+iR , 1

2
1

−
+iR  and 

2
1+iiλ  (Eq. 3.43 - Eq. 3.45) for the Jacobian matrix

2
1

+i
A  are computed. Note that the 
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Roe averages are also functions of the approximations of the left and the right 

conservative variables l

i
Q

2
1

+
and r

i
Q

2
1

+
.  

 
Using characteristic approach, the procedure for solving system equations can be 

summarized as follows: 

 
1) Perform the scalar ENO/WENO procedure for each component of the variable 

vector at point i to obtain the left and the right approximations. 

2) Compute an average state using the Roe average with the results obtained from 

step 1). 

3) Compute the eigenvalues and the associated eigenmatrices to obtain the absolute 

approximate Jacobian matrix 
2
1

+i
A  using Eq. 3.29. 

4) Substitute the quantities into Eq. 3.28 and calculate the flux. 

 

4.2 Compact Finite Difference Scheme 

 
Notice that the conservative form given in Eq. 3.3 for the derivative of the flux is only 

first order. In this work, a higher order compact finite difference formulation is used that 

provides consistency with high order non-oscillatory reconstructions of the interfacial 

values, thus results in an overall high order scheme.  

 

The compact scheme is a family of high order finite difference methods, which has 

been successfully applied in aerodynamic applications. Different from the traditional 
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finite difference method, in which the derivatives of a function with given nodes are 

approximated as a linear combination of the nodal values, the compact scheme instead 

approximates the derivatives using all the nodal values. Such approximation provides a 

better representation of the shorter length scales. Because of its ability to achieve high 

order accuracy as well as its stable property, this method is selected for finite difference 

discretization in this dissertation. In this section, the properties of high order compact 

schemes are reviewed first, and then the formulations for the shallow water equations are 

derived.  

 

The compact scheme is central type finite difference scheme. The word “compact” 

means it can be written in a diagonal form. The advantage of such diagonal form is that 

the resultant linear system can be solved by tridiagonal solver. As a central scheme, it 

also has the advantage over upwind scheme that the knowledge of the characteristic 

structure of the system is not required. Moreover, compact formulation based on a 

staggered grid can give sharper resolution of the same cell size. 

  

The Padé scheme is a compact finite difference scheme developed by Lele [51]. The 

basic idea is to write the derivatives at each nodal point using a Taylor expansion. Then 

by checking the error terms with the user defined order of accuracy and omitting the 

higher order terms, a diagonal form can be obtained. The advantage of this procedure is 

that it can achieve arbitrary high order of accuracy.  

 

On the staggered grid described in Section 2.1, the compact Padé approximation to 

the derivative of the flux '
iF  is given by solving the following system equations 
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where a , b , c ,α and β are parameters to be decided by matching the Taylor series 

expansions with a certain order of accuracy specified. The first unmatched term 

determines the truncation error and thus the intended order of accuracy. It is easy to prove 

[51], with the values of 
11
12

=a , 0=b , 0=c ,
22
1

=α , and 0=β , a fourth order 

approximation results. In this work, the fourth order scheme is used. The resultant linear 

system can be solved by the popular tridiagonal matrix solution method - Thomas 

Algorithm.  

 

4.3 Boundary Conditions 

 
Depending on the physical process and the characteristics of the domain, different 

boundary conditions can be enforced. Two types of boundary conditions are commonly 

used in simulating waves, namely the periodic boundary condition and the non-periodic 

boundary condition. For periodic boundary, a cyclic pattern is assumed in the 

propagation of variables. In dealing with boundaries of this type, Eq. 4.19 can be 

directly applied with as many ghost points on both sides as needed. Non-periodic 

boundary, on the other hand, is often applied in reflective or solid boundaries, which is 

usually described by the Dirichlet or Neumann boundary conditions. In the case of non-

periodic boundary condition, methods of one order lower in accuracy can be used on the 

boundaries, whereas the approximations to the interior points will not be affected. For 
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the compact scheme used in this work, a one-sided formulation with reduced order of 

accuracy is given as:  
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With the selection of the following parameters [87], a third order scheme is formed: 
 

11 −=α , 11 −=a , 21 =b , 11 −=c , 12 −=α , 12 =a , 22 −=b , 12 =c           (4.22) 
 

 
For ENO/WENO reconstruction, if a periodic boundary is specified, the interpolation 

can be performed using the imaginary exterior points extended from the interior points. 

While in the case of non-periodic boundary, the interpolation has to be limited to the 

available nodes within the computational domain. Besides the above two types of 

boundaries, solid boundary and open boundary are often seen in solving shallow water 

equations problems. These two types of boundary conditions will be used in the 

numerical tests of this work. 

 

4.4 Time Discretization 

 
Explicit schemes are often used for time integration in shock-capturing models. 

Although mathematically simple to implement, the explicit schemes are subject to the 

common Courant-Friedrichs-Levy (CFL) condition restriction. Thus small step size is 

generally required. In this work, the semi-implicit Crank-Nicholson method is employed 

for time discretization. For linear problems, such semi-implicit methods are not restricted 
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by the CFL condition. In addition, the standard Crank-Nicholson method is known to be 

non-dissipative, though it can be oscillatory. With the usage of non-oscillatory shock-

capturing scheme for spatial discretization, it is expected that the drawback of this 

temporal discrentization scheme can be compensated. 

 

Let tΔ be the time step and tnt n Δ=  at time level n. When applied to Eq. 2.2, the 

Crank-Nicholson method reads:  
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For time level 1+n , employ a deferred iterative solution algorithm  
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Then q can be updated at each iteration by the formulation 
 

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ +

Δ
−=

++++
x

nm
x

nnmn fftqq
1111

2
                                 (4.25) 

Eq. 4.25 is then substituted into Eq. 4.24 to yield 
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The correction qΔ  is solved iteratively until a predetermined small value of tolerance 

ε is reached, and then one can move to the next time level. 

 

In this chapter, theoretical development of the proposed numerical scheme is carried 

out. The framework of the scheme is formulated. The presentation herein is revolved 

around one-dimensional equations. In Chapter 5, these schemes will be tested on one-

dimensional scalar and system problems.  
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Chapter 5   

 

Numerical Results of One-dimensional 

Homogeneous Problems  

 

In this chapter, numerical experiments are conducted on the ENO-Padé and the 

WENO-Padé schemes developed in Chapter 4. The results are presented and the 

performances of these two schemes are compared to illustrate their shock capturing 

capabilities. Third order ENO and WENO interpolations are used for all the numerical 

tests.  

 

5.1 Linear Scalar Case - Convection Equation  

 
The first problem considered is a linear advection equation [76], also known as one-

way wave equation, with an initial condition of sine curve:  

 
11,0 ≤≤−=+ xuau xwt                                                (5.1) 

)sin()0,( xxu π=                                                        (5.2) 
 

where aw is the wave velocity (here a constant value of 1 is used). A periodic boundary 

condition is used with the period of 2. A spatial interval of Δx=0.02 and a temporal 

interval of Δt=0.01 are used. 
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As discussed in Chapter 3, for linear convection equation of Eq. 5.1, the analytical 

solution is given as )(),( 0 atxutxu −= . This form of solution implies that the linear 

convection equation simply translates the wave at the prescribed constant speed in the 

direction of the velocity, while the initial shape does not change with time. By integrating 

the governing equation for T=10, the numerical results of both schemes are illustrated in 

Figure 5-1. The exact solution is also provided in the same figure.  
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Figure 5-1 Linear advection equation  

 

From Figure 5-1, it is seen that both schemes show good approximations to the exact 

solution with no oscillation or dissipation observed and no phase difference present. To 

assess the performances of these two models in a more quantitative way, an accuracy test 

was conducted with a set of grids N =25, 50, 100. For each Δx, the L1 norm is computed 

by 

Error N (L1) = ∑
=

−N

i

ext
ii

N

uu

1

                                                (5.3) 
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where iu  is the model predicted value, ext
iu  is the analytical solution, N is the number of 

nodal points.  

 

Based on the error, a convergence rate is derived, which can be used to verify the 

order of convergence of a numerical scheme. The formula for the convergence rate is 

given by 

Convergence rate = )(log
2

2
N

N

error
error

                                        (5.4) 

 
With the quantitative measures defined above, results of these two schemes are 

reported in Table 5-1. The computed convergence rates show that both schemes converge 

at orders of three or greater, implying the achievement of full order of accuracy by them 

for problems with smooth solutions. The results also verify the formal order of accuracy 

of these two models from their derivations. Meanwhile, a comparison of the errors 

indicates a better performance of the WENO-Padé scheme in this case. As the grid size 

decreases, the WENO-Padé scheme produces more accurate results as apposed to the 

ENO-Padé scheme of the same resolution. 

 
Table 5-1 Convergence test - 1-D linear advection equation 

 
ENO-Padé WENO-Padé N Δx L1 norm Convergence rate L1 norm Convergence rate

25 0.08 0.002515  0.00566  
50 0.04 0.00032 2.97 0.00041 3.79 
100 0.02 3E-05 3.41 1.2e-05 5.09 

 

The second test consists of the cases originally proposed in [73] by Harten et al. for 

linear hyperbolic equation Eq. 5.1 with the initial discontinuous conditions 
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These two cases have also been employed by many other works to evaluate the 

capabilities of numerical schemes in handling solution that consists of smooth regions as 

well as discontinuities. For both cases a periodic boundary condition is enforced at x=±1. 

The spatial and temporal resolutions of Δx=0.02 and Δt=0.01, as employed in Test 1, are 

also used.  

  

In the first case, two contact discontinuities exist in the initial condition. It is of 

particular interest to see how the discontinuities evolve with time. The governing 

equation was integrated to T=3. The computed results by these two schemes are shown in 

Figure 5-2 (a). From inspection, it is seen that no oscillation arises in the vicinity of the 

contact discontinuities. In smooth regions, accurate approximations are achieved to the 

true solution. However, in regions near the discontinuities, smear of the sharp turns are 

observed in both methods. A possible explanation would be that the choice of the starting 

point of the stencil near the shocks may cause such diffusive effect. Comparing these two 

methods, the WENO-Padé scheme gives better overall approximation than the ENO-Padé 

scheme, especially near the sharp corners.  
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Figure 5-2 (a) Linear hyperbolic scalar equation – case 1 

 
 
    The second case was integrated for T=2, and the results are shown in Figure 5-2 (b) 

together with the analytical solution.  
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Fig 5-2 (b) Linear hyperbolic scalar equation – case 2 
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One can see from the above figure that the numerical models provide accurate 

solutions in the smooth regions, and are capable of capturing the discontinuities without 

observable oscillations. However, small amount of smear exist in the solutions near the 

sharp corners. These two schemes demonstrate similar behaviors except at local extrema, 

where the WENO-Padé scheme shows slightly better approximations. From this test case 

it is found that the schemes can not achieve full order of accuracy at local extrema, but 

with somewhat degenerate results. A possible solution to deal with it is to use adaptive 

grids by which the grids near the extrema can be refined. This subject is discussed in 

Chapter 8.  

 

5.2 Non-linear Scalar Case - Burger’s Equation 
 

The test in this section investigates the performance of the numerical schemes in 

dealing with nonlinear scalar hyperbolic equations. A typical example of the nonlinear 

scalar hyperbolic equation is the inviscid Burger’s equation. As Burger’s equation is the 

simplified form of the Navier-Stokes equations but still retains many characteristics of it, 

studying the properties of Burger’s equation is helpful in understanding the behaviors of 

the Navier-Stokes equations. Therefore, this equation has been widely used as benchmark 

problem for the validation of shock capturing numerical methods [5, 6, 61, 71, 72, 76]. 

The test case selected in this study is used by Shu et al. [72], for which the analytical 

solution was included. The problem is defined on the domain ]1,1[− , with a periodic 

boundary condition of period of 2:  

11,0)2/( 2 ≤≤−=+ xuu xt                                             (5.7)  
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The initial condition is a sine curve, as illustrated in Figure 5-3: 

xxu πsin
2
1

4
1)0,( +=                                                     (5.8) 
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Figure 5-3 1-D Burger’s equation – initial condition  

 
Figure 5-4 shows the numerical results together with the true solution at π/2=T . 

The numerical solution has been obtained by considering a uniformly spaced grid of 

Δx=0.025 and a constant time step of Δt=0.005. 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5

x

u

Exact

ENO-Padé

WENO-Padé

 
Figure 5-4  Nonlinear scalar case – 1-D  Burger’s equation 
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From Figure 5-4, one can see that the solution consists of a steepening wave initially 

propagating to the right, and then at time T it develops into a moving shock. This is 

purely a nonlinear phenomenon regardless of how smooth the initial condition is. In 

general, good agreement between the numerical solutions and the analytical solution is 

obtained. This figure gives evidence of the capability of these two schemes to compute 

discontinuous solution without observable oscillations. In order to better appreciate the 

difference between the schemes, a grid convergence test was performed and the results 

are reported in Table 5-2.  

 
Table 5-2 Convergence test – 1-D Burger’s equation 

 
ENO-Padé WENO-Padé N Δx L1 error Convergence rate L1 error Convergence rate

20 0.1 0.009434  0.011455  
40 0.05 0.0004184 1.17 0.005174 1.15 
80 0.025 0.001932 1.11 0.001931 1.42 
160 0.0125 0.000792 1.29 0.00085 1.18 

 
 

It shows a convergence rate of slightly more than unity of both methods for this 

nonlinear case. It should be noted that the rate of convergence reported here is the overall 

convergence rate. For nonlinear cases one usually obtains better convergence away from 

the shock, while degradation is normally observed near the shock because when 

considering the nonlinear conservation laws, the characteristics point into the shock. 

According to linear theory, dissipative schemes reduce errors propagating backwards 

against the direction of characteristics. Thus, it is reasonable to expect locally large errors 

at the shock to stay in a layer near the shock [26].  
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5.3 Hyperbolic System Equations – Homogeneous Shallow 

Water Equations  
 

In this section, the application of the numerical schemes to system conservation laws 

is presented. The numerical methods are applied to simulate dam break problems by 

solving the homogeneous shallow water equations. Dam break problem can be described 

by the scenario where a solid wall, separating upstream water in a channel on one side 

from the downstream water or dry land on the other side, experiences an instantaneous 

collapse and leads to flood through the breach. The resultant flood develops a wave front 

that propagates at a certain speed.  

 

Note that the numerical schemes presented in Chapter 4 are based on hyperbolic 

scalar equation. For system equations, basically two approaches can be used to 

implement these schemes. One is to apply the numerical scheme to each individual 

equation in the system. Such approach is conceptually straight forward, but may not be 

applicable for cases where the variables are highly coupled. The other is to employ the 

approximate Riemann solvers and apply the schemes in a component-wise fashion. This 

approach is more efficient in dealing with system equations because it treats the system in 

matrix form regardless of the complexity of the relationship between the variables. In this 

work, the second approach is selected for solving the shallow water equations.  

 
5.3.1 One-dimensional Horizontal Case - Wet Bed 

 
The first application studied is a one-dimensional problem which has the analytical 

solution given by Stoker [75]. In this problem, a unit width, horizontal channel of 1000m 
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long is assumed. A dam is located at x=500m separating the upstream and the 

downstream water of 10m and 2m in depth, respectively. Initially, the water is at rest on 

both sides. At time t=0, the dam is removed instantaneously (i.e., a complete dam break). 

Open boundaries are assumed at the upstream and the downstream ends. The grid size of 

mx 5=Δ  and the time step of st 1=Δ  are used.  Since this test is selected to validate the 

numerical schemes for homogeneous system, frictionless bed is assumed. The simulation 

was performed for T=30s after the break. Figure 5-5 shows the water level profiles of the 

two schemes, together with the analytical solution for comparison.  
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Figure 5-5 1-D dam break – water depth profile (wet bed, frictionless) 

 
In this case the water level experiences a transition from subcritical flow to 

supercritical flow. A new discontinuous depression is formed and propagates upstream 

thus reducing the water depth, while the positive surge wave moves downstream. The 

height of the wave near the dam remains invariable. As observed from Figure 5-5, both 

schemes demonstrate good approximations to the shock fronts, with only slight diffusion 
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behind the shock. No oscillation is present in the profiles. In regions near the rarefaction 

wave, the WENO-Padé scheme produces apparently better approximation than the ENO-

Padé scheme. The figure shows a good transition between subcritical flow and 

supercritical flow by the WENO-Padé scheme, meanwhile, the rarefaction wave is also 

well represented. The profiles computed by the ENO-Padé scheme, however, show 

noticeable smearing near the rarefaction region.  

 

In order to further verify the results from observations, an accuracy test was 

conducted. The simulation was run with the grid sizes of N=100, 200, 400, 800. Table 5-

3 reports the L1 norm and the convergence rate for water depth and velocity of these two 

methods. Inspection of the results shows a roughly 0.7 order of convergence for the 

ENO-Padé scheme and first order convergence rate for the WENO-Padé scheme in both 

water level and velocity. These quantitative evaluations are basically consistent with the 

profiles depicted in Figure 5-5. It should be noted that in this test, similar to that of 

Section 5.2, all points in the numerical solution were used to measure the errors, 

including the points near the shock and the rarefaction waves, which lead to relatively 

larger error. Additionally, the degraded performance of the numerical results can be 

attributed to the families of characteristics intersecting the shock. It is possible for the 

large error near the shock to propagate out into the entire post-shock region by following 

a characteristic which emerges from the shock. Although below the theoretical 

convergence order, the numerical convergence rate nevertheless confirms that the 

construction of high order schemes with the combination of the ENO/WENO scheme and 

the compact approach is reasonable. Comparing the performances of these two models, 
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the error of the WENO-Padé scheme is nearly four to five times less than that of the 

ENO-Padé solution. 

 
Table 5-3 Convergence test – 1-D homogeneous shallow water equations 

(wet bed, frictionless) 

ENO-Padé 

N  Δx L1 error 
(depth) 

Convergence 
rate 

L1 error 
(velocity) 

Convergence 
rate 

100 10 1.66E-01  2.15E-01  
200 5 0.102659 0.70 0.13194 0.70 
400 2.5 0.061311 0.74 0.076895 0.78 
800 1.25 0.038615 0.67 0.049295 0.64 

WENO-Padé 

N Δx L1 error 
(depth) 

Convergence 
rate 

L1 error 
(velocity) 

Convergence 
rate 

100 10 6.31E-02  8.39E-02  
200 5 0.027904 1.17 0.037978 1.14 
400 2.5 0.013789 1.01 0.018404 1.04 
800 1.25 0.007339 0.91 0.009969 0.88 

 

5.3.2 One-dimensional Horizontal Case - Dry Bed 

 
The numerical test presented above was based on a wet bed assumption, in which the 

downstream water level is comparable to that of the upstream. Sometimes there may exist 

another scenario, known as “dry bed” problem, in which the downstream flow has far 

lower water level than the upstream. In the extreme, the downstream water depth is 

absolutely zero. When solving the “dry bed” situation, numerical schemes usually face 

extra challenges in that a mixed-flow regime (i.e. supercritical and subcritical flows 

coexist) occurs for flow in horizontal, frictionless channels when the ratio of downstream 

depth to upstream depth is smaller than 0.138 [40]. This flow regime poses a special 

difficulty to the numerical schemes. Under a dry bed condition in extreme, the moving 
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boundary (dry/wetting) of a zero water depth is numerically difficult to handle. To deal 

with this difficulty, a common practice in numerical computations is to assume a 

minimum water depth or discharge on the dry bed. Such assumption is adopted in this test 

case. In the downstream, a water depth of 0.02m is assumed. The same grid sizes as for 

the wet bed case above with mx 5=Δ  and st 1=Δ  are used. The numerical solution at 

T=30s is shown in Figure 5-6. 
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Figure 5-6 1-D dam break – water depth profile (dry bed, frictionless) 
 

 
As can be seen from Figure 5-6, the WENO-Padé scheme closely tracks the shock 

front without causing noticeable oscillations. Also it shows accurate approximation to the 

transition and the rarefaction wave. The ENO-Padé scheme, however, displays relatively 

larger error near the shock and a damped solution in the transition.  

 

Comparisons of the wave motion for the wet bed and dry bed cases show that when a 

wet bed is considered, the wave height near the dam and the new reflection wave 
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spreading upstream almost remain invariable. In the case of dry bed, however, it is 

obvious that the wave height and the wave speed change with time. The results show 

good approximation by the WENO-Padé scheme in capturing the shock front and the 

rarefaction waves for both cases, which implies that this scheme can provide better 

predictions for 1-D dam break simulations. 

 

5.4 Dam Break Experiment  

 
The test cases of dam break problems conducted above compare only simulation 

results with analytic solutions of idealized dam-break flows. In order to demonstrate the 

capability of the proposed model to describe a real dam-break situation, the model was 

applied to a physical laboratory experiment carried out at the Waterway Experiment 

Station (WES), U.S. Corps of Engineers in 1960 [89]. This experiment has been used by 

many authors such as Tseng [82], Bradford [13], and Hsu [43]. The experiments were 

conducted in a rectangular channel of 122m long, 1.22m wide with a bottom slope of 

0.005, and the Manning’s roughness coefficient of 0.009. The dam is located halfway 

along the channel. The water depth upstream of the dam was 0.305m, and the 

downstream water depth was zero (dry bed).  

 

The flow domain was discretized into 122 grids with uniform distribution. A constant 

time step of Δt=0.1 is used. An initial downstream water depth of 0.00005m is assumed. 

Figure 5-7 (a) and (b) show the simulated results and the experimental data at 

downstream distances of x=70.1m and x=85.4m, respectively.  
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Figure 5-7 Comparison of 1-D dam break solutions for a WES experiment, x=70.1m  
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Figure 5-8 Comparison of 1-D dam break solutions for a WES experiment, x = 85.4m 
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One can see that the simulated water depth, in general, match with the values 

determined from measurements, with better agreement obtained in the lower to mid range 

of water depth. In the higher water depth regime, both models show under-predicted 

results. This can be caused by the highly turbulent process, for which, the 1-D shallow 

water equations are not adequate to describe the physical process. Comparing these two 

schemes, the WENO-Padé scheme gives slightly better approximations than the ENO-

Padé scheme, especially in the high water depth range. The overall performances of these 

two models show that they are capable of simulating dam-break flows. 

 

In summary, the numerical experiments presented in this chapter have demonstrated 

the capabilities of the numerical schemes in solving one-dimensional homogeneous 

hyperbolic equations. Comparing these two schemes, the WENO-Padé scheme shows 

superior predicting capabilities to the ENO-Padé scheme in terms of accuracy and rate of 

convergence, especially when applied to a system case – the shallow water equations. In 

Chapter 7, the numerical experiments are extended to solve non-homogeneous hyperbolic 

equations and to deal with multidimensional problems. 
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Chapter 6  
 
 

Numerical Schemes for Non-homogeneous System 

Equations and Two-dimension Extension 

 
The numerical schemes discussed so far are designed for one-dimensional 

homogeneous equations. In real world applications of open channel flows, bottom 

topography is usually varied, and the frictional effects are often not negligible. Those 

effects add source terms to the governing equations. Another practical issue is that in 

many simulations, the use of multi-dimensional models is necessary due to the 

complexity of the flow. In such situations, two- or three-dimensional models have to be 

resorted to provide more physically based description of the problem so that the realistic 

nature and properties of the flow can be captured. With this regard, this chapter extends 

the numerical schemes developed in Chapter 4 to two-space dimensions and to include 

the source terms.  

 

6.1 Source Terms Treatment 

 
In the past decades, high resolution shock-capturing schemes have been successfully 

applied in solving homogeneous shallow water equations. However, shallow water 

equations with source terms, such as irregular bed topography, bottom roughness, etc. 

give rise to non-homogeneous system, for which, the study is not mature yet.  
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In dealing with non-homogeneous problems, currently, three approaches are often 

used, namely, the point-wise approach [31], the upwind discretization approach [10, 31], 

and the fractional step approach [49]. Among them, the point-wise explicit evaluation is 

the simplest, by which the source terms are directly evaluated at grid points. However, 

problems may arise when the source term contains spatial derivatives. In such situation, 

upwind method is usually employed to discretize the source terms. In using this method, 

care must be taken to retain only the conservative variables when the flux splitting is 

performed. The fractional step method, on the other hand, works by separating the 

homogeneous part from the source terms. At each time step, one first solves the 

homogeneous system and then an ordinary differential equation associated with the 

source terms. This approach is easy to implement because the numerical techniques 

outlined in previous chapters for the homogeneous equations can be used directly, and the 

ordinary differential equations can be solved by the Euler method. In this study, the 

fraction step method is selected for solving non-homogeneous hyperbolic equations.   

 

6.1.1 Strang Splitting 

 
Strang splitting is a popular operator splitting technique. Using this technique, the 

system equations can be treated as augmented homogeneous problem, which is followed 

by the solution of an ordinary differential equation that describes the effect of the source 

terms. Since the focus of this chapter is to develop numerical methods for two-

dimensional shallow water equations with source terms, the discussion of operator 

splitting is thus based on the derivation of this particular system. It is noted that this 

method can be generalized to other hyperbolic systems.  
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Recall the general form of 2-D shallow water equations given by Eq. 3.35, 

performing Strang Splitting, this system can be transformed into the following two 

augmented equations:  
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For solving each equation above, freedom is allowed in choosing the numerical 

operators. Generally, one may use the best scheme for each sub-problem. Notice that Eq. 

6.1 is the homogeneous hyperbolic conservation laws defined in two dimensions. It can 

be solved by any shock capturing method. Eq. 6.2 is an ordinary differential equation and 

can be integrated using the standard implicit backward Euler scheme, which offers the 

advantage of numerical stability. Therefore, the overall solution procedure of this system 

can be given by the following three steps: 

 
1) Integrate Eq. 6.2 over n to obtain *Q  

2) Solve Eq. 6.1 over tΔ to get **Q  

3) Solve Eq. 6.2 over 2tΔ again to calculate 1+nQ  

 
As mentioned above, step 1) is to find the solution of a two-dimensional 

homogeneous system. Solving such system with implicit schemes usually involves 

solving a large banded matrix. Clearly, if one could factor the space difference operators 

into separate spatial variables, then instead of having to solve a complex matrix problem, 

one would have only to solve block-tridiagonal systems using the efficient tridiagonal 

solver. In the past few decades, a number of numerical procedures, such as the ADI, LOD, 
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AOS and AFI schemes [7, 24, 41, 58, 60] have been formulated. These methods 

approximate the solutions of multidimensional problems by treating the spatial variables 

separately in a cyclic fashion, thus can achieve significant improvement in efficiency. 

Among those, the alternative direction implicit (ADI) approach has been used widely 

with success. Because of its applicability to a wide variety of problems, this method is 

selected for the current research. In Section 6.2, the ADI method is presented in general; 

then in Section 6.2.1, a detailed description is given to one family of the ADI methods – 

the Douglas-Gunn ADI [23], which is employed in this work.  

 

6.2 Alternating Direction Implicit (ADI) Scheme 

 
The idea of using alternative directions is to split the problem into one-dimensional 

problems. At every time step, one direction is solved using an implicit numerical 

approximation, and then direction alternates for the other. The ADI schemes thus 

developed are based upon the original ADI concept of Peaceman and Rachford [60], and 

Douglas and Gunn [23], which is proved to be unconditionally stable by Fourier analysis. 

The implicit method results in a tridiagonal matrix system, which can be solved easily by 

the Thomas algorithm.  

 

6.2.1 Douglas-Gunn ADI 

 
In this work, the Douglas-Gunn ADI scheme is used to solve two-dimensional 

homogeneous problems given by Eq. 6.1, which are resulted from step splitting operation 

of two-dimensional non-homogeneous equation. It should be noted that the splitting 
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errors of the ADI method is of the same order as the spatial and temporal discretization 

parameters for the underlying method. For this work, in particular, the ENO-Padé and the 

WENO-Padé schemes are the methods used for spatial discretization and the Douglas-

Gunn ADI scheme with the standard Crank-Nicolson time differencing is used for time 

integration. According to Douglas and Kim [24], the two level right hand side 

differencing can reduce the splitting error from )( 2tΔΟ to )( 3tΔΟ for ADI schemes, so 

this differencing strategy is employed in the current work.  

 

To distinguish the notation of general partial differential equations from that of the 

hyperbolic equations discussed earlier, here w  is used to represent the variable(s) to be 

solved in the governing equation. Consider a multidimensional problem that has the 

discretized form from a finite difference approximation 

fAwwt =+                                                          (6.3) 

where mAAAA +++= L21 , iA  is the finite difference operator in the ix direction, and m 

is the spatial dimension of the problem. Applying the Crank-Nicolson time discretization 

method to Eq. 6.1 gives 
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Then splitting of Eq. 6.4 by Douglas-Gunn ADI algorithm gives:  
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The intermediate values 1,1, ,, −mnn ww L can be eliminated by recursively solving Eq. 

6.6. As seen from Eq. 6.5 and Eq. 6.6, for each mi ,,1L= , a tridiagonal system 

corresponding to iA is solved to obtain the intermediate values. 

 

6.2.2 Douglas-Gunn ADI for 2-D Homogeneous Hyperbolic Equations 

 
For two-dimensional homogeneous hyperbolic equation given in Eq. 6.1, assume the 

initial data at time nt is known. Then with the Crank-Nicholson discretization, Eq. 6.1 

can be written as:  
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where
x
FA
∂
∂

=1 ,
y
EA
∂
∂

=2 are the operators obtained from finite difference approximation 

on the uniform grid over the domain.  

 

Applying fractional steps operation, Eq. 6.8 is replaced with two one-dimensional 

problems:  
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where 12, += nn QQ . Eq. 6.9 and Eq. 6.10 are the so-called x-sweep and y-sweep 

equations, representing the x- and y-direction problems, respectively. ADI splitting 

involves two sub-iterations: the first precedes the fields from time step n to n+1/2, and 
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the second advances the fields from n+1/2 to n+1. State variables of y-direction remain 

explicit while the variables in x-direction are calculated. The calculation of these 

variables uses semi-implicit updating equations along directions, which alternate from 

one sub-iteration to the next.   

 

The formula of ADI scheme thus developed can be modified in the second sub-

iteration to simplify the computation as follow. By subtracting Eq. 6.9 from Eq. 6.10, one 

obtains 
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+                                (6.11)  

 
It is noted that the tridiagonal matrix structure is still maintained in Eq. 6.11. Usually, 

Eq. 6.9 and Eq. 6.11 are taken as the Douglas-Gunn splitting formula and are used in the 

actual computations. 

 

Note that in ADI splitting the finite difference operators involve two time levels. The 

x-direction operator 1A has levels of nA1 and 1
1
+nA corresponding to the spatial derivatives 

of
x

F n

∂
∂ and

x
F n

∂
∂ +1

. Of these two derivatives, the explicit term 
x

F n

∂
∂ can be approximated 

directly by using the ENO-Padé or the WENO-Padé scheme. While the implicit 

term
x

F n

∂
∂ +1

, which could be highly nonlinear, has to be linearized first. For the y-

direction operator 2A , a similar procedure follows to compute nA2 and 1
2
+nA . 
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In the next section, one will see that the splitting given by Eq 6.9 through Eq. 6.11 

can be further simplified by employing theδ -form Douglas-Gunn ADI method.  

 

6.2.3 δ -form Douglas-Gunn ADI 

 
Based on the standard Douglas-Gunn ADI scheme, this section outlines the 

transformedδ -form of this algorithm. In usingδ -form, the correction to a variable is 

computed instead of the variable itself. At each time level, the residual is updated 

iteratively until a preset tolerance is reached.  

 

In deriving theδ -form formulations, one first needs to define a correction quantity,δ , 

for each time step: 
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In the second step, nQ is subtracted from both sides of Eq. 6.11, 
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Finally, the values at time level n+1 can be updated using 

2,1 nnn QQQ δ+=+                                                   (6.15) 
 

Note that the tridiagonal form is maintained for both Eq. 6.13 and Eq. 6.14. Therefore, 

the Thomas Algorithm can be used in an iterative manner. It should be pointed out that 
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although the derivation of the equations from Eq. 6.9 through Eq. 6.15 is based on a two-

dimensional case, it can be generalized to three dimensions in a similar way.  

 

6.3 Two-dimensional Shallow Water Equations Extension 
 
 
6.3.1 Characteristics of 2-D Shallow Water Equations 
 
 

In Chapter 3, the approximate Riemann solver for one-dimensional hyperbolic 

problem was presented in which the Roe matrix was obtained by the characteristic 

approach. In Chapter 5, the developed schemes were applied to one-dimensional shallow 

water equations. To succeed in multi-dimensional extensions of this scheme to two-

dimensional shallow water equations, a study of the characteristic structure of this system 

is conducted.  

 
Recall the general form of two-dimensional homogeneous hyperbolic equations as 

given by Eq. 6.1, in the case of shallow water equations, the Jacobian matrices for the x-

direction flux, F, and the y-direction flux, E, are found as:  
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    The eigenvalues of matrix A1 are found to be:  
 

21
1 cuA +=λ , 21

2 cuA −=λ , uA =1
3λ                            (6.18) 
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With the eigenvalues, one can compute the eigenvector corresponding to each 

eigenvalue. Then the diagonal matrix and the associated left and right eigenmatrices can 

be written out as: 
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Following similar argument, the eigenvalues for matrix A2 are: 
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The diagonal matrix and the eigenmatrices for matrix A2 are: 
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Here ghc = is called the celerity.  
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6.3.2 Implementation of the Approximate Riemann Solver 
 

To solve the transformed δ -form ADI given in Eq. 6.13 through Eq. 6.15, similar 

procedure to that utilized for one-dimensional equations can be performed. Specifically, 

the approximations to the derivatives of fluxes F and E can be computed using the ENO-

Padé or the WENO-Padé scheme as described in Chapter 4. Recall that in those methods, 

the calculations of the interfacial quantities
2
1

+i
Q and

2
1

+i
F  use the approximate Riemann 

solver with the Roe matrix computed from Roe averages. For two-dimensional problems, 

the Roe average given by Eq. 3.46 can be applied directly to compute
2
1

+i
F . For 

2
1

+i
E , 

besides the evaluation of the average state in Eq. 3.46, a new average variable needs to be 

defined for the intermediate value of v . Having a similar form to 
2
1

+i
u , the Roe average 

for 
2
1

+i
v is given by Toro [80] as: 
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where β is defined in Eq. 3.46.  

 
Note that when applying the implicit method, the system equations results in the need 

for solving a block tridiagonal system. For the two-dimensional shallow water equations, 

the block tridiagonal matrix is made up of 3 x 3 block unit of dimension yN , which have 

to be inverted for ix  ( xNi ,,1L= ) at each time step. Here xN and yN are the number of 

nodal points in the x- and y-direction, respectively. To solve such block tridiagonal 

system, the Thomas Algorithm can be directly applied with all the algebraic operations 
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performed on matrix basis rather than on scalars. The only exception is the division 

operator, for which, matrix inversion should be performed. In this study, the inversion of 

the 3 x 3 matrix was calculated directly. Such explicit inverse involves only basic matrix 

operations, thus helps to improve the efficiency of the implementation. 
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Chapter 7  

 

Numerical Results of Non-homogeneous Problems 

and Two-dimension Extension 

 
 

Based on the discussion of the extensions of the numerical schemes to higher 

dimensions and the inclusion of source terms presented in Chapter 6, this chapter is 

devoted to the numerical tests for two-dimensional hyperbolic equations, and 1-D and 2-

D problems with source terms.  

 

7.1 One-dimensional Shallow Water Equations with Source 

Terms 

 
Considering the one-dimensional homogeneous shallow water equations discussed in 

Chapter 5, a more complete situation is the non-homogeneous case, in which the source 

terms are included. In general, the source terms take into account the effects caused by 

bottom frictions, channel slope, and other source/sink factors. In this section, similar tests 

to those of the homogeneous models were conducted for non-homogeneous models. In 

order to compare the results, experiments were designed to use a channel that has the 

same configurations as that used in Chapter 5. The channel is flat, 1000m long, and has a 
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dam located at x=500m. Initially the water depths upstream and downstream of the dam 

are 10m and 2m with the water being in stationary. At T=0 the dam was removed 

instantaneously. Open boundary is applied at the lower end of the channel. To account for 

the bottom friction, Manning’s equation is used with the roughness coefficient of 0.03, 

which is considered to be a reasonable estimation for concrete channel.  

 

Both wet bed and dry bed cases were considered. For the dry bed, a downstream 

water depth of 0.01m was assumed. A grid size of mx 5=Δ  was tested with st 1=Δ . The 

stage profiles at T=30s are shown in Figure 7-1 for wet bed. Since the analytical solution 

for the non-homogeneous equation is not available, that of the homogeneous problem is 

plotted in the figure for each case to illustrate the effects caused by bottom friction.  
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Figure 7-1 1-D dam break – water depth profile (wet bed, frictional) 

 
The stage profiles for the dry bed case are shown in Figure 7-2. 
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Figure 7-2 1-D dam break – water depth profile (dry bed, frictional) 

 

For both cases, comparing the results of frictional bed with those without friction (see 

Figure 5-5 and Figure 5-6), it is easy to see that the stages tilt because of the bottom 

friction. It is also observed from Figure 7-2 that due to the dominance of the frictional 

force over the advancing wave front, the shock wave merges with the transition into a 

curved wave, which is then smoothly connected with the rarefaction. Inspection reveals 

that both schemes are capable of tracking the wave front properly as well as maintain a 

stable transition of the rarefaction wave. Comparing these two schemes, the WENO-Padé 

scheme produces sharp corner whereas the ENO-Padé scheme gives relatively larger 

smear around the corner.  

 

In order to quantitatively assess these two schemes, self-convergence tests were 

performed. The L1 error were computed for both water depth and velocity with a series of 

resolutions N=100,200,400,800. It should be noted that this method only provides 
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information regarding the internal consistency of the numerical method and its intrinsic 

convergence properties, but does not quantify the solution as compared to the “true” one. 

The results are reported in Table 7-1 and Table 7-2, for which L1 error is computed by 

 

Error N (L1) =∑
=

ΔΔ −N

i

x
i

x
i

N

uu

1

2

                                         (7.1)                         

 

where x
iuΔ  and 2

x
iu
Δ

are the model predicted value with the number of nodes N and 2N, 

and the convergence rate is calculated by 

Convergence rate = )(log
2

2
N

N

Error
Error

                                  (7.2) 

 
Table 7-1 Convergence test – 1-D non-homogeneous shallow water equations  

                                                    (wet bed, frictional)  
 

ENO-Padé 

N  Δx L1 error 
(depth) 

Convergence 
rate 

L1 error 
(velocity) 

Convergence 
rate 

100 10     
200 5 8.62E-02  1.18E-01  
400 2.5 0.047765 0.85 0.06249 0.92 
800 1.25 0.024939 0.94 0.032079 0.96 

WENO-Padé 

N Δx L1 error 
(depth) 

Convergence 
rate 

L1 error 
(velocity) 

Convergence 
rate 

100 10     
200 5 5.13E-02  6.63E-02  
400 2.5 0.023091 1.15 0.029332 1.18 
800 1.25 0.00973 1.24 0.012907 1.18 
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Table 7-2 Convergence test – 1-D non-homogeneous shallow water equations  

(dry bed, frictional) 

 
ENO-Padé 

N  Δx L1 error 
(depth) 

Convergence 
rate 

L1 error 
(velocity) 

Convergence 
rate 

100 10     
200 5 0.063359  0.114282  
400 2.5 0.042403 0.58 0.071197 0.69 
800 1.25 0.024013 0.82 0.040499 0.82 

WENO-Padé 

N Δx L1 error 
(depth) 

Convergence 
rate 

L1 error 
(velocity) 

Convergence 
rate 

100 10     
200 5 0.027474  0.061766  
400 2.5 0.014666 0.90 0.029811 1.05 
800 1.25 0.006948 1.08 0.01289 1.21 

 

For the wet bed case, the ENO-Padé scheme converges at an order of approximately 

0.9 and the WENO-Padé scheme converges at an order of one. Comparison of the L1 

errors shows that the WENO-Padé model is roughly twice more accurate than the ENO-

Padé model. From Table 7-2, similar results were observed for the dry bed case, for 

which the ENO-Padé scheme converges at a slower rate of approximately between 0.6 

and 0.8, whereas the WENO-Padé scheme still converges at an order of one. Again, the 

error of the WENO-Padé method is less than that of the ENO-Padé method. 

 

7.2 Two-dimensional Linear Scalar Case – Gaussian Profile  

 
A two-dimensional linear scalar example used by Wang [87] was tested in this 

section. It is the rotation of a Gaussian profile given by: 

 )
2

exp(),( 2

2

σ
φ ryx −=                                              (7.3) 
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with  
22 )()( cc yyxxr −+−=                                          (7.4) 

 
Here ( cc yx , ) is the central point of the Gaussian profile, σ is an adjustable constant. 

In this test, 1=σ  is used. The motivation for this test is to investigate the rotation effect 

on the flow field.  

 

This problem is solved in the spatial domain [0, 30] x [0, 30] with the initial center of 

mass located at point (14.6, 22.5). The governing equation for the rotation of scalar in 

Cartesian coordinate is given by: 

 

0=
∂
∂

+
∂
∂

+
∂
∂

y
v

x
u

t
φφφ                                             (7.5) 

with the rotational velocities given by 
 

)( 0yyu −−= α , )( 0xxv −−= α                                  (7.6) 

 
Here α is the constant rotating velocity, which is 180/π  in this case. The 

coordinate ),( 00 yx is the rotational axis, and is set to (14.6, 14.6). The velocity rotates in 

counter-clockwise direction with respect to the center of mass. An infinite open boundary 

condition is assumed, implying that the rotation of the scalar will not be affected by the 

outside condition. A uniformly spaced mesh with a grid size of 3.0=Δ=Δ yx  was used. 

The numerical integration was carried out by a constant time step of 1.0=Δt .  

 

A sketch of the initial profile is given in Figure 7-3. Figure 7-4 and Figure 7-5 report 

the profiles computed by the ENO-Padé scheme and the WENO-Padé scheme after one 
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cycle of rotation. Good approximations were obtained, both in terms of the magnitude of 

the crest as well as the position of the cone.  

 
 

Figure 7-3 Guassian rotation – initial profile 
 

 

 
 

Figure 7-4 Gaussian profile after one cycle of rotation – ENO-Padé 



 95

 
 

Figure7-5 Gaussian profile after one cycle of rotation – WENO-Padé 
 

 
To better inspect the results and compare with the analytical solution, a 2-D plane 

was extracted by cutting a slice through the middle of the cone along x=14.6, which 

depicts the cone shape and the magnitude of the peak. The comparison of the numerical 

results of these two schemes with the analytical solution is presented in Figure 7-6. 
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Figure 7-6 Comparison of the plane at x=14.6 with the exact solution  
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In general, the features of the profile are captured by both schemes. Comparison of 

these two models reveals that the shape of the cone is well preserved by the WENO-Padé 

scheme, while the ENO-Padé scheme produces relatively larger smear of the peak. The 

results indicate that the WENO-Padé scheme is more stable than the ENO-Padé scheme 

for this rotation problem. 

 

7.3 Two-dimensional Nonlinear Scalar Case – Burger’s 

Equation  

 

The third test considered is the two-dimensional Burger’s equation used by Shu et al. 

[73]. The problem is defined as 

]11,11[0)
2

()
2

(
22

≤≤−≤≤−=++ yxuuu yxt                          (7.7) 

where the initial condition of four constant states given are: 
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Open boundaries are implemented, i.e. the outside region of the four states are 

maintained constant as the initial value. A computational grid size of 05.0=Δ=Δ yx with 

a time step of 005.0=Δt  was used. Starting from the initial state of (-1,-0.2,0.5,0.8), 

integration of Eq. 7.7 over time until T=1 gives the results as depicted in Figure 7-7 and 

Figure 7-8 for the ENO-Padé and the WENO-Padé scheme, respectively. 
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Figure 7-7 2-D Burger’s equation – ENO-Padé 

 

 

Figure 7-8 2-D Burger’s equation – WENO-Padé 

 

It is clearly seen that in the mid region of the domain along the y-axis, a pair of 

shocks develops. Along the x-axis, rarefaction is formed traveling towards the outside. 

This test is utilized to illustrate how well these two methods cope with the interaction of 
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shocks and rarefactions. The results in Figure 7-7 and Figure 7-8 reveal that the shocks 

were tracked by both schemes. Further assessment was made by cutting slices along the 

middle of the x-axis through the y-axis. The resultant line graph in the 2-D plane 

represents the wave profile expanding in the x-direction. The results of both schemes are 

plotted in Figure 7-9. One can see that well maintained wave profiles are obtained by 

both models. Comparing these two profiles, the WENO-Padé method keeps “sharper” 

transitions at the corners than the ENO-Padé method, indicating a better shock capturing 

capabilities of the WENO-Padé model.  
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Figure 7-9 2-D Burger’s equation plane comparison at x=0  
 

7.4 Two-dimensional Dam Break - Wet Bed, Frictional  

 

In this section, experiment was conducted to test the two-dimensional numerical 

schemes for solving dam break problems analogous to the 1-D problem presented in 
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Chapter 5. In this test, the computational domain consists of a channel in a 200m x 200m 

square region with a flat bottom. A dam is located at x=100m, parallel to the y-axis across 

the channel. The initial water depth is 10m at the upstream and 5m at the downstream of 

the dam, both being in a stationary state. Along the wall, solid boundary conditions are 

applied, implying that the normal velocity (perpendicular to the wall) is zero, while the 

latitudinal velocity on the wall is allowed. Constant water depths are assumed at the 

upstream and the downstream ends of the channel. The grid sizes are chosen to be 

4=Δx m and 4=Δy m. A time step of 1.0=Δt s is used. In order to coincide with the 

grids, a wall thickness equal to the x-direction grid size is assumed for the dam so that the 

two edges of the dam reside on two consecutive lines of the mesh. In this test, frictional 

bed is considered, for which Manning’s roughness coefficient is set to 0.03. At T=0, the 

dam instantaneously collapsed resulting in a 75m wide breach in the middle of the dam. 

On the broken of the dam, a bore propagates downstream and spreads laterally. 

Meanwhile, a rarefaction wave travels towards the upstream.  

 

    Simulation of the flood flow is performed to a final time of T=9. The simulated water 

depth profiles of the ENO-Padé method and the WENO-Padé method are presented in 

Figure 7-10 and Figure 7-11. It can be seen that both schemes are able to capture the 

shock front and the backward rarefaction, which is an indication that the models are 

implemented correctly. A plane view of the velocity contour is also plotted in Figure 7-12 

for the WENO-Padé scheme to illustrate the magnitude and the direction of the velocity 

vectors. 
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Figure 7-10 Water depth of 2-D dam break - ENO-Padé (wet bed, frictional)  

 
 

 
 

Figure 7-11 Water depth of 2-D dam break – WENO-Padé (wet bed, frictional)  
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Figure 7-12 Velocity contour of 2-D dam break – WENO-Padé (wet bed, frictional) 

 

A closer inspection was made to compare the performances of these two methods, for 

which a plane along the centerline of the breach parallel to the x-axis was extracted. Since 

this plane of centerline represents the main stream of the flow, which consists of the wave 

front, it adequately reflects the characteristics of the flow propagation. The water depth 

profile is presented in Figure 7-13. One can see that these two schemes agree well with 

each other. Both present a profile that is similar to the validated one-dimensional models 

in Chapter 5, which implies that the two-dimensional ENO-Padé and WENO-Padé 

scheme are intrinsically correct.  
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Figure 7-13 2-D dam break – water depth profile comparison of the central line  

(wet bed, frictional)  

 
 

In order to further assess the accuracy of these two schemes, self-convergence tests 

were performed. The L1 error were computed for water depth (h) and velocity vectors (u 

and v) with a series of resolutions N=20,40,80,160. These values along with the 

convergence rate are summarized in Table 7-3. One can see from the table that the ENO-

Padé scheme converges at less than unity while the WENO-Padé scheme converges at 

approximate order of one. Comparison of the L1 errors shows that the error in the 

prediction of the WENO-Padé model is less than that of the ENO-Padé model and is 

roughly twice more accurate than the ENO-Padé model.  
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Table 7-3 Convergence test – 2-D non-homogeneous shallow water equations (wet bed, frictional) 

 
ENO-Padé 

N  Δx (= Δy) L1 error 
(depth-h) 

Convergence 
rate 

L1 error 
(velocity-u) 

Convergence 
rate 

L1 error 
(velocity-v) 

Convergence 
rate 

20*20 10       
40*40 5 0.18331  0.198273  0.128682  
80*80 2.5 0.099212 0.89 0.118665 0.74 0.089897 0.52 

160*160 1.25 0.050276 0.98 0.065183 0.86 0.05502 0.71 
WENO-Padé 

N Δx (= Δy) L1 error 
(depth-h) 

Convergence 
rate 

L1 error 
(velocity-u) 

Convergence 
rate 

L1 error 
(velocity-v) 

Convergence 
rate 

20*20 10       
40*40 5 0.12501  0.157837  0.108179  
80*80 2.5 0.05971 1.07 0.07653 1.04 0.05649 0.94 

160*160 1.25 0.026987 1.15 0.035468 1.11 0.027979 0.98 
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7.5 Two-dimensional Dam Break Experiment  

 
In this section, the implementation of the two models was validated against the 

experimental data of flood wave propagation due to a partial dam-break by Fraccarollo 

and Toro [29], which has been widely tested by many authors [30, 34, 46, 95]. The 

experimental flume, shown in Figure 7-14, is 3m long and 2m wide. The area occupied by 

the reservoir is 1m in the x-direction and 2m in the y-direction. A breach of 0.4m wide is 

symmetrically centered on the wall. The bottom of the reservoir and floodplain is 

horizontal. The three flood-plain boundaries are all open. In the selected case, the initial 

water depth in the reservoir is 0.6m and the floodplain is dry. Five stations for measuring 

stage hydrographs are shown in Figure 7-14 and their coordinates are listed in Table 7-4. 

In the simulation, model velocities normal to closed boundary are taken equal to zero. To 

ensure numerical stability of the schemes, a water depth of 0.001m is assumed for the 

flood plain. The computational domain is discretized into rectangular cells with ∆x=0.1m, 

∆y=0.1 m. Similar to the 1-D case, a wall of 0.1m in thick is assumed to allow the two 

sides of the wall residing on the grids so that the solid boundary can be easily 

implemented. 

 
Table 7-4 Location of stage gauges 

 
Stations -5A C 4 0 8A 

X(m) 0.18 0.48 1.00 1.00 1.722 
Y(m) 1.00 0.40 1.16 1.00 1.00 
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Figure 7-14 2-D dam break experiment – plane view of the domain and location of stage 

gauges 

 

Figure 7-15 - Figure 7-19 present the observed and the simulated results of water 

depth by the ENO-Padé and the WENO-Padé method at those five gauges. After the 

sudden opening of the gate, a surge is formed and propagates over the floodplain. 

Simultaneously, a strong depression wave occurs in the reservoir and causes the water 

surface near the gate to descend drastically. In general, reasonable agreement between the 

measured and the computed results are achieved: the changing pattern of the water depth 

in the reservoir and in the flood plain developed as the models predicted; the magnitude 

is basically within the simulated scopes except in the reservoir, where the models 

somewhat over-predicted the water depth. This can be explained as caused by the effects 

of the thickness of the wall, which imposed larger sheer stress on the streams flowing 

through the breach, thus reduced the velocity of the flow. Comparable results are 

obtained by these two methods. 
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Figure 7-15. Comparison of stage hydrographs at gauge -5A  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10time (s)

h 
(m

)

ENO-Padé

WENO-Padé

Measured

 
Figure 7-16. Comparison of stage hydrographs at gauge C  
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Figure 7-17. Comparison of stage hydrographs at gauge 4  
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Figure 7-18. Comparison of stage hydrographs at gauge 0  
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Figure 7-19. Comparison of stage hydrographs at gauge 8A  

 

In summary, the schemes developed in Chapter 6 were tested in this chapter for one-

dimensional and two-dimensional scalar equation and system equations. Numerical 

results indicate good shock transition without noticeable oscillations near the 

discontinuities and high accuracy in smooth regions for both schemes. Comparing these 

two schemes, the WENO-Padé scheme gives better overall performance for simulating 

shocks than the ENO-Padé scheme. 
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Chapter 8  
 
 
Conclusions and Future Work 
 
 

In this dissertation, a new family of high order finite difference scheme was 

developed to resolve the discontinuous phenomena in hyperbolic equations. The spatial 

discretization is based on a hybrid of high order compact central type Padé scheme with a 

weighted essentially non-oscillatory (WENO) reconstruction. The semi-implicit Crank 

Nicolson (CN) scheme is employed for the temporal discretization. Based on the one-

dimensional framework, the scheme is extended to two dimensions using the Douglas-

Gunn alternating direction implicit (ADI) method. The non-homogeneous problem is 

dealt with by the Strang splitting technique. In principle, an arbitrary order of accuracy in 

space can be constructed by the scheme developed in this dissertation. Third order is 

employed in the scheme implementation and numerical tests based on accuracy and 

efficiency consideration of the applications in this work.  

 

    Particularly, high order difference is constructed by performing a reconstruction of the 

variable from cell average and uses this reconstruction to approximate the point-wise 

values and the associated spatial derivative of the flux function. The essentially non-

oscillatory (ENO) scheme and the weighted essentially non-oscillatory (WENO) scheme 

are employed to perform the reconstruction. These schemes are derived from the scalar 

wave equation and generalized to system equations. The generalizations are accompanied 

by approximate Riemann solvers. The approximate Riemann solver of Roe is used. The 
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ENO/WENO schemes use a local adaptive stencil to obtain information automatically 

from regions of smoothness when the solution contains discontinuities. As a result, 

approximations using these methods can obtain uniformly high order accuracy up to 

discontinuities while keeping a sharp, essentially non-oscillatory shock transition. 

Upwinding is achieved by the initial biased stencil. The Crank-Nicolson scheme is 

employed for time discretization to take the advantage of its unconditional stability. 

 

The Douglas-Gunn ADI method is used to provide a way to solve multidimensional 

homogeneous problems. In dealing with the source terms, the Strang splitting technique 

decouples the source terms from the genetic homogeneous equations, thus the combined 

scheme is portable in solving any complex multi-dimensional non-homogeneous 

equations. To validate the accuracy and effectiveness of the schemes, various numerical 

tests were conducted. The tests include one- and two-dimensional scalar and system 

hyperbolic equations. For scalar cases, both linear and nonlinear problems are solved. For 

systems cases, homogeneous and non-homogeneous equations are solved. The numerical 

results are compared against the available analytical solutions and data from published 

results of laboratory and field measurements.  

 

The numerical results reveal practical evidence of the good performance using the 

current developed approach. In terms of shock capturing, both schemes give equally good 

resolution of the leading shock. Further inspections show that results obtained by the 

WENO-Padé scheme are more accurate in approximating the rarefaction wave. For the 
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ENO-Padé scheme, the corners at the ending points of the rarefaction wave are usually 

rounded, showing a tendency to diffuse the solution.  

 

Effectiveness and efficiency are two other issues also considered in this study. The 

two methods developed are based on the same underling framework, i.e. spatial 

discretization and temporal integration. The difference between them lies in the technique 

for variable reconstruction of interfacial values. Of these two methods, the ENO scheme 

is conceptually straight forward. However, the searching for an optimal stencil is time 

consuming due to the comparison-selection procedure at each phase. Additionally, the 

ENO scheme sometimes places too tight criteria for choosing stencils which is prone to 

smearing the corners. The WENO scheme can completely remove the logical operations 

that appear in the ENO scheme, thus is easier to implement and is more efficient. Also, 

the WENO scheme maintains the high order characteristics of the ENO scheme but with 

less stringent requirement on the stencil, thus making the numerical flux smoother. It is 

expected that this smoothness allows larger time steps to be used in the time integration. 

On the whole, the hybrid WENO-Padé scheme shows better performance in capturing 

shocks and simplicity in coding. However, the derivation of WENO scheme needs more 

complex theoretical development. Considering the computational cost, the WENO-Padé 

scheme is faster compared to the ENO-Padé scheme, especially for two-dimensional 

problems. Usually the ENO-Padé scheme requires between 2 to 3 as much time as the 

WENO-Padé scheme. This is due to the expensive ENO interpolation in choosing the 

smoothest stencil.  
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The two schemes presented in this dissertation are applied on rectangular coordinates 

and uniform grid. It is possible to generalize these methods to other coordinate systems. 

However, a main restriction to this generalization is that conservative finite difference 

schemes can be achieved only on uniform rectangular or smooth curvilinear meshes. 

 

From this work, it is found that there are several issues that need further 

investigations. One is the implementation of the numerical schemes on non-uniform grid. 

With the same interpolation idea of ENO/ WENO, the criteria have to be carefully 

designed for measuring smoothness to comply with automatic stencil shifting on a non-

uniform grid. The scheme based on non-uniform grid could be far more complicated for 

multi-dimensional problems. It should be also pointed out that the study of multi-

dimensional conservation laws on non-uniform grid is not mature.  

 

Another issue is the usage of adaptive techniques for high order accuracy. Currently, 

the adaptive methods have gained wide attention. It is expected that by using this 

technique, the mesh density can be automatically modified such that special features of 

interest, such as the shocks in this study, can be easily captured in the refined portion of 

the mesh. Meanwhile, since the computation demands by the coarse part of the mesh are 

low, the overall computational expenses can be kept within a reasonable level. 
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Appendices 
 
 

Appendix A 
 
 
Some Numerical Flux Schemes and High Resolution Methods 
 
 

Besides the Godunov scheme, another type of upwind scheme is the flux vector 

splitting schemes, in which the flux is split into two parts 

 
−+ += FFF                                                     (A.1) 

where the components are defined as 
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Then the interface flux becomes 
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One can see that the upwind direction is chosen automatically depending on the sign 

of the flux. This feature provides the advantage of no oscillation generation near a 

discontinuity. 

 

For the second order schemes, a popular one is the Lax-Wendroff scheme. By 

retaining the first order terms, the scheme can be written as 
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with 
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Another second order scheme is the McCormack scheme. In this scheme, a predictor-

corrector procedure is involved:  
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To develop high resolution methods, one approach is to add artificial diffusion to 

eliminate spurious oscillations. A typical example is the improved McCormack scheme, 

for which the added numerical viscosity reduces the oscillation by conducting the 

following predictor-corrector steps: 
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Another approach of constructing high resolution methods is to apply limiters. This 

approach stems from the earliest attempt of the FCT scheme, which consists of anti-

diffusion flux. With flux correction, the scheme is given by 
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where HI

i
F
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+
 is the flux calculated using a higher order scheme while LW
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 is the flux 

calculated using a first order upwind scheme, and HI
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++
− is the correction term.  

 

Some limiters applied on the above modified flux include: 

 
Yee’s TVD limiter: 

 
))(,(

2
1

2
1

2
1

2
1

HI

i

LW

i

HI

ii
FFFF

++

−+

++
−+= ββφ                           (A.11) 

 
Here ),( −+ ββφ is a limiter function. If the data is smooth, φ is close to 1, and if near 

large gradient, it is chosen near 0. 
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van Leer limiter 
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when 1=ω . The ratio ±β is a measure of the smoothness of the data near ix . For smooth 

data 1≈±β , and for discontinuity 1>>±β . 
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Woodward limiter 
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Appendix B  
 
 
Fourth Order WENO Scheme 
 
 

For the fourth order WENO scheme, the interpolation candidate stencils include: 
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The corresponding smoothness indicators are given as: 
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The optimal weights id  for the left extrapolated value l
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and the left quantity l
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Similarly, the optimal weights id  for the left extrapolated value r

i
q

2
1

+
 at 

2
1

+i
x are 

given by  
 

35
1

1 =d ,
25
12

2 =d ,
35
18

3 =d ,
35
4

4 =d                                  (B.11) 

 
and r

i
q

2
1

+
is given by 

 

]
12
1

12
5

12
13

4
1[]

12
1

12
7

12
7

12
1[

]
4
1

12
13

12
5

12
1[]

12
25

12
23

12
13

4
1[

32142113

11221231
2
1

−−−−−+

−+−+++
+

+−++−++−+

++−++−+−=

iiiiiiii

iiiiiiii
r

i

qqqqqqqq

qqqqqqqqq

ωω

ωω
 

(B.12) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 119

Appendix C  
 
 
Optimal Weights for WENO Scheme 
 
 
k r J=0 J=1 J=2 J=3 J=4 J=5 J=6 
1 -1 1       
 0 1       
2 -1 3/2 -1/2      
 0 1/2 1/2      
 1 -1/2 3/2      
3 -1 11/6 -7/2 1/3     
 0 1/3 5/6 -1/6     
 1 -1/6 5/6 1/3     
 2 1/3 -7/6 11/6     
4 -1 25/12 -23/12 13/12 -1/4    
 0 1/ 13/12 -5/12 1/12    
 1 -1/12 7/12 7/12 -1/12    
 2 1/12 -5/12 13/12 1/4    
 3 -1/4 13/12 -23/12 25/12    
5 -1 137/60 163/60 137/60 -21/20 1/5   
 0 1/5 77/60 -43/60 17/60 -1/20   
 1 -1/20 9/20 47/60 -13/60 1/30   
 2 1/30 -13/60 47/60 9/20 -1/20   
 3 -1/20 17/60 -43/60 77/60 1/5   
 4 1/5 -21/20 137/60 -163/60 137/60   
6 -1 49/20 -71/20 79/20 -163/60 -1/6   
 0 1/6 29/20 -21/20 37/60 1/30   
 1 -1/30 11/30 19/20 -23/60 -1/60   
 2 1/60 -2/15 37/60 37/60 1/60   
 3 -1/60 7/60 -23/60 19/20 -1/30   
 4 1/30 -13/60 37/60 -21/20 1/6   
 5 -1/6 31/30 -163/60 79/20 49/20   
7 -1 363/140 -617/140 853/140 -2341/420 667/210 -43/42 1/7 
 0 1/7 223/140 -197/140 153/140 -241/420 37/210 -1/42 
 1 -1/42 13/42 153/140 -241/420 109/420 -31/420 1/105 
 2 1/105 -19/210 107/210 319/420 -101/420 5/84 -1/140 
 3 -1/140 5/84 -101/420 13/42 107/210 -19/210 1/105 
 4 1/105 -31/420 109/420 -241/420 153/140 13/42 -1/42 
 5 -1/42 37/210 -241/420 153/140 -197/140 223/140 1/7 
 6 1/7 -43/42 667/210 -2341/420 853/140 -

617/140 
363/140
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