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A new class of non-linear compact interpolation schemes is introduced in this dis-

sertation that have a high spectral resolution and are non-oscillatory across dis-

continuities. The Compact-Reconstruction Weighted Essentially Non-Oscillatory

(CRWENO) schemes use a solution-dependent combination of lower-order compact

schemes to yield a high-order accurate, non-oscillatory scheme. Fifth-order accu-

rate CRWENO schemes are constructed and their numerical properties are analyzed.

These schemes have lower absolute errors and higher spectral resolution than the

WENO scheme of the same order.

The schemes are applied to scalar conservation laws and the Euler equations

of fluid dynamics. The order of convergence and the higher accuracy of the CR-

WENO schemes are verified for smooth solutions. Significant improvements are

observed in the resolution of discontinuities and extrema as well as the preserva-

tion of flow features over large convection distances. The computational cost of

the CRWENO schemes is assessed and the reduced error in the solution outweighs

the additional expense of the implicit scheme, thus resulting in higher numerical



efficiency. This conclusion extends to the reconstruction of conserved and primitive

variables for the Euler equations, but not to the characteristic-based reconstruction.

Further improvements are observed in the accuracy and resolution of the schemes

with alternative formulations for the non-linear weights.

The CRWENO schemes are integrated into a structured, finite-volume Navier-

Stokes solver and applied to problems of practical relevance. Steady and unsteady

flows around airfoils are solved to validate the scheme for curvi-linear grids, as well as

overset grids with relative motion. The steady flow around a three-dimensional wing

and the unsteady flow around a full-scale rotor are solved. It is observed that though

lower-order schemes suffice for the accurate prediction of aerodynamic forces, the

CRWENO scheme yields improved resolution of near-blade and wake flow features,

including boundary and shear layers, and shed vortices. The high spectral resolution,

coupled with the non-oscillatory behavior, indicate their suitability for the direct

numerical simulation of compressible turbulent flows. Canonical flow problems –

the decay of isotropic turbulence and the shock-turbulence interaction – are solved.

The CRWENO schemes show an improved resolution of the higher wavenumbers

and the small-length-scale flow features that are characteristic of turbulent flows.

Overall, the CRWENO schemes show significant improvements in resolving

and preserving flow features over a large range of length scales due to the higher

spectral resolution and lower dissipation and dispersion errors, compared to the

WENO schemes. Thus, these schemes are a viable alternative for the numerical

simulation of compressible, turbulent flows.
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Chapter 1

Introduction

A large number of physical phenomena can be modeled using partial differen-

tial equations (PDEs) that are in the form of hyperbolic conservation laws. These

phenomena are characterized by wave propagation or convective transport of quan-

tities. The governing equations express the conservation of a quantity by equating

its time derivative inside a control volume with the flux of that quantity through the

boundary surfaces. Examples of such physical systems include compressible fluid

dynamics, electromagnetics, and ideal plasma dynamics. The complexity of the

governing equations and/or the physical domain makes an analytical solution im-

possible in engineering problems. Thus, a numerical solution is often sought where

the equations are discretized in time and space. Numerical algorithms typically

involve an interpolation or a reconstruction step where the solution is computed

from discrete values to the desired accuracy. Hyperbolic PDEs admit discontinu-

ities and sharp gradients in the solution and thus, interpolation schemes need to

be modified to prevent spurious oscillations resulting from high-order polynomial

interpolation. Several such schemes have been presented in the literature [1, 2] and

applied to problems in fields such as fluid dynamics, electromagnetics and ideal

magnetohydrodynamics.

The solutions to hyperbolic conservation laws are often characterized by a
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range of spatial and temporal scales. This dissertation focuses on numerical schemes

for compressible gasdynamics, especially for flow problems that are characterized

by a large range of length scales. Compressible flows are governed by the Navier-

Stokes equations [3], which form a hyperbolic-parabolic system of equations. The

simulation of turbulent flows requires the accurate resolution of small length scales

of turbulent structures as well the characteristic length scales of the flow. Figure

1.1(a) shows the interaction of a shock wave with a turbulent flow field. Such an

interaction results in the amplification of turbulence intensity downstream of the

shock and a transfer of energy to smaller length scales. This canonical problem is

representative of the interaction of shock waves with turbulent boundary layers. A

numerical scheme with high spectral resolution is required to resolve all relevant

length scales. In addition, the presence of a shock wave requires the scheme to be

non-oscillatory across discontinuities.

Figure 1.1(b) shows the flow around a two-bladed rotor operating in ground

effect. The wake flow is dominated by helical tip vortices shed from the rotor blades.

Modeling of the wake flow requires the accurate resolution of these vortices as they

convect over large distances and interact with each other as well as the ground

plane. Thus, the length scales in the flow range from the rotor radius to the core

radii of the tip vortices. In addition, flow on the advancing side of the rotor is highly

compressible and may have local pockets of supersonic flows and shock structures,

thus making it is essential for the numerical scheme to be non-oscillatory.

A new class of high-resolution, non-oscillatory numerical schemes is introduced

2



(a) Shock – turbulence interaction (retrieved from:
http://shocks.stanford.edu/image/M2 Mt015 eddies.jpg)

(b) Numerical solution of the flow around a two-bladed
rotor in ground effect (Kalra, Lakshminarayan & Baeder,
American Helicopter Society 66th Annual Forum Proceed-
ings, 2010)

Figure 1.1: Examples of flows requiring high-order accurate schemes with low dissi-
pation errors and high spectral resolution
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in this thesis, focusing on such problems. The numerical properties are analyzed

and demonstrated for simplified physical systems and then applied to flow problems

of practical relevance (in particular, to those referenced above). Although the ap-

plications presented in this study are particular to compressible gasdynamics, the

numerical schemes may be applied to other physical systems that are characterized

by a range of length scales.

1.1 Hyperbolic Conservation Laws

A hyperbolic conservation law in can be expressed in the differential form as

∂u

∂t
+
∂fi(u)

∂xi
= 0 in Ω; i = 1, . . . , D (1.1)

u(x, 0) = u0(x) for x ∈ Ω (1.2)

u(x, t) = g(x, t) for x ∈ Γ ⊂ ∂Ω (1.3)

where u ∈ Rn is the vector of conserved quantities, fi(u) are the flux functions

in each space dimension i, D is the number of space dimensions, u0 is the initial

condition specified inside the domain Ω and g is the boundary condition, specified

over a subset of the boundary ∂Ω. The system is hyperbolic if the flux Jacobian

A = ∂F/∂x; F = {fi} is diagonalizable with all eigenvalues real. The eigenvalues

and the corresponding eigenvectors form the characteristic basis of the system that

defines the directions and speeds of wave propagation or advection of characteristic

quantities. Integrating Eqn. (1.1) over a control volume results in the integral form
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of the equation, which is expressed as

∂(
∫
V

udV )

∂t
+

∫
S

F(u).dS = 0 (1.4)

where V is the control volume and S is its boundary surface. The integral form

demonstrates the conservation of the variable u: any change (in time) of the volume-

integrated quantity inside a control volume is equal to the total flux of that quantity

through the boundary of the same control volume.

As an example, the linear advection equation is an example of a scalar, one-

dimensional conservation law. It can be expressed as

ut + aux = 0 (1.5)

where the flux function is given by f(u) = a. The solution is given by u(x, t) =

u0(x−at) with u0(x) = u(x, 0) as the initial condition, and represents a scalar wave

advecting along the positive x-axis with speed a. The flux function is linear and

thus, the solution is discontinuous if the initial condition u0 is discontinuous. The

inviscid Burgers’ equation is an example of a scalar, non-linear conservation law. It

can be expressed as

ut + uux = 0; u(x, 0) = u0(x) (1.6)

where the flux function is given by f(u) = u2/2. The solution is given by u(x, t) =

u0(x− ut), which represents a wave with each point convecting at its local velocity.

The flux function is non-linear and thus, discontinuities may develop even if the

initial condition is smooth.
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1.2 Numerical Solution

The numerical solution is obtained by discretizing Eqn. (1.1) or (1.4) in space

and time to yield the finite difference or finite volume formulations respectively. As

an example, a one-dimensional (D = 1) scalar conservation law is considered on a

domain of unit length (0 ≤ x ≤ 1). The domain is represented by a grid with N

points that are uniformly placed, as shown in Fig. 1.2. Discretizing the differential

form of the conservation law in space, we get the semi-discrete equation as

duj
dt

+
1

∆x

(
hj+1/2 − hj−1/2

)
= 0 (1.7)

where uj = u(xj); xj = j∆x is the cell-centered value. The numerical flux function

h(x) is required to satisfy exactly

∂f

∂x

∣∣∣∣
x=xj

=
1

∆x
[h(xj+1/2, t)− h(xj−1/2, t)] (1.8)

and can thus be defined implicitly as

f(x) =
1

∆x

∫ x+∆x/2

x−∆x/2

h(ξ)dξ (1.9)

Equation (1.7) represents a conservative finite difference formulation of Eqn. (1.1).

The solution of this semi-discrete equation consists of two steps: reconstruction and

time marching.

1.2.1 Reconstruction

The reconstruction step computes the solution at the interfaces from the cell-

centered solution to the desired order of accuracy. An approximate flux function
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Figure 1.2: Schematic diagram illustrating the domain discretization.

f̂(x) ≈ h(x) is found such that

∂f

∂x

∣∣∣∣
x=xj

=
1

∆x

(
hj+1/2 − hj−1/2

)
=

1

∆x

(
f̂j+1/2 − f̂j−1/2

)
+O(∆xr) (1.10)

where r is the desired order of the scheme. Thus, this step requires the interpolation

of the approximate flux function f̂ at the interfaces from neighboring cell-centered

values fj = f(uj). Several examples are presented below.

Two simple approximations of the interface flux can be expressed as

f̂Lj+1/2 = fj (1.11)

f̂Rj+1/2 = fj+1 (1.12)

where the superscript denotes the stencil bias. These result in first-order left (L)

and right (R) biased approximations of the first derivative, respectively:

∂f

∂x

∣∣∣∣L
x=xj

=
1

∆x
(fj − fj−1) +O(∆x) (1.13)

∂f

∂x

∣∣∣∣R
x=xj

=
1

∆x
(fj+1 − fj) +O(∆x) (1.14)

Similarly, the interface flux can be approximated as

f̂Lj+1/2 =
1

2
(−fj−1 + 3fj) (1.15)

f̂Cj+1/2 =
1

2
(fj + fj+1) (1.16)

f̂Rj+1/2 =
1

2
(3fj+1 − fj+2) (1.17)
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to yield second-order accurate left biased (L), central (C) and right biased (R)

approximations of the first derivative, respectively:

∂f

∂x

∣∣∣∣L
x=xj

=
1

2∆x
(fj−2 − 4fj−1 + 3fj) +O(∆x2) (1.18)

∂f

∂x

∣∣∣∣C
x=xj

=
1

2∆x
(fj+1 − fj−1) +O(∆x2) (1.19)

∂f

∂x

∣∣∣∣R
x=xj

=
1

2∆x
(3fj+1 − 4fj+2 + fj+3) +O(∆x2) (1.20)

Higher-order approximations to the flux derivative can be constructed along similar

lines. Thus, interpolated values of the numerical flux function f̂ are found at the

interfaces such that the derivative of the flux function is approximated at the cell

center to the desired accuracy using Eqn. (1.10).

The solution of a hyperbolic conservation law represents propagating waves or

advection of quantities and the reconstruction step needs to respect the local direc-

tionality of advection or wave propagation through upwinding. At each interface,

the eigenvalues and the eigenvectors of the flux Jacobian represent the characteris-

tic speeds and directions. Thus, each eigenvalue and its corresponding eigenvector

represent a wave with the eigenvalue as its propagation speed and the eigenvector

as the direction in the variable space. The solution to the scalar conservation law

comprises just one wave at each interface, with a propagation speed of f ′(u). As

examples, the wave propagation speed for the linear advection equation, Eqn. (1.5),

is a while for the inviscid Burgers’ equation, Eqn. (1.6), the wave propagation speed

is u. The wave nature of the solution is modeled through upwinding where the ap-

proximate flux function is interpolated using a biased stencil. This is illustrated as
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follows:

f̂j+1/2 = f̂Lj+1/2 if f ′(u)j+1/2 > 0

= f̂Rj+1/2 if f ′(u)j+1/2 < 0 (1.21)

The numerical flux at an interface is interpolated using a left-biased approximation

if the wave speed is positive (i.e. traveling left to right) or a right-biased approxi-

mation if the wave speed is negative (i.e. traveling right to left). The left and right

biased approximations, f̂Lj+1/2 and f̂Rj+1/2, are given by Eqns. (1.11) and (1.12) for

a first-order accurate upwind scheme and by Eqns. (1.15) and (1.17) for a second-

order accurate upwind scheme. The solution of a hyperbolic system of equations

comprises multiple waves, each with its own characteristic speed. Thus, the flux at

the interface is computed by decomposing it to its constituent waves and using an

upwind approximation for each wave based on its wave speeds.

1.2.2 Time-Marching

Equation (1.7) can be rewritten as an ordinary differential equation (ODE) in

time,

du

dt
= L(u); L(u) = −δxf(u); u(t = 0) = u0 (1.22)

where the L(u) is the residual and δxf(u) is the finite difference approximation

to the flux derivative computed in the previous section. The time interval for the

numerical solution [0, tf ] is discretized into T time steps with time step size as

∆t = tf/T . The time derivative term in Eqn. (1.22) is approximated by a finite

difference discretization and the solution is evolved in time, starting with the initial
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conditions u0. A complete discussion of time-marching schemes is outside the scope

of this thesis. However a few examples are presented of the time-marching schemes

used in the present work.

A first-order explicit time marching (forward Euler) scheme is obtained by

taking a backward-biased first-order discretization of the time derivative:

un+1 − un

∆t
= L(un) (1.23)

where un = u(n∆t) represents the solution at the n-th time level. Similarly, a first-

order implicit (backward Euler) scheme is obtained by evaluating the residual at the

new time level:

un+1 − un

∆t
= L(un+1) (1.24)

The explicit scheme is conditionally stable, subject to time-step size restrictions but

the implicit scheme is unconditionally stable.

High-order accurate time-marching schemes are used in algorithms with high-

order spatial accuracy. The Runge-Kutta (RK) schemes are a family of multi-stage,

high-order ODE solvers and the 3rd-order Total Variation Diminishing RK scheme

(TVDRK3) [10] is used with high-order spatial reconstruction schemes in the present
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study. The TVDRK3 scheme is given by:

v(0) = un

v(1) = v(0) + ∆tL(v(0))

v(2) =
3

4
v(0) +

1

4
[v(1) + ∆tL(v(1))]

v(3) =
1

3
v(0) +

2

3
[v(2) + ∆tL(v(2))]

un+1 = v(3) (1.25)

Since it is an explicit scheme, it has a time-step restriction and is not suitable for

stiff problems. Stiff problems are cases where the time step size is restricted by

stability requirements rather than accuracy. Implicit schemes are unconditionally

stable. The second-order accurate Backward Differencing (BDF2) scheme, given by,

3

2
un+1 − 2un +

1

2
un−1 = ∆tL(un+1) (1.26)

is used in this study for problems where the time step size of an explicit scheme is

too restrictive.

1.3 ENO and WENO schemes

The solution of hyperbolic conservation laws may contain discontinuities (e.g.

shock waves and contact discontinuities) and sharp transition layers. A numerical

algorithm is required to capture the discontinuities without spurious oscillations

as well as resolve smooth features of the solution with high-order accuracy. First-

order numerical methods were proposed in the literature for problems in inviscid,

compressible gasdynamics, such as the Godunov scheme [4] and the Roe scheme [5].
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Though these schemes are monotonic across discontinuities, they are excessively

dissipative resulting in smeared discontinuities and an inability to preserve smooth

flow features. The basic structure of these schemes were used as building blocks for

second-order accurate monotonic schemes such as the MUSCL scheme [6], the TVD

scheme of Harten [7] and the Piecewise Parabolic Method (PPM) [8].

Second-order schemes provide better resolution of discontinuities and smooth

solutions but higher-order accuracy is necessary to capture solutions that have dis-

continuities as well as complicated smooth features. Examples in fluid dynamics

include turbulent eddies, vortical structures, acoustic waves, etc. and their in-

teractions with each other as well as with shock waves. The high-order accurate

Essentially Non-Oscillatory (ENO) scheme was introduced [9] for a finite-volume

formulation and extended to a conservative finite difference formulation as well as

systems of equations and multi-dimensional problems [10, 11]. The ENO schemes

use an adaptive stenciling procedure that results in a non-oscillatory interpolation

across discontinuities. As discussed in Section 1.2.1, a biased reconstruction of the

flux at the interface is used to respect the wave-nature of the solution. Without loss

of generality, if we consider the left-biased interpolation at a given interface, f̂Lj+1/2,

there are r candidate interpolation stencils for an r-th order scheme, that contain

the cell center left of the interface. For example, the two possible interpolation

stencils for a second-order reconstruction of f̂Lj+1/2 are

f̂ 1
j+1/2 =

1

2
(−fj−1 + 3fj) (1.27)

f̂ 2
j+1/2 =

1

2
(fj + fj+1) (1.28)
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Similarly, the three candidate stencils for a third-order accurate reconstruction are:

f̂ 1
j+1/2 =

1

3
fj−2 −

7

6
fj−1 +

11

6
fj (1.29)

f̂ 2
j+1/2 = −1

6
fj−1 +

5

6
fj +

1

3
fj+1 (1.30)

f̂ 3
j+1/2 =

1

3
fj +

5

6
fj+1 −

1

6
fj+2 (1.31)

The ENO scheme compares a hierarchy of undivided differences of the candidate

stencils and chooses the one with the lowest magnitude. Stencils with discontinuities

have higher undivided differences and the ENO procedure selects the smoothest

amongst the candidate stencils to yield a non-oscillatory interpolation of the flux

at the interface. Thus, using this stencil selection procedure, ENO schemes of the

desired order of accuracy can be constructed.

The Weighted Essentially Non-Oscillatory (WENO) scheme was introduced

[12] as an improvement over the ENO schemes by replacing the stencil selection by a

weighted average of the candidate stencils. Smoothness-dependent weights are used

such that they approach zero for candidate stencils with discontinuities. Thus, across

discontinuities, the WENO schemes behave like the ENO schemes, while in smooth

regions of the solution, the weighted average results in a higher-order approximation.

The WENO schemes were extended to higher-order accuracy by defining improved

smoothness indicators and applied to the finite difference formulation [13].

The underlying principle of the WENO schemes is the ability to combine

lower-order interpolation schemes to get a higher-order scheme. For example, Eqns.

(1.27) and (1.28) are two possible second-order accurate schemes. Multiplying them

by c1 = 1/3 and c2 = 2/3 respectively and adding them, we get Eqn. (1.30), which
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is a third-order accurate scheme. The WENO scheme calculates weights ω1 and ω2

that approach the optimal weights c1 and c2 respectively when the local solution

is smooth, and approach zero when the local solution is discontinuous. To achieve

this, the weights are defined as

ωk =
αk∑
k αk

; αk =
ck

(ε+ βk)
p ; i = 1, . . . , r (1.32)

where r is the order of candidate stencils (r = 2 in this example), ε is a small number

to prevent division by zero, and βk are the smoothness indicators of each candidate

stencil. The optimal weights are divided by the smoothness indicators such that

stencils containing discontinuities (and having a larger value of the smoothness in-

dicator) have weights approaching zero. Extending the smoothness measurements

of the ENO schemes, the WENO scheme in [12] used smoothness indicators based

on undivided differences:

βk =
r−1∑
l=1

r−l∑
i=1

(f [j + i+ k − r, l])2

r − l
(1.33)

where f [., l] is the l-th undivided difference. For r = 2, the smoothness indicators

are

β1 = (fj − fj−1)2

β2 = (fj+1 − fj)2 (1.34)

Thus, the 3rd-order WENO scheme (WENO3) can be summarized as follows:

f̂Lj+1/2 = ω1f̂
1
j+1/2 + ω2f̂

2
j+1/2 (1.35)

where f̂ 1
j+1/2 and f̂ 2

j+1/2 are defined by Eqns. (1.27) and (1.28), and the weights

ω1 and ω2 are defined by Eqns. (1.32) and (1.34). This results in a scheme that
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is third-order accurate in smooth regions of the solution and non-oscillatory across

discontinuities.

An improved smoothness indicator was introduced in [13] that is based on the

L2 norm of the derivatives of the interpolating polynomial:

βk =
r−1∑
l=1

∫ xj+1/2

xj−1/2

∆x2l−1(q
(l)
k )2dx (1.36)

where q
(l)
k is the l-th derivative of the interpolating polynomial qk(x) on the k-th can-

didate stencil. While the smoothness indicator of [12] allowed for the construction

of a (r+ 1)-th order WENO scheme from r-th order candidate stencils, the smooth-

ness indicators of [13] yield a (2r − 1)-th order WENO scheme. The fifth-order

WENO scheme (WENO5) (r = 3) was constructed in [13] based on the improved

smoothness indicators and it can be expressed as:

f̂Lj+1/2 = ω1f̂
1
j+1/2 + ω2f̂

2
j+1/2 + ω3f̂

3
j+1/2 (1.37)

where the three candidate third-order schemes f̂ 1,2,3
j+1/2 are given by Eqns. (1.29) to

(1.31). The optimal coefficients are c1 = 1/10, c2 = 6/10, and c3 = 3/10 respectively

that result in the fifth-order scheme:

f̂Lj+1/2 =
1

30
fj−2 −

13

60
fj−1 +

47

60
fj +

27

60
fj+1 −

1

20
fj+2

The weights are computed using Eqn. (1.32) and the smoothness indicators, given

by Eqn. (1.36), are

β1 =
13

12
(fj−2 − 2fj−1 + fj)

2 +
1

4
(fj−2 − 4fj−1 + 3fj)

2 (1.38)

β2 =
13

12
(fj−1 − 2fj + fj+1)2 +

1

4
(fj−1 − fj+1)2 (1.39)

β3 =
13

12
(fj − 2fj+1 + fj+2)2 +

1

4
(3fj − 4fj+1 + fj+2)2 (1.40)
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The final form of the WENO5 scheme can be expressed as

f̂Lj+1/2 =
ω1

3
fj−2 −

1

6
(7ω1 + ω2)fj−1 +

1

6
(11ω1 + 5ω2 + 2ω3)fj

+
1

6
(2ω2 + 5ω3)fj+1 −

ω3

6
fj+2 (1.41)

At smooth regions of the solution, the weights ω attain their optimal values c and

Eqn. (1.41) is identical to Eqn. (1.38). At discontinuities, weights corresponding to

the stencils containing the discontinuity tend to zero and the scheme behaves like a

third-order ENO scheme.

In general, a (2r − 1)-th order WENO scheme can be constructed from r

candidate interpolation schemes of r-th order accuracy. The interface flux is given

by (omitting the superscript L or R):

f̂j+1/2 =
r∑

k=1

ωkf̂
k
j+1/2 (1.42)

where fkj+1/2 is the interpolated flux at xj+1/2 using the k-th candidate stencil and ωk

is the weight of k-th stencil in the convex combination. The weights are computed by

Eqns. (1.32) and (1.36). The resulting scheme is (2r−1)-th order accurate in smooth

regions of the solution and non-oscillatory near discontinuities. WENO schemes of

very high-order accuracy (r = 4, 5, 6) have been constructed and presented in [14].

The development of the ENO and WENO schemes, and their application to systems

of equations and multi-dimensional problems are summarized in [15].

1.3.1 Implementation of Non-Linear Weights

There have been several numerical issues with the way the non-linear weights

have been defined by [13]. One such issue has been the debate regarding the role
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of ε in Eqn. (1.32), which was introduced to prevent division by zero and set to

10−6 in [13]. Ideally, the numerical scheme should be insensitive to the value of ε.

However, it was demonstrated in [16] that the WENO schemes show sub-optimal

convergence for certain types of smooth problems and the order of convergence is

dependent on the value of ε. For smooth problems that contain critical points (at

which the first and higher derivatives vanish), the weights become sensitive to ε.

A lower value of epsilon, e.g. 10−20 or 10−40 prevents the weights from attaining

their optimal values, even though the solution is smooth. Thus, the scheme shows

a sub-optimal rate of convergence. In addition, the non-optimal weights also reduce

the accuracy and resolution, thus showing excessive dissipation for smooth solution

features.

Several attempts have been presented in literature that improve the behavior of

the WENO schemes for such cases. A mapping of the weights has been proposed [16]

that causes the WENO weights to converge faster to their optimal values, defined

by the function

gk(ω) =
ω(ck + c2

k − 3ckω + ω2)

c2
k + ω(1− 2ck)

(1.43)

The mapped weights are given by

αMk = gk(ωk) (1.44)

that are then normalized for convexity to give the mapped WENO weights. The

WENO scheme with the mapped weights recovers the optimal order of convergence

for smooth problems with critical points. The primary drawback of the mapping is

the additional computational cost of the mapping function. Alternative formulations
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for the weights have been suggested in the literature [17, 18, 19, 20] that have the

same benefits as the mapping function without the additional expense. The weights

are defined as

αk = ck

[
1 +

(
τ

ε+ βk

)p]
(1.45)

The factor, τ , is initially defined as the absolute difference between the left-most and

right-most smoothness indicators for a fifth-order scheme in [17] and later improved

for higher-order schemes in [18]. The energy-stable WENO schemes [19, 20] define

it as the square of the undivided difference of the appropriate order.

The value of ε has an effect on whether the WENO scheme tends towards the

optimal higher-order central scheme or the adaptive lower-order ENO scheme. A

higher value of ε biases the scheme towards the higher-order central scheme because

higher magnitudes of βk are required to dominate the denominator of Eqn. (1.32)

and thus, scale the weight away from its optimal value. A lower value of ε biases

the scheme towards the lower-order ENO scheme because the weights are sensitive

to smaller values of the smoothness indicators. A variable-ε WENO scheme was

proposed in [21] where the value of ε is solution-dependent. The ε at each interface

is taken as

ε = εmaxmin

(
1,

minkβk
maxkβk −minkβk + εmin

)
+ εmin (1.46)

where εmax and εmin are the upper and lower bounds (10−6 and 10−99, respectively,

in their implementation). Thus, a high value of ε is used for smooth regions of the

solution, biasing the scheme towards a higher-order central scheme, and a low value

of ε is used near discontinuities, biasing the scheme towards the ENO scheme.
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These modifications to the WENO schemes have improved the accuracy and

resolution for solutions with complicated but smooth features while preserving the

non-oscillatory behavior across discontinuities. The WENO schemes have been ex-

tensively applied to several problems in compressible fluid dynamics that involve

smooth flow features as well as shock waves. In addition, they have been applied to

a wide range of engineering fields such as electromagnetics, astrophysics, semicon-

ductor physics, and computational biology as well as non-PDE applications such as

image processing. A review of the applications of the WENO schemes can be found

in [22] and references therein.

1.4 Compact Schemes

Several engineering problems are characterized by a large range of length and

time scales. The numerical solution of such problems requires the accurate mod-

eling of all relevant scales. Spectral methods [23, 24] are a class of methods that

capture the required range of scales exactly. However, these methods are restricted

to problems on simple domains with periodic boundary conditions. Conventional fi-

nite difference schemes, including the higher-order ENO/WENO schemes described

in the previous section, lack the spectral resolution to model higher wavenumbers

on a given grid. Very fine grids are required to model such problems accurately such

that all the relevant scales are represented. A new class of finite difference schemes

was introduced [25] that have significantly higher spectral resolution. The schemes

are formulated using the finite difference formulation and thus, can be applied to a
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complicated domains as well as non-periodic boundary conditions.

Finite difference approximations to the first derivative of the flux function

are linear combinations of the neighboring cell-centered values. Examples include

the first and second-order accurate approximations given by Eqns. (1.13), (1.14),

and (1.18) - (1.20). Compact schemes use a coupled formulation to compute the

approximations to the derivatives such that the approximate flux derivative at a

given cell center is dependent on those at neighboring cell centers. A general form

of such schemes [25] can be expressed as:

βf̂x,j−2 + αf̂x,j−1 + f̂x,j + αf̂x,j+1 + βf̂x,j+2

= a
fj+1 − fj−1

2∆x
+ b

fj+2 − fj−2

4∆x
+ c

fj+3 − fj−3

6∆x
(1.47)

where f̂x is the finite difference approximation to the first derivative of the flux func-

tion fx. Taylor series analysis yields constraints on the parameters that determine

the order of accuracy for these schemes and these constraints are:

a+ b+ c = 1 + 2α + 2β Second order (1.48)

a+ 22b+ 32c = 2
3!

2!
(α + 22β) Fourth order (1.49)

a+ 24b+ 34c = 2
5!

4!
(α + 24β) Sixth order (1.50)

a+ 26b+ 36c = 2
7!

6!
(α + 26β) Eighth order (1.51)

a+ 28b+ 38c = 2
9!

8!
(α + 28β) Tenth order (1.52)

Thus, we get a four-parameter family of second-order schemes, a three-parameter

family of fourth-order schemes, a two-parameter family of sixth-order schemes, a

one-parameter family of eighth-order schemes and a single tenth-order scheme. The
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result is a system of equations for the unknown derivative values that is penta-

diagonal for α, β 6= 0 and tri-diagonal for α 6= 0, β = 0. The schemes revert to

the conventional non-compact schemes with α = β = 0. The sparse nature of the

system of equations allows a solution with O(N) computational complexity.

To understand the advantages of a compact interpolation scheme for numerical

solutions involving a large range of length scales, the spectral resolution of the

compact schemes is compared with that of non-compact schemes. Assuming the

flux function to be a periodic sinusoidal wave over a domain of unit length,

f(x) = e2πikx = e2πik(j∆x) (1.53)

the phase error in the finite difference approximation of the flux derivative given by

Eqn. (1.47) is given by

k′∆x =
a sin(k∆x) + b

2
sin(2k∆x) + c

3
sin(3k∆x)

1 + 2α cos(k∆x) + 2β cos(2k∆x)
(1.54)

The spectral resolutions of fourth and sixth-order schemes are considered as exam-

ples. Fourth-order schemes can be constructed from Eqn. (1.47) with the constraint

given by Eqns. (1.48) and (1.49). The non-compact fourth-order central scheme is

obtained by a = 4/3, b = −1/3, c = α = β = 0:

f̂x,j =
fj−2 − 8fj−1 + 8fj+1 − fj+2

12∆x
(1.55)

A compact fourth-order scheme approximation is obtained by α = 1/4, β = 0, a =

3/2, b = c = 0:

1

4
f̂x,j−1 + f̂x,j +

1

4
f̂x,j+1 =

3(fj+1 − fj−1)

4∆x
(1.56)
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(a) Fourth-order schemes: (i) Non-compact central
Eqn. (1.55), (ii) Compact (tridiagonal) Eqn. (1.56)

(b) Sixth-order schemes: (i) Non-compact central
Eqn. (1.57), (ii) Compact (tridiagonal) Eqn. (1.58)
(iii) Compact (pentadiagonal) Eqn. (1.59)

Figure 1.3: Spectral resolutions for compact and non-compact schemes

that results in a tridiagonal system of equations. Figure 1.3(a) shows the modified

phase as a function of the actual phase for the two schemes. Although both schemes

are of fourth-order accuracy, the compact scheme is able to resolve a larger range of
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wavenumbers than the non-compact scheme.

Sixth-order accurate interpolation schemes can be constructed from Eqn. (1.47)

by using the constraints given by Eqns. (1.48) to (1.50). The non-compact sixth-

order central scheme is obtained by taking α = β = 0, a = 3/2, b = −3/5, c = 1/10:

f̂x,j =
3(fj+1 − fj−1)

4∆x
− 3(fj+2 − fj−2)

20∆x
+
fj+3 − fj−3

60∆x
(1.57)

A sixth-order compact scheme that results in a tridiagonal system can be obtained

by taking α = 1/3, β = 0, a = 14/9, b = 1/9, c = 0:

1

3
f̂x,j−1 + f̂x,j +

1

3
f̂x,j+1 =

14(fj+1 − fj−1)

9∆x
+ b

fj+2 − fj−2

36∆x
(1.58)

and a penta-diagonal sixth-order compact scheme can be constructed by taking

α = 1/2, β = 1/24, a = 13/9, b = 23/36, c = 0:

1

24
f̂x,j−2 +

1

2
f̂x,j−1 + f̂x,j +

1

2
f̂x,j+1 +

1

24
f̂x,j+2

=
13(fj+1 − fj−1)

18∆x
+

23(fj+2 − fj−2)

144∆x
(1.59)

The modified phase due to the finite difference approximation as a function of the

actual phase is shown in Fig. 1.3(b). The compact schemes resolve a larger range of

wavenumbers compared to the non-compact scheme and the penta-diagonal scheme

has a higher spectral resolution than the tri-diagonal scheme.

These schemes have been applied to the simulation of incompressible [26, 27]

and compressible [28, 29] flows as well as to computational aeroacoustics [29, 30] and

electromagnetics [31]. The improved resolution of compact schemes has resulted in

their application to direct numerical simulation (DNS) and large-eddy simulation

(LES) of turbulent flows [32, 33]. The compact schemes, originally formulated for
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finite differences on a uniform grid, have been extended to the finite volume for-

mulation [34, 35] and non-uniform grids [36, 37, 38]. Linear compact schemes yield

oscillatory solutions for discontinuities, such as shock waves and contact discontinu-

ities, and thus a limiter is needed to ensure non-oscillatory behavior. A non-linearly

stable compact scheme with a total variation bounded (TVB) limiter was introduced

[39] for shock calculations and further improved [40].

1.5 Motivation

The numerical solution of several complex physical systems is challenging due

to the presence of a large range of length and time scales. One such example is

compressible, turbulent fluid dynamics where the length scales range from very fine

turbulent eddies to the characteristic length of the flow. Accurate modeling of the

convection and interaction of the turbulent eddies is required for the prediction of the

flowfield as well derived characteristics such as aerodynamics forces and sound gener-

ation. Supersonic compressible flows contain shock waves while subsonic, high-speed

turbulent flows may have local pockets of supersonic flows resulting in shocklets. In

addition, such flows are characterized by thin boundary and shear layers near solid

walls and mixing of jets, where the flow has steep gradients.

The motivation of this thesis is to develop a high-order accurate algorithm

for such problems. One of the application areas is the accurate simulation of the

wake flow around aircraft and rotorcraft. Although lower-order numerical schemes

are sufficient to predict the aerodynamic forces, a high-order accurate scheme is
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necessary to resolve the wake flow. Accurate modeling of the interaction of wake

vortices with each other, the fuselage (if present), and the ground plane (for rotor-

craft operating in ground effect) requires the preservation of vortex strength and

shape over large convection distances and on relatively coarse grids (such that the

computational cost of the simulations is not too large). Thus, a numerical scheme

with very low dissipation and dispersion errors is desirable.

Another application area focussed on in this thesis is the direct numerical

simulation of turbulent flows. Such simulations do not employ a turbulence model

to account for the effect of scales that are not well-resolved. Thus, it is essential to

accurately resolve the small-length-scale turbulent eddies in the flow. The numerical

solution of such flows requires a numerical scheme with a high spectral resolution.

In addition, a non-oscillatory interpolation is required to resolve high-gradients and

discontinuities that develop in compressible flows.

As discussed in previous sections, compact schemes are a family of interpo-

lation schemes that are characterized by high spectral resolution. They capture

accurately a larger range of length scales compared to the non-compact schemes

of the same order of convergence. However, these schemes, in their original form

cannot handle discontinuities and need some form of modification to ensure non-

oscillatory interpolation for discontinuous solutions. The WENO schemes, on the

other hand, have been successfully applied to a large number of problems containing

discontinuities. The adaptive stenciling algorithm yields solutions that high-order

accurate in smooth regions and non-oscillatory across discontinuities. This has led

to their application to problems that contain complex smooth features as well as
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steep gradients and discontinuities. However, the spectral resolution of the un-

derlying high-order accurate interpolation scheme compare poorly to that of the

compact schemes. As a result, the WENO schemes are excessively dissipative at

smaller length scales and require a very fine mesh for the accurate representation of

such flow features. Thus, a high-resolution non-oscillatory algorithm is developed

in this thesis that combines the advantages of the compact schemes with those of

the WENO schemes.

1.6 Review of Previous Work

There have been several attempts in the literature to combine the ENO/WENO

schemes with compact schemes, with a similar motivation as described in the previ-

ous section. One such class of schemes is the hybrid compact-ENO/WENO schemes

where the smoothness of the solution is used to switch between the compact scheme

and the ENO or WENO scheme. A hybrid compact-ENO scheme was introduced in

[41] where asymetric coefficients were used for the compact scheme to provide the

necessary dissipation for upwinding (unlike in [25], where symmetric coefficients re-

sulted in central schemes with no dissipation). Two types of compact schemes were

introduced, requiring the inversion of penta-diagonal matrices. A discontinuity de-

tector is used to identify grid cells (along with a buffer region) where a discontinuity

is present. The ENO scheme is used to calculate the flux derivatives at these cells.

A first-order discontinuity detector is used where the slopes of the flux function

are compared. The grid cells are identified as containing discontinuous data if the
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magnitude of the slope exceeds a threshold value or attains a local maximum. The

hybrid compact-ENO scheme was used for the direct numerical simulation of tur-

bulent flow over a compression ramp [42]. This concept was further improved in

[43] where a hybrid compact-WENO scheme was developed. The WENO scheme

is used at cells where discontinuities are present since it provides higher-order ac-

curacy with the same complexity as the ENO scheme. In addition, the compact

scheme is formulated in the conservative form that improves the coupling with the

shock-capturing WENO scheme. The coupling between a non-conservative compact

scheme and a shock-capturing ENO scheme results in the generation of spurious

waves in [41]. A tridiagonal compact scheme is used in [43] that reduces the numer-

ical cost of matrix inversion. A characteristic-based compact-WENO hybrid scheme

was presented in [44] where the interpolation is carried out on the characteristic vari-

ables with a Roe-type upwinding. A characteristic-based reconstruction reduces the

smearing of the discontinuities, compared to the previous hybrid schemes that use

the Lax-Friedrichs flux-splitting. However, this results in a block-tridiagonal system

of equations and is thus, computationally more expensive. The hybrid scheme of

[44] also uses a weighted average of the fluxes computed by the compact and WENO

schemes. This results in a smooth transition between the two schemes, instead of an

abrupt switch. The smoothness-based weighting function is a continuous function

of the slope of the flux function.

One of the primary drawbacks of the hybrid schemes is that they revert to

a non-compact scheme at and around discontinuities (depending on the size of the

buffer region). This results in a loss of spectral resolution as well as higher dissi-
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pative errors at these cells. These errors propagate to the rest of the domain as

the simulation proceeds in time. The loss of resolution undermines the benefits of

using a compact scheme even more so in problems involving the interaction of small-

length-scale features with the discontinuities. In addition, hybrid schemes require

a discontinuity detector to switch between the two schemes and this introduces an

arbitrary parameter in the scheme. The switching mechanism in [41, 43] based on

the slope magnitudes exceeding a certain specified threshold value and this value is

likely to significantly affect the performance of the scheme for solutions involving

discontinuities and waves of very small length scales.

An alternative way of implementing non-linear compact schemes with ENO

adaptive stenciling was presented in [45]. The basic formulation is based on Eqn.

(1.47) but on a staggered mesh, where the flux values on the right hand side are

specified at the interfaces while the derivatives on the left hand side are evaluated

at the cell centers. This can be expressed as:

αf̂x,j−1 + f̂x,j + αf̂x,j+1 = a
fj+1/2 − fj−1/2

∆x
(1.60)

that results in a tridiagonal scheme. Compact finite difference approximations on a

staggered mesh are discussed in [25] and it is observed that they have a significantly

higher spectral resolution. Thus, the algorithm presented in [45] requires a two-stage

reconstruction step where the flux at the interfaces is computed and then used for

the computation of the derivatives. The flux at the interfaces is interpolated in a

non-oscillatory manner by using an adaptive compact scheme. Candidate compact

interpolation schemes are identified for each interface and a smoothness indicator
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based on the first and second undivided differences is used to choose the smoothest

scheme. When a discontinuity is present, a biased (away from the discontinuity)

bidiagonal compact scheme is used while for smooth data, a tridiagonal compact

scheme is used. This results in a decoupling of the interpolation at the disconti-

nuities, thus avoiding spurious oscillations. Third and fourth-order schemes were

presented for the interface flux calculation and the first derivatives are calculated

using Eqn. (1.60) to fourth-order accuracy.

The non-linear compact schemes presented in [45] were further improved in

[46]. The basic formulation is identical to Eqn. (1.60) for a fourth-order approxi-

mation for the first derivative and has additional terms on the right hand side for

a fifth-order approximation. However, one of the major drawbacks in the schemes

implemented in [45] was the requirement of three tridiagonal inversions while cal-

culating the flux at the interfaces. The other drawback, which is characteristic of

ENO schemes, is that data from only one of the several candidate stencils is used

although computations are done for all. Thus, the schemes presented in [46] use the

non-compact WENO schemes to compute the interface flux. In addition, a char-

acteristic reconstruction is used for a more robust scheme. Since the characteristic

reconstruction is computationally more expensive, a density-based criterion is used

to switch between a characteristic reconstruction and a component-wise reconstruc-

tion. A Fourier analysis of these schemes was presented and it was observed that

the spectral resolutions of these schemes are only marginally higher than a non-

compact upwind interpolation scheme of the same order. Although the staggered

compact approximation to the first derivative has a very high spectral resolution,
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a non-compact interpolation of the terms on the right hand side of Eqn. (1.60)

compromises the spectral resolution of the overall scheme. A similar algorithm was

presented in [47] where the flux was interpolated directly instead of the conserved

variable. An ENO-Padé scheme was presented in [48] that uses Eqn. (1.60) as

the basic formulation, but with additional terms on the right hand side to achieve

sixth-order accuracy. The interpolation of the interface fluxes on the right hand

side is carried out using a modified ENO scheme. The stencil selection procedure

of the ENO scheme is biased towards a preferred, central stencil such that a biased

stencil is chosen only when gradients are substantially large. The aim of this bias-

ing is to improve the performance of the ENO scheme for problems with large, but

continuous, gradients. As with the schemes presented in [46, 47], the spectral reso-

lution of this scheme is only marginally better than non-compact schemes because

a non-compact scheme is used for the interpolation of interface fluxes.

A weighted compact scheme, based on a conservative finite difference approx-

imation of the first derivative, was constructed in [49]. The final compact scheme

is a weighted combination of lower-order compact interpolation schemes. In their

implementation, the candidate stencils are two biased third-order compact stencils

and a central fourth-order compact stencil. The optimal interpolation, for smooth

solutions, is a sixth-order central compact interpolation. While the work is a novel

attempt at a non-oscillatory scheme, there are a few drawbacks. The underlying

scheme, being central (and without additional dissipation), lacks the upwinding

necessary to yield robust solutions to the Euler equations. The smoothness indi-

cators that are used are the same as those of Jiang and Shu [13] and are designed
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for third-order non-compact stencils. Their application to a fourth-order central

stencil may not be correct. The extension of the scalar interpolation techniques to

vector quantities is unclear in their study and it is not discussed if their schemes

are implemented in the characteristic space. It is well known that a characteristic

reconstruction is necessary to yield non-oscillatory solutions for inviscid flow prob-

lems. These drawbacks resulted in limited applicability of their algorithm to the

Euler system.

1.7 Objectives

The aim of this thesis is to develop a high-resolution, non-oscillatory scheme

by applying the WENO algorithm to compact schemes. As discussed in Section 1.3,

the WENO schemes use a solution-dependent algorithm to yield high-order accuracy

when the solution is smooth and non-oscillatory interpolation across discontinuities.

Lower-order interpolation schemes are identified and optimal weights are calculated

such that the weighted sum is a higher-order scheme. The WENO weights are cal-

culated from the optimal weights based on the smoothness of each of the lower-order

interpolation stencils. The final scheme is high-order accurate in smooth regions of

the solution and non-oscillatory across discontinuities. This algorithm is applied to

compact interpolation schemes in this study with the aim that the resulting scheme

will have the high-spectral resolution of a high-order accurate compact scheme and

yield non-oscillatory solutions across discontinuities due to the solution-dependent

stencil selection.
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The objectives of this thesis can be summarized as follows:

• Development of the Compact-Reconstruction WENO (CRWENO) schemes

(Chapter 2)

– Formulation of the CRWENO schemes by identifying lower-order com-

pact interpolation schemes, calculating the optimal coefficients such their

weighted sum is a high-order accurate compact scheme, and application

of the WENO weights to derive the final scheme.

– Numerical analysis of the underlying optimal compact schemes and com-

parison of the numerical error and spectral properties with the non-

compact WENO schemes as well as other high-resolutions schemes in

the literature.

– Application to smooth and non-smooth solutions of scalar conservation

laws to verify accuracy, order of convergence and resolution of extrema

and discontinuities; as well as analysis of computational efficiency of the

new schemes.

– Formulation and numerical analysis of various boundary treatments for

aperiodic domains.

– Comparison of the alternative formulations of the non-linear weights in

the context of the CRWENO schemes.

• Application of the CRWENO schemes to the Euler equations (Chapter 3)

– Extension of the scalar CRWENO schemes to vector quantities through
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the reconstruction of conserved, primitive and characteristic variables;

and an analysis of algorithm accuracy and robustness as well as compu-

tational cost for each of these approaches.

– Application of benchmark inviscid flow problems (smooth and non-smooth)

and verification of accuracy, order of convergence and resolution of vari-

ous flow features (shocks, vortices, small length-scale waves, etc).

• Integration with a structured, finite-volume, compressible Navier-Stokes flow

solver with overset mesh capability (Chapter 4)

– Validation and application to two-dimensional steady and unsteady flow

around airfoils and three-dimensional flow around wings and rotors; as

well as comparison of the resolution of near-blade and wake flow features

with the non-compact WENO scheme.

– Application to the direct numerical simulation (DNS) of benchmark tur-

bulent flow problems – decay of isotropic, homegenous turbulence and

the shock-turbulence interaction; and the demonstration of the improved

spectral resolution of the new scheme for these problems
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Chapter 2

Non-Linear Compact Schemes

In this chapter, the development and implementation of the Compact - Recon-

struction Weighted Essentially Non-Oscillatory (CRWENO) schemes are described,

with the specific example of the fifth-order CRWENO scheme. The resolution char-

acteristics of the new schemes are analyzed and compared to the WENO schemes

of the same order of accuracy. Solutions to the scalar conservation laws are ob-

tained using the CRWENO and WENO schemes and the performance of the new

schemes is demonstrated. The compact schemes involve a coupling of the interpo-

lated flux function at each grid point and thus, they require the solution to a system

of equations at each step. The computational expense of this scheme is studied

and compared to that WENO scheme for solutions with comparable accuracy and

resolution.

2.1 Overview of the CRWENO Scheme

The numerical solution of a hyperbolic PDE was described in Section 1.2. A

conservative discretization requires the approximation of the primitive function h(x)

that satisfies Eqn. (1.9). Thus, the approximate flux function f̂ is constructed such

that, at each interface, it satisfies

f̂(xj+1/2) = h(xj+1/2) +O(∆xr) (2.1)
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Figure 2.1: One-dimensional domain discretization showing interfaces and cell cen-
ters: Points 0 and N + 1 correspond to boundaries

where r is the desired order of accuracy. The values of the approximate flux function

at the interfaces are interpolated from the cell-centered values of the flux function

f(u) at neighboring cell centers.

The derivation of conservative compact schemes is described in [43]. Figure 2.1

shows a discretized one-dimensional domain with N cell-centers and N+1 interfaces.

The boundary points are at j = 0 and j = N + 1. A general conservative compact

approximation of the numerical flux at the interface can be expressed as

A
(
f̂j+1/2−m, . . . , f̂j+1/2, . . . , f̂j+1/2+m

)
= B (fj−n, . . . , fj, . . . , fj+n) (2.2)

where the stencil operators A and B denote a linear combination of the terms inside

the parentheses and the indices m and n control the width of the stencil operators.

Although the equation above represents symmetric stencils on both the left and right

hand sides, an asymmetric stencil can be represented in this form by setting some

of the coefficients in A and B to zero. The above equation may also be represented

in matrix form as

Af̂ = Bf (2.3)

where f̂ =
[
f̂1/2, . . . , f̂N+1/2

]T
and f = [f1, . . . , fN ]T . It should be noted here that A

is a (N + 1)× (N + 1) matrix while B is a (N + 1)×N matrix. The computation of
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the numerical flux at the interfaces requires the solution of this system of equations.

Although the solution to a linear system is required, compact schemes that have

been presented in the literature are usually tridiagonal (m = 1) or pentadiagonal

(m = 2) systems and the computational complexity of solving such a system is

O(N). A non-compact scheme can be represented by Equation (2.2) by setting

m = 0 which results in A in Equation (2.3) being the identity matrix.

The application of a linear compact scheme, given by Eqn. (2.2), to discontin-

uous functions results in a coupling of the function values across the discontinuity.

This results in the introduction of spurious oscillations. Section 1.6 reviews several

attempts at constructing non-oscillatory compact schemes. The basic thrust of all

these efforts has been to decouple the solution of Eqn. (2.3) at the discontinuities.

As a result, the matrix A on the left hand side comprises independent blocks that

represent a locally coupled solution in smooth regions of the solution, bounded by

discontinuities. The hybrid compact-ENO/WENO schemes achieve this by using

a non-compact ENO/WENO scheme in regions around the discontinuities. The

CRWENO schemes, presented in this section, seek to do the same while avoiding

the reduction in spectral resolution that results from switching to a non-compact

scheme.

The construction of the CRWENO schemes follows that of the WENO schemes,

as described in Section 1.3. At each interface, it is possible to identify r candidate

compact interpolation schemes of r-th order accuracy:

Ark

(
f̂j+1/2−m, . . . , f̂j+1/2+m

)
= Br

k (fj−n, . . . , fj+n) ; k = 1, . . . , r (2.4)
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where the superscript r denotes the order of accuracy. There exist optimal coeffi-

cients ck; k = 1, . . . , r such that the weighted sum results in a (2r − 1)-th order

accurate compact interpolation scheme. This can be expressed as:

r∑
k=1

ckA
r
k

(
f̂j+1/2−m, . . . , f̂j+1/2+m

)
=

r∑
k=1

ckB
r
k (fj−n, . . . , fj+n)

⇒ A2r−1
(
f̂j+1/2−m, . . . , f̂j+1/2+m

)
= B2r−1 (fj−n, . . . , fj+n) (2.5)

The WENO weights ωk are calculated from the optimal coefficients, based on the

smoothness of the solution, as expressed by Eqn. (1.32). The candidate interpolation

schemes are then combined using the WENO weights to result in the (2r − 1)-th

order CRWENO scheme:

r∑
k=1

ωkA
r
k

(
f̂j+1/2−m, . . . , f̂j+1/2+m

)
=

r∑
k=1

ωkB
r
k (fj−n, . . . , fj+n) (2.6)

The present implementation of the CRWENO schemes uses identical definitions

of the weights and the smoothness indicators as the WENO schemes. In smooth

regions of the solution, the weights attain their optimal values (ωk → ck) and Eqn.

(2.6) is identical to Eqn. (2.5). Across discontinuities, one or more of the weights

approach zero resulting in a lower-order interpolation stencil that is biased away

from the discontinuity.

Equation (2.6) can be expressed in the matrix form given by Eqn. (2.3), with

A and B being banded matrices. However, it should be noted that these matrices

are solution-dependent for the CRWENO scheme since the elements are a function

of the weights that are computed based on the solution at each iteration. Thus, the

solution to the linear system is required at each time step and cannot be computed

as a preprocessing step.
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2.2 5th Order CRWENO Schemes

Fifth-order CRWENO schemes are constructed in this section and applied to

various problems in subsequent chapters. A fifth-order compact approximation to

the interface flux can be expressed as

3

10
f̂j−1/2 +

6

10
f̂j+1/2 +

1

10
f̂j+3/2 =

1

30
fj−1 +

19

30
fj +

1

3
fj+1 (2.7)

and is the optimal scheme underlying the fifth-order CRWENO scheme. The so-

lution requires the solution of a tridiagonal system of equations. The CRWENO

scheme requires the identification of three third-order interpolation schemes that

can be combined to result in the fifth-order scheme above. There are several such

combinations.

Similar to the fifth-order WENO scheme, three third-order non-compact schemes

can be used to construct the fifth-order compact scheme. However, the non-compact

schemes are considered at different interfaces to restrict the total stencil to that of

Eqn. (2.7). They can be expressed as:

f̂j−1/2 =
1

6
(2fj−1 + 5fj − fj+1) ; c1 =

3

10
(2.8)

f̂j+1/2 =
1

6
(−fj−1 + 5fj + 2fj+1) ; c2 =

6

10
(2.9)

f̂j+3/2 =
1

6
(2fj−1 − 7fj + 11fj+1) ; c3 =

1

10
(2.10)

Using the optimal coefficients c1, c2 and c3, the weighted sum is the fifth-order

compact scheme. The optimal coefficients are replaced by the WENO weights and
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thus, the resulting CRWENO scheme is:

ω1f̂j−1/2 + ω2f̂j+1/2 + ω3f̂j+3/2 =
1

6
[(2ω1 − ω2 + 2ω3)fj−1

+ (5ω1 + 5ω2 − 7ω3)fj + (−ω1 + 2ω2 + 11ω3)fj+1] (2.11)

The resulting tridiagonal system has the WENO weights on each diagonal. The

weights are at their optimal (non-zero) values for smooth solutions and thus, the

system is solvable. However, across or near discontinuities, one or more weights may

approach zero and the system of equations may not be well defined.

An alternative combination of third-order schemes that constitute the fifth-

order compact scheme can be formulated using two third-order compact schemes

and one non-compact scheme. The three constituent schemes are given by:

2

3
f̂j−1/2 +

1

3
f̂j+1/2 =

1

6
(fj−1 + 5fj) ; c1 =

9

20
(2.12)

f̂j+1/2 =
1

6
(−fj−1 + 5fj + 2fj+1) ; c2 =

5

20
(2.13)

2

3
f̂j+1/2 +

1

3
f̂j+3/2 =

1

6
(fj + 5fj+1) ; c3 =

6

20
(2.14)

The resulting CRWENO scheme is a tridiagonal system that can be expressed as

2

3
ω1f̂j−1/2 +

(
1

3
ω1 + ω2 +

2

3
ω3

)
f̂j+1/2 +

1

3
ω3f̂j+3/2

=
1

6
[(ω1 − ω2)fj−1 + (5ω1 + 5ω2 + ω3)fj + (2ω2 + 5ω3)fj+1] (2.15)

Thus, the main diagonal element is a combination of all the three weights and can

never be zero.

Finally, the fifth-order compact scheme can be expressed as a combination of
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Figure 2.2: Constituent compact stencils for the fifth-order CRWENO scheme: S1
- Eqn. (2.16), S2 - Eqn. (2.17), S3 - Eqn. (2.18)

three third-order compact schemes:

2

3
f̂j−1/2 +

1

3
f̂j+1/2 =

1

6
(fj−1 + 5fj) ; c1 =

2

10
(2.16)

1

3
f̂j−1/2 +

2

3
f̂j+1/2 =

1

6
(5fj + fj+1) ; c2 =

5

10
(2.17)

2

3
f̂j+1/2 +

1

3
f̂j+3/2 =

1

6
(fj + 5fj+1) ; c3 =

3

10
(2.18)

Figure 2.2 shows the three constituent third-order stencils. The resulting CRWENO

scheme as

(
2

3
ω1 +

1

3
ω2

)
f̂j−1/2 +

[
1

3
ω1 +

2

3
(ω2 + ω3)

]
f̂j+1/2 +

1

3
ω3f̂j+3/2

=
ω1

6
fj−1 +

5(ω1 + ω2) + ω3

6
fj +

ω2 + 5ω3

6
fj+1 (2.19)

The tridiagonal system is well defined even if one or more weights approach zero

near a discontinuity.

In the current implementation of the CRWENO schemes, the definition of

the weights and the smoothness indicators are identical to the fifth-order WENO

scheme. The weights are computed using Eqn. (1.32) where r = 3 and smoothness
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indicators are given by

β1 =
13

12
(fj−2 − 2fj−1 + fj)

2 +
1

4
(fj−2 − 4fj−1 + 3fj)

2 (2.20)

β2 =
13

12
(fj−1 − 2fj + fj+1)2 +

1

4
(fj−1 − fj+1)2 (2.21)

β3 =
13

12
(fj − 2fj+1 + fj+2)2 +

1

4
(3fj − 4fj+1 + fj+2)2 (2.22)

Although the CRWENO scheme is compact and uses a smaller stencil for the inter-

polation, the smoothness indicators use function values from a larger stencil. The

final stencil width, in terms of the number of grid points necessary for the complete

scheme, is thus the same as that of the fifth-order WENO scheme.

Equations (2.11), (2.15) and (2.19) are three possible formulations of the fifth-

order CRWENO scheme. The weights attain their optimal values for smooth solu-

tions and they are identical to Eqn. (2.7). However, their behavior is different for

solutions with discontinuities. As mentioned earlier, zero weights, resulting from

a discontinuity, may render the system of equations unsolvable for Eqn. (2.11).

Equation (2.15) comprises two compact and one non-compact schemes. Thus, in

presence of discontinuities, the non-compact scheme may dominate the final inter-

polation scheme and thus, result in a reduction in the spectral resolution. Results

were obtained using this formulation to test the accuracy and non-oscillatory nature

of the scheme, however, they are not presented in this thesis and the scheme was not

applied to problems of practical relevance. A CRWENO scheme comprising three

third-order compact schemes is given by Eqn. (2.19). The scheme is a fifth-order

compact scheme for smooth solutions, while across and near discontinuities, it is

a non-oscillatory combination of third-order compact interpolation schemes. Thus,
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the superior spectral resolution of the compact schemes is maintained at the discon-

tinuities. A more complete discussion on the spectral properties of this scheme is

presented in the next section.

Examination of Eqn. (2.19), or the other formulations for the fifth-order CR-

WENO scheme, and the smoothness indicators shows the decoupling of the compact

interpolation at the discontinuities in the domain. Consider a discontinuity located

between xj+1 and xj+3/2, which would imply β3 � β1,2 and thus ω3 → 0. This would

result in Eqn. (2.19) reducing to a bidiagonal system, biased away from the discon-

tinuity. Similar, a discontinuity located between xj−1/2 and xj would result in ω1,2

approaching zero. This would once again result in a bidiagonal system biased away

from the discontinuity. Thus, the WENO weights prevent the coupling of the flux

calculation from crossing the discontinuities and result in a non-oscillatory compact

interpolation scheme.

As an example, consider a solution that is smooth everywhere except a dis-

continuity located between xj+1/2 and xj+1,

f(x) = cos(x), x ≤ xj+1/2 + δ

10 + cos(x), x > xj+1/2 + δ (2.23)

where 0 < δ < ∆x/2. Without loss of generality, assume that xj−1 = 0. Figure 2.3

shows the grid and the solution in the neighborhood of the discontinuity. Evaluating

the flux at interface xj−1/2, the smoothness indicators are obtained for this function
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by Eqns. (2.20) - (2.22) as:

β1 =
13

12
[cos(2∆x)− 2 cos(∆x) + 1]2 +

1

4
[cos(2∆x)− 4 cos(∆x) + 3]2

β2 =
13

12
[2 cos(∆x)− 2]2

β3 =
13

12
[1− 2 cos(∆x) + 10 + cos(2∆x)]2 +

1

4
[3− 4 cos(∆x) + 10 + cos(2∆x)]2

An estimate is made of the approximate values of the smoothness indicators and

the weights. Assuming ∆x → 0, the values for the smoothness indicators are:

β1 = 0, β2 = 0, β3 = 400/3. Thus, the weights are: ω1 = 2/7, ω2 = 5/7, ω3 = 0. Sub-

stituting these values in Eqn. (2.19), the left hand side coefficients for f̂j−3/2, f̂j−1/2

and f̂j+1/2 are 3/7, 4/7 and 0, respectively. Similarly, Eqn. (2.19) is applied to the

interface xj+1/2. The smoothness indicators for this interface are:

β1 =
13

12
[2 cos(∆x)− 2]2 +

1

4
[cos(4∆x)− 4]2

β2 =
13

12
[1− 2 cos(∆x) + 10 + cos(2∆x)]2 +

1

4
[1− 10− cos(2∆x)]2

β3 =
13

12
[cos(∆x)− 2{10 + cos(2∆x)}+ 10 + cos(3∆x)]2

+
1

4
[3 cos(∆x)− 4{10 + cos(2∆x)}+ 10 + cos(3∆x)]2

Once again, assuming ∆x → 0, the values of the smoothness indicators are: β1 =

0, β2 = 400/3, β3 = 1000/3. The weights are: ω1 = 1, ω2 = 0 and ω3 = 0. The

resulting left-hand side coefficients for f̂j−1/2, f̂j+1/2 and f̂j+3/2 are 2/3, 1/3 and 0

respectively.

Evaluating the smoothness indicators and the weights in a similar manner at

interface xj+3/2 yields the left-hand side coefficients of f̂j+1/2, f̂j+3/2 and f̂j+5/2 as
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Figure 2.3: Example of a solution with a discontinuity and smooth regions.

0, 2/3 and 1/3 respectively (with ω1,2 = 0, ω3 = 1). The interpolation at xj+5/2

yields the left-hand side coefficients of f̂j+3/2, f̂j+5/2 and f̂j+7/2 as 5/24, 2/3 and 1/8

(with ω1 = 0, ω2 = 5/8 and ω3 = 3/8). Expressing these equations in the matrix

form, given by Eqn. (2.3), we get the left-hand side as:

Af̂ =



• • • 0 . . . . . . . . . . . . . . . 0
0 • • • . . . . . . . . . . . . . . . ·
· . . . 3/7 4/7 0 . . . . . . . . . . . . ·
· . . . . . . 2/3 1/3 0 . . . . . . . . . ·

· . . . . . . . . . 0 2/3 1/3 . . . . . . ·
· . . . . . . . . . . . . 5/24 2/3 1/8 . . . ·
· . . . . . . . . . . . . . . . • • • 0
0 . . . . . . . . . . . . . . . 0 • • •





•
f̂j−3/2

f̂j−1/2

f̂j+1/2

f̂j+3/2

f̂j+5/2

f̂j+7/2

•


The decoupling across the discontinuity that results from the WENO weights is

observed in the matrix. The discontinuity separates the matrix A into two separate

blocks. The interface fluxes on each side of the discontinuity are independently

solved. Thus, the final system involves the coupled calculation of the interface

fluxes within the smooth regions of the solutions.

A bandwidth-optimized WENO scheme was presented in [50] that improved

the resolution characteristics of the WENO scheme. The optimal interpolation
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scheme, given by Eqn. (1.38), is modified to increase the spectral resolution. This is

achieved by adding an additional point to the stencil such that the overall stencil is

central instead of upwind biased. However, the coefficients are biased to introduce

the dissipation required for a stable solution. This is done at the cost of the order

of spatial convergence, but the modified coefficients yield an interpolation scheme

with lower dissipation and dispersion errors, compared to Eqn. (1.38). A similar

approach is utilized here to construct a fifth-order CRWENO scheme with lower

dissipation than Eqn. (2.19).

Equation (2.7) uses an upwind-biased stencil for a fifth-order compact inter-

polation at xj+1/2. Addition of the cell-centered flux at xj+2 to the right-hand side

results in a central stencil, which yields a sixth-order compact interpolation with

symmetric coefficients. However, a sixth-order scheme does not have the dissipation

necessary for stable solutions to hyperbolic problems. A biased, fifth-order compact

scheme can be constructed using the central stencil by using asymmetric coefficients

and can be expressed as:

5

20
f̂j−1/2 +

12

20
f̂j+1/2 +

3

20
f̂j+3/2 =

1

120
(3fj−1 + 67fj + 49fj+1 + fj+2) (2.24)

Although the order of convergence is the same, the absolute error is lower than

that of Eqn. (2.7) (a more complete discussion on the numerical properties of these

schemes is presented in the next section). A low dissipation CRWENO scheme

can be constructed that has Eqn. (2.24) as the underlying optimal scheme. The
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constituent third-order compact schemes and their optimal coefficients are:

2

3
f̂j−1/2 +

1

3
f̂j+1/2 =

1

6
(fj−1 + 5fj) ; c1 =

3

20
(2.25)

1

3
f̂j−1/2 +

2

3
f̂j+1/2 =

1

6
(5fj + fj+1) ; c2 =

9

20
(2.26)

2

3
f̂j+1/2 +

1

3
f̂j+3/2 =

1

6
(fj + 5fj+1) ; c3 =

7

20
(2.27)

1

3
f̂j+1/2 +

2

3
f̂j+3/2 =

1

6
(5fj+1 + fj+2) ; c2 =

1

20
(2.28)

The first three schemes are the same as those constituting Eqn. (2.7) while an

additional downwind stencil is added such that the final scheme has a central sten-

cil. The optimal coefficients are biased towards the upwind constituents to provide

the upwinding necessary for a stable solution. Replacing the optimal coefficients

with the WENO weights, the fifth-order low-dissipation CRWENO scheme can be

expressed as:

2ω1 + ω2

3
f̂j−1/2 +

ω1 + 2(ω2 + ω3) + ω4

3
f̂j+1/2 +

ω3 + 2ω4

3
f̂j+3/2

=
ω1

6
fj−1 +

5(ω1 + ω2) + ω3

6
fj +

ω2 + 5(ω3 + ω4)

6
fj+1 +

ω4

6
fj+2 (2.29)

Equations (2.20) - (2.22) are the smoothness indicators for the first three constituent

schemes. Evaluating Eqn. (1.36), the smoothness indicator for the fourth con-

stituent scheme is obtained as:

β4 =
13

12
(fj+1 − 2fj+2 + fj+3)2 +

1

4
(−5fj+1 + 8fj+2 − 3fj+3)2 (2.30)

The fourth smoothness indicator is modified by taking a maximum of itself and the

third smoothness indicator (β4 = maxβ3,4) to ensure that the weight for the fourth

stencil is always less than or equal to the third stencil. This prevents a completely

downwind interpolation.
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Thus, to summarize, Eqns. (2.19) and (2.29) are two fifth-order CRWENO

schemes introduced in this thesis. The concept of upwinding required for stable

solutions of hyperbolic PDEs was briefly discussed in Section 1.2.1. The final in-

terpolated flux at the interface is a linear combination of the left and right biased

interpolations, depending on the sign of the local advection velocity. The inter-

polation schemes presented in this section correspond to the reconstruction of a

left-biased flux. The corresponding expressions for the right-biased fluxes can be

easily derived. The numerical properties, accuracy and convergence properties, and

computational efficiency of the schemes introduced here are analyzed and discussed

in subsequent sections. The application to compressible fluid dynamics is presented

in later chapters.

2.3 Numerical Analysis

The numerical properties of the compact differencing schemes introduced in

the previous section are analyzed in this section and compared to non-compact

schemes as well as other compact differencing schemes in the literature. The accu-

racy, convergence and resolution of these schemes are studied.

2.3.1 Taylor series analysis

A Taylor series analysis is used to analyze the accuracy and convergence prop-

erties. The optimal scheme underlying the fifth-order WENO scheme is given by

Eqn. (1.38). The resulting approximation for the first derivative of the flux function,
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using Eqn. (1.10), is given by:

fx =
1

∆x

(
−1

30
fj−3 +

1

4
fj−2 − fj−1 +

1

3
fj +

1

2
fj+1 −

1

20
fj+2

)
+

1

60

∂6f

∂x6

∣∣∣∣
j

∆x5 +
1

140

∂7f

∂x7

∣∣∣∣
j

∆x6 +O(∆x7) (2.31)

The underlying optimal schemes for the fifth-order CRWENO schemes are given by

Eqns. (2.7) and (2.24). The resulting approximations for the first derivative of the

flux function and the leading error terms are:

3

10
fx,j−1 +

6

10
fx,j +

1

10
fx,j+1 =

1

∆x

(
−1

30
fj−2 −

18

30
fj−1 +

9

30
fj +

10

30
fj+1

)
⇒ fx,j = f∆,j +

1

600

∂6f

∂x6

∣∣∣∣
j

∆x5 +
1

2100

∂7f

∂x7

∣∣∣∣
j

∆x6 +O(∆x7) (2.32)

for the fifth-order upwind compact scheme, Eqn. (2.7); and

1

4
fx,j−1 +

6

10
fx,j +

3

20
fx,j+1

=
1

∆x

(
−3

120
fj−2 −

64

120
fj−1 +

18

120
fj +

48

120
fj+1 +

1

120
fj+2

)
⇒ fx,j = f∆,j +

1

1200

∂6f

∂x6

∣∣∣∣
j

∆x5 +
1

2100

∂7f

∂x7

∣∣∣∣
j

∆x6 +O(∆x7) (2.33)

for the central low-dissipation compact scheme, Eqn. (2.24). The term f∆ denotes

the finite difference approximation to the first derivative. The two leading error

terms representing the dissipation and dispersion errors are included. The three

interpolation schemes are fifth-order accurate. However, the dissipation error for

the upwind compact scheme, Eqn. (2.32), is an order of magnitude lower than

that of the non-compact scheme, Eqn. (2.31). The dissipation error for the low-

dissipation central compact scheme, Eqn. (2.33), is half that of the upwind compact

scheme. Thus, for the same order of convergence, the compact schemes have a
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significantly lower dissipation error than the non-compact scheme at the same grid

refinement. Similarly, a comparison of the dispersion error reveals that the error

for the compact schemes is (1/15)-th times that for the non-compact scheme. An

implication of the lower absolute error is the grid resolution required to obtain

solutions of similar accuracy. Considering that these are fifth-order schemes, the

upwind compact scheme would require a grid that is (1/10)1/5 ≈ 0.63 times as fine

as the grid for the non-compact scheme, to obtain a solution with the same absolute

error. Similarly, the low-dissipation compact scheme would require a grid that is

(1/20)1/5 ≈ 0.55 as fine as the grid for the non-compact scheme. Although the

compact schemes are more expensive because each iteration requires a tridiagonal

solution, the lower grid size leads to lower expense for solutions of the same accuracy.

The computational efficiency of these schemes are studied in Section 2.6.

2.3.2 Fourier analysis

The primary motivation for the development of the CRWENO schemes is the

accurate resolution of small scales for physical problems involving a large range of

scales. Thus, a Fourier analysis is performed for the optimal schemes to assess their

spectral properties. The flux function is assumed to be a periodic sinusoidal wave,

given by Eqn. (1.53), and the dispersion and dissipation is calculated as a function

of the grid wavenumber k∆x. Figure 2.4(a) shows the real and imaginary parts of

the modified phase of the flux derivative that indicate the dissipation and dispersion

errors respectively. The optimal schemes underlying the CRWENO schemes, given
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by Eqns. (2.7) and (2.24), are compared with the fifth-order non-compact scheme,

given by Eqn. (1.38), as well as the ninth-order non-compact scheme. These schemes

are the optimal schemes underlying fifth and ninth-order WENO schemes. The

modified phase is shown in Fig. 2.4(b) as a function of the actual phase. It is

observed from both these figures that the fifth-order compact differencing schemes

have a significantly higher spectral resolution than the non-compact schemes. The

range of wavenumbers that are accurately captured by the numerical approximation

is much higher with the compact schemes. In fact, a fifth-order compact scheme

has a higher spectral resolution than a ninth-order non-compact scheme. The low-

dissipation central compact scheme has a lower spectral resolution than the upwind

compact scheme.

The bandwidth resolving efficiency was introduced in [25] as a quantitative

measure of the spectral resolution. It is defined as the maximum phase (as a fraction

of π) for which the normalized error in phase does not exceed a given tolerance, i.e.,

εf =
|k′∆x− k∆x|

k∆x
≤ εt (2.34)

The bandwidth resolving efficiencies for the compact schemes are compared with

the non-compact schemes with an error tolerance of εt = 0.01. Figure 2.4(c) shows

the normalized phase error εf as a function of the normalized phase k∆x/π, where

the resolving efficiency can be calculated from the x-value at which the normalized

error crosses the horizontal line denoting an error of 0.01. The resolving efficiency

of a fifth-order non-compact scheme is 0.35 while that of a ninth-order non-compact

scheme is 0.48. The compact schemes have significantly higher resolving efficiency.
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(a) Eigenvalues (b) Modified Phase

(c) Normalized Phase Error (d) Dissipation

Figure 2.4: Fourier analysis of compact and non-compact conservative differencing
schemes: (i) 1st-order upwind, Eqn. (1.11); (ii) 5th-order non-compact, Eqn. (1.38);
(iii) 5th-order compact, Eqn. (2.7); (iv) 5th-order low-dissipation compact, Eqn.
(2.24); and (v) 9th-order non-compact

The fifth-order upwind compact scheme has an efficiency of 0.61 while that of the

low-dissipation compact scheme is 0.52. Thus, a quantitative comparison of the

spectral resolution for the various schemes is obtained.
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Figure 2.5: Comparison of spectral resolutions: (i) 5th-order upwind compact, Eqn.
(2.7); (ii) 5th-order low-dissipation upwind compact, Eqn. (2.24); (iii) 6th-order
central compact [25]; (iv) 8th-order central compact [25]; (v) WENO-SYMBO (r =
3) [50]; (vi) WENO-SYMBO (r = 4) [50]; and (vii) WCNS-5 [46]

The dissipation for the schemes is shown in Fig. 2.4(d) as a function of the

phase. It is observed that for the wavenumbers that are accurately resolved, the

dissipation for the fifth-order upwind compact scheme is significantly lower than

the fifth-order non-compact scheme, and comparable to that of the ninth-order non-

compact scheme. At higher wavenumbers, the dissipation is significantly higher for

the upwind compact scheme. However, these wavenumbers are not accurately cap-

tured by any of the schemes and thus, the higher dissipation is useful in damping out

the high-wavenumber errors in the solution. The low-dissipation compact scheme

has a lower dissipation than that of the upwind compact scheme, as expected.
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2.3.3 Comparison with previous work

The conservative compact differencing schemes that underlie the CRWENO

schemes have superior spectral properties compared to the non-compact schemes

of the same or higher order. Thus, the CRWENO schemes are expected to show

an improved resolution and preservation of small-scale structures, compared to the

WENO schemes, while retaining the non-oscillatory behavior across discontinuities.

Figure 2.5 compares the spectral resolution of the fifth-order conservative compact

schemes with that of various high-resolution schemes presented in the literature.

The spectral resolutions of the tridiagonal sixth and eighth-order compact schemes,

introduced in [25], are shown. As discussed in Section 1.6, a family of non-oscillatory

compact schemes were presented that used the cell-centered compact scheme to com-

pute the first derivative and a WENO scheme to compute the flux at the interfaces

[46]. The spectral resolution for the fifth-order scheme (WCNS-5) that uses a sixth-

order compact scheme for the first derivative and a fifth-order WENO scheme for the

interface flux is shown. The spectral resolutions for the WENO-SYMBO schemes

[50] are also shown, where the interpolation coefficients for the non-compact WENO

schemes are optimized to improve the spectral resolution. The schemes with r = 3

and r = 4 that correspond to the regular fifth and seventh-order WENO schemes

are shown here.

The spectral resolution of the conservative compact schemes compare well

with those of schemes presented in the literature. The WCNS-5 scheme uses a

non-compact WENO interpolation to compute the interface fluxes and thus, the
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Table 2.1: Bandwidth resolving efficiencies for various schemes for an error tolerance
of 0.01

Scheme Bandwidth Resolving Efficiency

5th-order non-compact Eqn. (1.38) 0.35
7th-order non-compact 0.42
9th-order non-compact 0.48

5th-order upwind compact Eqn. (2.7) 0.61
5th-order low-dissipation compact Eqn. (2.24) 0.52

WENO-SYMBO (r = 3) [50] 0.49
WENO-SYMBO (r = 4) [50] 0.56

6th-order central compact (tridiagonal) [25] 0.50
8th-order central compact (tridiagonal) [25] 0.58

resulting scheme has a spectral resolution that is marginally better than the regular

fifth-order WENO scheme. The WENO-SYMBO schemes resolve a larger range of

wavenumbers, with the r = 4 scheme having a spectral resolution comparable to the

sixth-order central compact scheme [25]. The fifth-order upwind compact scheme has

a higher spectral resolution than the sixth and eighth-order central compact schemes

presented in [25] while the low-dissipation compact scheme has a spectral resolution

comparable to that of the sixth-order central compact scheme. Table 2.1 summa-

rizes the bandwidth resolving efficiencies of the various compact and non-compact

schemes. It is observed that the spectral resolution of the optimal schemes under-

lying the CRWENO schemes compares well with those of high-resolution schemes

54



Table 2.2: Summary of interpolation schemes (referred to in the text)

Description Name of Scheme Equation

5th-order non-compact NonCompact5 Eqn. (1.38)
5th-order compact Compact5 Eqn. (2.7)

5th-order low-dissipation compact Compact5-LD Eqn. (2.24)
5th-order WENO WENO5 Eqn. (1.41)

5th-order CRWENO CRWENO5 Eqn. (2.19)
5th-order low-dissipation CRWENO CRWENO5-LD Eqn. (2.29)

presented in the literature.

2.4 Application: Scalar Conservation Laws

The CRWENO schemes introduced in the previous sections are applied to

scalar conservation laws. The numerical properties of accuracy, convergence and

resolution are verified and compared to the WENO schemes. The conclusions drawn

from the numerical analysis of the optimal schemes, as presented in the previous

section, are verified. The applicability of the WENO weights, as implemented in

[13], to compact schemes is tested. Numerical results are presented in the subse-

quent sections and the schemes, as they are referred to in the text, are summarized

in Table 2.2. The NonCompact5, Compact5 and Compact5-LD schemes are the op-

timal schemes underlying the WENO5, CRWENO5 and CRWENO5-LD schemes,

respectively.
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2.4.1 Linear Advection Equation

The linear advection equation is the simplest example of a hyperbolic con-

servation law and represents the advection of a scalar quantity. The initial value

problem on an infinite domain can be described as:

∂u

∂t
+
∂u

∂x
= 0 (2.35)

u(x, 0) = u0(x) (2.36)

The exact solution is given as:

u(x, t) = u0(x− t) (2.37)

and represents the advection of u with unit velocity in the positive x-direction.

Upwinding requires a biased interpolation of the flux function depending on the sign

of the local advection velocity, which is a positive constant in this case (f ′(u) = 1).

Thus, a left-biased interpolation is used for the numerical solution. The solution is

marched in time using the TVD-RK3 scheme given by Eqn. (1.25).

The accuracy and convergence properties of the schemes are analyzed for a

smooth solution. The initial conditions are taken as

u0(x) = sin(x), 0 ≤ x ≤ 2π (2.38)

on a periodic domain. The solution is obtained after one cycle over the domain and

the errors for the schemes are compared. Tables 2.3 - 2.5 shows the L1, L2 and

L∞ error norms and the rates of convergence (rc) for the NonCompact5, Compact5

and Compact5-LD schemes. The grid is progressively refined from 20 points to 640
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Table 2.3: L1 errors and convergence rates for the optimal schemes with smooth
initial data

NonCompact5 Compact5 Compact5-LD
N Error rc Error rc Error rc

20 2.067E-04 - 3.346E-05 - 2.425E-05 -
40 6.518E-06 4.99 9.510E-07 5.14 6.390E-07 5.25
80 2.042E-07 5.00 2.756E-08 5.11 1.788E-08 5.16
160 6.384E-09 5.00 8.231E-10 5.07 5.197E-10 5.10
320 2.003E-10 5.00 2.588E-11 4.99 1.629E-11 5.00

Table 2.4: L2 errors and convergence rates for the optimal schemes with smooth
initial data

NonCompact5 Compact5 Compact5-LD
N Error rc Error rc Error rc

20 2.287E-04 - 3.749E-05 - 2.827E-05 -
40 7.233E-06 4.98 1.036E-06 5.18 7.268E-07 5.28
80 2.267E-07 5.00 3.012E-08 5.10 1.990E-08 5.19
160 7.090E-09 5.00 9.053E-10 5.06 5.740E-10 5.12
320 2.225E-10 4.99 2.857E-11 4.99 1.799E-11 5.00

Table 2.5: L∞ errors and convergence rates for the optimal schemes with smooth
initial data

NonCompact5 Compact5 Compact5-LD
N Error rc Error rc Error rc

20 3.207E-04 - 5.792E-05 - 6.021E-05 -
40 1.021E-05 4.97 1.412E-06 5.36 1.388E-06 5.44
80 3.204E-07 4.99 4.166E-08 5.08 4.119E-08 5.07
160 1.003E-08 5.00 1.280E-09 5.02 1.355E-09 4.93
320 3.145E-10 4.99 4.042E-11 4.99 4.307E-11 4.98

points for the convergence analysis. The initial CFL is 0.1 for the 20-point grid

and is reduced by a factor of 2/(25/3) at each refinement to ensure that the errors

due to time discretization converge at the same rate as those due to the spatial

discretization. A low CFL number is chosen to ensure that the time discretization

errors are significantly lower.

The three schemes show 5th-order convergence in all the three norms. How-

57



ever, it is observed that the absolute value of the error is an order of magnitude

lower for the Compact5 scheme, as compared to the NonCompact5 scheme. The

errors for the Compact5-LD scheme are approximately half those of the Compact5

scheme for the same grid resolution. These observations are consistent with the

results from the Taylor series analysis presented in the last section. Thus, the Com-

pact5 and Compact5-LD schemes yield solutions with significantly lower error than

the NonCompact5 for the same order of convergence.

Tables 2.6 - 2.8 show the error norms and convergence rates for the WENO5,

CRWENO5 and CRWENO5-LD schemes. The solution is smooth and thus, the im-

plementation of the WENO weights dictate that these schemes be identical to their

optimal counterparts (NonCompact5, Compact5 and Compact5-LD, respectively).

The absolute values of the errors are identical to those obtained by the optimal

schemes and all three schemes show 5th-order convergence. Thus, it is verified that

the CRWENO5 and CRWENO5-LD schemes, given by Eqns. (2.19) and (2.29), con-

verge to the optimal schemes given by Eqns. (2.7) and (2.24) respectively for smooth

solutions. The conclusions drawn regarding the accuracy of the optimal schemes ex-

tend to the CRWENO schemes. The CRWENO5 and CRWENO5-LD schemes yield

solutions with significantly lower absolute errors (1/10-th and 1/20-th, respectively)

compared to the WENO5 scheme with the same order of convergence.

While the smooth solution considered above demonstrated the accuracy and

convergence properties of the compact schemes, the spectral resolution of the schemes
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Table 2.6: L1 errors and convergence rates for the WENO and CRWENO schemes
with smooth initial data

WENO5 CRWENO5 CRWENO5-LD
N Error rc Error rc Error rc

20 2.067E-04 - 3.346E-05 - 2.426E-05 -
40 6.518E-06 4.99 9.510E-07 5.14 6.390E-07 5.25
80 2.042E-07 5.00 2.756E-08 5.11 1.788E-08 5.16
160 6.384E-09 5.00 8.231E-10 5.07 5.197E-10 5.10
320 2.004E-10 4.99 2.588E-11 4.99 1.629E-11 5.00

Table 2.7: L2 errors and convergence rates for the WENO and CRWENO schemes
with smooth initial data

WENO5 CRWENO5 CRWENO5-LD
N Error rc Error rc Error rc

20 2.288E-04 - 3.749E-05 - 2.828E-05 -
40 7.233E-06 4.98 1.036E-06 5.18 7.268E-07 5.28
80 2.267E-07 5.00 3.012E-08 5.10 1.989E-08 5.19
160 7.090E-09 5.00 9.053E-10 5.06 5.740E-10 5.12
320 2.225E-10 4.99 2.857E-11 4.99 1.799E-11 5.00

Table 2.8: L∞ errors and convergence rates for the WENO and CRWENO schemes
with smooth initial data

WENO5 CRWENO5 CRWENO5-LD
N Error rc Error rc Error rc

20 3.199E-04 - 5.797E-05 - 6.025E-05 -
40 1.021E-05 4.97 1.412E-06 5.36 1.388E-06 5.44
80 3.204E-07 4.99 4.166E-08 5.08 4.119E-08 5.07
160 1.003E-08 5.00 1.280E-09 5.02 1.355E-09 4.93
320 3.145E-10 4.99 4.042E-11 4.99 4.307E-11 4.98

are verified and compared with that of the non-compact scheme for a solution con-

taining a range of length scales. The discrete initial condition is the sum of sinusoidal

waves of all length scales that are supported by the grid:

u0(j) =

N/2∑
k=1

A(k)cos (2πjk∆x+ φ(k)) ; j = 1, . . . , N (2.39)

where the periodic domain is taken as [0, 1], k is the discrete wavenumber and φ is the

phase. The amplitudeA(k) = k−5/6 is taken such that the energy, as a function of the
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(a) φ = 0

(b) φ = π/2

Figure 2.6: Solution after one cycle for initial conditions with all frequencies sup-
ported by the grid

wavenumber, follows the E(k) ∝ k−5/3 distribution that is characteristic of turbulent

flows. The initial phase φ(k) is taken as 0 and π/2, such that the solutions resemble

an extremum and a discontinuity respectively. Figure 2.6 shows the initial conditions

and the solutions after one cycle over the domain for both the values of the initial
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Figure 2.7: Energy spectrum for a smooth solution containing all the frequencies
supported by the grid

phase on a grid with N = 256 points. The CRWENO5 and CRWENO5-LD schemes

show a higher resolution of the extremum and a lower smearing of the discontinuity

than the WENO5 scheme. The energy spectrum and phase errors are calculated.

Figure 2.7 shows the energy (defined as E(k) = |û(k)|2, where û is the Fourier

transform of u) as a function of the discrete wavenumber k for the initial conditions

with φ = 0. The energy spectrum for the case with φ = π/2 is similar. The

Compact5 and NonCompact5-LD schemes show an improved resolution of the higher

frequencies due to their higher bandwidth resolving efficiencies. These observations

are consistent with the spectral analysis presented in the previous section. The

modified phase as a function of the wavenumber is shown in Fig. 2.8(a) for the two

different values of the initial phase. The Compact5 and Compact5-LD schemes show

a significantly lower phase error than the NonCompact5 scheme over a large range

of wavenumbers. It should be noted that random values, followed by a zero phase,
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(a) φ = 0

(b) φ = π/2

Figure 2.8: Phase errors for a smooth solution containing all the frequencies sup-
ported by the grid

are observed for the modified phase beyond a certain wavenumber for each scheme.

This is because the high dissipation at these wavenumbers reduces the amplitudes

to near-machine-zero values and thus, the calculated values for the phase are not

reliable.
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Next, the behavior of the schemes across discontinuities is analyzed. The

initial conditions are

u0(x) = exp

(
− log(2)

(x+ 7)2

0.0009

)
if − 0.8 ≤ x ≤ −0.6

= 1 if − 0.4 ≤ x ≤ −0.2

= 1− |10(x− 0.1)| if 0 ≤ x ≤ 0.2

= [1− 100(x− 0.5)2]1/2 if 0.4 ≤ x ≤ 0.6

= 0 otherwise (2.40)

thus consisting of exponential, square, triangular and parabolic waves. The domain

is −1 ≤ x ≤ 1. Periodic boundary conditions are applied and the solution is

obtained after one cycle over the domain at a CFL of 0.1.

Figure 2.9(a) shows the solution on a grid with 160 points for the WENO5,

CRWENO5 and CRWENO5-LD schemes after one cycle, while Fig. 2.9(b) and

Fig. 2.9(c) show the magnified solution for the exponential and square waves. The

CRWENO schemes show significantly reduced clipping of the extrema for the ex-

ponential wave and the discontinuities in the square waves show reduced smear-

ing. The overall solution is essentially non-oscillatory, thus verifying the essentially

non-oscillatory nature of the CRWENO schemes. As discussed in Sec. 2.2, the

smoothness-dependent WENO weights are able to effectively decouple the inter-

polation of fluxes across the discontinuities. Figure 2.10 shows the triangular and

parabolic waves after 100 cycles over the periodic domain. Although the difference

in the solutions for these two waves is insignificant after 1 cycle, the lower errors
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(a) Complete solution after 1 cycle

(b) Exponential wave after 1 cycle (c) Square wave after 1 cycle

Figure 2.9: Comparison of WENO5, CRWENO5, and CRWENO5-LD schemes for
a solution containing exponential, square, triangular and parabolic waves

from the CRWENO schemes result in better preservation of waves for long-term

convection.

Thus, to summarize, the three cases of the linear advection equation demon-

strate the numerical properties of the CRWENO schemes, with respect to the WENO
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(a) Triangular wave after 100 cycles (b) Parabolic wave after 100 cycles

Figure 2.10: Comparison of schemes for long-term convection of discontinuous waves

scheme of the same order. The CRWENO schemes yield solutions with significantly

lower errors for the same order of convergence as the WENO scheme. In addition,

the improved spectral resolution results in a more accurate capturing of the higher

wavenumbers or smaller length scales. The non-oscillatory nature of the scheme

is verified for a problem with discontinuous waveforms and it is shown that the

CRWENO schemes result in reduced clipping and smearing of extrema and discon-

tinuities.

2.4.2 Inviscid Burgers Equation

The inviscid Burgers equation is an example of a scalar non-linear hyperbolic

PDE, given by

ut + uux = 0 (2.41)
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with the flux function as f(u) = u2/2. The characteristic speed is f ′(u) = u and

therefore, the solution consists of a wave propagating at the local value of u. A bi-

ased interpolation is used for the flux reconstruction at the interface, as expressed in

Eqn. (1.21). The non-linearity of the equation implies that discontinuities may de-

velop from smooth initial conditions. The shock formation from an initially smooth

solution is examined. The problem provides an initial flow during which the solution

is smooth, thus allowing for accuracy and order of convergence analyses. After a

certain time, a shock forms in the solution and the non-oscillatory nature of the

schemes can be verified. The initial condition is a sinusoidal wave given by

u0(x) =
1

2πts
sin(2πx) (2.42)

where ts is a free parameter specifying the time of shock formation (ts = 2 in this

example). Periodic boundary conditions are implemented and the exact solution,

prior to shock formation, is defined implicitly as

u(x, t) =
1

2πts
sin[2π(x− u(x, t)t)] (2.43)

An iterative procedure with an initial guess is used to compute the exact solution

to machine zero accuracy. The numerical solution is marched in time using the

TVD-RK3 scheme.

Convergence analysis is done for solutions obtained at t = 1, prior to shock

formation. The grid is progressively refined from 20 to 640 points. The initial CFL

(for the grid with 20 points) is 0.1 and is reduced at each refinement to ensure that
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(a) L2 error and convergence behavior (b) Solution shock formation

Figure 2.11: Inviscid Burgers equation - errors and convergence analysis before shock
formation and solution with various schemes after shock formation

time discretization errors converge at the same order as space discretization ones.

The L2 errors are plotted against grid size in Fig. 2.11(a) for the WENO5, CR-

WENO5 and CRWENO5-LD schemes. Errors from the NonCompact5, Compact5

and Compact5-LD schemes are also plotted for comparison because the behavior

should be identical for a smooth solution. It is observed that the WENO limit-

ing results in non-optimal weights at very coarse grids. However, at finer grids,

the WENO schemes attain their optimal accuracy and the errors are identical to

the schemes without the non-linear weights. As in the case of the linear advection

equation, the CRWENO5 scheme shows significantly lower errors (almost an order

of magnitude lower) at all grid resolution, compared to the WENO5 scheme. The

CRWENO5-LD scheme has an even lower error (half that of the CRWENO), except

on very coarse meshes. The accuracy and convergence behavior of the CRWENO

schemes are thus validated on a non-linear problem.
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Figure 2.11(b) shows the solution at t = 3 after the formation of a shock

on a grid with 20 points for a CFL of 0.5. Solutions obtained using the first-

order, WENO5, CRWENO5 and CRWENO5-LD schemes are shown. The ”fine

grid solution” is the solution obtained on a grid of 2000 points with the WENO5

scheme since the exact solution is not available in analytical form. The solutions

obtained using the WENO5, CRWENO5 and CRWENO5-LD schemes are seen to

be nearly identical for this problem. The non-oscillatory nature of the CRWENO

schemes is thus validated for a non-linear problem.

2.5 Boundary Closures

The numerical test cases presented in the previous section involved periodic

boundaries representing an infinite domain. The implementation of boundary clo-

sures for the CRWENO schemes on a finite domain is discussed in this section.

Compact schemes involve the coupled solution of the interface fluxes and thus, the

formulation of a boundary closure is crucial to the stability and accuracy of the

overall scheme.

Figure 2.12 shows two possible alignments between the physical domain and

the grid for a one-dimensional domain [0, 1] and N degrees of freedom. A grid used

to discretize the domain for a finite-volume scheme is usually generated such that the

cell interfaces align with the physical boundary. The interface flux may be calculated

by extending the physical domain through “ghost” cells and applying the numerical
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(a) Finite-volume discretization

(b) Finite-difference discretization

Figure 2.12: Two possible alignments between the grid and the domain boundary

scheme from the interior. The number of ghost cells required is proportional to the

order of the interior scheme (and thus its stencil size). The values in the ghost cells

are such that the computed flux at the boundary interface is consistent with the

physical boundary conditions. The primary advantage of the “ghost” cell technique

is that the reconstruction schemes from the interior may be applied to the boundary

interface without modification.

Finite-difference methods are usually applied to grids where the boundary

coincides with a grid point. The solution is specified at the first and last grid points

and the governing equations are not solved for at these points. Since the domain does

not extend beyond these points, a high-order numerical scheme cannot be applied to

the interior points adjacent to these boundary points. Thus, a reduced-order and/or
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biased numerical scheme is used at the grid points that do not have the sufficient

number of neighbors required for the numerical scheme in the interior.

Although non-compact schemes may be applied without modification to the

boundary interfaces for an interface-aligned boundary through ghost points (Fig.

2.12(a)), the application of compact schemes is not possible due to the absence of

ghost interfaces. Specification of the flux at interfaces outside the physical domain

may not be possible, except for very simple problems. In this study, the non-

compact fifth-order WENO scheme (WENO5) is applied at the boundary interfaces

along with the CRWENO5 scheme at the interior interfaces. Expressing this in the

matrix-vector form of Eqn. (2.3), we obtain the complete numerical scheme for the

left-biased flux at the interfaces as:

Af̂ = Bf + b (2.44)

where

A =


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, B =
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(2.45)

and the boundary terms are given by
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b =



1
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

(2.46)

with the superscript G denoting ghost cell values. The above expressions for A, B

and b assume the optimal fifth-order compact and non-compact schemes, given by

Eqns. (2.7) and (1.38) respectively. The corresponding expressions can be derived

for the CRWENO5 scheme with WENO5 scheme at the boundaries by replacing the

optimal coefficients with the WENO weights.

The boundary closure of the scheme for the second type of grid alignment (Fig.

2.12(b)) requires a biased and/or lower-order numerical scheme at the interfaces

adjacent to the boundaries due to the unavailability of the complete stencil of the

CRWENO5 scheme in the interior. It should be noted that although the stencil

for the fifth-order compact scheme, given by Eqn. (2.7), is [j − 1, j, j + 1], the

calculation of the smoothness indicators requires a wider stencil [j − 2, ..., j + 2]

and thus, the overall CRWENO5 scheme has the larger stencil of [j − 2, j + 2].

Referring to Fig. 2.12(b), it can be seen that the CRWENO5 scheme can be applied

to interfaces j + 1/2, j = 2, N − 1 and a biased numerical scheme is required for

the remaining interfaces. In the present study, third-order boundary closures are
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proposed as follows:

j = 0 :
2

3
f̂j+1/2 +

1

3
f̂j+3/2 =

1

6
(fj + 5fj+1) (2.47)

j = 1 :
1

3
f̂j−1/2 +

2

3
f̂j+1/2 =

1

6
(5fj + fj+1) (2.48)

j = N :
2

3
f̂j−1/2 +

1

3
f̂j+1/2 =

1

6
(fj−1 + 5fj) (2.49)

These boundary schemes correspond to the left-biased flux at the interfaces and are

thus upwinded accordingly, subject to the physical domain constraint. It is also

possible to use a fourth-order central compact scheme for j = 1. Similarly, the

right-biased flux calculation would require a biased numerical scheme at interfaces

j = 1, N,N + 1 and the CRWENO5 scheme at all other interfaces. The complete

left-biased discretization scheme resulting from the boundary closures given by Eqn.

(2.47) can be expressed in the form of Eqn. (2.44) where

A =
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, B =
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, b =


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
(2.50)

Note that f0 is a boundary node with the solution specified and the boundary node

fN+1 is not used since this is a left-biased interpolation.
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Figure 2.13: Eigenvalues of the CRWENO5 and its boundary closures – (i) Periodic
CRWENO5, (ii) CRWENO5 with WENO5 at the boundaries (ghost cells), (iii)
CRWENO5 with biased 3rd-order compact schemes on the boundaries

The numerical stability of the complete schemes can be analyzed by expressing

the vector of first derivatives as

f ′ =
1

∆x
Cf̂

⇒ f ′ =
1

∆x
CA−1

(
Bf̂ + b

)
(2.51)

where C is a N × (N + 1) matrix given by

C =


−1 1

. . . . . .

−1 1

 (2.52)
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The eigenvalues of the matrix (CA−1B) are evaluated numerically and shown in Fig.

2.13 for N = 200. The application of boundary closures increases the dissipation

of the overall scheme at lower wavenumbers and reduces the spectral resolution.

All the eigenvalues, for both the implementations considered in this section, have

negative real parts confirming that the overall scheme is stable.

2.6 Computational Efficiency

The CRWENO schemes require a coupled solution to the interpolated flux

function. The reconstruction step results in a system of equations that can be ex-

pressed in matrix form as Eqn. (2.3). The left hand side is a tridiagonal matrix

whose elements are solution-dependent. Thus, the solution to a tridiagonal system

is required at each iteration and a pre-factoring of the matrix is not possible. How-

ever, the computational complexity of a tridiagonal solution scales linearly with the

number of grid points. A one-dimensional problem requires one tridiagonal solution

for each iteration, while for a multi-dimensional problem, the system is solved along

each grid line in each dimension. As an example, for a two-dimensional problem,

discretized on a grid with NI × NJ points, the number of tridiagonal solutions

required is NI+NJ . Thus, at the same grid resolution, the CRWENO schemes are

more expensive than the WENO schemes, keeping in mind that the calculation of

smoothness indicators and the WENO weights is identical for the two schemes.

However, it has been shown in the previous section that the CRWENO schemes

yield results that are substantially more accurate than the WENO scheme of the
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same order of convergence. Taylor series analysis, as well as numerical examples

from the previous section, shows that the absolute error in solutions obtained by

the CRWENO5 scheme is 1/10-th of the error in solutions obtained by the WENO5

scheme. Similarly, the error in solutions obtained by the CRWENO5-LD scheme is

1/20-th. This would imply that the CRWENO5 scheme is theoretically capable of

obtaining a solution of the same accuracy as the WENO5 scheme on a grid with

0.63 times the number of points. The CRWENO5-LD scheme is capable of obtaining

solutions of the same accuracy on a grid with 0.55 times the number of points. These

represent substantial reduction in the computational expense, especially for multi-

dimensional problems (for example, a three-dimensional grid with 0.63 times the

number of points in each dimension has only 1/4-th the total number of points as

the original grid). Thus, when comparing solutions with the same absolute errors,

the CRWENO schemes are less expensive.

Table 2.9: Errors and computational run-time (in seconds) with smooth initial data

WENO5 CRWENO5 CRWENO5-LD
N Error T Error T Error T

20 1.549E-01 1.11 8.236E-02 1.62 7.201E-02 2.11
30 8.416E-02 2.45 - - - -

40 3.155E-02 6.89 4.436E-03 10.02 2.277E-03 12.94
60 5.729E-03 15.20 - - - -

80 1.480E-03 42.73 1.603E-04 61.66 8.343E-05 80.53
120 2.033E-04 95.28 - - - -

160 4.824E-05 268.85 5.047E-06 388.24 2.635E-06 516.89
240 6.404E-06 602.76 - - - -

75



(a) Error vs. computational run-time for a smooth problem

(b) Comparison of solution and runtimes on a 160-point grid for
a discontinuous problem (Number inside parentheses in the legend
indicates runtimes)

Figure 2.14: Computational efficiencies of various schemes

Table 2.9 shows the L2 errors and the corresponding computational run-time

(T ) for solutions of the linear advection equation, obtained after 500 cycles over the

periodic domain. Smooth initial conditions are specified, as given in Eqn. (2.38).

The grid is progressively refined starting with 20 points. The errors for the CR-
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WENO5 and CRWENO5-LD are an order of magnitude lower than those of the

WENO5 scheme. In addition, corresponding to each grid resolution, the error and

the run-time for a solution obtained by WENO5 scheme on a grid that is 1.5 as

fine are also shown. The CRWENO schemes are more expensive than the WENO5

scheme for the same grid resolution, as expected. However, a comparison of the

errors show that the errors in the CRWENO solutions are comparable to those in

the WENO solutions on grids that are 1.5 times as fine. Thus, the run-time for the

CRWENO scheme is lower when solutions with similar errors are compared. As an

example, the CRWENO5 scheme on a 80-point grid has an error slightly lower than

that of the WENO5 scheme on a 120 point grid, while the run-time is lower by a

factor of around 2/3. The L2 norm of the error as a function of the computational

run-time is shown in Fig. 2.14(a). The WENO5, CRWENO5 and CRWENO5-LD

schemes are compared and the previous conclusions are reiterated. The CRWENO

schemes have a significantly lower computational cost when comparing solutions

with similar errors.

Although the Taylor series analysis does not hold for solutions with disconti-

nuities, the resolution of the solutions obtained with the WENO5, CRWENO5 and

CRWENO5-LD schemes are compared for a problem with discontinuous waves. Fig-

ure 2.14(b) shows the magnified solution around the triangular wave for the initial

conditions specified by Eqn. (2.40). The solutions are obtained after 100 cycles

over the periodic domain on a grid of 160 points. The number inside the paren-

theses in the legend indicates the run-times. As observed in the previous section,

the CRWENO5 and CRWENO5-LD schemes yield solutions with sharper resolu-
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tion than the WENO5 schemes. The run-times for these schemes are larger than

the WENO5 scheme on the same grid, as expected. The solution obtained by the

WENO5 scheme on a 240-point grid is included in the figure. The resolution of

the solutions obtained with the CRWENO schemes is comparable, or better than,

to that of the WENO5 solution on the finer grid. However, the run-time for the

WENO5 scheme on the 240-point is higher than that of the CRWENO schemes on

the 160-point grid. Thus, it is observed that for solutions with discontinuities, the

CRWENO schemes are computationally less expensive when solutions of the same

resolution are compared.

The computational efficiency of the CRWENO schemes is demonstrated for

the scalar conservation laws in one-dimension. Although the tridiagonal solution

at each iteration renders these schemes more expensive for a given grid, the result-

ing improvements in accuracy and resolution justify the expense. The CRWENO

schemes are less expensive than the WENO schemes when solutions of similar ac-

curacy and resolution are compared. The computational efficiency of these schemes

for systems of equations is discussed in subsequent chapters where the application

of the CRWENO schemes to the Euler and Navier-Stokes equations is presented.

2.7 Implementation of Non-Linear Weights

The implementation of the non-linear weights affects the numerical properties

of the WENO schemes and was briefly discussed in Section 1.3.1. The numerical

properties of the various implementations are discussed in the present section in the
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context of the CRWENO schemes. The fifth-order CRWENO schemes described in

Section 2.2 use weights as defined in [13]. The WENO weights are calculated as:

αk =
ck

(ε+ βk)p
(2.53)

ωk =
αk∑
k αk

(2.54)

with ε = 10−6 and p = 2. The first step scales the optimal weights with the cor-

responding smoothness indicators while the second step makes the weights convex.

The smoothness indicators are defined as Eqn. (1.36) that results in Eqn. (1.38)

- (1.40) for the fifth-order WENO and CRWENO schemes. Thus, for r = 3, the

smoothness indicators are the sum of the divided differences approximating the first

and second derivatives of the solution. In the subsequent discussion and following

chapters, the fifth-order CRWENO scheme using the implementation of the weights

as defined by Eqn. 2.53 is referred to as CRWENO5-JS.

The parameter ε was introduced in [13] to prevent division by zero. Although

it is not desirable that the numerical properties of the scheme be dependent on the

value of ε, numerical experiments [16] reveal that the convergence properties of the

WENO schemes is severely influenced by ε for a certain class of smooth solutions.

The convergence of the WENO schemes was studied for a smooth problem with

critical points where the first and higher derivatives vanish. It was shown that for

such problems, the WENO schemes converged at their optimal order for ε = 10−6 but

showed sub-optimal convergence for ε = 10−40. At critical points, the smoothness

indicators approach zero (βk → 0) and the denominator in Eqn. (2.53) is dominated

by ε. A higher value of ε results in the weights being nearly optimal and the WENO
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schemes converge at their optimal order. However, if the value of ε that is of the

same or lower order than the machine representation of zero, the differences in the

values of the smoothness indicators, which are of the order of machine zero, result

in non-optimal weights.

A mapping function was introduced in [16] to partially correct the dependence

of the convergence rate on ε. The mapping function, given by Eqn. (1.43), causes the

non-linear weights to converge more rapidly to their optimal values. The weights,

calculated using Eqn. (2.53) and (2.54), are then mapped by Eqn. (1.44) followed

by Eqn. (2.54) for convexity. The CRWENO5 scheme with the mapped weights is

referred to as CRWENO5-M in this thesis.

The non-linear weights, as defined in [13], seek to reduce or eliminate the con-

tribution of the constituent interpolation stencils that contain discontinuities. This

results in a smearing of discontinuities due to dissipation. The mapping function

results in increasing the weights corresponding to the discontinuous data, without

compromising the non-oscillatory nature of the scheme. Thus, the numerical re-

sults in [16] show sharper resolution of discontinuities. The primary drawback of

the mapping function is the additional computational expense required to calculate

the mapped weights. An alternative implementation for the non-linear weights was

proposed in [17], that resulted in optimal convergence of the WENO scheme for

smooth problems containing critical points. The weights are defined as

ωk = ck

[
1 +

(
τ5

βk + ε

)p]
(2.55)

followed by Eqn. (2.54) for convexity. The factor τ5 (the subscript denotes the
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optimal order) is defined as

τ5 = |β1 − β3| (2.56)

and is a measure of the higher derivatives of the solution using the information from

all points in the interpolation stencil. The magnitude of τ5 is much lower than βk for

a solution that is smooth and thus, the weights attain their optimal values. In the

presence of a discontinuity, τ5 is large as it contains information from the complete

higher-order stencil but βk is small for the sub-stencils that are smooth. This results

in lower weights for the stencils that contain a discontinuity. The CRWENO5 scheme

using the weights as defined above is referred to as CRWENO-Z in the text.

The definition of the non-linear weights as given by Eqn. (2.55) was further

improved in [19, 20] for a fifth-order scheme. Definition of τ5 = |β1−β3| results in a

loss of accuracy at points where β1−β3 changes sign. Thus, the improved definition

of τ5 is

τ5 = (fj−2 − 4fj−1 + 6fj − 4fj+1 + fj+2)2 (2.57)

which is the fourth-degree undivided difference. The CRWENO5 scheme with the

weights defined as Eqn. (2.55) and (2.57) is referred to as CRWENO5-YC in sub-

sequent discussion. Table 2.10 summarizes the implementations of the CRWENO5

scheme that are studied in this thesis.

The convergence properties of the various implementations of the non-linear

weights are studied on a smooth problem that has critical points. The initial con-

ditions are given as:

u0(x) = sin

(
πx− sin(πx)

π

)
(2.58)
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Table 2.10: Implementation of non-linear weights for the CRWENO5 scheme (re-
ferred to in the text)

Name of Scheme Implementation of Weights Author(s)

CRWENO5-JS Eqn. (2.53) Jiang & Shu [13]
CRWENO5-M Eqns. (2.53), (1.44) Henrick, Aslam & Powers [16]
CRWENO5-Z Eqns. (2.55), (2.56) Borges, et. al. [17]

CRWENO5-YC Eqns. (2.55), (2.57) Yamaleev & Carpenter [19, 20]

Table 2.11: L2 errors and convergence rates for the CRWENO5-JS

ε = 10−6 ε = 10−20

N Error rc Error rc

20 3.825E-03 - 3.825E-03 -
40 2.172E-04 4.14 2.174E-04 4.14
80 1.082E-05 4.33 1.096E-05 4.31
160 6.178E-07 4.13 7.059E-07 3.96
320 2.089E-08 4.89 5.266E-08 3.74

Table 2.12: L2 errors and convergence rates for the CRWENO5-M

ε = 10−6 ε = 10−20

N Error rc Error rc

20 6.785E-04 - 6.786E-04 -
40 1.387E-05 5.61 1.388E-05 5.61
80 3.649E-07 5.25 3.659E-07 5.25
160 1.061E-08 5.10 1.069E-08 5.10
320 3.229E-10 5.04 3.242E-10 5.04

with the domain as −1 ≤ x ≤ 1. Periodic boundary conditions are applied at

both ends and the solution is marched in time using the TVD-RK3 scheme. A grid

convergence study is carried out for each of the schemes listed in Table 2.10 for

ε = 10−6 and ε = 10−20.

Tables 2.11 - 2.14 show the L2 error norms and the rates of convergence (rc)

for the CRWENO5-JS, CRWENO5-M, CRWENO5-Z and CRWENO5-YC schemes
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Table 2.13: L2 errors and convergence rates for the CRWENO5-Z

ε = 10−6 ε = 10−20

N Error rc Error rc

20 1.312E-03 - 1.313E-03 -
40 2.336E-05 5.81 2.342E-05 5.81
80 4.430E-07 5.72 4.511E-07 5.70
160 1.085E-08 5.35 1.147E-08 5.30
320 3.229E-10 5.07 3.324E-10 5.11

Table 2.14: L2 errors and convergence rates for the CRWENO5-YC

ε = 10−6 ε = 10−20

N Error rc Error rc

20 4.530E-04 - 4.529E-04 -
40 1.226E-05 5.21 1.226E-05 5.21
80 3.528E-07 5.12 3.528E-07 5.12
160 1.056E-08 5.06 1.059E-08 5.06
320 3.229E-10 5.03 3.229E-10 5.03

for the two different ε values. It is observed that the CRWENO5-JS scheme does

not converge at the optimal order for this problem. The smoothness indicators

approach zero at the critical points and the weights are sensitive to ε. The order

of convergence is closer to 5th-order for a higher ε. The accuracy and convergence

are improved by the mapping of the weights, as seen by the errors in the solution

obtained by the CRWENO-M scheme. The optimal order of convergence is recovered

and the absolute errors have similar values for the two different ε, thus indicating

insensitivity to ε. A similar observation regarding the absolute errors is made for

the CRWENO-Z scheme; however, the order of convergence is higher than 5th-order

for coarse grids, indicating non-optimal weights. The CRWENO5-YC scheme yields

solutions that converge at the optimal order, for both ε. The errors are insensitive

to ε and are lower than those for the other schemes on coarse grids.
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(a) φ = 0

(b) φ = π/2

Figure 2.15: Solution after one cycle for initial conditions with all frequencies sup-
ported by the grid

The dependence of the spectral resolution on the implementation of the non-

linear weights is assessed by solving the linear advection equation with the initial

conditions given by Eqn. (2.39) for φ = 0 and φ = π/2. The solution is obtained

after one cycle over the periodic domain and the TVD-RK3 scheme is used for ad-
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Figure 2.16: Energy spectrum for various implementations of the non-linear weights

vancing the solution in time. Figure 2.15 shows the solution for both the values of φ

obtained on a grid with 256 points. The solution is magnified around the extremum

and the discontinuity. The CRWENO5-JS scheme shows significant dissipative and

dispersive errors for the extremum and a considerable amount of smearing for the

discontinuity. The alternate implementations of the weights result in a sharper res-

olution of both the solutions. Figure 2.16 shows the energy E(k) as a function of

the wavenumber for the solutions to the initial conditions with φ = 0. The so-

lutions are obtained with the various CRWENO5 schemes (ε = 10−6) as well as

the optimal Compact5 schemes. Although the solution is smooth, the CRWENO5

schemes are more dissipative than the optimal scheme at the higher wavenumbers.

At these wavenumbers, the waves are resolved by very few points and thus, the

gradients in the solution are large. The weights are not optimal, resulting in ex-

cessive dissipation. The CRWENO5-M, CRWENO5-Z and CRWENO5-YC show

an improved resolution compared to the CRWENO5-JS scheme. A similar energy
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(a) φ = 0

(b) φ = π/2

Figure 2.17: Phase errors for various implementations of the non-linear weights

spectrum is observed for the initial conditions with φ = π/2. The phase errors for

the various schemes are shown in Fig. 2.17(a) for the two different values of the

initial phase φ. The CRWENO5-JS shows a significant error in phase for a large

range of wavenumbers for the solution with φ = 0 (extremum). The CRWENO5-M

and CRWENO5-YC schemes also show a significant phase error, compared to the
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Compact5 scheme, while the CRWENO5-Z scheme results in relatively low phase

errors. However, for the solution with φ = π/2 (discontinuity), the CRWENO5-

YC scheme results in solutions with the least phase error while the CRWENO5-M

scheme exhibits significantly large errors. The phase errors in the solutions obtained

by the CRWENO5-JS and CRWENO5-Z schemes are similar except at very high

wavenumbers.

The behavior of the weights is analyzed for a problem consisting of discon-

tinuous waves. The initial conditions are given by Eqn. (2.40) over the periodic

domain −1 ≤ x ≤ 1. The solution is advanced in time using the TVD-RK3 scheme

for 50 cycles over the domain. The solutions obtained using the CRWENO5-JS,

CRWENO5-M, CRWENO5-Z and CRWENO5-YC schemes are shown in Fig. 2.18.

The alternative formulations for the non-linear weights improve the resolution of

the solution. Figures 2.18(b) and 2.18(c) show the solution magnified around the

exponential and square waves respectively. The dissipation across the exponential

wave is significantly reduced with the mapping of weights or reformulating them

with Eqn. (2.55), with CRWENO5-YC scheme showing the least dissipation. The

smearing of the discontinuities for the square wave is reduced with the CRWENO5-

M and CRWENO5-Z schemes while the solution obtained using the CRWENO5-YC

scheme exhibits the least amount of smearing and distortion.

The effect of the various implementations of the non-linear weights is compared

for this particular problem. Figure 2.19 shows the three weights (ω1,2,3) over the

domain for the various schemes. The solution consists of sharp discontinuities with
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(a) Complete solution after 50 cycles

(b) Exponential wave after 50 cycles (c) Square wave after 50 cycles

Figure 2.18: Comparison of CRWENO5 scheme with the various non-linear
weights for a discontinuous solution: (i) Exact Solution, (ii) CRWENO5-JS, (iii)
CRWENO5-M, (iv) CRWENO5-Z, (v) CRWENO5-YC

smooth regions in between. The weights computed by the CRWENO5-JS scheme are

far from optimal throughout the domain. The mapping function causes the weights

to converge more rapidly to their optimal values and this is observed for the weights

computed by CRWENO5-M. A similar observation is made for the CRWENO5-Z
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(a) CRWENO5-JS (b) CRWENO5-M

(c) CRWENO5-Z (d) CRWENO5-YC

Figure 2.19: Comparison of the weights for a discontinuous solution after one cycle

with the computed weights being nearer to their optimal values compared to the

CRWENO5-JS scheme. The weights computed by the CRWENO5-YC scheme are

observed to be the closest to their optimal values in the smooth regions of the

solution. The weights for stencils containing the discontinuities go to zero at the

discontinuity with minimal smearing.

The solutions obtained by the various implementations of the weights are non-

oscillatory for discontinuities. However, oscillations in the higher derivatives may

exist. Figure 2.20 shows the first and second derivatives for the same solution shown

in Fig. 2.18. The improved resolution of the solution with the alternative implemen-
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(a) First derivative

(b) Second derivative

Figure 2.20: Effect of non-linear weights on higher derivatives for a discontinuous
solution

tation of weights is also visible for the higher derivatives, with the solution obtained

using the CRWENO5-JS scheme being very dissipative. However, the CRWENO5-

M and CRWENO5-Z schemes show slight oscillations in the first derivative (around

x = −0.4). The oscillations are more pronounced in the second derivative where

CRWENO5-JS, CRWENO5-M and CRWENO5-Z show oscillations in the smooth
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regions between the discontinuities. The solution obtained using the CRWENO5-YC

scheme is observed to be non-oscillatory in this case for the higher derivatives.

2.8 Summary of Chapter

The Compact-Reconstruction WENO schemes are introduced in this chapter.

Lower-order conservative compact schemes are identified for the interpolation of the

interface fluxes. The optimal coefficients are calculated such that the weighted sum

results in a higher-order conservative compact interpolation scheme for the inter-

face flux. The CRWENO scheme is obtained by replacing the optimal coefficients

with solution-dependent weights that are a function of the local smoothness of the

solution. The weights approach the optimal coefficients for smooth solutions and

approach zero in the presence of a discontinuity. A fifth-order accurate CRWENO

scheme is given by Eqn. (2.19) and a low-dissipation variant is given by Eqn. (2.29).

The solution-dependent weights result in an interpolation scheme that is high-

order accurate when the solution is locally smooth. At and near discontinuities, the

scheme behaves like a biased compact scheme such that the grid cells containing the

discontinuity are avoided. The calculation of the right-hand sides of Eqns. (2.19) and

(2.29) avoids the discontinuities in a way similar to the traditional WENO schemes.

The WENO weights result in a decoupling of the solution across the discontinuities

by appropriately biasing the terms on the left-hand side. The resulting system

of equations involves a coupling of the solution within the smooth regions of the

solution. The decoupling of the solution across the discontinuities avoids spurious
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oscillations in the solution.

The numerical properties of the linear, high-order compact schemes underlying

the fifth-order CRWENO schemes are studied. A Taylor series analysis is carried

out and the dissipation and dispersion errors are calculated. The dissipation error

for the fifth-order compact scheme is 1/10-th that of the fifth-order non-compact

scheme that underlies the traditional WENO scheme. The dissipation error for

the low-dissipation compact scheme is 1/20-th that of the non-compact scheme. A

comparison of the dispersion error shows that the compact schemes have an error

that is 1/15-th that of the non-compact scheme. Thus, it is expected that the

compact schemes will yield a solution of the same accuracy on a coarser grid. A

Fourier analysis is used to find the spectral resolution of the schemes. The compact

schemes have a significantly higher spectral resolution than the non-compact scheme.

It is found that the fifth-order compact schemes had a higher spectral resolution

than the ninth-order non-compact scheme. The bandwidth resolving efficiency is

compared and the conservative compact schemes presented in this chapter compare

well with high-resolution schemes presented in the literature.

The CRWENO schemes are applied to the linear advection equation. The

accuracy and order of convergence are studied for a smooth problem and the con-

clusions drawn from the Taylor series analysis are verified. The convergence of

the WENO weights to the optimal coefficients is verified. The spectral properties

are assessed for a smooth problem comprising all length scales supported by the

interpolation scheme. The dissipation and phase errors are compared as a func-

tion of the wavenumber. The higher spectral resolution of the compact schemes
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is demonstrated. The non-oscillatory behavior of the compact schemes is verified

for a problem with various discontinuous waveforms. The resolution of the wave-

forms and the ability to preserve the waves for long-term convection is compared

and the CRWENO schemes show an improved behavior compared to the WENO

scheme. The accuracy, convergence and non-oscillatory behavior are also verified

for the inviscid Burger’s equation.

The CRWENO schemes require a tridiagonal solution at each iteration and this

introduces a computational overhead. At the same grid resolution, the CRWENO

schemes are more expensive than the WENO scheme. The absolute errors and the

computational run-time are studied for a smooth problem at various grid refinement

levels. It is demonstrated that the CRWENO schemes are less expensive when

comparing solutions with the same absolute error because a coarser grid can be

used with the CRWENO scheme. Similarly, for discontinuous problems, CRWENO

schemes yield solutions with comparable resolution on a coarser grid and are less

expensive. Thus, the CRWENO schemes have a higher computational efficiency.

Finally, the implementation of the solution-dependent weights is studied. The

drawbacks of the implementation given in [13] are explored in the context of the

CRWENO5 scheme and the alternative implementations [16, 17, 19, 20] are studied.

The accuracy and convergence of the various implementations are assessed on a

smooth problem with critical points. The optimal order of convergence is recovered

with the alternative formulations. These formulations for the non-linear weights

are also observed to improve the spectral properties of the CRWENO5 scheme. The

resolution and smoothness of the solution as well as its higher derivatives are studied
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for the problem consisting of discontinuous waveforms. The alternative formulations

result in higher resolution. Although the solution is smooth, oscillations are observed

in the higher derivatives that are absent for the CRWENO5-YC scheme.

The CRWENO5 schemes are applied to the Euler equations in the next chap-

ter. The extension of these schemes to a system of equations is described. The

schemes are applied to the conserved, primitive and characteristic variables and

results are compared. Several inviscid flow problems are solved to validate the

CRWENO schemes, as well as demonstrate its superior numerical properties on

benchmark problems. The numerical cost of the compact schemes is studied and

the computational efficiency is compared with the WENO scheme.
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Chapter 3

Application to Euler Equations

The Compact-Reconstruction WENO schemes were introduced in the preced-

ing chapter. The adaptive stenciling of the WENO schemes is applied to the compact

schemes. The resulting CRWENO schemes have higher accuracy and spectral res-

olution for the same order of convergence. The schemes were applied to the scalar

conservation laws and the numerical properties were verified for smooth problems

as well as problems with discontinuities. The numerical cost of the schemes was an-

alyzed and the CRWENO schemes were shown to be more computationally efficient

than the traditional WENO schemes. The present chapter extends these schemes

to the Euler equations of fluid dynamics.

The Euler equations form a hyperbolic system of partial differential equations.

The numerical solution of this system along with the application of the CRWENO

schemes is presented. The relative merits and demerits of applying the compact

schemes to the primitive, conserved and characteristic variables are discussed. The

convergence and accuracy of the CRWENO schemes are verified on a smooth, one-

dimensional problem and compared with the WENO schemes. Several one- and

two-dimensional benchmark problems are solved to validate the schemes as well as

demonstrate their numerical properties.
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3.1 Euler Equations

The Euler equations govern inviscid flows [2] and are derived from the Navier-

Stokes equations by assuming zero viscosity and heat conduction. The equations

represent the conservation of mass, momentum and energy for a given flow. Mathe-

matically, the compressible Euler equations are a system of hyperbolic conservation

laws. The equations are expressed as:

∂ρ

∂t
+
∂ρui
∂xi

= 0 (3.1)

∂ρuj
∂t

+
∂ρuiuj
∂xi

= − ∂p

∂xj
(3.2)

∂e

∂t
+
∂(e+ p)ui

∂xi
= 0 (3.3)

where i, j = 1, . . . , D with D being the number of dimensions. The density is given

by ρ, the velocity components along each dimension is ui, p is the pressure and the

internal energy e is related to the flow variables by the equation of state:

e =
p

γ − 1
+

1

2
ρuiui (3.4)

where γ is the ratio of specific heats.

Equations (3.1) - (3.3) form a system of conservation laws that can be ex-

pressed as Eqn. (1.1) with the vector of conserved quantities u and the flux vector

fi as

u =


ρ

ρuj

e

 ; fi =


ρui

ρuiuj + δijp

(e+ p)ui

 (3.5)

where δij is the Kronecker delta function.
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3.1.1 Characteristic Decomposition

The hyperbolic nature of the Euler equations implies that the solution consists

of waves propagating at their characteristic speeds. Thus, the equations can be

decoupled into a set of independent scalar conservation laws, each representing a

wave. The characteristic decomposition of the Euler equations along each dimension

yields the wave propagation speeds as well as the characteristic variables that are

propagated along each wave. As an example, the one-dimensional Euler equations

are considered, which are obtained by letting i, j = 1 in Eqns. (3.1) - (3.3). The

resulting system is given by

∂u

∂t
+
∂f

∂x
= 0 (3.6)

u =


ρ

ρu

e

 ; f =


ρu

ρu2 + p

(e+ p)u


which can be expressed as

∂u

∂t
+ A

∂u

∂x
= 0 (3.7)

where A is the flux Jacobian given by

A =
∂f

∂u
=


0 1 0

γ−3
2
u2 (3− γ)u γ − 1

−γue+ (γ − 1)u3 γe− 3
2
(γ − 1)u2 γu

 (3.8)

The wave nature of solutions to the Euler equations can be understood by the eigen-

structure of the flux Jacobian matrix. The system of equations given by Eqn. (3.7)

is hyperbolic if and only if the matrix A is diagonalizable. Thus, the flux Jacobian
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can be expressed as

X−1AX = Λ (3.9)

where Λ is a diagonal matrix whose elements λi are the eigenvalues of A, X is a

matrix whose columns are the right-eigenvectors of A satisfying Ari = λiri, and

X−1 is a matrix whose rows are the left-eigenvectors of A satisfying lTi A = λil
T
i .

The eigenvalues and eigenvectors are given by

Λ = diag [u, u+ a, u− a]

X−1 =
γ − 1

ρa


ρ
a

(
−u2

2
+ a2

γ−1

)
ρ
a
u −ρ

a

u2

2
− au

γ−1
−u+ a

γ−1
1

−u2

2
− au

γ−1
u+ a

γ−1
−1



X =


1 ρ

2a
− ρ

2a

u ρ
2a

(u+ a) − ρ
2a

(u− a)

u2

2
ρ
2a

(
u2

2
+ a2

γ−1
+ au

)
− ρ

2a

(
u2

2
+ a2

γ−1
− au

)

 (3.10)

where a2 = γp/ρ is the speed of sound. Equation (3.7) can be transformed into the

characteristic space as

∂α

∂t
+ Λ

∂α

∂x
= 0 (3.11)

where α = X−1u is the vector of characteristic variables. The matrix Λ is a diago-

nal matrix and therefore, Eqn. (3.11) represents a set of decoupled scalar advection

equations, where αi are the characteristic variables being advected at the charac-

teristic speeds λi = u, u± a. Thus, solutions to the Euler equations comprise waves

that propagate with the local flow velocity and the relative speed of sound in each

direction.
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3.2 Numerical Solution

The numerical solution of a one-dimensional scalar conservation law is de-

scribed in Section 1.2 and can be easily extended to a system of equations. A

conservative, finite-difference discretization of Eqn. (3.6) in space can be expressed

as:

duj
dt

+
1

∆x

(
hj+1/2 − hj−1/2

)
= 0 (3.12)

where j is the grid index. The numerical flux function h(x) satisfies the vector

equivalent of Eqn. (1.8) and the reconstruction step requires the approximation of

h(x) at the interfaces to the desired accuracy.

Equation (3.12) is a system of ODEs in time and is solved using the time-

marching schemes described in Section 1.2.2. The present chapter deals with the

inviscid Euler equations on uniform grids, and thus, the third-order TVD Runge-

Kutta (TVDRK3) scheme, given by Eqn. (1.25), is used for time-marching. The

application of the CRWENO schemes to viscous flow problems and problems on

non-uniform meshes is described in the next chapter and the second-order Backward

Differencing Scheme (BDF2), given by Eqn. (1.26), is used for cases where the time

step size is restricted by stability rather than accuracy.

3.2.1 Reconstruction

The reconstruction step requires the approximation of the numerical flux func-

tion h(x) from the discrete values at grid points. An approximate flux function is
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found that satisfies

f̂(x) = h(x) +O(∆xr+1)

⇒ ∂f

∂x

∣∣∣∣
xj

=
1

∆x

(
f̂j+1/2 − f̂j−1/2

)
+O(∆xr) (3.13)

where r is the desired order of accuracy. The resulting ODE in time is given by

duj
dt

+
1

∆x

(
f̂j+1/2 − f̂j−1/2

)
= 0 (3.14)

The reconstruction of the flux function for the Euler equations consists of two steps:

interpolation and upwinding. The interpolation step involves the construction of

an approximate flux function from the discrete values at grid points. Section 1.2.1

described the interpolation process for a scalar function and the extensions to a

vector function (in the context of the Euler equations) are discussed subsequently. At

a given interface, there are several different possibilities for a r-th order interpolation

of the flux function and the upwinding step is required to select an appropriate

combination that respects the direction of wave propagation. The wave nature of

solutions to the Euler equations is described in the previous section. At a given

grid point or an interface, the solution is composed of waves propagating at their

characteristic speeds. Thus, the solution or the flux function can be split into its

constituent waves. The upwinding step finds a combination of the different possible

interpolations such that each of the constituent waves is interpolated from data

that is biased according to its direction of propagation. A detailed discussion on the

theory behind upwinding, in the context of hyperbolic PDEs, can be found in [1].

The previous chapters described the interpolations of a scalar function using

the fifth-order CRWENO schemes. Equations (2.19) and (2.29) are the CRWENO5
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Figure 3.1: Interpolation stencils for the left and right-biased approximations to the
interface flux.

and CRWENO5-LD schemes for a scalar conservation laws. In particular, they de-

scribe a left-biased interpolation scheme that corresponds to a positive advection

speed in the linear advection equation. There are three possible ways of extend-

ing the scalar reconstruction schemes to the Euler equations. These involve the

reconstruction of the conserved, primitive or the characteristic variables.

A simple extension involves the component-wise interpolation of the vectors

in Eqn. (3.14). This involves the interpolation of the conserved variables. As an

example, the CRWENO5 scheme, given by Eqn. (2.19), can be rewritten for each

component as:

(
2

3
ωk1 +

1

3
ωk2

)
f̂L,kj−1/2 +

[
1

3
ωk1 +

2

3
(ωk2 + ωk3)

]
f̂L,kj+1/2 +

1

3
ωk3 f̂

L,k
j+3/2

=
ωk1
6
fkj−1 +

5(ωk1 + ωk2) + ωk3
6

fkj +
ωk2 + 5ωk3

6
fkj+1; k = 1, . . . , D + 2 (3.15)

where the superscript L denotes that this is a left-biased interpolation at xj+1/2, k is

the index for each component in the vector and D is the number of dimensions. This

represents D+2 independent tridiagonal solutions corresponding to each component

of the flux and solution vectors. Similarly, the right-biased interpolation at the same
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interface can be written for each component as:

(
2

3
ωk1 +

1

3
ωk2

)
f̂R,kj+3/2 +

[
1

3
ωk1 +

2

3
(ωk2 + ωk3)

]
f̂R,kj+1/2 +

1

3
ωk3 f̂

R,k
j−1/2

=
ωk1
6
fkj+2 +

5(ωk1 + ωk2) + ωk3
6

fkj+1 +
ωk2 + 5ωk3

6
fkj ; k = 1, . . . , D + 2 (3.16)

which is obtained by reflecting the left-biased interpolation at interface xj+1/2. Fig-

ure 3.1 shows the stencils used to compute the left and right-biased interpolations.

Thus, Eqns. (3.15) and (3.16) yield the left and right-biased approximations to the

flux vector, f̂Lj+1/2 and f̂Rj+1/2. Similar expressions can be obtained for the recon-

struction of the conserved variables using the CRWENO5-LD scheme.

An alternative to the interpolation of the conserved variables is the interpo-

lation of the primitive flow variables. At each iteration, the density, velocity and

pressure are extracted from the conserved variables at each grid point. These prim-

itive variables are then interpolated at the interfaces and the flux vector computed

from the interpolated flow variables. Replacing f̂k and fk with ρ̂ and ρ respectively

in Eqns. (3.15) and (3.16), or the corresponding expressions for the CRWENO5-

LD scheme, we obtain the left and right-biased approximations to the density at

the interfaces (ρ̂ is the numerical approximation to ρ). The left and right-biased

approximations to each component of the velocity vector u and pressure p can be

similarly obtained. As with the reconstruction of conserved variables, this process

requires D + 2 independent tridiagonal solutions each for the left and right-biased

computations. The interpolated values of the primitive variables at the interface are

thus used to compute the left and right-biased interface fluxes, f̂Lj+1/2 and f̂Rj+1/2.

The final flux at the interface f̂j+1/2 is obtained from the left and right-biased
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fluxes through the upwinding step. In the present study, the Roe flux-differencing

scheme [5] is used. The scheme uses the solution of a local Riemann problem at

each interface to compute the left and right running waves. The final flux can be

expressed as the sum of the left-biased flux and the left-running waves or the right-

biased flux minus the right-running waves; or an average of the two. The upwind

flux is thus expressed as:

f̂j+1/2 =
1

2
(̂fLj+1/2 + f̂Rj+1/2)− 1

2
|Â(ûLj+1/2, û

R
j+1/2)|(ûLj+1/2 + ûRj+1/2) (3.17)

where ûL,R are the approximations to u, computed in the same way as the approx-

imations to the flux function f̂L,R; and

|Â(ûLj+1/2, û
R
j+1/2)| = Xj+1/2|Λj+1/2|X−1

j+1/2 (3.18)

The eigenvalues and eigenvectors at the interface on the right-hand side of the above

equation are calculated by Roe-averaging uLj+1/2 and uRj+1/2. The entropy correction

of Harten [7] is used to prevent the formation of unphysical expansion shocks.

The third approach is the reconstruction of the characteristic variables and

is the most robust, especially for problems with strong discontinuities [9, 13]. The

characteristic decomposition of the one-dimensional Euler equations is discussed

in Section 3.1.1. It is shown that the flux Jacobian matrix is diagonalizable and

the system of equations can be transformed to the characteristic space, where it

decouples into a set of independent scalar advection equations. Thus, the application

of the scalar interpolation schemes to the characteristic variables is the most natural

choice that respects the underlying physics of the problem. At each interface xi+1/2,

the Roe-averaged state is computed from ui and ui+1, and the eigenvalues and
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Figure 3.2: Characteristic-based reconstruction of the flux at j for interface i+ 1/2.

eigenvectors are evaluated. The characteristic fluxes at each grid point j, based on

the eigen-decomposition at i+ 1/2, are defined as

Φj = X−1
i+1/2fj (3.19)

where the k-th component of Φj denotes the component of the flux vector at xj along

the k-th left-eigenvector at the i+1/2-th interface. Figure 3.2 shows the interface at

which the eigenvalues and eigenvectors are evaluated and the grid point at which the

characteristic flux is calculated. The scalar interpolation schemes, given by Eqns.

(2.19) or (2.29), are applied to characteristic flux vector:

âΦ̂L
j−1/2 + b̂Φ̂L

j+1/2 + ĉΦ̂L
j+3/2 = aΦj−1 + bΦj + cΦj+1 + dΦj+2 (3.20)

where â, b̂, ĉ and a, b, c, d are the corresponding coefficients from the CRWENO5 or

CRWENO5-LD schemes. Substituting Eqn. (3.19) into the above equation, we get

âX−1
j+1/2f̂

L
j−1/2 + b̂X−1

j+1/2f̂
L
j+1/2 + ĉX−1

j+1/2f̂
L
j+3/2 = aΦj−1 +bΦj+cΦj+1 +dΦj+2 (3.21)

The left-eigenvectors, X−1, in the above equation are evaluated at interface xj+1/2

since the above equation represents the reconstruction at this interface. The corre-

sponding expression for the right-biased approximation can be similarly derived.
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Examination of Eqn. (3.21) shows that the solutions to the three components

of the flux vector are coupled, since X−1 is a full matrix. The resulting system of

equations is block tridiagonal, with the block size as D + 2. This is in contrast

to the reconstruction of the conserved or primitive variables, where D + 2 separate

tridiagonal systems of equations were solved, one for each scalar variable.

The reconstruction of the characteristic variables is marginally more expensive

for a non-compact scheme due to the additional cost of evaluating the eigenvectors at

each interface and transforming between the conserved variables and characteristic

variables. The numerical cost is significantly increased for a non-linear compact

scheme because in addition to these calculations, the solution to a block tridiagonal

system is required at each iteration, as opposed to several tridiagonal systems. If

τ(N) is the operation count for a tridiagonal system with N variables, the operation

count of D+2 such solutions is (D+2)τ(N). This corresponds to the reconstruction

of conserved or primitive variables. In contrast, reconstruction of characteristic

variables require one block tridiagonal solution with block size D + 2, for which

the operation count is O[(D + 2)2]τ(N), which is significantly larger. Section 2.6

discusses the computational expense and efficiency of the CRWENO5 schemes for a

scalar problem. These issues are revisited in the context of the Euler equations in

subsequent sections.

The left and right-biased approximations obtained using the interpolation of

characteristic variables can be combined using Eqn. (3.17) to give the final flux at

the interface. An alternative to Eqn. (3.17) is the characteristic form of the Roe

scheme, where the upwinding is carried out for each characteristic and then the final
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flux at the interface is computed from the upwind characteristic flux. The Roe-Fixed

(RF) flux formulation [11, 15] is obtained by incorporating the local Lax-Friedrich

flux splitting [52] as an entropy fix to the Roe solver [5]. It can be expressed as

φ̂kj+1/2 =


φ̂L,kj+1/2 if λj,j+1/2,j+1 > 0

φ̂R,kj+1/2 if λj,j+1/2,j+1 < 0

1
2

[
φ̂L,kj+1/2 + φ̂R,kj+1/2 + λ̃(α̂L,kj+1/2 − α̂

R,k
j+1/2)

]
otherwise

(3.22)

where φ̂k is the k-th component of Φ̂ and α̂ = X−1û is the vector of characteristic

variables. The term λ̃ = µλmax[j, j + 1/2, j + 1] provides the necessary dissipation

in the entropy fix. The dissipation parameter µ is usually between 1.1 and 1.3. In

the present study, the RF flux formulation is used along with the reconstruction of

characteristic variables.

3.3 One-Dimensional Inviscid Flow Problems

The application of the CRWENO scheme to the one-dimensional Euler equa-

tions is discussed in this section. The accuracy and convergence properties are

studied on a smooth problem that involves the advection of an entropy wave. The

non-oscillatory nature of the schemes and the resolution of discontinuities are studied

on the one-dimensional Riemann problems. The Shu-Osher problem, that describes

the interaction of a shock wave with an entropy wave, is studied. The solution con-

sists of waves of high wavenumbers as well as discontinuities and is representative of

compressible turbulent flows. The nomenclature of the various schemes considered

in this section is summarized in Table 2.2.
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3.3.1 Advection of Entropy Wave

The advection of a smooth density wave over a periodic domain is considered

in this problem. The pressure and velocity are constant, thus reducing the Euler

equations to a linear advection equation for density, with the advection speed as the

freestream velocity. The exact solution is given by:

ρ(x, t) = ρ∞ + A sin [π(x− u∞t)]

u(x, t) = u∞

p(x, t) = p∞ (3.23)

In the present example, the freestream conditions are taken as ρ∞ = u∞ = p∞ = 1

and the amplitude of the entropy wave is taken as A = 0.1. The domain is taken as

[0, 2] and periodic boundaries are assumed on both sides. The solution is obtained

after one cycle (t = 2) and the errors are compared.

Tables 3.1 - 3.3 show the L1, L2 and L∞ errors (density) and the correspond-

ing rates of convergence for the optimal schemes (NonCompact5, Compact5 and

Compact5-LD). The solutions are obtained by the reconstruction of characteristic

variables. An initial grid with 15 points is taken and progressively refined. The

CFL number corresponding to the grid with 15 points is 0.1 and is decreased with

each grid refinement, to ensure that errors due to time discretization converge at

the same order as those due to space discretization. The TVD-RK3 scheme is used

to evolve the solution in time. Fifth-order convergence is verified for all the schemes

as expected. The Compact5 schemes yields solutions with errors that are almost

1/10-th those of the NonCompact5 scheme. At finer grid resolutions, the Compact5-
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Table 3.1: L1 errors and convergence rates for the optimal schemes for entropy wave
advection

NonCompact5 Compact5 Compact5-LD
N Error rc Error rc Error rc

15 8.359e-05 - 1.289e-05 - 9.313e-06 -
30 2.676e-06 4.97 3.548e-07 5.18 2.253e-07 5.36
60 8.395e-08 4.99 9.929e-09 5.16 5.906e-09 5.25
120 2.626e-09 5.00 2.888e-10 5.10 1.623e-10 5.18
240 8.184e-11 5.00 8.567e-12 5.07 4.686e-12 5.11

Table 3.2: L2 errors and convergence rates for the optimal schemes for entropy wave
advection

NonCompact5 Compact5 Compact5-LD
N Error rc Error rc Error rc

15 9.293e-05 - 1.483e-05 - 1.141e-05 -
30 2.967e-06 4.97 3.877e-07 5.25 2.717e-07 5.39
60 9.321e-08 4.99 1.083e-08 5.16 6.854e-09 5.30
120 2.916e-09 5.00 3.172e-10 5.09 1.843e-10 5.21
240 9.097e-11 5.00 9.597e-12 5.04 5.473e-12 5.07

Table 3.3: L∞ errors and convergence rates for the optimal schemes for entropy
wave advection

NonCompact5 Compact5 Compact5-LD
N Error rc Error rc Error rc

15 1.311e-04 - 2.600e-05 - 2.556e-05 -
30 4.196e-06 4.97 5.913e-07 5.45 6.007e-07 5.41
60 1.317e-07 4.99 1.733e-08 5.09 1.732e-08 5.11
120 4.124e-09 5.00 5.338e-10 5.02 5.734e-10 4.92
240 1.308e-10 4.98 1.647e-11 5.01 2.080e-11 4.78

LD scheme yields solutions with errors that are 1/2 those of the Compact5 scheme.

These conclusions are consistent with the results from the numerical analysis pre-

sented in Section 2.3.1, as well as the conclusions drawn from smooth solutions of

the linear advection equation (Section 2.4.1). Tables 3.4 - 3.5 show the density errors

and rates of convergence for the WENO5, CRWENO5 and CRWENO5-LD schemes.

The mapped weights are used for the data shown in these tables and a more detailed
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Table 3.4: L1 errors and convergence rates for the WENO and CRWENO schemes
for entropy wave advection

WENO5 CRWENO5 CRWENO5-LD
N Error rc Error rc Error rc

15 9.465e-05 - 1.689e-05 - 1.317e-05 -
30 2.696e-06 5.13 3.612e-07 5.54 2.289e-07 5.84
60 8.399e-08 5.00 9.940e-09 5.18 5.911e-09 5.27
120 2.626e-09 5.00 2.889e-10 5.10 1.623e-10 5.18
240 8.185e-11 5.00 8.565e-12 5.07 4.685e-12 5.11

Table 3.5: L2 errors and convergence rates for the WENO and CRWENO schemes
for entropy wave advection

WENO5 CRWENO5 CRWENO5-LD
N Error rc Error rc Error rc

15 1.028e-04 - 1.899e-05 - 1.597e-05 -
30 2.988e-06 5.10 3.945e-07 5.58 2.758e-07 5.85
60 9.325e-08 5.00 1.084e-08 5.18 6.860e-09 5.32
120 2.917e-09 5.00 3.172e-10 5.09 1.843e-10 5.21
240 9.098e-11 5.00 9.593e-12 5.04 5.471e-12 5.07

Table 3.6: L∞ errors and convergence rates for the WENO and CRWENO schemes
for entropy wave advection

WENO5 CRWENO5 CRWENO5-LD
N Error rc Error rc Error rc

15 1.309e-04 - 3.266e-05 - 3.268e-05 -
30 4.199e-06 4.96 5.999e-07 5.76 6.124e-07 5.73
60 1.317e-07 4.99 1.734e-08 5.11 1.731e-08 5.14
120 4.124e-09 5.00 5.338e-10 5.02 5.734e-10 4.92
240 1.308e-10 4.98 1.644e-11 5.02 2.079e-11 4.79

discussion regarding the non-linear weights is presented in Section 3.5. The solu-

tion is smooth and these schemes should be identical to their optimal counterparts.

At very coarse grids, the non-linear schemes show some irregularities. However, at

finer grids the errors are identical to those of the optimal schemes, indicating that

the weights converge to their optimal values. The conclusions regarding the accu-

racy of the various schemes extend to the WENO5, CRWENO5 and CRWENO5-LD
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Figure 3.3: Comparison of L2 errors for the reconstruction of characteristic, con-
served and primitive variables.

schemes.

The extension of the scalar interpolation schemes to the Euler equations is de-

scribed in Section 3.2.1. The interpolation schemes can be applied to the conserved,

primitive and the characteristic variables. It is well known that the reconstruction

of the characteristic variables result in a robust algorithm that yields non-oscillatory

solutions for problems with strong discontinuities. However, for smooth problems,

the reconstruction of conserved or primitive variables suffices to yield accurate so-

lutions. Figure 3.3 shows the L2 error as a function of the number of points. The

WENO5, CRWENO5 and CRWENO5-LD schemes are compared and the solutions

obtained through the reconstruction of conserved, primitive and characteristic vari-

ables are shown. The CRWENO schemes are more accurate than the WENO scheme

for the same order of convergence. However, there are no differences in the solu-

tions obtained through the reconstruction of characteristic, conserved and primitive
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variables for a given scheme.

3.3.2 1D Riemann Problems

The non-oscillatory nature of the CRWENO schemes and the resolution of

discontinuities are assessed on the one-dimensional Riemann problems. These prob-

lems consist of an initial discontinuity that decomposes into a rarefaction wave, a

contact discontinuity and a shock wave, corresponding to each of the characteristic

fields of the Euler equations. The Sod shock tube problem [51] and the Lax shock

tube problem [52] are benchmark inviscid problems. The exact solutions to these

problems are obtained using a Riemann solver.

The initial conditions to the Sod shock tube problem is given by:

ρL, uL, pL = 1, 0, 1

ρR, uR, pR = 0.125, 0, 0.1 (3.24)

The domain is taken as [0, 2] and the initial discontinuity is placed at x = 1. Zero-

gradient boundary conditions are applied at both boundaries. The solution is ob-

tained on a grid with 80 points at t = 0.4 with a CFL number of 0.5. The TVD-RK3

scheme is used for time-marching. The WENO5, CRWENO5 and CRWENO5-LD

schemes are compared and a characteristic-based reconstruction is used to ensure

non-oscillatory solutions. Figure 3.4(a) and 3.4(b) show the density and velocity

respectively. The left-running rarefaction wave and the right-running contact dis-

continuity and shock wave can be observed in the solution. The CRWENO5 and
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(a) Density

(b) Velocity

Figure 3.4: Solutions to the Sod shock tube problem.

CRWENO5-LD schemes yield solutions that are non-oscillatory across the discon-

tinuities, like the WENO5 scheme. Thus, the non-oscillatory nature of the schemes

and the applicability of the WENO weights to the compact schemes are validated

for a non-linear system of equations. Examination of the shock wave shows that the

CRWENO5 and CRWENO5-LD schemes show a significantly lower smearing across
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(a) Density

(b) Velocity

Figure 3.5: Solutions to the Lax shock tube problem.

the discontinuity.

The initial conditions of the Lax shock tube are given by

ρL, uL, pL = 0.445, 0.698, 3.528

ρR, uR, pR = 0.5, 0, 0.571 (3.25)
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Table 3.7: L1 errors and convergence rates for the Lax shock tube problem

WENO5 CRWENO5 CRWENO5-LD
N Error rc Error rc Error rc

15 7.003E-02 - 5.403E-02 - 5.343E-02 -
30 3.716E-02 0.91 3.167E-02 0.77 3.153E-02 0.76
60 2.153E-02 0.79 1.836E-02 0.79 1.821E-02 0.79
120 1.081E-02 0.99 8.869E-03 1.05 8.732E-03 1.06
240 5.810E-03 0.90 4.716E-03 0.91 4.596E-03 0.93

with the domain as [0, 2] and the initial discontinuity located at x = 1. The solution

is evolved in time till t = 0.2 at a CFL of 0.5 using the TVD-RK3 scheme. Zero-

gradient boundary conditions are applied at both boundaries. Figure 3.5(a) and

3.5(b) show the solutions obtained by the WENO5, CRWENO5 and CRWENO5-

LD schemes on a grid with 80 points. The schemes use a characteristic-based re-

construction. The CRWENO5 and CRWENO5-LD schemes yield non-oscillatory

solutions and show significantly lower smearing for the contact discontinuity and

the shock wave.

Table 3.7 shows the L1 errors (density) and convergence plots for the Lax

shock tube. The CFL for the initial grid of 15 points is 0.1 and reduced with each

successive refinement. The solution is discontinuous and thus, the Taylor series

analysis for the schemes does not hold. However, the errors for the CRWENO5 and

CRWENO5-LD schemes are observed to be substantially lower compared to the

WENO5 scheme. At finer grids, the L1 convergence approaches 1 for all the three

schemes, which is consistent with results in the literature [16].
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3.3.3 Shock – Entropy Wave Interaction

The interaction of a shock wave with an entropy wave was proposed in [11] and

is a simplified one-dimensional representation of compressible turbulent flows. The

solution consists of discontinuities as well as waves of very small length scales. The

initial conditions, which consist of a Mach 3 shock wave interacting with a density

wave, are given by [16]

(ρ, u, p) =


(

27
7
, 4
√

35
9
, 31

3

)
if x < −4(

1 + 1
5

sin 5x, 0, 1
)

if x ≥ −4

(3.26)

The domain is taken as [−5, 5] and zero-gradient boundaries are applied at both

boundaries.

The solution is obtained at t = 1.8 at a CFL of 0.1 on a grid with 200 points.

The CRWENO5 and CRWENO5-LD schemes are compared with the WENO5 scheme

and a characteristic-based reconstruction is used. Figure 3.6(a) shows the density on

the complete domain while Fig. 3.6(b) shows the same solution, magnified around

the post-shock region. The “Exact Solution” refers to the solution obtained by the

WENO5 scheme on a grid with 2000 points and is used as the reference solution in

absence of an analytical one. The interaction of the shock wave with the entropy

wave results in the formation of smaller shock waves and high-wavenumber density

waves.

The CRWENO5 and CRWENO5-LD schemes show non-oscillatory behavior

across the discontinuities as well as lower smearing than the WENO5 scheme. The

high-wavenumber density waves behind the shock wave are smooth, but have large
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gradients. The performance of a numerical scheme for such flow features is repre-

sentative of its ability to accurately model small length scales characteristic of tur-

bulent flows. The WENO5 shows significant dissipation of the density waves. The

higher spectral resolution of the CRWENO5 and CRWENO5-LD schemes results in

a more accurate representation of these waves. Thus, the CRWENO schemes show

(a) Complete solution

(b) Discontinuities and small length-scale waves

Figure 3.6: Solutions to the shock – entropy wave interaction problem.
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a higher resolution of smooth flow features of small length scales, while maintaining

non-oscillatory behavior across discontinuities.

3.4 Computational Efficiency

The numerical cost of the CRWENO schemes and their computational effi-

ciency were discussed in Section 2.6 in the context of a scalar equation. The CR-

WENO schemes are more expensive than the WENO scheme on the same grid due

to the requirement of a tridiagonal solution at each time step. However, when com-

paring solutions with the similar errors, the CRWENO schemes are less expensive.

The validity of these conclusions is verified for a system of equations. As discussed

before, the reconstruction of conserved or primitive variables require D + 2 tridiag-

onal solutions, while the reconstruction of the characteristic variables require one

block tridiagonal solution with a block size of D + 2. Thus, the computational

expense of the characteristic-based reconstruction is substantially higher.

The advection of an entropy wave (Section 3.3.1) is considered. Table 3.8 shows

the L2 errors and computational run-times for the solutions obtained by using the

WENO5, CRWENO5 and CRWENO5-LD schemes on the conserved variables. The

solutions are obtained at grid sizes of 30, 60, 120 and 240 points. Solutions are also

obtained using the WENO5 scheme at grid sizes that are 1.5 times each of these

grid sizes (i.e., 45, 90, 180 and 360 points) and the errors and run-times shown. It

is observed that the compact schemes are more expensive for the same grid size.

However, a comparison of the error shows that the errors in the solutions obtained
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Table 3.8: L2 errors and computational run-time (in seconds) for WENO5, CR-
WENO5 and CRWENO5-LD with conserved variables reconstruction

WENO5 CRWENO5 CRWENO5-LD
N Error T Error T Error T

30 2.999E-05 1.01 3.823E-06 1.33 2.230E-06 1.62
45 3.967E-06 2.29 - - - -

60 9.359E-07 6.27 1.076E-07 8.29 5.976E-08 10.30
90 1.241E-07 14.37 - - - -

120 2.928E-08 39.13 3.209E-09 51.63 1.733E-09 66.10
180 3.879E-09 90.25 - - - -

240 9.136E-10 258.23 9.723E-11 329.54 5.222E-11 399.04
360 1.204E-10 576.41 - - - -

by the CRWENO5 scheme is comparable to the error in the solution obtained by

the WENO5 scheme on the grid that is 1.5 times finer. This conclusion holds true

at all refinement levels. A comparison of the run-times shows that the CRWENO5

schemes are less expensive than the WENO5 schemes for solutions of the same

accuracy. Figure 3.7(a) shows the error as a function of the computational run-

time of the various schemes for the reconstruction of the conserved variables. The

CRWENO5 and CRWENO5-LD schemes are more efficient.

The same conclusions do not extend to the reconstruction of the characteristic

variables where the solution of a block tridiagonal system is needed. Table 3.9 shows

the L2 errors and computational run-times for the solutions obtained by applying

the reconstruction schemes to the characteristic variables. The errors are identical to

those obtained by reconstructing the conserved variables, however the computational

expense of the CRWENO schemes is significantly larger. The WENO5 scheme
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Table 3.9: L2 errors and computational run-time (in seconds) for WENO5, CR-
WENO5 and CRWENO5-LD with characteristic based reconstruction

WENO5 CRWENO5 CRWENO5-LD
N Error T Error T Error T

30 2.998E-05 1.24 3.824E-06 5.58 2.229E-06 5.85
45 3.967E-06 2.81 - - - -

60 9.359E-07 7.78 1.076E-07 34.97 5.976E-08 36.57
90 1.241E-07 17.61 - - - -

120 2.928E-08 50.11 3.209E-09 221.75 1.733E-09 233.67
180 3.879E-09 110.92 - - - -

240 9.136E-10 314.19 9.722E-11 1405.66 5.223E-11 1498.15
360 1.204E-10 702.10 - - - -

is less expensive, even when comparing solutions with comparable errors. Figure

3.7(b) shows the error as a function of the computational run-time of the various

schemes for a characteristic-based reconstruction. The CRWENO5 and CRWENO5-

LD schemes are more expensive for the same error and are less efficient.

Sections 3.3.2 and 3.3.3 show results for inviscid problems that have strong dis-

continuities. The results are obtained using a characteristic-based reconstruction.

The CRWENO schemes show superior resolution of the discontinuities but they

are computationally less efficient than the WENO scheme. The WENO5 scheme

is expected to show the same resolution of a finer grid and would be less expen-

sive. The results are shown to validate and demonstrate the numerical properties of

the CRWENO schemes on benchmark problems that are representative of practical

flows.

Although the CRWENO schemes are less efficient for a characteristic-based re-

construction, their applicability to compressible flow problems is not limited. There
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(a) Reconstruction of conserved variables

(b) Reconstruction of characteristic variables

Figure 3.7: Errors and runtime for the various schemes.

are two reasons for this. The primary reason is that a characteristic-based recon-

struction is not necessary in many problems of practical relevance. It has been

observed in the literature that the reconstruction of characteristic variables is re-

quired for non-oscillatory solutions to inviscid flow problems. However, for smooth

problems as well as viscous flow problems, reconstruction of primitive or conserved
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variables suffice, even when shock waves are present in the solution. Several such

examples are presented in the next chapter. The CRWENO schemes are more effi-

cient for the reconstruction of primitive or conserved variables. The second reason

is that the numerical cost of reconstruction is a small fraction of the overall cost

(of each time step) for a practical flow solver. Thus, even if the reconstruction of

characteristic variables is necessary, the total increase in the computational expense

may be marginal.

3.5 Implementation of Non-Linear Weights

The implementation of the non-linear weights in Eqn. (3.15) or (3.21) (or

their right-biased counterparts) affects the accuracy, convergence and resolution of

the solution. The drawbacks of the weights proposed in [13] and the various al-

ternatives proposed [16, 17, 19, 20] were discussed in Section 1.3.1 and explored

in the context of the CRWENO schemes in Section 2.7. The numerical proper-

ties of the various implementations were studied for scalar problems. Table 2.10

summarizes the CRWENO schemes with the various implementation of the non-

linear weights. The CRWENO5-M, CRWENO5-Z and CRWENO5-YC schemes

were observed to recover the optimal order of convergence for a smooth solution

with optimal points. These schemes also showed an improved spectral resolution as

compared to the CRWENO5-JS scheme. The resolution of discontinuities showed

significant improvements, especially for long-term convection over a periodic domain.

Although the solution was observed to be smooth for the various CRWENO schemes,
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(a) ε = 10−6 (b) ε = 10−20

Figure 3.8: Errors and runtime for various implementations of the non-linear
weights.

higher derivatives of the solution showed spurious oscillations for the CRWENO5-

JS, CRWENO5-M and CRWENO5-Z schemes. These oscillations were absent in the

CRWENO5-YC scheme. The effect of the non-linear weights and their implemen-

tation is studied in this section in the context of the inviscid Euler equations.

Figure 3.8 shows the L2 errors as a function of the number of grid points for

the advection of a smooth entropy wave (Section 3.3.1). The solution is evolved in

time using the TVD-RK3 scheme and the initial CFL number, corresponding to the

grid with 15 points, is 0.1. The solution is smooth and the weights are expected to

be at their optimal values. Errors in the solutions obtained using the CRWENO5-

JS, CRWENO5-M, CRWENO5-Z and CRWENO5-YC are shown in the figure. In

addition, the error in the solution obtained using the underlying optimal scheme,

Compact5, is included. The CRWENO5-JS yields solutions that have a significantly

higher error than that of the Compact5 scheme at all grid sizes. The alternative for-

mulations, CRWENO5-M, CRWENO5-Z and CRWENO5-YC, yield solutions with
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errors identical to that of the Compact5 scheme. Figure 3.9 shows the three weights

for each of the CRWENO5 schemes on a grid with 30 points, for the character-

istic field corresponding to the eigenvalue u for ε = 10−6. The problem involves

the advection of an entropy wave and thus, this is the only characteristic field con-

tributing to the solution. Weights are shown for the left-biased interpolation. The

weights calculated using the CRWENO5-JS scheme show a departure from their op-

timal values at the extrema that results in the loss of accuracy. The CRWENO5-M,

CRWENO5-Z and CRWENO5-YC schemes result in optimal weights, as expected

(a) CRWENO5-JS (b) CRWENO5-M

(c) CRWENO5-Z (d) CRWENO5-YC

Figure 3.9: Entropy wave advection: Weights for the left-biased reconstruction of
characteristic field u (ε = 10−6).
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Figure 3.10: Solutions to the shock – entropy wave interaction problem with various
implementations of non-linear weights.

for this smooth problem.

The implementation of the non-linear weights has a significant effect on solu-

tions to flows with small length scales. Such flow features are smooth but have high

gradients due to their resolution with a small number of grid points. The accurate

representation of the small scales require the non-linear weights to be as close to

optimal as possible. However, due to the large gradients, the behavior of the weights

may be similar to their behavior across a discontinuity. The resulting solution would

show significant dissipation of the small length scales. The various implementations

of the CRWENO5 scheme are applied to the interaction of the shock wave with an

entropy wave (Section 3.3.3). The resolution of the post-shock high-wavenumber

density waves is compared for the various schemes.

Figure 3.10 shows the solution to the shock – entropy wave interaction problem

obtained by the CRWENO schemes with the various implementations of non-linear
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weights. The solutions are evolved in time using the TVD-RK3 scheme on a grid

with 200 points. The characteristic-based reconstruction is used and the CFL num-

ber is 0.1. The solution is magnified around the post-shock region. The alternative

formulations for the weights show significant improvements in the solution, com-

pared to the CRWENO5-JS scheme. The CRWENO5-Z and CRWENO5-YC yield

solutions that show slightly lower dissipation than that obtained by the CRWENO5-

M scheme. The difference in the solutions is explained by examining the weights

in the post-shock region. The density waves correspond to the characteristic field

with eigenvalue u and the corresponding weights for a left-biased reconstruction are

(a) CRWENO5-JS (b) CRWENO5-M

(c) CRWENO5-Z (d) CRWENO5-YC

Figure 3.11: Shock – entropy wave interaction: Weights for the left-biased recon-
struction of characteristic field u (ε = 10−6).
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shown in Fig. 3.11 for the CRWENO schemes. The weights computed using the

CRWENO5-JS implementation are far from optimal. The CRWENO5-M scheme

results in a slight improvement, where the weights are closer to their optimal values.

The CRWENO5-Z and CRWENO5-YC implementations show significant improve-

ments in the weights and this results in the higher resolution of the solutions. The

solutions shown in the previous figures are obtained with ε = 10−6 and are identical

for ε = 10−20.

Thus, to summarize, the CRWENO5 scheme with the weights proposed in

[13] show significant dissipation and loss of accuracy. The computed weights are

observed to be non-optimal for extrema of smooth flows on coarse grids as well

as high-wavenumber flow features. The alternative formulations for the non-linear

weights result in weights that are closer to their optimal values, while retaining

the non-oscillatory nature of the scheme across discontinuities. This results in a

significant improvement of the resolution of small length-scale flow features.

3.6 Two-Dimensional Inviscid Flow Problems

The CRWENO schemes are applied to two-dimensional inviscid flow problems

to assess and validate their performance in multiple dimensions. The present section

considers inviscid flows solved on a domain discretized by an equi-spaced Cartesian

grid. The numerical solution of the one-dimensional Euler equations is described

in Section 3.2 and their extension to the two-dimensional Euler equations is trivial.

The CRWENO schemes are applied along each grid line in each dimension. The
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reconstruction of conserved or primitive variables requires (D+ 2)(NI +NJ) tridi-

agonal solutions at each iteration, where NI and NJ are the total number of points

in each dimension and D is the number of dimensions. A characteristic-based recon-

struction requires (NI +NJ) block tridiagonal solutions at each iteration. Thus, it

is important to verify the conclusions drawn regarding computational efficiency in

Section 3.4 for a multi-dimension case.

3.6.1 Isentropic Vortex Convection

The long-term convection of an isentropic vortex with the freestream flow [15]

is considered. An isentropic vortex is an exact solution of the two-dimensional Euler

equations and convects with the freestream flow without dissipation or distortion.

The performance of numerical schemes for this test problem indicates their ability

to preserve the strength and shape of vortical structures for large durations of time.

The domain is taken as [0, 10]×[0, 10] in the present example and the freestream

flow is

ρ∞ = 1, u∞ = 0.5, v∞ = 0, p∞ = 1

A vortex is introduced in the flow, specified as:

ρ =

[
1− (γ − 1)b2

8γπ2
e1−r2

] 1
γ−1

; p = ργ

δu = − b

2π
e

1−r2
2 (y − yc)

δv =
b

2π
e

1−r2
2 (x− yc) (3.27)

where r = ((x−xc)2 +(y−yc)2)1/2 is the distance from the vortex center and b = 0.5

is the vortex strength. Periodic boundary conditions are applied at all boundaries.
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(a) Initial (b) WENO5

(c) CRWENO5 (d) CRWENO5-LD

Figure 3.12: Pressure contours for isentropic vortex convection after travelling 1000
core radii

As the solution is evolved in time, the vortex convects over the periodic domain

with a time period of T = 20.

Solutions are obtained on a 60× 60 grid at a CFL number of 0.5. The TVD-

RK3 scheme is used to evolve the solution in time. The WENO5, CRWENO5 and

CRWENO5-LD schemes are applied to the reconstruction of conserved variables.

The problem is smooth and the reconstruction of primitive or conserved variables
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(a) Cross-sectional pressure

(b) Pressure error at core (Number in parentheses is the computa-
tional run-time)

Figure 3.13: Cross-sectional pressure contours and error in pressure at vortex core
for solutions obtained on a 60× 60 grid

suffices. The solutions are obtained after the vortex travels a distance of 1000 times

the core radius. Figure 3.12 shows the pressure contours of the vortex correspond-

ing to the initial conditions and the numerical solutions obtained by the WENO5,

CRWENO5 and CRWENO5-LD schemes. The solution obtained by the WENO5

129



scheme shows significant dissipation of the vortex strength at the center as well as

a distortion of the shape. The CRWENO5 and CRWENO5-LD schemes are able

to preserve the vortex strength and shape as it convects over a large distance. Fig-

ure 3.13(a) shows the pressure variation through the cross-section of the vortex. In

addition to the solutions obtained on a 60 × 60 grid, the solution obtained by the

WENO5 scheme on a 90× 90 grid is included. The WENO5 scheme causes signifi-

cant dissipation of the pressure at the same grid resolution. The solutions obtained

by the CRWENO schemes are comparable to that obtained by the WENO5 scheme

on the 90× 90 grid.

Figure 3.13(b) shows the non-dimensionalized absolute error in pressure at the

vortex core as a function of the convection distance. The solutions obtained using

the underlying optimal schemes, NonCompact5, Compact5 and Compact5-LD, are

included as well as the solution obtained by the WENO5 scheme on a 90× 90 grid.

The solutions obtained by the WENO5, CRWENO5 and CRWENO5-LD schemes

show a good agreement with their optimal counterparts, thus verifying that the

weights attain their optimal values for a smooth solution. The solutions obtained

using the CRWENO schemes have a significantly lower error than that obtained by

the WENO5 scheme. This holds true for their optimal counterparts as well. The

solution obtained by the WENO5 scheme on a 90× 90 grid is comparable to those

obtained by the CRWENO schemes on a 60× 60 grid.

The computational efficiency of the CRWENO schemes is assessed for the

reconstruction of conserved/primitive variables in two dimensions. The number

in the parentheses inside the legend of Fig. 3.13(b) indicates the computational
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run-time for each of the schemes. The schemes with the WENO limiting have

larger run-times than the corresponding optimal schemes due to the computation

of weights. The WENO5 scheme is less expensive at the same grid resolution as

expected. However, the WENO5 scheme on a 90 × 90 grid is significantly more

expensive than the CRWENO schemes on a 60×60 grid and yields results of similar

accuracy. Thus, the conclusions drawn regarding the computational efficiency of

CRWENO schemes in Section 3.4 extend to multiple dimensions.

3.6.2 Double Mach Reflection of a Strong Shock

The double Mach reflection of a strong shock is a benchmark inviscid problem

[53] to assess the performance of the algorithm for strong discontinuities. The flow

involves the reflection of a strong shock wave from an inviscid wall resulting in sec-

ondary shock waves and contact discontinuities. The CRWENO schemes are applied

to this problem to validate their non-oscillatory behavior for a two-dimensional flow

dominated by strong discontinuities that are not grid-aligned.

The domain is a rectangle defined as [0, 4] × [0, 1] and the initial conditions

consist of an oblique Mach 10 shock intersecting the bottom boundary y = 0 at

x = 1
6
. The shock is at an angle of 60o to the x-axis. The flow upstream of the

shock is initialized as ρ, u, v, p = 1.4, 0, 0, 1 and post-shock conditions are specified

downstream. The left and right boundaries (x = 0 and x = 4) are set to the post-

and pre-shock flow conditions respectively. The bottom boundary (y = 0) consists

of an inviscid wall for 1
6
< x ≤ 4 and post-shock flow conditions are imposed on
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x ≤ 1
6
. The boundary conditions at the top of the domain (y = 1) correspond to

the exact motion of a Mach 10 oblique shock.

The flow is solved on a grid with 480×120 grid points. The presence of strong

discontinuities requires the reconstruction of characteristic variables. Though the

CRWENO schemes are computationally less efficient than the WENO scheme for

a characteristic-based reconstruction, this problem is presented as a validation of

the schemes for multi-dimensional problems with strong, non-grid-aligned disconti-

nuities, as well as to demonstrate its numerical properties. The solution is obtained

at t = 0.2 with the TVD-RK3 scheme and a CFL number of 0.5.

Figure 3.14 shows the density contours of the solution obtained with the

WENO5, CRWENO5 and CRWENO5-LD schemes. The shock waves and the Mach

stems are captured well with all the three schemes and the solutions agree well with

those in the literature [13, 14]. Figure 3.15 shows the entropy contours for this

problems, obtained on the 480 × 120 grid with the various schemes. The compact

schemes show an improved resolution of the contact discontinuity roll-up at the base

of the Mach stem. The solution obtained using the WENO5 scheme on a 720× 180

grid is also included for comparison (Fig. 3.15(b)). The solutions obtained by the

CRWENO schemes are comparable to the solution obtained by the WENO5 scheme

on a finer grid. The resolution of the CRWENO schemes is comparable to that of

the ninth-order MPWENO scheme in [14](see Fig. 7(b) on page 445 of that paper).
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(a) WENO5

(b) CRWENO5

(c) CRWENO5-LD

Figure 3.14: Density contours for double Mach reflection problem on a 480 × 120
grid
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(a) WENO5 (b) WENO5 (720× 180 grid)

(c) CRWENO5 (d) CRWENO5-LD

Figure 3.15: Entropy contours for double Mach reflection problem on a 480 × 120
grid

3.6.3 Shock – Vorticity Wave Interaction

The interaction of a shock wave with a vorticity wave [11] is a two-dimensional,

simplified representation of shock-turbulence interactions. This is a two-dimensional

equivalent of the shock – entropy wave interaction discussed in Section 3.3.3. This
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benchmark problem involves the accurate capturing of acoustic, vorticity and en-

tropy waves and has been studied in [41, 43] using hybrid compact-ENO/WENO

schemes.

The flow involves a Mach 8 shock wave interacting with a vorticity wave. The

domain is taken as [−1.5, 1.5]× [−1, 1] and the shock is initially situated at x = −1.

The vorticity wave, upstream of the shock, is defined as:

ρ = 1

u = −√γ sin θ cos (2πx cos θ + 2πy sin θ)

v =
√
γ cos θ cos (2πx cos θ + 2πy sin θ)

p = 1

where θ = π/6 is the angle of the vorticity wave with the shock wave. Uniform

post-shock conditions are specified downstream of the shock that are related to

the undisturbed upstream state by the Rankine-Hugoniot conditions. The solution

is evolved to a time of t = 0.2 using the TVD-RK3 scheme. Periodic boundary

conditions are enforced on the top and bottom boundaries (y = ±1). Steady flow

values corresponding to the flow conditions upstream and downstream of the shock

are specified at the left and right boundaries (x = ±1.5). The solutions are obtained

at a CFL number of 0.5.

Solutions are obtained using the reconstruction of characteristic variables,

since the problem involves discontinuities. Figure 3.16 shows the density contours
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(a) WENO5 (192× 128 grid)

(b) CRWENO5 (192× 128 grid)

(c) WENO5 (960× 640 grid)

Figure 3.16: Density contours for shock – vorticity wave interaction problem
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(a) WENO5 (192× 128 grid)

(b) CRWENO5 (192× 128 grid)

(c) WENO5 (960× 640 grid)

Figure 3.17: Vorticity contours for shock – vorticity wave interaction problem

using the WENO5 and CRWENO5 schemes on a 192 × 128 grid. The solution

obtained using the WENO5 scheme on a 960× 640 grid is also included as the “ex-

act” solution, in the absence of an analytical one. Figure 3.17 shows the vorticity
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Figure 3.18: Cross-sectional density for shock – vorticity wave interaction problem

contours for the same solutions. The solutions show good agreement with those in

the literature [11, 41, 43]. Figure 3.18 shows the cross-sectional density variation

through y = 0, magnified around the post-shock region. The solution comprises

fast left-running acoustic waves, and slow left-running entropy and vorticity waves.

The acoustic and entropy-vorticity regions are demarcated by a sharp discontinuity

around x = 0.55. The “exact” solution corresponds to the solution obtained using

the WENO5 scheme on a 960 × 640 grid. Solutions obtained using the WENO5

and CRWENO5 schemes on two different grids, 96× 64 and 192× 128, are shown.

The CRWENO5 scheme shows a sharper resolution of the solution at both grid

refinement levels, for the acoustic, entropy and vorticity waves. This particular

flow problem is not as numerically challenging since it involves waves of large wave-

lengths and therefore, the differences in the solutions by WENO5 and CRWENO5

are slight. The solutions obtained here compare well with those obtained by the

hybrid compact-WENO schemes in [43].
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Figure 3.19: Schematic diagram of the initial conditions for the shock-vortex inter-
action

3.6.4 Sound Generation from Shock-Vortex Interaction

A significant cause of aerodynamic noise in compressible flows is shock – tur-

bulence interactions. A simplified, benchmark problem representing the acoustics

of shock – turbulence interactions is the interaction of an isolated vortex with a

planar shock wave and the consequent formation of sound waves. There have been

several experimental and computational studies [54, 55, 56] (and references therein)

focusing on the effect of vortex and shock strengths on the generation of sound as

well as the deformation of the vortex and the shock wave.

The initial conditions consist of a stationary shock in a rectangular domain

given by [−70, 10]× [0, 10]. A relatively large domain is taken such that the sound

waves do not reach the boundaries within the simulation times. The shock is placed

at x = 0 with a freestream Mach number (Ms) of 1.2, with the flow going from right

to left. The right (x = 10) boundary is supersonic inflow while zero gradients are

enforced at the left (x = −70) boundary. The top (y = 40) and bottom (y = −40)
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boundaries are periodic. The domain is initialized with ρ, u, v, p = 1,−1.2, 0, 1/γ

upstream of the shock and post-shock conditions downstream of the shock. An

isentropic vortex is added to the flow at (xv = 4, yv = 0) for which the density and

velocity is given by

ρ =

(
1− 1

2
(γ − 1)M2

v e
1−(r/R)2

) 1
γ−1

δu = −Mve
1
2

(1−(r/R)2)(y − yv)

δv = Mve
1
2

(1−(r/R)2)(x− xv) (3.28)

where Mv is the vortex strength, r =
√

(x− xv)2 + (y − yv)2 is the radial distance

from the vortex center and R = 1 is the vortex radius. Figure 3.19 shows the domain

with the initial and boundary conditions.

The weak interaction (Mv = 0.25) is solved to verify the algorithm. Solutions

are obtained on a uniform 640 × 640 mesh with the TVD-RK3 time-stepping at a

CFL number of 0.5. Figure 3.20 shows the radial and azimuthal sound pressure

(∆p = p−p∞
p∞

, where p∞ is the post-shock freestream pressure) for the solutions

obtained with the CRWENO5 and WENO5 schemes. Two sound waves – precursor

and second sound – are generated as a result of the primary interaction of the

vortex with the shock wave. Both sound waves are quadrupolar and out of phase

with each other. The solutions are compared with those in [54], obtained using a

6th-order central compact scheme and 4th-order Runge-Kutta time-stepping; and a

good agreement is observed.
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(a) Azimuthal variation at t = 6 (r = 6.0 - precursor, r = 3.7 - second
sound)

(b) Radial variation at t = 6 for θ = −45o

Figure 3.20: Sound pressure for the weak shock – vortex interaction

The strong interaction (Mv = 1.0) is solved with the 9th-order WENO (WENO9)

scheme [14], along with the 5th-order WENO and CRWENO schemes. Solutions

are obtained on uniform grids with 640× 640 and 1050× 1050 points and compared

with those obtained in [56] using the 7th and 9th-order WENO schemes on iden-
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(a) 640× 640 grid

(b) 1050× 1050 grid

Figure 3.21: Azimuthal variation of sound pressure at t = 16 (r = 16.0 - precursor,
r = 12.0 - second sound, r = 6.7 - third sound) (strong interaction)

tical grids. The TVD-RK3 scheme is used to march in time at a CFL number of

0.5. Figure 3.21 shows the azimuthal variation of sound pressure at t = 16 for the

two different grid resolutions. Three quadrupolar sound waves – precursor, second
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(a) 640× 640 grid

(b) 1050× 1050 grid

Figure 3.22: Radial variation of sound pressure at θ = −45o (strong interaction)

sound and third sound – are observed at different radial locations and consecutive

sound waves are out of phase with each other. These result from the multi-stage

interaction of the vortex with the shock wave as well as secondary shock structures

[55]. Figure 3.22 shows the radial variation of the sound pressure at t = 16 for
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(a) t = 16 (b) t = 20

(c) t = 34

Figure 3.23: Sound pressure contours (strong interaction)

both grid resolutions. The three sound waves are visible as well as the secondary

shock structure between the precursor and the second sound. At a grid resolution of

640× 640 (Fig. 3.22(a)), the CRWENO5 scheme shows a sharper resolution of the

secondary shock structure compared to the WENO5 scheme. The solutions agree

well with the results in [56].
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(a) t = 20

(b) t = 34

Figure 3.24: Radial variation of sound pressure on the 640× 640 grid

The precursor, second and third sounds result from the primary and secondary

shock – vortex interactions. These interactions result in the distortion of the initially

circular vortex to an elliptical, rotating vortex that radiates additional quadrupolar

sound waves. Figure 3.23 shows the sound pressure contours at t = 16, 20, 34 for
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(a) CRWENO5 (b) WENO5 (c) WENO9

Figure 3.25: Out-of-plane vorticity contours at t = 34 (640× 640 grid)

(a) CRWENO5 (b) WENO5 (c) WENO9

Figure 3.26: Out-of-plane vorticity contours at t = 34 (1050× 1050 grid)

the solution obtained using the CRWENO5 scheme on the 1050× 1050 grid. Three

quadrupolar sound waves are identifiable at t = 16 that are generated from the

interaction of the vortex with the primary and secondary shocks. At t = 20, the

vortex takes on the elliptical shape causing the emission of additional sound waves.

A fourth acoustic wavefront is identifiable. Finally, Fig. 3.23(c) shows the acoustic

field at t = 34 for the rotating, elliptical vortex as it convects downstream emitting

sound waves.

Figure 3.24 shows the radial variation of the sound pressure at t = 20 and t =

34. The additional sound waves generated due to the rotation of an elliptic vortex
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Figure 3.27: Radial variation of sound pressure at t = 34 on the 1050× 1050 grid

are identifiable. At t = 34, seven sound waves are observed. The CRWENO5 shows

a sharper resolution of the sound waves at all times than the WENO5 scheme and the

solutions obtained with the CRWENO5 scheme are comparable to those obtained

with the WENO9 scheme. A disagreement in the sound pressure is observed between

the various schemes in Fig. 3.24(b) near the vortex core. This is a result of the

numerical error in the vortex strength and orientation. Figure 3.25 shows the out-

of-plane vorticity contours for the solutions at t = 34 obtained with the various

schemes on the 640× 640 grid, while Fig. 3.26 shows the same on the 1050× 1050

grid. The WENO5 scheme shows a significant dissipation of the vortex strength

as well as an error in the orientation on the coarse grid, compared to the WENO9

scheme. The orientation of the vortex at a given time instant depends on the

accurate numerical modeling of the shock – vortex interaction that results in the

distortion of the vortex. The CRWENO5 scheme shows a significant improvement
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in preserving the vortex strength as well as predicting the correct rotational speed.

The solutions obtained by the three schemes are similar on the finer grid. Figure

3.27 shows the radial variation of sound pressure at t = 34 on the 1050× 1050 grid

and the solutions obtained with the various schemes agree well with each other.

3.7 Summary of Chapter

The application of the CRWENO schemes, introduced in the last chapter, to

the Euler equations is discussed in this chapter. The CRWENO schemes, given

by Eqns. (2.19) and (2.29), describe the interpolation of a scalar variable. Three

different extensions to a vector function, in the context of the Euler equations, are

discussed and compared: reconstruction of primitive, conserved or characteristic

variables.

The accuracy and convergence of the CRWENO schemes is verified on a

smooth, one-dimensional problem. The conclusions regarding the improved accuracy

for the same order of convergence, drawn in the last chapter for scalar equations,

extend to the Euler equations. These observations are consistent with the Taylor se-

ries analysis of the schemes. The non-oscillatory nature of the schemes as well as the

resolution of discontinuities is assessed on benchmark inviscid flow problems. The

CRWENO schemes yield solutions with lower smearing of discontinuities. Specific

to the case of a flow with discontinuities as well as small length-scale structures, the

CRWENO schemes show a significant improvement in the resolution of the smaller

scales without compromising on the non-oscillatory behavior across shock waves.
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This property of the schemes indicates their suitability for simulation of compress-

ible, turbulent flows.

The numerical cost of the CRWENO schemes is studied in the context of a

system of equations. The CRWENO schemes are computationally more efficient

for the reconstruction of primitive or conserved variables. The reconstruction of

characteristic variables with non-linear compact schemes requires the solution of a

block tridiagonal system and thus, the additional numerical cost is not justified by

the increase in accuracy (compared to the WENO schemes). Although the recon-

struction of the characteristic variables is required to yield non-oscillatory solutions

for inviscid flows with strong discontinuities, it is shown in the next chapter that

reconstruction of primitive/conserved variables suffice for viscous flows or flows with-

out strong discontinuities. Thus, the applicability of the CRWENO schemes is not

limited.

The CRWENO schemes are extended to the two-dimensional Euler equations,

discretized on equi-spaced Cartesian grids. The schemes are validated on benchmark

problems. The long-term convection of an isentropic vortex is studied and the

CRWENO schemes show significant improvements in preserving the vortex strength

and shape. This indicates their suitability towards the simulation of aircraft and

rotorcraft wake flows, which involves the long-term convection and interactions of

vortical structures. The schemes are validated for flows with strong discontinuities,

especially one case that involves the interaction of a shock wave with a vorticity wave.

This problem is representative of flows involving shock-turbulence interactions. The

performance of the schemes is also verified for the accurate prediction of sound
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generation from shock – vortex interactions.

The numerical results presented in this chapter demonstrate the ability of the

CRWENO schemes to resolve smaller length scales and discontinuities, and preserve

flow features while yielding non-oscillatory solutions across discontinuities. Based

on these encouraging results for benchmark problems, the next chapter presents the

integration of the schemes with an in-house flow solver and the application of the

schemes to flows of practical relevance.
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Chapter 4

Application to Navier-Stokes Equations

The application of the CRWENO schemes to one- and two-dimensional invis-

cid flow problems on equi-spaced grids was presented in the preceding chapter. The

solutions were compared to those obtained using the traditional WENO schemes.

The spectral properties of the CRWENO schemes result in an improved resolution

of smaller length scales, while maintaining non-oscillatory behavior across discon-

tinuities. The lower dissipation and dispersion errors result in reduced smearing of

discontinuities as well as improved preservation of flow features for convection over

large distances.

In the present chapter, the fifth-order CRWENO scheme is integrated into

a structured, finite-volume, compressible Navier-Stokes solver and applied to flow

problems of practical relevance. The scheme is validated for curvi-linear meshes

as well as domains discretized by multiple, overset meshes with relative grid mo-

tion. Steady and unsteady flows around two-dimensional airfoils as well as three-

dimensional wings are solved and the results are presented. It should be noted that a

lower-order numerical scheme usually suffices for the prediction of integrated forces

(lift and drag). However, in this thesis, the focus is on the accurate resolution of flow

features near the airfoil/wing surfaces as well as in the wake. This chapter presents

cases that show the improved performance of the CRWENO schemes in capturing
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these features.

The CRWENO schemes are applied to the direct numerical simulation (DNS)

of turbulent flows. Two benchmark problems are presented that demonstrate the

ability of the schemes to accurately capture the smaller length scales of turbulent

fluctuations. These results indicate the suitability of the CRWENO schemes for the

numerical solution of compressible turbulent flows.

4.1 Governing Equations

The governing equations are the three-dimensional Navier-Stokes equations [3]

that can be expressed as

∂u

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
=
∂fv
∂x

+
∂gv
∂y

+
∂hv
∂z

+ S (4.1)

where u is the vector of conserved variables, f , g and h are the convective flux

vectors, fv, gv and hv are the viscous flux vectors and S is a source term that

represents body forces. In the present study, the source term comprises the pseudo-

forces that are required when the equations are formulated in a non-inertial frame.

The vectors in the above equations are given by:

u =



ρ

ρu

ρv

ρw

e


, f =



ρu

ρu2 + p

ρuv

ρuw

(e+ p)u


, g =



ρv

ρuv

ρv2 + p

ρvw

(e+ p)v


, h =



ρw

ρuw

ρvw

ρw2 + p

(e+ p)w


,
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fv =



0

τxx

τyx

τzx

uτxx + vτyx + wτzx − qx


,

gv =



0

τxy

τyy

τzy

uτxy + vτyy + wτzy − qy


,

hv =



0

τxz

τyz

τzz

uτxz + vτyz + wτzz − qz


(4.2)

where qx,y,z are the thermal conduction terms (qi = −k ∂T
∂xi

with k as the thermal

conductivity and T as the temperature). The equation of state is

e =
p

γ − 1
+

1

2
ρ(u2 + v2 + w2) (4.3)

and a perfect gas (p = ρRT ) is assumed where R is the gas constant. The mean

stresses are expressed as:

τij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
(4.4)
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where µ is the laminar viscosity. The equations are solved in their non-dimensional

form with the non-dimensionalized variables as:

t∗ =
ta∞
L
, (x∗, y∗, z∗) =

(x, y, z)

L
, (u∗, v∗, w∗) =

(u, v, w)

a∞
,

ρ∗ =
ρ

ρ∞
, T ∗ =

T

T∞
, p∗ =

p

ρa2
∞
, e∗ =

e

ρa2
∞
, µ∗ =

µ

µ∞
(4.5)

where the superscript ∗ denotes non-dimensionalized quantities, the subscript ∞

denotes freestream quantities, a =
√
γp/ρ is the speed of sound, and L is a reference

length scale for the flow. The non-dimensional parameters are defined as:

Reynolds number : Re∞ =
ρ∞u∞L

µ∞
(4.6)

Mach number : M∞ =
u∞
a∞

(4.7)

Prandtl number : Pr∞ =
µCp
k

(4.8)

where Cp is the specific heat at constant pressure. The Prandtl number is assumed

as 0.72 for all the flow problems in this study. The mean stresses and thermal

conduction terms for the non-dimensionalized system of equations are expressed as:

τij =
µM∞
Re∞

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
(4.9)

qi = − µM∞
Re∞Pr(γ − 1)

∂T

∂xi
(4.10)

where the superscript ∗ is omitted for convenience of notation.

4.1.1 Turbulence Modeling

Equation (4.1) is sufficient to describe flows that are inviscid or laminar. How-

ever, a large number of flows of practical relevance are turbulent and characterized
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by chaotic motion of molecules and higher rates of momentum and energy transfer

between different fluid elements. Section 4.4 describes the direct numerical simu-

lation of turbulent flows where the grid is fine enough to capture the fluctuations

that result from the chaotic motion. However, this technique is computationally

expensive except for benchmark problems. Practical flow problems, such as those

described in Section 4.3, are usually solved on grids that are not fine enough to

capture the scales relevant to turbulent fluctuations. Thus, a turbulence model is

required to account for the macroscopic effects of the sub-grid-scale motion.

The Reynolds-Averaged Navier-Stokes (RANS) equations [3] are used in this

study, where the flow variables are decomposed into their mean and fluctuating

parts, i.e.,

φ = φ+ φ′ (4.11)

where φ′ is the fluctuation and φ is the mean, defined as,

φ =
1

χ
lim

∆t→∞

1

∆t

∫ ∆t

0

χφ(t)dt (4.12)

The weighting function is χ = 1 for pressure and density and χ = ρ for all other

flow variables (velocity, internal energy, enthalpy and temperature). The RANS

equations are obtained by expressing each of the variables in Eqn. (4.1) as Eqn.

(4.11) and assuming that the magnitude of fluctuations are much lower than the

mean value of each variable. The resulting system of equations for the mean variables

is identical to Eqn. (4.1) with the addition of the Reynolds-stress tensor to the

momentum and energy equations that accounts for the additional momentum and

energy exchange due to turbulent fluctuations. This introduces additional terms in
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the system of equations and a turbulence model is needed to close the equations.

In the present study, the one-equation Spalart-Allmaras turbulence model [57] with

the rotational correction [58] is used.

4.2 Baseline Flow Solver

A structured-mesh, compressible, unsteady, Reynolds-Averaged Navier-Stokes

(RANS) solver developed in [59] is used in this chapter. The RANS equations are

solved using a cell-averaged finite volume formulation [1]. The focus of this thesis is a

high-order accurate spatial reconstruction scheme for the convective fluxes and thus,

the application of scalar interpolation schemes described in the previous chapters

to a discretization on a curvi-linear mesh is discussed in the next sub-section. A

brief description of the other elements of the solution algorithm is presented in the

following paragraphs.

The convective fluxes are computed using high-order accurate upwind schemes.

In addition to the CRWENO schemes developed in this thesis, the flow solver in-

corporates the third-order MUSCL scheme with Koren’s limiter [6, 60] and the

fifth-order WENO scheme [13] with mapped weights [16] as given by Eqn. (1.41),

and Eqns. (1.43) and (1.44). The conserved variables are reconstructed and the

Roe scheme [5] with the Harten entropy fix is used to calculate the upwind inviscid

flux at the interface.

The viscous fluxes are calculated using second-order central differences. The

equations are marched in time using the third-order TVD Runge-Kutta (TVD-
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RK3) scheme or the second-order Backward Differencing (BDF2) scheme. Viscous

problems need very fine mesh sizes to resolve the boundary layer that results in a

very restrictive stability limit for the time step size for an explicit time-marching

scheme. Thus, for these problems the implicit BDF2 scheme is used. The resulting

system of equations is solved using the diagonalized ADI [61, 62] or the LU-SGS

[63, 64] schemes. Dual time-stepping [65] is used for unsteady problems on stretched

meshes.

Several problems require the use of overset meshes for domain discretization.

Examples include the simulation of flow around an airfoil in a wind tunnel and

the wake flow around a helicopter rotor blade. The solution algorithm for overset

meshes require the identification of overlap zones, donor and recipient grid points for

each grid and interpolation of solution between the grids. The implicit hole-cutting

technique [66, 68] is used in the present solver to identify the overlap regions and a

tri-linear interpolation is used to transfer the solution between donor and recipient

points.

A more detailed description of the above algorithms and their integration with

each other is available in [67, 68]. It should be noted here that the present solver

uses the ghost-point technique to enforce boundary conditions such that a reduced

order reconstruction is not necessary at the boundaries.
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4.2.1 Finite Volume Formulation and Reconstruction

The finite volume formulation is based on the integral form of a conservation

law given by Eqn. (1.4). The Navier-Stokes equations can be expressed in this

form by integrating them over a control volume and applying Stokes’ theorem. The

discretized convective flux can thus be expressed in the integral form as:

Nfaces∑
l=0

Fl · n̂ldSl; F = f î + gĵ + hk̂ (4.13)

where Nfaces is the number of discrete faces of a grid cell (control volume), F is

the flux tensor with f ,g,h as the convective fluxes in Eqn. (4.1), n̂ is the unit face

normal vector for a given face, and dS is the face area. The vectors î, ĵ, k̂ denote

the Cartesian unit vectors along x, y and z directions respectively.

The domain is discretized using a structured grid, resulting in each grid cell

being a quadrilaterally-faced hexahedron (in three dimensions). A grid cell centered

at (i, j, k) has six faces (Nfaces = 6), with face center indices as (i ± 1/2, j, k),

(i, j ± 1/2, k) and (i, j, k ± 1/2). The reconstruction step requires the calculation

of the flux tensor F at these faces from the discrete values at the cell centers. The

reconstruction of the interface flux for a one-dimensional domain is described in

Section 3.2.1 and is extended to a three-dimensional domain in this section. The

calculation of the flux at the face (i+1/2, j, k) is described and the flux at the other

faces is similarly computed.

In the present study, the scalar interpolation schemes are applied to the con-

served variables. Equations (3.15) and (3.16) with the appropriate indices are used

to compute the left- and right-biased flux at the face (i + 1/2, j, k) using the CR-
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WENO5 scheme. These equations are applied to each component of the flux vectors

f , g and h. Denoting the face-normal flux as

Fn = F · n̂ = fnx + gny + hnz (4.14)

the left and right biased face-normal numerical fluxes F̂L,R
n are thus computed using

the CRWENO5 scheme. The final upwind flux is obtained by using the Roe scheme

F̂n,(i+1/2,j,k) =
1

2
(F̂L

n,(i+1/2,j,k) + F̂R
n,(i+1/2,j,k))

− 1

2

∣∣∣Â(ûL(i+1/2,j,k), û
R
(i+1/2,j,k))

∣∣∣ (ûL(i+1/2,j,k) + ûR(i+1/2,j,k)) (4.15)

where

∣∣∣Â(ûL(i+1/2,j,k), û
R
(i+1/2,j,k))

∣∣∣ = Xn,(i+1/2,j,k)|Λn,(i+1/2,j,k)|X−1
n,(i+1/2,j,k) (4.16)

The subscript n in the right hand side of the above equation signifies that the

eigenvalues and eigenvectors for the face are evaluated using the face-normal flow

velocities [69].

4.3 Flow over Airfoils and Wings

The application of the CRWENO scheme to steady and unsteady flow over

airfoils and wings is described in this section. The scheme is validated for curvi-

linear meshes as well as overset meshes with relative grid motion. Results are

compared with experimental data available in the literature as well as the third-

order MUSCL scheme with Koren’s limiter (MUSCL3) and the fifth-order WENO

scheme (WENO5). The flow around a NACA0005 airfoil undergoing simultaneous
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pitching and plunging is studied as it is representative of a flapping-wing-based

micro-air vehicle. The scheme is validated in three-dimensions for the steady flow

around the ONERA-M6 wing and the unsteady flow around the Harrington-2 rotor.

Although lower-order schemes suffice for calculating integrated forces, the solutions

obtained using the CRWENO scheme show considerable improvement in capturing

various flow features (for example, wake vortices).

4.3.1 Steady Turbulent Flow over RAE2822 Airfoil

The steady, transonic, turbulent flow around the RAE2822 airfoil is solved to

validate the CRWENO5 scheme for a curvi-linear mesh. The domain is discretized

by a stretched, C-type mesh with the outer boundaries 50 chord lengths away. Figure

4.1 shows the domain as well as a magnified view of the mesh near the airfoil. The

mesh has 521 points in the wrap-around direction with 60 points in the wake and

401 points on the airfoil surface, and 171 points in the normal direction. The grid

spacing at the airfoil surface is 4× 10−6 times the chord length.

The freestream conditions correspond to “Case 6” in [70]. The Mach number

is 0.725, the Reynolds number is 6.5 million (based on airfoil chord length) and

the angle of attack is 2.92o. The experimental data was obtained inside a wind

tunnel and thus, the freestream conditions for the computations are corrected [71].

The corrected angle of attack and freestream Mach number are 2.51o and 0.731

respectively.
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(a) Complete domain (b) Magnified view near the airfoil

Figure 4.1: C-type mesh for the RAE2822 airfoil with 521× 171 points

Figure 4.2: Transonic flow around the RAE2822 airfoil: pressure contours and
streamlines

The numerical solution is obtained using the CRWENO5 scheme and the BDF2

scheme is used to march the solution in time to steady state. Characteristic-based

freestream boundary conditions are enforced on the outer boundaries. No-slip wall

boundary conditions are applied on the airfoil surface and wake averaging is used in

the wake-cut of the C-type mesh. Figure 4.2 shows the pressure contours and the

velocity streamlines for the flowfield. The stagnation point, locally supersonic flow
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Figure 4.3: Coefficient of pressure on the surface for the RAE2822 airfoil

(a) x/c = 0.319 (b) x/c = 1.025

Figure 4.4: Boundary layer and wake velocity profiles for the RAE2822 airfoil (c is
the airfoil chord)

on the upper surface and the shock that terminates it are clearly visible. Figure

4.3 shows the coefficient of pressure on the airfoil surface for the computed solution

as well as the experimental data [70]. A good agreement is observed between the

numerical solution and the experimental data. Figure 4.4 shows the velocity profiles

at two locations: inside the boundary layer on the upper surface at x/c = 0.319
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Figure 4.5: Convergence history for the RAE2822 airfoil

and inside the wake at x/c = 1.025. The numerical solution agrees well with the

experimental data.

Figure 4.5 shows the density residual for the CRWENO5 scheme as well as the

WENO5 scheme. Both these schemes show a residual drop of only one-and-a-half

orders of magnitude. A component-wise reconstruction is used in the present study,

along with the WENO weights as formulated by Jiang and Shu. The convergence of

the WENO schemes for airfoil problems has been studied [72] and non-characteristic-

based formulations were observed to show poor convergence. Although the current

results agree well with experimental data, the improvement of convergence behavior

for the CRWENO5 scheme is an area of active research.
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(a) Complete domain - Wind tunnel and airfoil (b) Magnified view near the airfoil

Figure 4.6: Overset mesh system for the SC1095 in a wind tunnel

4.3.2 Dynamic Stall of SC1095 Airfoil in Wind Tunnel

The dynamic stall of the SC1095 airfoil inside a wind tunnel is solved to

validate and demonstrate the CRWENO5 scheme for overset mesh systems with

relative motion between the meshes. The numerical solution of flows over such

domains require the identification of regions of overlap (between meshes) where

the solution is transferred from the donor mesh to the recipient mesh, as well as

blanked out regions within a mesh where the flow is solved for on a different mesh.

The solution update procedure is such that at a given instant in time, the solution

update at a blanked out point is zero. This may create a locally unphysical solution;

but as it does not influence interior field points (since it is separated by points in

the overlap region that use interpolated data) it does not contaminate the solution

field. In addition, if a blanked point becomes a field point at a future point in time

due to relative grid motion, there will always be a transition period where the data
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Figure 4.7: Lift vs. angle of attack for the pitching SC1095 airfoil

will be updated using interpolated data from another mesh.

A compact scheme results in a coupling of the interpolated interface fluxes with

neighboring fluxes, i.e., the fluxes in the blanked out region are also solved as a part

of the system of equations. Therefore, the treatment of the fluxes in the blanked out

region is important. The CRWENO5 scheme uses an adaptive stenciling procedure

based on the local smoothness of the solution. Section 2.2 discusses this in details

and demonstrates how the system of equations is decoupled across a discontinuity.

The unphysical values of flow variables inside the blanked out region of a mesh

appears as a discontinuity to the reconstruction scheme. It is thus expected that

the CRWENO5 scheme will result in a system of equations that is decoupled from

the interface fluxes inside the blanked out region, preventing contamination of the

flow domain and yielding smooth solutions across regions of overlap.
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(a) Pressure (b) Vorticity

Figure 4.8: Comparison of pressure and vorticity contours for various schemes -
MUSCL3 (green), WENO5 (red) and CRWENO5 (blue)

Figure 4.6(a) shows the airfoil and wind tunnel meshes for this problem. The

wind tunnel height is 5c where c is the airfoil chord length. A clustered Cartesian

grid with 151× 101 points is used to discretize the wind tunnel. A C-type mesh is

used for the airfoil that has 365 points in the wrap-around direction with 47 points

in the wake, and 138 points in the normal direction. The figure shows the overlap

region as well as the blanked out regions for the airfoil and wind tunnel meshes.

The region around the airfoil is blanked out for the wind tunnel mesh as the flow

in that region is solved on the body-conforming airfoil mesh. The outer regions of

the airfoil mesh are blanked out since the stretching causes this mesh to be coarser

than the wind tunnel mesh. Thus, the flow is solved on the wind tunnel mesh. A

thin overlap region separates the blanked out regions of the two meshes, where the

solution is transferred between them. Figure 4.6(b) shows a magnified view of the
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(a) CRWENO5 (b) WENO5

(c) CRWENO5 (d) WENO5

Figure 4.9: Comparison of pressure contours at 18.83o angle of attack for the overlap
region - airfoil mesh (red) and wind tunnel mesh (blue)

grid near the airfoil. The grid spacing at the airfoil surface is 5 × 10−6 times the

chord length.

The freestream Mach number is 0.302 and the Reynolds number (based on the

airfoil chord length) is 3.92 million. The airfoil pitches with a mean angle of attack

of 9.78o and the pitch amplitude is 9.9o at a reduced frequency of 0.099. The time

step size is taken at 0.01, which results in 10, 500 iterations per cycle. The solution
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is marched in time using the BDF2 scheme and dual time-stepping with 15 Newton

sub-iterations. The simulation is run for four cycles and solutions are compared for

the last cycle. The solution obtained using the CRWENO5 scheme is compared with

those obtained using the non-compact MUSCL3 and WENO5 schemes. Figure 4.7

shows the lift as a function of the angle of attack over one complete cycle. The nu-

merical solutions are validated against experimental data [73] and a good agreement

is observed. Figure 4.8 show the pressure and vorticity contours around the airfoil

for the three numerical schemes. The solutions are obtained at 18.94o angle of attack

(upstroke). The figure shows the leading edge vortex after it has detached from the

leading edge and has started convecting downstream. The solution obtained using

the CRWENO5 scheme agrees well with solutions obtained with the non-compact

schemes.

Figures 4.9(a) and 4.9(b) show the pressure contours for the flow when the

airfoil is at 18.83o angle of attack (upstroke). The solutions for the compact scheme

and non-compact WENO5 scheme are shown. The vortices shed from the upper

surface are transferred from the airfoil mesh to the wind tunnel mesh as they convect

downstream. A magnified view of the overlap region between the two meshes for

the two schemes is shown in Figs. 4.9(c) and 4.9(d). The contours on the airfoil and

wind tunnel meshes agree with each other in the overlap region and are continuous

across the mesh boundary. Thus, the applicability of the compact scheme is verified

for overset meshes requiring transfer of flow data between domains.
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4.3.3 Flow over Pitching-Plunging NACA0005 Airfoil

Flow around a pitching-plunging airfoil at low Reynolds number is represen-

tative of the flowfield around a flapping-wing-based micro-air vehicle and has been

previously studied using experimental and numerical techniques [74]. The com-

bined pitching and plunging motion results in positive thrust (negative drag) when

averaged over one cycle. Previous computational studies used Reynolds-Averaged

Navier-Stokes (RANS) based algorithms with second-order spatial accuracies. These

lower-order algorithms are sufficient for the prediction of lift and thrust. In this the-

sis, the focus is to capture the finer details of the flowfield near the airfoil surface

including the formation and shedding of leading edge vortical structures. The CR-

WENO5 scheme is used for spatial reconstruction and compared to MUSCL3 and

WENO5 schemes. In addition to higher-order spatial schemes, the one-equation

Spalart-Allmaras turbulence model [57] is used with the Delayed-Detached Eddy

Simulation (DDES) modification in its two-dimensional form. It is expected that

a higher-fidelity turbulence model with high-order accurate numerical scheme will

improve the resolution of coherent vortical structures.

The domain is discretized using an O-type mesh with two different grid sizes

– 241× 241 and 361× 361. A freestream Mach number of 0.1 is specified, which is

higher than that used in [74]. A higher Mach number is used in this study to avoid

the need for low Mach preconditioning. The Reynolds number based on airfoil chord

length is 15000. The pitching motion is specified by a pitch amplitude of 40o around
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a zero mean angle of attack and a reduced frequency of 0.795. The plunging motion

has an amplitude of 1.0 and the same reduced frequency. The plunging motion is

π/2 behind in phase than the pitching motion and the airfoil pitches around the

leading edge.

The simulation is run over four cycles and the results from the final cycle are

presented. The solution is advanced in time using the BDF2 scheme and dual time-

stepping with 15 Newton sub-iterations. A time step size of 0.008 is taken resulting

Figure 4.10: Pressure distribution over one time period - Ordering is from left to
right and top to bottom
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(a) Lift

(b) Drag

Figure 4.11: Integrated forces over one time period

in 5000 iterations per cycle. Figure 4.10 shows the pressure distribution around the

airfoil over one complete cycle on the 361×361 grid. The solutions are obtained using

the CRWENO5 scheme. As the airfoil plunges downwards, leading edge vortices are
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(a) MUSCL3 (b) WENO5 (c) CRWENO5

Figure 4.12: Pressure distribution for various schemes at t/T = 0.75 (Upstroke)
(361× 361 grid)

formed on the upper surface that grow in size and then detach from the surface. This

results in a positive lift during the downstroke. Similarly, vortices form and shed

from the lower surface during the upstroke resulting in negative lift. This results in

a zero average lift over the entire cycle. Both strokes result in negative drag and the

flapping motion causes the generation of positive thrust. The lift and drag variation

over one cycle is shown in figure 4.11. Results from the CRWENO5, WENO5 and

the MUSCL3 schemes are verified with the previous computational results [74] where

the flow was solved using an incompressible, RANS-based algorithm with second-

order accuracy in time and space. The integrated forces agree well with the previous

results.

Figure 4.12 shows the pressure for the solutions obtained with the MUSCL3,

WENO5 and CRWENO5 schemes on the 361 × 361 grid at t/T = 0.75 (where

T is the time period). The CRWENO5 scheme shows an improved resolution of

the vortical flow features in the wake. The numerical shadowgraph (∇2ρ) for the
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(a) MUSCL3 (241× 241 grid) (b) WENO5 (241× 241 grid) (c) CRWENO5 (241×241 grid)

(d) MUSCL3 (361× 361 grid) (e) WENO5 (361× 361 grid) (f) CRWENO5 (361×361 grid)

Figure 4.13: Numerical shadowgraph for various schemes at t/T = 0.75 (Upstroke)

solutions at the same time are shown in figures 4.13 for both grid sizes. Though

the CRWENO5 and WENO5 schemes are of the same order, the resolution of the

shed vortices is significantly better with the CRWENO5 scheme, at both grid sizes.

Figure 4.14 shows out-of-plane vorticity at t/T = 0.4 for the three schemes on the

two grids. It is observed on the finer grid that the CRWENO5 scheme is able to

resolve the various vortices that form and detach from the airfoil surface. At both

grid sizes, it is observed once again that the CRWENO5 is able to preserve the wake

vortices over larger distances than the WENO5 scheme. A comparison of the three

schemes show that while a second or third-order scheme is sufficient to predict the

integrated forces like the lift and drag, a higher-order scheme is necessary to capture

the separated vortical flow features near the airfoil surface as well in the wake.
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(a) MUSCL3 (241× 241 grid) (b) WENO5 (241× 241 grid) (c) CRWENO5 (241×241 grid)

(d) MUSCL3 (361× 361 grid) (e) WENO5 (361× 361 grid) (f) CRWENO5 (361×361 grid)

Figure 4.14: Vorticity distribution for various schemes at t/T = 0.40 (Downstroke)

Although the CRWENO5 and WENO5 schemes are both fifth-order accurate, the

increased spectral resolution capabilities of the CRWENO5 scheme yields a solution

with higher resolution of the flow features than the WENO5 scheme.

4.3.4 Steady Flow over ONERA-M6 Wing

The steady flow around the ONERA-M6 wing is solved to validate the CR-

WENO5 scheme for a three-dimensional problem, as well as compare its ability to

capture and preserve the tip vortex in the wake. The numerical solution for the flow

over airfoils and wings are usually obtained on a mesh that is clustered near the

body. In absence of additional overset meshes specifically placed to capture the tip

vortices, the rapid stretching of the mesh away from the body causes dissipation of
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the vortices in the wake. A high-order accurate numerical scheme helps in signifi-

cantly improving the resolution and preservation of wake flow features without the

need of finer meshes.

Figure 4.15 shows the single-block C-O mesh used to discretize the domain

around the ONERA-M6 wing. The mesh has 289 points in the wrap-around di-

rection, 65 points in the normal direction and 49 points in the spanwise direction.

The grid is non-dimensionalized to have a unit semi-span. Characteristic-based

freestream boundary conditions are enforced at all far-field boundaries. No-slip wall

boundary conditions are enforced on the wing surface. Symmetry is assumed on

the plane corresponding to the wing root. The Reynolds number based on mean

aerodynamic chord is 11.7 million and the angle of attack is 3.06o. The freestream

Mach number is 0.84.

The solution is marched in time using the BDF2 scheme till it reaches a steady

state. Figure 4.16 shows the pressure coefficient on the wing surface at various

span-wise locations. Solutions obtained by the CRWENO5 scheme are validated

against experimental data [75]. A good agreement is observed, thus validating the

CRWENO5 scheme for a three-dimensional steady flow problem.

The ability of the CRWENO5 scheme to accurately capture and preserve the

tip vortex in the wake is compared to that of the MUSCL3 and WENO5 schemes.

Figure 4.17 shows the surface pressure contours as well as the evolution of the tip vor-

tex in the wake for the solutions obtained by the WENO5 and CRWENO5 schemes.
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(a) Complete domain

(b) Magnified view near the wing

Figure 4.15: C-O type mesh for ONERA-M6 wing
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Figure 4.16: Pressure coefficient on wing surface at various span-wise locations for
the ONERA-M6 wing

The wing surface is colored by the pressure while the slices in the wake are colored

by the vorticity magnitude. Both the schemes capture the formation and convec-

tion of the tip vortex. The solutions are similar near the wing. However, further

downstream, the CRWENO5 scheme shows an improvement in the preservation of
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(a) WENO5

(b) CRWENO5

Figure 4.17: Surface pressure distribution and evolution of tip vortex in the wake
for the ONERA-M6 wing
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Figure 4.18: Comparison of wingtip pressure coefficient for various schemes

the tip vortex, as observed from the slices at x = 3.0 and x = 3.5.

The formation of the tip vortex at the wing is compared for the various

schemes. Figure 4.18 compares the pressure coefficient on the wing surface at a

span-wise location of 2z/b = 0.99 (where b = 2 is the wing span). The suction peak

at the trailing edge indicates the formation of the tip vortex. It is observed that the

MUSCL3 scheme results in the formation of a significantly weaker vortex, compared

to experimental data. The WENO5 and CRWENO5 schemes result in stronger tip

vortices and the pressure distribution agrees better with the experimental data.

Figure 4.19 compares the swirl velocity and vorticity magnitude through the

tip vortex core at two locations in the wake. The vortex is significantly weaker at

the downstream location. At both these locations, the CRWENO5 scheme results

in a stronger vortex as it convects downstream in the wake.
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(a) x = 1.5

(b) x = 3.0

Figure 4.19: Comparison of swirl velocity and vorticity magnitude in the tip vortex
for various schemes

4.3.5 Flow around Harrington Rotor

Section 4.3.2 demonstrated the performance of the CRWENO5 scheme on a

domain involving overset grids with relative motion for a two-dimensional flow. The

flow around an experimental Harrington two-bladed single rotor [76] is solved to
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validate the scheme for a three-dimensional unsteady flow on overset, moving grids.

The unsteady flow around a rotor, and in its wake, is characterized by vortical

structures interacting with the rotor blade and each other. A lower-order numerical

scheme is sufficient to predict the integrated airloads over the blades; however, a

high-order accurate scheme is required to capture and preserve near-blade and wake

flow features. This is necessary, for example, to study the sound generation from a

rotor or to understand the flow-field near the ground plane for a rotorcraft operating

in ground effect. In this section, the CRWENO5 scheme is compared with the non-

compact schemes (MUSCL3 and WENO5).

The experimental setup (referred to as “Rotor-2” in [76]) consists of a two-

bladed rotor with an aspect ratio of 8.33. The blade cross-section is the symmetric

NACA airfoil with a linearly varying thickness of 27.5% at the hub (0.2R) to 15%

at the tip (1.0R) where R is the rotor radius. The tip Mach number and Reynolds

number are 0.352 and 3.5 × 106 respectively. The collective pitch is varied from

2o to 12o to obtain the variation of thrust with power. Figure 4.20 shows the

domain discretization used in the present study. The domain consists of a cylindrical

background mesh with 127 × 116 × 118 points and a C-O type blade mesh with

267× 78× 56 points. The background mesh is clustered near the blade mesh in the

z-direction and at the hub and tip regions in the radial direction. The blade mesh

is clustered at the hub and tip in the spanwise direction, as well as the blade surface

along the surface-normal direction. The dimensions in Fig. 4.20(a) correspond to a

unit chord length for the blade. The solution is extrapolated with zero gradients at
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(a) Complete domain - Blade mesh (red) and background mesh (blue)

(b) Blade Mesh (red and green) overset on the background mesh (blue)

Figure 4.20: Computational domain for Harrington rotor
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(a) cT vs. cQ

(b) Figure of merit

Figure 4.21: Thrust and power coefficients, and the figure of merit, for the Harring-
ton rotor

the center of the cylindrical mesh, while periodic boundary conditions are applied

to the azimuthal boundaries. Characteristic-based freestream boundary conditions

are applied at all other boundaries.

183



Solutions are obtained using the BDF2 time-marching scheme with 8 Newton

sub-iterations for time-accuracy. Figure 4.21(a) shows the thrust coefficient as a

function of the power coefficient obtained using the three numerical schemes while

Fig. 4.21(b) shows the figure of merit as a function of the thrust coefficient. The

results obtained with the CRWENO5 scheme agree well with those obtained with

the non-compact schemes and the experimental results [76], thus validating the

CRWENO5 scheme for this problem.

The ability of the CRWENO5 scheme to capture and preserve the helical tip

vortex in the wake is compared to that of the MUSCL3 and WENO5 schemes. The

MUSCL3 is third-order accurate and is expected to be more dissipative than the

fifth-order WENO and CRWENO schemes. The lower dissipation of the CRWENO5

scheme, as compared to the WENO5 scheme, is expected to result in an improved

preservation of the wake vortices.

(a) Wake flow (b) Cross-section at 0o azimuth

Figure 4.22: Wake flow-field for the Harrington rotor obtained with MUSCL3 scheme
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(a) Wake flow (b) Cross-section at 0o azimuth

Figure 4.23: Wake flow-field for the Harrington rotor obtained with WENO5 scheme

(a) Wake flow (b) Cross-section at 0o azimuth

Figure 4.24: Wake flow-field for the Harrington rotor obtained with CRWENO5
scheme

Figures 4.22 – 4.24 show the helical tip vortices shed from the blades in the

wake as well as a cross-section of wake at 0o azimuth after ten revolutions. The

vorticity magnitude iso-surface, colored by the pressure, is shown in the figures on

the left-hand side, while the cross-sectional vorticity magnitude contours are shown

in the figures on the right-hand side. In the figures showing the cross-section of the
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(a) MUSCL3 (b) WENO5

(c) CRWENO5

Figure 4.25: Comparison of the tip vortex for various numerical schemes

wake, the first vortex below the blade has a wake age of π radians, the second vortex

has a wake age of 2π radians and so forth. It is observed that the CRWENO5 scheme

shows a significant improvement in the preservation of the vortices as they convect

through the domain. It is observed that the shape and strength of the tip vortex

is preserved till a wake age of 3π in the solution obtained using the CRWENO5

scheme, while the vortex is significantly dissipated and distorted at this wake age
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for the solution obtained with the MUSCL3 and WENO5 schemes.

Figure 4.25 shows the flow at the blade tip for the solutions obtained with

the various schemes. The vorticity magnitude contours are shown at the various

chordwise locations. The blade mesh is clustered at the tip to accurately capture

the tip vortex. Although the tip vortex is captured with all the three schemes,

the CRWENO5 scheme results in the formation of a stronger vortex and reduced

smearing.

4.4 Direct Numerical Simulation of Compressible Turbulent Flows

Numerical simulation of compressible, turbulent flows requires the accurate

resolution of small length scales characteristic of turbulent flows, as well as non-

oscillatory behavior across shock waves and high-gradient shear layers. Non-compact,

non-oscillatory schemes have been applied to such problems where the schemes are

optimized for spectral resolution (at the cost of order of convergence) [50, 77, 78].

The application of compact schemes to such flows required hybrid schemes where the

solution in the immediate vicinity of discontinuities is obtained using a non-compact

ENO/WENO scheme [41, 43, 82]. This section demonstrates the performance of the

CRWENO5 scheme for two canonical flows – decay of isotropic turbulence and the

shock-turbulence interaction. The solutions are compared with the WENO5 scheme

and the CRWENO5 scheme shows a significant improvement in the resolution of

higher wavenumbers while maintaining the non-oscillatory nature of the WENO

schemes. Thus, there is no special treatment of the solution around discontinuities
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as is required in hybrid schemes, or a compromise in the order of accuracy and

convergence.

4.4.1 Isotropic Turbulence Decay

The decay of three-dimensional, isotropic turbulence is a canonical flowfield

that is representative of the small scales in turbulent flows. An initial energy spec-

trum of turbulent fluctuations is specified and the temporal decay involves a transfer

of energy to smaller length scales. The flow is compressible for higher values of veloc-

ity fluctuations and thus, a non-oscillatory scheme is required to accurately capture

the formation of shocklets. The initial condition is an incompressible flowfield con-

sisting of random, isotropic velocity fluctuations that satisfy a prescribed energy

spectrum [83, 84]. The domain is taken as a cube of edge length 2π with periodic

boundaries and the initial velocity field is specified in the Fourier space as:

ûi(k) = αe1
i + βe2

i ; i = 1, 2, 3 (4.17)

where ûi is the Fourier transform of the velocity component ui, and e1,2 = [e1,2
1 , e1,2

2 , e1,2
3 ]T

are mutually orthogonal unit vectors that lie in the plane normal to the wavenumber

vector k. The complex coefficients α and β are given by:

α =

[
E(k)

4πk2

]
exp(iθ1) cos(φ) (4.18)

β =

[
E(k)

4πk2

]
exp(iθ2) sin(φ) (4.19)
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Figure 4.26: Isotropic turbulence decay – vorticity magnitude iso-surfaces colored
by pressure

where k = |k| and θ1, θ2, φ are uniformly distributed random numbers in [0, 2π].

The energy distribution of the fluctuations is prescribed in the present study as:

E(k) = 16

√
2

π

u2
0

k0

(
k

k0

)4

exp

[
−2

(
k

k0

)2
]

(4.20)

where u0 is the RMS turbulence intensity and k0 is the wavenumber corresponding

to the highest energy [87]. This spectrum has the following properties:

Kinetic Energy : KE =
q2

2
=

∫ ∞
0

E(k)dk =
3

2
u2

0 (4.21)

Taylor microscale Reynolds number : Reλ =
u0λ

ν
= 2

u0

νk0

(4.22)

where ν is the kinematic viscosity and λ is the Taylor microscale. In the present

study, the RMS turbulence intensity is taken as u0 = 0.3 such that the resulting flow

is compressible and the most energetic wavenumber is taken as k0 = 4. Solutions
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(a) Kinetic energy vs. time

(b) Energy Spectrum

Figure 4.27: Solution of isotropic turbulence decay at various grid resolutions

are obtained at Reλ = 50. The initial conditions are obtained by transforming

the velocity fluctuations given by Eqn. (4.17) to the physical space and specifying

constant density and pressure (ρ = 1, p = 1/γ) over the domain.

The solution is evolved till a final time of t/τ = 3.0 where τ = λ/u0 is the

turbulent time scale. The TVD-RK3 scheme is used to march the solution in time.
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(a) 323 points (b) 643 points

Figure 4.28: Solution of isotropic turbulence decay for the alternative formulations
of the non-linear weights at two different grid resolutions

Figure 4.26 shows the solution obtained by the CRWENO5 scheme on a 1283 grid

at t/τ = 1. The iso-surfaces of the vorticity magnitude are shown, colored by

pressure. The decay of the kinetic energy (non-dimensionalized by the initial ki-

netic energy) is shown in Fig. 4.27(a) for the WENO5 and CRWENO5 schemes

at three different grid resolutions – 323, 643 and 1283. The CRWENO5 scheme

shows significantly lower dissipation than the WENO5 scheme at grid resolutions

of 323 and 643. The solution is well resolved on the grid with 1283 points and the

WENO5 and CRWENO5 schemes agree well with each other. Figure 4.27(b) shows

the kinetic energy as a function of the wavenumber for the solution at t/τ = 1.

At lower grid resolutions, the CRWENO5 scheme shows an improved resolution of

higher wavenumbers, compared to the WENO5 scheme. A grid-converged solution

is obtained on the grid with 1283 points, and the WENO5 and CRWENO5 schemes

agree well.
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The previous results are obtained with the non-linear weights as defined in

[13] for both the WENO5 and CRWENO5 schemes. Section 2.7 and 3.5 discussed

alternative formulations for the non-linear weights that improved their convergence

to the optimal values. This resulted in an improved resolution across discontinuities

and extrema. The solution to the decay of isotropic turbulence requires the accu-

rate resolution of small length scales and thus, it is expected that the alternative

formulations for the non-linear weights should improve the solution. Figure 4.28

shows the energy spectrum of the solution at t/τ = 1 obtained with the WENO5-

JS, CRWENO5-JS, and the CRWENO5 schemes with the alternative weights. Table

2.10 summarizes the various formulations of the non-linear weights and the corre-

sponding CRWENO5 scheme. The alternative weights result in an improved res-

olution of the higher wavenumbers, compared to the CRWENO5-JS scheme. The

difference is more visible for the solutions obtained on the coarse grid (323 points).

4.4.2 Shock-Turbulence Interactions

The interaction of a normal shock wave with an isotropic turbulent flowfield

is representative of the interaction of shock waves with turbulent boundary layers,

resulting in an amplification of the turbulence intensity downstream of the shock and

a reduction of length scales. This canonical problem has been extensively studied

[79, 80, 81, 82] (and references therein) through the development of linear analysis

as well as direct numerical simulation. The performance of the CRWENO5 scheme

is compared to that of the WENO5 scheme in this section.
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The problem is solved in the reference frame of the shock wave. The domain

is taken as [−2π, 2π] × [0, 2π] × [0, 2π] and discretized with a uniform grid. The

initial conditions consist of a stationary shock at x = 0 with M∞ = 2, where M∞

is the inflow Mach number. Uniform flow is specified upstream and downstream of

the shock, with the upstream conditions as ρ = 1, u = M∞, v, w = 0 and p = 1/γ.

Periodic boundary conditions are applied in the y and z directions. The outflow

boundary at x = 2π is treated with a sponge boundary condition: the domain is

extended in the x-direction beyond x = 2π and discretized with a grid that rapidly

stretches in this direction (with uniform spacing in the y and z directions). This

extension is referred to as the sponge zone henceforth. A sink term is added to

the governing equations in the sponge zone in the form of σ(u − ups) where ups

is the uniform post-shock flow and σ varies linearly from 0 at x = 2π to 1 at the

downstream end of the sponge zone. A combination of grid-stretching and the sink

term is sufficient to damp out the fluctuations and avoid reflections from the outflow

boundary [85, 86]. Characteristic-based outflow boundary conditions are applied at

the downstream end of the sponge zone.

The inflow boundary conditions consist of a field of isotropic, turbulent fluc-

tuations added to uniform, supersonic mean flow. The inflow turbulent fluctuations

are generated from the solution to the decaying isotropic turbulence problem, dis-

cussed in the last section. Velocity fluctuations satisfying Eqn. (4.20) are added

to a mean flow identical to flow conditions upstream of the shock and solved on a

periodic domain of size (2π)3. In the present study, u0 = 0.3 and k0 = 4 in Eqn.
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Figure 4.29: Solution of the shock-turbulence interaction problem obtained by the
CRWENO5 on a 128 × 64 × 64 grid: Iso-surfaces of the second invariant of the
velocity gradient tensor colored by vorticity magnitude

(4.20). The decay of this turbulent flowfield is solved till t/τ = 1 where τ is the tur-

bulent time scale. The density, velocity and pressure fluctuations are extracted from

the solution and transformed from the (x, y, z)-space to the (t, y, z)-space through

x = M∞t. These fluctuations are then added to the uniform supersonic inflow. The

unsteady, turbulent inflow is thus specified. A detailed description of this procedure

is available in [87, 88]. It should be noted that the procedure described here results

in a periodic inflow with a time period of 2π/M∞. The procedure described in the

references include a random “jitter” during each time period to remove this peri-

odicity. Since the focus of the present study is the performance and comparison of
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Figure 4.30: Streamwise RMS pressure fluctuations: (i) CRWENO5 (128× 64× 64
grid (ii) CRWENO5 (64×32×32 grid (iii) WENO5 (128×64×64 grid (iv) WENO5
(64× 32× 32 grid

numerical schemes and not the flow physics, the jitter is not used. However, the sim-

ulations are run for a large duration to ensure that statistically relevant quantities

are obtained.

Solutions are obtained with the TVD-RK3 time-marching scheme on two grids

– 64×32×32 (with 16×32×32 points in the sponge zone) and 128×64×64 (with

32× 64× 64 points in the sponge zone). The simulations are carried out at a Taylor

microscale Reynolds number of Reλ = 50. Figure 4.29 shows the solution obtained

by the CRWENO5 scheme on the fine grid. The isosurfaces of the second invariant

of the velocity gradient tensor are shown, colored by the vorticity magnitude. The

figure also shows the x− z cross-section of the mesh, especially the stretched mesh

downstream of the domain of interest. It is observed that the turbulent fluctuations
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(a) WENO5

(b) CRWENO5

Figure 4.31: Pre- and post-shock energy spectra for the shock-turbulence interaction

are damped out successfully in the sponge zone due to a combination of the grid-

stretching and the sink term.
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Figure 4.30 shows the streamwise variation of the pressure fluctuations (RMS)

for the solutions obtained by the CRWENO5 and WENO5 schemes. Statistical

quantities are calculated by averaging in time and homegeneity directions (y and

z). Results are shown for the WENO5 and CRWENO5 schemes for both the grids.

The interaction with the shock wave amplifies the turbulent fluctuations and this

is observed for both the schemes. The solution obtained by the CRWENO5 scheme

on the coarse grids predicts a higher magnitude of fluctuations as compared to

the WENO5 scheme, especially downstream of the shock. The two schemes predict

nearly identical levels of turbulence upstream of the shock for the fine grid. However,

the CRWENO5 scheme predicts a marginally higher magnitude of the fluctuations

downstream of the shock. These observations indicate that the CRWENO5 scheme

is less dissipative for flow fluctuations characteristic of turbulent flows, as compared

to the WENO5 scheme.

A comparison of the kinetic energy distribution with respect to the wavenum-

bers before and after the shock wave indicates the length scales that are amplified

by the shock wave. Figure 4.31 shows the pre- and post-shock energy spectra for

solutions obtained with the CRWENO5 and WENO5 schemes. The spectra are ob-

tained for the fluctuations on stream-normal slices at x = −1 (pre-shock) and x = 6

(post-shock). Both schemes show an amplification of the smaller length scales on

the fine grid, as is consistent with theoretical predictions [80]. However, on a coarse

mesh, the CRWENO5 is able to capture the energy amplification at intermediate

and high wavenumbers, but the WENO5 scheme yields solutions that do not show

this amplification.
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(a) Pre-shock

(b) Post-shock

Figure 4.32: Comparison of the energy spectra for solutions obtained by the WENO5
and CRWENO5 schemes

Figure 4.32 compares the solutions obtained by the WENO5 and CRWENO5
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schemes on the two grids. At the pre-shock location (Fig. 4.32(a)), the energy

spectra for the solutions obtained by the two schemes agree well for the fine grid.

The CRWENO5 scheme shows an improved resolution of the intermediate and higher

wavenumbers on the coarse grid. At the post-shock location (Fig. 4.32(b)), the

CRWENO5 schemes shows an improvement on both grids, compared to the WENO5

scheme. The smaller length scales are less dissipated for solutions obtained with the

CRWENO5 scheme.

4.5 Summary of Chapter

The numerical properties of the CRWENO schemes are analyzed and demon-

strated on simplified systems in the previous chapters. This chapter discusses the

integration of these schemes to a structured, finite-volume Navier-Stokes solver and

the application to practical flow problems. The baseline algorithm solves the Navier-

Stokes on curvi-linear, finite-volume meshes, including overset meshes with relative

motion. Spatial reconstruction is carried out using the third-order MUSCL scheme

and the fifth-order WENO scheme, both of which are non-compact. In addition to

these, the fifth-order CRWENO scheme is added to the solver. Second-order central

differences are used for the viscous terms. The TVD-RK3 time-marching scheme is

used for simple domains while the implicit BDF2 scheme is used problems where the

CFL criterion is too restrictive. Dual time-stepping is used with the BDF2 scheme

for time-accurate problems. The algorithm includes the Spalart-Allmaras model

with the RANS formulation for turbulent flows while direct numerical simulations
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are possible by removing the turbulence model.

The CRWENO5 scheme is applied and validated on curvilinear meshes by solv-

ing the steady, turbulent flow around the RAE2822 airfoil. A good agreement with

experimental results is observed. The scheme is also validated on overset meshes

with relative motion by solving the unsteady flow around a pitching SC1095 air-

foil in a wind tunnel. The solution-dependent weights treat the hole region inside

overset meshes as a discontinuity since it contains non-physical flow values; and

thus, the CRWENO5 scheme is successfully able to decouple the solution in the flow

region from the hole region. Based on these validations, the scheme is applied to

the low Reynolds number flow around the NACA0005 airfoil undergoing simulta-

neous pitching and plunging motion. This is representative of flapping-wing-based

micro-air vehicles. A modified two-dimensional DDES approximation is used as the

turbulence model and the CRWENO5 scheme results in significant improvements in

the resolution of near-blade flow structures, and shed vortices in the wake.

The steady flow around the ONERA-M6 wing and the unsteady flow around

the two-bladed Harrington rotor are solved to validate the scheme for three-dimensional

flows and demonstrate its numerical properties. The integrated forces are validated

with experimental data. The solutions obtained by the CRWENO5 scheme are com-

pared to those obtained by the MUSCL3 and WENO5 schemes. In both cases, the

CRWENO5 scheme is able to preserve the strength and structure of the tip vor-

tices over large distances due to its lower numerical errors. This indicates that this

scheme is well-suited for aerodynamic problems where a well-resolved solution of the

flowfield is desired.
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The high spectral resolution of the CRWENO5 scheme and its non-oscillatory

nature make it suitable for direct numerical simulation of compressible, turbulent

flows. Two canonical flow problems are considered – the decay of isotropic turbu-

lence and the shock – turbulence interaction. The decay of an isotropic turbulent

flowfield is characterized by a transfer of kinetic energy to smaller length scales. The

solutions obtained by the CRWENO5 scheme are compared to those obtained by

the WENO5 scheme. It is observed that the CRWENO5 scheme shows higher reso-

lution and lower dissipation for the higher wavenumbers. Further improvements are

observed in the resolution by using the alternative formulations for the non-linear

weights. The interaction of a normal shock with an isotropic, turbulent flowfield is

representative of the interaction of shock waves with turbulent boundary layers. The

turbulence intensity is amplified across the shock wave and higher wavenumbers are

energized through this interaction. Solutions obtained using the CRWENO5 scheme

show lower dissipation of the turbulent fluctuations, especially at higher wavenum-

bers, compared to those obtained by the WENO5 scheme.
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Chapter 5

Closure

Hyperbolic conservation laws govern many physical systems and the solutions

often times involve a large range of length and time scales. The focus of this dis-

sertation is on the development of a high-order spatial reconstruction scheme for

problems involving a range of length scales. One such example is compressible, tur-

bulent flows, which are governed by the Navier-Stokes equations. The numerical

simulation of such problems requires the accurate modeling of small length-scales,

as well as non-oscillatory behavior across discontinuities that are characteristic of

hyperbolic PDEs. Compact interpolation schemes are known for their higher spec-

tral resolution and the ability to resolve smaller length scales than non-compact

schemes. In the presence of discontinuities, a modification is required to ensure

non-oscillatory behavior. Several such schemes are presented in the literature that

seek to construct non-oscillatory schemes with high spectral resolution.

The WENO schemes have been widely applied to the numerical solution of

hyperbolic PDEs. Lower-order non-compact interpolation schemes are combined

using solution-dependent weights such that the resulting scheme is higher-order

accurate in smooth regions of the flow and non-oscillatory across discontinuities.

Although high-order accurate WENO schemes have been constructed, they suffer

from poor spectral resolution.
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This dissertation introduces the CRWENO schemes that are constructed as

solution-dependent combinations of lower-order compact interpolation schemes. The

final scheme shares the non-oscillatory nature of the WENO scheme but has higher

spectral resolution and lower dissipation and dispersion errors due to it being a com-

pact scheme. The contributions and conclusions for this dissertation are presented

in this chapter, as well as some indications for future research.

5.1 Summary and Conclusions

The numerical solution to a hyperbolic PDE using a conservative, finite-

difference discretization is considered in this thesis. The CRWENO scheme is intro-

duced for the high-order accurate, non-oscillatory reconstruction of the flux function

at the grid interfaces. Fifth-order accurate CRWENO5 and CRWENO5-LD schemes

are constructed in Section 2.2. Third-order compact interpolation schemes are iden-

tified at each interface and optimal weights are calculated such that the weighted

sum is a fifth-order compact scheme. The weights are scaled by smoothness in-

dicators that are identical to those of the WENO schemes. The final scheme is

fifth-order accurate for smooth solutions, while across discontinuities, it yields non-

oscillatory solutions. The smoothness-dependent non-linear weights go to zero for

the constituent third-order schemes whose stencils contain discontinuous data. This

results in a decoupling of the flux calculation across the discontinuity and spurious

oscillations are avoided.

The numerical properties of the fifth-order compact schemes corresponding to
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the non-linear CRWENO schemes are analyzed and compared to those of the non-

compact scheme (that corresponds to the fifth-order WENO scheme). The leading

error terms in the Taylor series expansion indicate that the compact schemes have

dissipation and dispersion errors that are an order of magnitude lower than those

of the non-compact scheme. The spectral properties of the schemes are analyzed

by considering a periodic sinusoidal solution. The compact schemes have a higher

bandwidth-resolving efficiency as well as lower dissipation for the wavenumbers that

are resolved accurately.

The CRWENO schemes are applied to scalar conservation laws – the linear

advection equation and the non-linear Burgers equation. Smooth and discontinuous

solutions are considered to demonstrate the numerical properties of the schemes.

The following observations and conclusions are made from the solutions to the scalar

PDEs:

• The order of convergence and non-oscillatory behavior across discontinuites

are verified for the CRWENO schemes, indicating that the non-linear WENO

weights work well with the compact schemes.

• The absolute errors for the CRWENO5 and CRWENO5-LD are (1/10)th and

(1/20)th, respectively, that of the WENO5 scheme for a smooth solution. This

is consistent with the conclusions from the Taylor series analysis.

• The CRWENO5 and CRWENO5-LD schemes shows lower dissipation and

phase errors at higher wavenumbers compared to the WENO5 scheme.

• Solutions obtained using the CRWENO schemes show reduced smearing of dis-
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continuities and clipping of extrema. There is an improvement in the preser-

vation of waveforms for large convection distances.

• Computational efficiency: The numerical cost of the CRWENO schemes is

higher at the same grid refinement level due to the tridiagonal solution re-

quired at each iteration. However, the lower error imply that solutions with

comparable errors can be obtained on a grid that is significantly coarser. Thus,

the CRWENO schemes have a lower numerical cost when comparing solutions

of the same accuracy.

In addition to the comparisons with the WENO5 scheme, the effects of alternative

formulations for the non-linear weights are analyzed. The CRWENO5-JS scheme

shows sub-optimal convergence for a smooth solution with critical points while the

CRWENO5-M, CRWENO5-Z and CRWENO5-YC schemes recovered the optimal

order of convergence. These alternative formulations for the weights significantly

improved the resolution of discontinuities.

The extension of the CRWENO schemes to the Euler equations is presented

in Chapter 3. The Euler equations govern the dynamics of inviscid flows and form

a hyperbolic system of PDEs. The application of the CRWENO schemes to the

primitive and conserved flow variables is trivial. In addition, the application to the

characteristic-based reconstruction is discussed, which results in a block tridiagonal

system of equations. Benchmark inviscid flow problems are solved and the following

observations are made:

• The accuracy and order of convergence of the CRWENO schemes are veri-
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fied for the system of equations for all three formulations – reconstruction

of conserved, primitive and characteristic variables. The CRWENO5 and

CRWENO5-LD schemes yield errors that are (1/10)th and (1/20)th that of

the WENO5 scheme, respectively.

• The CRWENO schemes show a reduced smearing of shock waves and contact

discontinuities. In particular, the CRWENO schemes show an improved res-

olution of small-length-scale density waves in the Shu-Osher problem due to

the higher spectral resolution.

• The convection of an isentropic vortex over a large distance demonstrates the

ability of the CRWENO schemes to preserve the vortex shape and strength

for long-term convection.

• Computational efficiency: The CRWENO schemes are more efficient than the

WENO scheme for the reconstruction of primitive and conserved variables.

However, the reconstruction of characteristic variables requires the solution

of a block tridiagonal system where the size of the block increases with the

number of dimensions. Thus, a characteristic-based CRWENO scheme is less

efficient than the WENO scheme.

The final observation indicates that the CRWENO schemes, in their present form,

are not suitable for a characteristic-based reconstruction. Although the reconstruc-

tion of characteristic variables yield more robust solutions, reconstruction of prim-

itive or conserved variables suffice for most practical applications involving viscous

flows.
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Finally, the CRWENO scheme is integrated with a structured, finite-volume

Navier-Stokes solver for curvi-linear meshes and applied to flows with practical rele-

vance (Chapter 4). The CRWENO5 scheme is applied to steady and unsteady flows

around two-dimensional wings, and three-dimensions wings and rotors. The scheme

is also applied to the direct numerical simulation of two canonical turbulent flows –

the decay of isotropic turbulence and the shock-turbulence interaction. The spectral

resolution of the numerical scheme is critical to model the energy transfer between

the different length scales accurately. Comparisons are made with the non-compact

fifth-order WENO scheme and third-order MUSCL scheme (with Koren’s limiter).

The following conclusions are drawn from the solutions:

• The CRWENO5 scheme is validated for curvi-linear and streteched meshes by

solving the steady, turbulent, transonic flow around the RAE2822 airfoil.

• The CRWENO5 scheme is validated for a domain consisting of overset grids

with relative motion. The unsteady flow over a pitching SC1095 airfoil in a

wind tunnel is solved. Solutions on overset meshes require the partitioning of

each mesh into field and hole points. The ability of the non-linear weights to

decouple the solution in the field points from the non-physical solution in the

hole points is verified.

• Lower-order schemes suffice for the accurate prediction of integrated airloads,

for two-dimensional airfoils as well as three-dimensional wings and rotors.

However, the CRWENO5 scheme shows an improved resolution of near-blade

and wake flow features. The tip vortices shed from the wing or rotor convect
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over large distances in the wake and the ability of the CRWENO5 scheme to

preserve the strength and shape of these structures is demonstrated.

• The CRWENO5 scheme shows an improved resolution of the small length

scales for both the isotropic turbulence decay and the shock-turbulence inter-

action. Solutions obtained by the CRWENO5 scheme predict higher turbulent

intensities and a higher kinetic energy at high wavenumbers, compared to the

WENO5 scheme.

Thus, to summarize, a high-resolution, non-oscillatory conservative compact

differencing scheme is introduced in this dissertation. The numerical properties are

assessed and verified for solutions to scalar conservation laws and the inviscid Euler

equations. The scheme yields solutions with higher accuracy and resolution while

maintaining non-oscillatory behavior across discontinuities. It is integrated into a

finite-volume Navier-Stokes solver for curvilinear meshes and applied to practical

flow problems. The scheme shows significant improvements in the resolution and

preservation of flow features such as vortices and turbulent eddies. Based on the

results presented in this dissertation, the CRWENO schemes can be considered as a

robust, high-order accurate algorithm for the numerical simulation of compressible,

turbulent flows.

5.2 Future Work

The CRWENO schemes, as presented in this dissertation, are observed to

be robust and yield non-oscillatory, high-resolution solutions to practical problems.
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However, there are some open questions that can be the subject of future research.

Some possible algorithmic improvements are as follows:

• Convergence for steady airfoil: The application of the CRWENO5 scheme to

the steady, turbulent flow around the RAE2822 airfoil is described in Section

4.3.1. Although the solution agrees well with experimental data, the residual

does not converge beyond a couple of orders of magnitude. This behavior

is also observed for the reconstruction of characteristic variables. One direc-

tion of future research is the improvement of convergence behavior for steady

problems.

• Implementation of non-linear weights: The alternative formulations for the

WENO weights and their effects on the solution are discussed in this disserta-

tion in the context of the CRWENO schemes (Sections 2.7 and 3.5). Significant

improvements are observed over the original formulation given by Jiang and

Shu, including alleviation of ε-sensitivity and resolution of discontinuities and

extrema. However, the author feels that there is scope for further improvement

in the implementation of the WENO weights, especially to improve the con-

vergence behavior across stationary shock waves and for steady flow around

airfoils.

• Extension to non-uniform meshes: Several problems of practical relevance

require the solution on a domain discretized by curvilinear meshes with non-

uniform grid spacing. The schemes described in this dissertation are derived

for a grid with uniform spacing. Although the scheme yields robust solutions
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for curvilinear meshes, the order of accuracy and spectral resolution suffer.

Thus, a significant gain in the resolution of the solution is expected from

the derivation and implementation of the CRWENO schemes on non-uniform

meshes.

• Derivation and implementation of a ninth-order CRWENO scheme: The CR-

WENO5 scheme demonstrates that non-linear weights of the WENO schemes

may be applied to compact interpolation schemes to yield non-oscillatory

schemes with a high spectral resolution. Higher-order CRWENO schemes can

be derived; however, increasing the order of convergence while maintaining

the tridiagonal structure will not result in a significant increase in spectral

resolution. A penta-diagonal ninth-order CRWENO scheme will significantly

improve the spectral resolution as well as the accuracy and the order of con-

vergence.

• Parallelization: Issues regarding the parallelization of the CRWENO schemes

are not discussed in this thesis. Most of the solutions presented are obtained on

a single processor. Solutions to three-dimensional flows presented in Sections

4.3.4 and 4.3.5 are obtained using a coarse-grain parallelization of the do-

main. The internal boundaries are treated similar to physical boundaries with

the solution in ghost cells specified through exchange of information between

processors. The medium and fine-grain parallel implementation of the CR-

WENO schemes is expected to reduce the computational cost of the schemes.

Although the reconstruction step requires tridiagonal solutions due to the im-
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plicit nature of the scheme, the flux along each grid line in each dimension

may be calculated independently. Thus, a substantial speed-up is possible by

implementing a fine-grain parallel CRWENO scheme.

In addition to these, there are some applications where the CRWENO schemes can

yield improved solutions:

• Flow around rotorcraft: Section 4.3.5 demonstrates the application of the CR-

WENO5 scheme to the unsteady flow around the Harrington two-bladed rotor.

An improvement is observed in the near-blade and wake flow features. Based

on these results, the CRWENO5 scheme can be applied to the flow around a

rotorcraft operating in ground effect. Solutions to such flows require the ac-

curate preservation of the wake vortices as they interact with each other and

the ground plane. Thus, a high-resolution scheme with minimal dissipation is

required preserve the tip vortices as they convect in the wake. The CRWENO5

scheme can be used with vortex-tracking grids [89] to yield high-order accurate

solutions.

• Immersed boundaries: The successful application of the CRWENO5 scheme

to overset grids indicate their suitability (without major modifications) to do-

mains involving immersed bodies. Solutions on such domains involve the par-

titioning of the domain into field points that are inside the flow and hole points

that are inside the body, and the application of no-slip boundary conditions

at appropriate interior points. This is similar to the procedure followed for

overset grids. The validation of the CRWENO5 scheme for immersed bodies
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would allow its application to a large number of flows, including flows around

complete rotorcraft (wing and fuselage).
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