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Zusammenfassung

Magnetfelder sind in der Astrophysik allgegenwärtig. Aufgrund vielfältiger Hinweise, dass
sie in einer großen Zahl von astrophysikalischen Prozessen eine dominante Rolle einnehmen
können, sollten ihre Auswirkungen nicht leichtfertig vernachlässigt werden. Analytische Modelle
berücksichtigen hingegen oftmals keine Magnetfelder oder nur unter starker Modellvereinfachung,
die dann jedoch ihre Aussagefähigkeit deutlich reduzieren kann. Aufgrund dessen hat sich
die Computerphysik als modernes Forschungsgebiet entwickelt. Mithilfe hochentwickelter
Simulationen komplexer numerischer Modelle gewinnt sie Einblicke in ansonsten nicht zugängliche
physikalische Prozesse.

Das am häufigsten verwendete Modell zur Simulation von Plasma, die idealen MHD-Gleichungen,
hat zwei entscheidende Nachteile: Es begrenzt weder das Wachstum von numerisch verursachten
magnetischen Monopolen, noch sind die meisten auf ihr basierenden numerischen Schema konform
mit den Gesetzen der Thermodynamik, speziell dem zweiten Hauptsatz.

In meiner Arbeit, die ich interdisziplinär zwischen Mathematik und theoretischer Physik durchge-
führt habe, entwickelte ich das erste thermodynamisch konsistente Modell mit wirkungsvoller
eingebauter Korrektur von Divergenzfehlern in magnetischen Feldern. Mein neues Galilei-invarian-
te Modell eignet sich für die Simulation magnetisierter Plasmen unter extremen Bedingungen wie
sie typischerweise in astrophysikalischen Szenarien auftreten. Es wird als die „idealen GLM-MHD
Gleichungen“ bezeichnet und beschreibt neun charakteristische Plasmawellen.

Die Genauigkeit und Robustheit meines Verfahrens wird anhand einer Reihe von Tests mithilfe
des adaptiven Multi-Physik Simulationscode FLASH demonstriert. Ein astrophysikalisches
Anwendungsszenario wird ausführlich diskutiert.
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Abstract

Magnetic fields are ubiquitous in space. As there is strong evidence that magnetic fields play an
important role in a variety of astrophysical processes, they should not be neglected recklessly.
However, analytic models in astrophysical either do often not take magnetic fields into account
or can do this after limiting simplifications reducing their overall predictive power. Therefore,
computational astrophysics has evolved as a modern field of research using sophisticated computer
simulations to gain insight into physical processes.

The ideal MHD equations, which are the most often used basis for simulating magnetized plasmas,
have two critical drawbacks: Firstly, they do not limit the growth of numerically caused magnetic
monopoles, and, secondly, most numerical schemes built from the ideal MHD equations are not
conformable with thermodynamics.

In my work, at the interplay of math and physics, I developed and presented the first thermodynam-
ically consistent model with effective inbuilt divergence cleaning. My new Galilean-invariant
model is suitable for simulating magnetized plasmas under extreme conditions as those typically
encountered in astrophysical scenarios. The new model is called the “ideal GLM-MHD” equations
and supports nine wave solutions.

The accuracy and robustness of my numerical implementation are demonstrated with a number of
tests, including comparisons to other schemes available within in the multi-physics, multi-scale
adaptive mesh refinement (AMR) simulation code FLASH. A possible astrophysical application
scenario is discussed in detail.
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1 | Introduction
1.1 The omnipresence of magnetic fields . . . . . . . . . . . . . . 1

1.2 Magnetic fields in simulations . . . . . . . . . . . . . . . . . 3

1.3 Divergence cleaning techniques . . . . . . . . . . . . . . . . 5

The natural sciences use mathematical models to describe the world we observe. Such models are
abstractions based on mathematical concepts and language. This enables scientists to predict the
behavior of various complex systems.

Traditionally, the investigation of such systems has been conducted to find analytical solutions of
more and more refined mathematical models. However, if the complexity of non-linear interactions
makes a model or the given initial conditions too complicated, no analytic treatment is possible
without oversimplifying the model to such a degree that interesting effects are no longer present.
Hence, numerical simulations, which can treat non-linear systems without oversimplifying them,
have become a useful tool to model arbitrary physical systems. Nowadays, numerical simulations
can be found as an everyday tool in a wide range of applications.

A classic example where numerical simulations shine is the field of astrophysics. Most astrophysical
processes, such as molecular cloud or star formation, span too many temporal and spatial scales
to be suitable for laboratory experiments. Furthermore, as most astrophysical processes rely on
complex interactions between various physical phenomena such as gravity, heating, cooling, and
radiation, the development of analytical solutions is often impossible without applying limiting
simplifications to the models. Although simple astrophysical models have undoubtedly provided us
with valuable insights in the past, purely analytical models tend to suffer from rough approximations
or a lack of completeness, limiting their overall predictive power.

To overcome these limitations, computational astrophysics has evolved as a modern field of
research. Its core task is to deliver theoretical predictions where analytic models fail to explain
interesting phenomena.

1.1 The omnipresence of magnetic fields

The existence of magnetic fields in the interstellar medium (ISM) was first shown more than half a
century ago by Hiltner (1951) and Hall (1951). Today, magnetic fields are believed to play an
important role in all kinds of astrophysical processes. They have been observed on almost every
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1 Introduction

scale from stars and planets to the interstellar medium (see, e.g., Beck, 2009; Crutcher, 2012;
Li et al., 2014; Haverkorn, 2015) up to galaxies where they are suggested to play a vital role for
the entire evolution and the efficiency of galaxy formation across cosmic times (see, e.g., the
recent review by Naab & Ostriker, 2017). In particular, large-scale magnetic fields are nowadays
observed in almost every galaxy with hints of their presence in high-redshift galaxies, suggesting
an early origin for magnetic fields (Bernet et al., 2008; Wolfe et al., 2008). The source of these
magnetic fields is still vigorously debated (Planck Collaboration et al., 2016b).

Over the last few decades, radio observations revealed that galaxies generally host magnetic
fields and that the interstellar medium typically has magnetic fields on the order of a few µG
(Beck & Hoernes, 1996; Beck, 2004; Sur et al., 2012). Magnetic fields can easily be a dominant
contribution for the overall gas dynamics as their energies are often comparable with the kinetic
energy of the flows themselves (Naab & Ostriker, 2017, Sec. 3.4). Moreover, it has been shown
that the magnetic pressure can often be significantly higher than the thermal pressure (Boulares
& Cox, 1990; Ferrière, 2001; Cox, 2005). Hence, astrophysical models should not neglect their
possible effects recklessly.

This importance of magnetic effects on the dynamics of astrophysical flows has been confirmed on
multiple scales:

• Entire galaxies (Beck, 2001; Beck, 2009; Hanasz et al., 2009; Kotarba et al., 2009; Pakmor
& Springel, 2013; Beck, 2015; Rieder & Teyssier, 2017),

• The interstellar medium (Avillez & Breitschwerdt, 2005; Koyama & Ostriker, 2009a;
Koyama & Ostriker, 2009b; Hill et al., 2012; Kim & Ostriker, 2015; Walch et al., 2015;
Girichidis et al., 2016; Pardi et al., 2017),

• Molecular clouds (Shu et al., 1987; McKee, 1999; Padoan & Nordlund, 1999; Heitsch &
Burkert, 2002; Banerjee et al., 2009; Vázquez-Semadeni et al., 2011; Hennebelle & Iffrig,
2014; Körtgen & Banerjee, 2015; Banerjee & Körtgen, 2015; Planck Collaboration et al.,
2016a; Federrath, 2016; Lee et al., 2017; Seifried et al., 2018a; see also the review by
Mac Low & Klessen, 2004, especially chapter IV.F),

• Star-formation regions (Hennebelle & Fromang, 2008; Hennebelle & Teyssier, 2008;
Hennebelle & Ciardi, 2009; Peters et al., 2011; Seifried et al., 2011b; Seifried et al., 2011a;
Körtgen & Banerjee, 2015; Klassen et al., 2017).

Understanding the role of magnetic fields in the formation and evolution of molecular clouds is also
critical for understanding the process of star formation. An example is the observed inefficiency of
star formation. Considering the low temperatures, molecular clouds should be highly gravitationally
unstable and collapse on their global mean freefall timescale. However, they are observed to live
about 10-100 times longer, i.e., the star formation rate (SFR) per freefall time is only a few percent
(Federrath, 2015). Besides turbulence and stellar feedback, magnetic fields have been suggested
being the primary regulator of SFR and an important supporter against gravitational collapse of
unstable regions, either statically or dynamically through MHD waves (McKee, 1999; Mac Low &
Klessen, 2004; Crutcher, 2012; Li et al., 2017). Using different observational techniques (polarized
emission from aligned dust grains measured by Houde et al., 2004; Chandrasekhar-Fermi method
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1.2 Magnetic fields in simulations

Fig. 1.1: The SILCC project: Simulated volume (500 × 500 × 10 000 pc) by Walch et al. (2015)
overlayed on the 2MASS survey’s view of the entire Milky Way seen from Earth.

applied by Crutcher, 2004 and Novak et al., 2009; Zeeman effect measured by Crutcher et al.,
2010), all evidence seems to point to the presence of dynamically important magnetic fields
in molecular cloud clumps with hydrogen number densities of nH ' 3000 cm−3 (Draine, 2011,
Sec. 32.10). However, the exact value for the transition from sub- to supercritical regions, needed
for gravitational collapse to surpass the magnetic support is still unclear (see, e.g., Körtgen &
Banerjee, 2015; Valdivia et al., 2016; Zamora-Avilés et al., 2018).

There are basically two approaches that can be taken to increase our understanding of the role of
magnetic fields in astrophysical contexts. The first one is to simplify a problem down to a point
where analytic solutions are possible. As mentioned before, such solutions only allow to focus on
a few narrow aspects of the problem as the results may depend largely on the particular chosen
simplifications themselves and are limited in their predictive power.

The second approach is to undertake detailed numerical simulations, which in general involves
solving a complex multi-physics framework numerically. An example for such modern simulations
are those carried out by the SILCC1 collaboration, include magnetic fields in their endeavor of
attaining a deeper understanding of the full life-cycle of molecular clouds (Walch et al., 2015;
Girichidis et al., 2016; Gatto et al., 2016; Peters et al., 2017a; Peters et al., 2017b). The SILCC
collaboration developed an encompassing multi-physics framework, including the effects of
magnetic fields, self-gravity, heating and cooling at different gas metallicities, molecule formation
and dissociation, and stellar feedback. They use a vertically stratified model of a disk galaxy with
solar neighborhood conditions (see Fig. 1.1 for an illustration). To date, this is still not included by
any other research group for this type of three-dimensional simulations. With this code at hand, the
SILCC collaboration has recently demonstrated the feasibility of models that simulate the entire
formation history of molecular clouds (MCs) forming out of the diffuse ISM down to resolutions
of 0.06 pc (Seifried et al., 2017; Seifried et al., 2018a). These simulations have been found to
accurately model the chemical evolution of MCs.

1.2 Magnetic fields in simulations

The diffuse interstellar medium (ISM) is generally highly conductive and largely ionized. Due to
this, magnetic fields mostly follow the plasma and idealized assumptions (vanishing resistivity and

1SILCC = SImulating the Life-Cycle of molecular Clouds
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‖B‖= 0

Fig. 1.2: Magnetic field lines (blue) close to a field-free region. Due to the divergence-free
condition, field lines are conditioned globally to wrap around the region with zero
magnetic field.

viscosity) are justified. Such systems can be described using the ideal magnetohydrodynamics
(ideal MHD) equations. The ideal MHD equations are the most often used tool for modeling
magnetized plasmas.

Unfortunately, the ideal MHD equations have two important drawbacks. Firstly, they do not control
the growth of numerically caused magnetic field divergence errors. Secondly, an often overlooked
complication is that, after having addressed the issue of magnetic field divergence control, the
resulting schemes are most often no longer conformable with the second law of thermodynamics,
also known as the entropy inequality. Numerical schemes that are guaranteed to conform with the
second law of thermodynamics are called entropy stable schemes.

The major cause for magnetic field divergence in finite volume schemes is the inaccurate
assumption of the locality of the problem. Whereas the hydrodynamic quantities of the fluid
(density, momentum, pressure) are defined purely locally in a fluid, this is not the case for magnetic
fields as the magnetic field divergence-free condition, which should be fulfilled at any point of the
fluid at any time, globally constrains the magnetic field topology: Although one might only modify
a small region in space, the magnetic field topology in the entire vicinity can be distorted (see
Fig. 1.2). Numerical simulations are usually unable to handle this as they manipulate magnetic
fields using purely local numerical fluxes. Hence, no magnetic field correction on larger scales is
included although Gauß’s law,

∇ · B = 0, (1.1)

clearly states that regions of reduced field strength cannot only be local.

Having this in mind, it is not surprising that numerical discretization errors can lead to an
uncontrolled growth of magnetic field divergence,

∂

∂t
(∇ · B) = O

(
∆xm, ∆tn

)
(1.2)

(Brackbill & Barnes, 1980, eq. 2).

Inconsistent magnetic fields are not only unphysical, they also almost certainly cause numerical
instabilities like negative internal energies inevitably leading to a break down of the simulation.
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1.3 Divergence cleaning techniques

This underlines the need for so-called divergence cleaning techniques which are designed to limit
the growth of the numerically caused magnetic field divergence.

1.3 Divergence cleaning techniques

Over the last decades, several methods for controlling the growth of magnetic divergence in
numerical simulations emerged:

The eight-wave formulation

Powell et al. (1999) and others (see, e.g., Sjögreen et al., 2017, Sec. 6.1) observed a notable
increase of numerical robustness when augmenting the ideal MHD equations with a specific
non-conservative term first found by Godunov (1972). A careful analysis reveals a new MHD
wave advecting the numerically caused divergence errors away from their origin. As this new wave
manifests itself as a new eighth eigenvalue of the hyperbolic ideal MHD equation system, this
modification is often called the “eight-wave” formulation. Taking the divergence of the induction
equation of the ideal MHD equations, one obtains

∂

∂t
(∇ · B) + ∇ · (u(∇ · B)) = 0. (1.3)

This equation describes the conservation and advection of the magnetic field divergence, ∇ · B, by
the so-called divergence-wave.

As described in Derigs et al. (2016), relying on magnetic field divergence cleaning by the
eight-wave scheme is typically insufficient to ensure a satisfactory divergence cleaning of the
scheme. Although this method can be implemented in agreement with thermodynamics, it is
especially problematic at stagnation points of flows as magnetic field divergence can build up
due to the dependence of the divergence cleaning on the local fluid velocity (Derigs et al., 2018b,
Sec. 3.1).

The projection method

The projection method, described by Brackbill & Barnes, 1980 and Marder, 1987, is implemented
for divergence cleaning as a post-processing step performed after each MHD integration cycle.
As such, it has the immediate benefit of being implementable without changing the underlying
numerical scheme. It has successfully been applied by, e.g., Zachary et al. (1994) and Balsara
(1998) and others. This method is called projection method as the magnetic field is projected
into a space of divergence-free vector field solutions. This approach offers two variants, a scalar
or vector divergence-cleaning, depending on the choice of real or Fourier spaces in which the
divergence-cleaning is performed.
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1 Introduction

While having proven to be robust, its parabolic nature makes implementations computationally
expensive on parallel systems. Furthermore, it is still unclear if entropy stable schemes can at all
be constructed using the projection method.

Constrained transport

The constrained transport method developed by Evans & Hawley (1988) and Balsara & Spicer
(1999) ensures a discretely vanishing magnetic field divergence by representing magnetic fields on
staggered mesh cell faces (rather than cell centers). On such a grid, the MHD equations can be
discretized such that they preserve the solenoidality of the magnetic field through Stokes’ theorem.
Also in the case of constrained transport, it is unclear if entropy stable schemes can be constructed.
Researchers in astrophysics typically avoid staggered mesh based solvers as they are known for
their additional memory requirements (see e.g. Derigs et al., 2016, Sec. 4.5) although recent
developments have made this issue less severe.

Generalized Lagrangian multiplier

Munz et al. (2000, Sec. 3) investigated how one can incorporate the divergence-free condition into
simulations computing the movement of charged particles in electromagnetic fields. They did so
by introducing a new scalar field also known as generalized Lagrangian multiplier (GLM). Due to
the additional degree of freedom that is added by this new field, it becomes possible to couple the
divergence-free condition into the ideal MHD equations. This extension of the ideal MHD system
is useful for schemes which are meant to be implemented for large-scale computations on parallel
architectures as the model remains purely hyperbolic.

The GLM method has similarly been used by Dedner et al. (2002) who focused on ways of
coupling the divergence-free constraint to the ideal MHD equations. Unfortunately, all three
modifications of the ideal MHD equations Dedner et al. presented are unsuitable for constructing a
thermodynamically consistent schemes as shown in Derigs et al. (2018b, Sec. 4.1).

In contrast to other divergence cleaning schemes, the GLM method has the great advantage to
directly couple into the mathematical model. It does not require any multi-step or post-processing
implementations, making it highly suitable for parallelized systems.

Goal of this thesis

As it is of great importance to handle the (numerically caused) magnetic field divergence correctly,
I focused my recent research on reconciling entropy stability with effective divergence cleaning. It
seems mandatory to be able to guarantee not only a thermodynamically consistent fluid behavior
but to simultaneously ensure that the used magnetic field divergence treatment complies with the
entropy inequality.
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1.3 Divergence cleaning techniques

After trying to create provably entropy stable schemes for a variety of divergence cleaning methods,
I found a way to formulate a new thermodynamically consistent model for ideal MHD where I
utilize the GLM technique to couple Gauß’s law to the ideal MHD equations in a novel entropy
consistent way. I call this new mathematical model the ideal GLM-MHD equations.

As demonstrated in Derigs et al. (2018b), many numerical schemes are not constructed to comply
with the universally valid laws of thermodynamics. Aim of my research was to derive a new
mathematical model suitable for computing magnetized ideal plasmas under extreme conditions as
those found in many astrophysical environments. I characterized and tested my new model for
standard test problems commonly found in the literature as well as for real scientific scenarios. For
this, I implemented my numerical scheme in the multi-physics simulation code FLASH (Fryxell
et al., 2000).

While my primary research interest focus is on developing highly accurate, physically consistent
schemes for astrophysical applications, it should be pointed out that my work is directly applicable
to other applications dealing with plasmas under extreme conditions. Examples for such an
applications are nuclear fusion power research and geophysics. I give more detail about the
applicability of my scheme beyond astrophysics in the Outlook chapter.

Structure of this thesis

This thesis is organized as follows:

After this introductory part, I discuss the necessary theoretical foundations. I start with a short
revision of the principles of fluid dynamics (Sec. 2.1) and the finite volume method (Sec. 2.2).
Thereafter, I shortly describe the specialties of astrophysical plasmas (Sec. 2.3), and introduce the
ideal MHD equations at the continuous level (Sec. 2.4).

These preparatory sections are followed by a synoptic introduction to the concept of entropy in
Sec. 2.5 and Sec. 2.6. An interesting observation of these two sections is that entropy is not only
an important measure to ensure thermodynamic consistency but turns out to be even inherently
linked to the divergence-free constraint.

The shortcoming of the discrete ideal MHD model eventually led to the development of my new
mathematical model described in Chapter 3.

In Chapter 4, I include a compilation of three published research articles I recently wrote. Each
individual paper is prefaced by its full bibliographic record, a short summary placing them in
context of this thesis, and an overview of the individual contributions of my co-authors.

Thereafter, in Chapter 5, I provide technical details about my implementation of the new scheme
for the multi-physics code FLASH. Herein, I also describe fundamental limitations of the FLASH
simulation code.

7



1 Introduction

To demonstrate the utility of my new scheme in an astrophysical context, I apply my scheme to a
state-of-the-art astrophysical simulation. The setup as well as the results, including a detailed
comparison to the previously used numerical scheme are given in Chapter 6.

Finally, in Chapters 7 and 8, I give a summarizing conclusion of my work and carefully describe
several possibilities for future work continuing the development of the new ideal GLM-MHD
model.

In the Appendix, I include a comparison of colliding flow solutions obtained using a reference
solver. I performed these comparisons to highlight possible discrepancies between different
implementations of the non-conservative ideal MHD terms discussed in Derigs et al. (2018b,
Sec. 3.8). This comparison is necessary as the reference solver that is used in several international
research groups does not use the physically mandated term as described in Derigs et al. (2018b,
Sec. 2).

On the last page of the appendix, I shortly comment on measurement endeavors and why we still
cannot exclude the existence of magnetic monopoles.
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This chapter serves to establish notation as well as to highlight a few points of interest. More
specific introductions are also given in the individual publications included in this thesis.

2.1 Fluid dynamics

One might argue that most parts of the Universe are gaseous and should, therefore, be described
by kinetic gas theory describing a gas as a large number of particles, all of which are in rapid
motion. These particles are constantly colliding with each other giving rise to a certain amount of
randomness. It is evident that a description of the cosmos based on all the atoms and molecules it
is composed of is unsuitable, as simulating trillions of billions of particles is untractable based on
the limited capabilities of humankind.

There is extensive literature available showing that we do not have to treat astrophysical systems
using kinetic gas theory. Instead, we use the fluid approximation2 when studying astrophysical
problems. The fluid approximation (also known as the fluid limit) has the significant advantage of
approximating the evolution of a given stochastic process to describe macroscopic properties such
as density or pressure. Obviously, a sufficient number of gas particles must be available to make
meaningful definitions of these macroscopic properties. Furthermore, the fluid approximation is
only valid if variations in the macroscopic quantities we observe are slow compared to the time
scale of microscopic processes in the fluid we want to model. Luckily, for astrophysical processes
(on the scales we observe them) both requirements are always fulfilled.

2In common usage, fluid is often used as a synonym for liquid, however, in science, fluids are a subset of the phases of
matter also including gases and plasmas.
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2 Theoretical background

Fluid approximation in a nutshell

We can always apply the fluid approximation to astrophysical problems when the mean free path
of the fluid is much smaller than the scale of interest.

Interesting models in physics are formulated as systems of conservation laws,

∂q

∂t
+ ∇ · f = 0, (2.1)

where q, and f (q,∇q) are the set of conserved variables and the vector of (physical) fluxes
depending on them and their gradients, respectively.

The behavior of fluids can be described by the Navier-Stokes equations, a set of partial differential
equations which are conservation laws for mass, momentum, and energy. The study of fluids in
motion is commonly called fluid dynamics or hydrodynamics.

2.2 The finite volume method

The finite volume (FV) approximation assumes that the quantities in question are constant within
small volumes, the so-called cells.This subdivison of the continuous spatial domain into a finite
number of cells, is known as discretization of the fluid. It inevitably implies a trade-off between a
precise description of a physical system and the available computational resources.

x

(a) 1D grid

x

y

(b) 2D grid

x y

z

Single cell

(c) 3D grid

Fig. 2.1: Exemplary computational grids

Grid-based simulations deal with the evolution of fluids by solving the evolution equations of
fluids for each cell on such a computational grid (see Fig. 2.1 for illustrations of simple one-, two-
and three-dimensional grids). The cell quantities are affected by fluxes through their surfaces
which couple the local cell with the rest of the fluid. In Fig. 2.2, I show an example for fluxes in a
one-dimensional grid with three cells.

Assume we are looking at cell i, we need to determine the fluxes describing how much of a quantity
is flowing in (Fi−1/2, green arrow) and how much is flowing out (Fi+1/2, red arrow) of cell i.
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2.3 Astrophysical plasma

F i−1/2 F i+1/2

qi−1 qi qi+1

i − 1 i i + 1

∆x

Fig. 2.2: Discretization in 1D showing interface fluxes associated with cell i.

Balancing these fluxes and assuming that the spatial dimension is discretized in uniform cells of
size ∆x, the temporal change of the conserved quantities q is

d

dt
qi =

Fi−1/2 − Fi+1/2
∆x

. (2.2)

Numerical algorithms engineered to compute the interface fluxes F are often called Riemann
solvers, as the interface fluxes can be computed by the solution of the so-called Riemann problem,
that is a one-dimensional initial-value problem of two interacting, initially constant states separated
by a single jump. Note that there is no exact-closed form solution of the Riemann problems found
in fluid dynamics (Toro, 2009, p. 115). Commonly seen “exact” Riemann solvers iteratively
compute the solution of the Riemann problem. Although they are typically very accurate, they
have several drawbacks such as high computational costs. They are also not guaranteed to converge
to a solution, resulting in a possible break-down of the scheme.

To overcome these problems, so-called “approximate” Riemann solvers have been developed. Due
to their reduced costs, this kind of Riemann solvers is used in almost all modern implementations.
Although they lack the ability to compute the interface fluxes exactly, various publications have
found that they do not degrade the overall accuracy of numerical schemes as much detail of the
solution to the Riemann problem is averaged over before the next time step. This is mostly caused
by low-order time integration schemes and comparably low spatial resolutions in simulations.

In this thesis, I carefully describe how to derive approximate Riemann solvers for magnetized
fluids that respect the fundamental laws of thermodynamics. I apply the technique to derive an
approximate Riemann solver for my new ideal GLM-MHD model.

2.3 Astrophysical plasma

The continuing increase in the significance of simulations for various fields drives the development
of numerical schemes. As both, the vast majority of the Universe, and, e.g., the interior of nuclear
fusion reactors, are filled with fluid in the so-called plasma state, fluid dynamics simulations
became a major instrument for such disciplines.

Plasmas are quasi-neutral, electrically conducting fluids. Examples for various kinds of plasma
range from the heliosphere to the magnetospheres of planets, to the jets in active galactic nuclei
(AGN), and to the gases of the interstellar and intergalactic media. The accepted view is that a vast
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majority of the matter in the visible (baryonic) Universe is plasma (see, e.g., Chiuderi & Velli,
2015, Chap. 1).

The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes, describe
the motion of viscous fluid substances. Unfortunately, the viscosity terms in the Navier-Stokes
equations give an extreme complexity so one typically tries to assess the importance of these terms
for the targeted application. The Reynolds number conveniently describes the ratio between the
relative importance of inertial and viscous forces,

Re =
ūL

ν
, (2.3)

where ū is the mean velocity, L the characteristic length scale and ν the kinematic viscosity of the
fluid.

For Re ≫ 1, inertial forces dominate the system. Fortunately, in the interstellar medium, one
commonly finds Re of up to 1010 such that viscous forces can safely be ignored (Burkhart, 2014,
p. 3). The ability to neglect viscosity terms dramatically simplifies the Navier-Stokes equations
(which involve higher-order spatial derivatives) to the Euler equations (involving only first order
derivatives):

The Euler equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.4a)

∂ρu

∂t
+ ∇ · (ρ(u ⊗ u) + pI) = 0, (2.4b)

∂E

∂t
+ ∇ ·

(
u

(
1

2
ρ‖u‖2

+

γp

γ − 1

))
= 0. (2.4c)

The three-dimensional Euler equations are given by eq. (2.4a-c). The conserved fluid quantities
are density ρ, momentum ρu = {ρu, ρv, ρw}, and total energy E . They are defined in the domain
Ω ⊂ R3.

Thermal pressure and energy are linked by the ideal gas law first introduced by Clapeyron (1834):

p = (γ − 1)Eint, (2.5)

with the internal energy computed as the difference between the conserved total fluid energy and
the kinetic energy of the gas,

Eint = E − 1

2
ρ‖u‖2, (2.6)

and the ratio of specific heat capacities, γ =
cp
cv

.
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2.4 Ideal MHD

2.4 Ideal MHD

As plasmas are electrically conducting, one must extend the hydrodynamic equations when
magnetic fields are present. Incorporating the effects of magnetic fields, one arrives at the field
of magnetohydrodynamics (MHD). As high electrical conductivity is ubiquitous in the ISM
(resistivity is negligible), we can use ideal magnetohydrodynamics (ideal MHD). The ideal MHD
equations are especially appealing as they allows one to capture as much physics as possible with a
still fairly simple mathematical model.

It is straightforward to obtain the ideal MHD equations by coupling the compressible Euler
equations through the Lorentz force,

FL = q (E + u × B) , (2.7)

with Maxwell’s equations for electromagnetism,

∇ · E = ρe

ε0
, (2.8a)

∇ · B = µ0ρm, (2.8b)

∇ × B =
1

c2

∂E

∂t
+ µ0 je, (2.8c)

−∇ × E =
∂B

∂t
+ µ0 jm (2.8d)

(Jackson et al., 2006, Sec. 6.11).

Here, E and B are the electric and magnetic field densities. The charge densities are ρe,m, where
the subscript e refers to electric charges and m refers to magnetic charges. A similar distinction
is made for the current densities, je,m := ρe,mu. The equations (2.8a-d) are invariant under a
global duality transformation that mixes electric and magnetic fields (Jackson et al., 2006). It is
important to note that I do not imply the non-existence of magnetic monopoles. By this, I keep the
equations as general as possible. The importance of these derivations become particularly relevant
when designing numerical methods for MHD as demonstrated in Derigs et al. (2018b, Sec. 2).

The ideal MHD equations, obtained from combining the general Maxwell equations (2.8a-d)
through the Lorentz force to the Euler equations (2.4a-c), are given by eq. (2.9a-d). For the sake of
clarity, I highlight the difference to the Euler equations in blue.

The ideal MHD equations

∂

∂t



ρ

ρu

E

B


+ ∇ ·



ρu

ρ(u ⊗ u) +
(
p + 1

2 ‖B‖2
)
I − B ⊗ B

u
( 1

2 ρ‖u‖2
+

γp

γ−1 + ‖B‖2
)
− B(u · B)

u ⊗ B − B ⊗ u


= −(∇ · B)



0

B

u · B
u


. (2.9a-d)

The system is closed by a new pressure equation now including magnetic energy,

p = (γ − 1)
(
E − 1

2
ρ‖u‖2 − 1

2
‖B‖2

)
, (2.10)
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and Gauß’s law for magnetism,

∇ · B = 0, (2.11)

which is nothing different than eq. (2.8b) with ρm = 0. It is essential to note that this condition is
not inbuilt in the ideal MHD equations and is a constraint that is to be fulfilled separately. This
independence is essential for being able to design entropy stable schemes as I did in the present
work.

I carefully described the entire derivation of the ideal MHD equations in my third publication
(pp. 84 - 88 in this thesis) where I put particular emphasis on the importance of not doing rash
simplifications such as ∇ · B ≡ 0. Such assumptions restrict the applicability of the obtained
equations to a narrower set of possible fluid configurations. I will herein only present the final
result of the derivations to avoid unnecessary repetition as the derivations are mostly technical. I
will, nevertheless, point out some of the essential findings here.

We see that the ideal MHD equations are in conservative form provided that ∇ · B = 0. However,
for any small violation of (2.11), the ideal MHD equations loose their exact conservation property
in all quantities except density. Many researchers see this as an unfavorable property and, in fact,
due to this reason, many publications and implementations of the ideal MHD equations simply
ignore the right-hand side of (2.9a-d). However, as I have shown in Derigs et al., 2018b (p. 87 in
this thesis), neglecting these non-conservative terms may easily cause the modeled plasma to
behave in a physically incorrect way. When we look at the projection of the Lorentz force onto the
magnetic field,

FL · B

‖B‖ = −(∇ · B)‖B‖, (2.12)

it becomes clear that any non-negligible magnetic field divergence leads to an artificial force
parallel to the magnetic field lines as eq. (2.12) , 0. When we, however, take the non-conservative
terms on the right-hand side of (2.9a-d) into account, there are no artificial forces present regardless
of the magnitude of the magnetic field divergence.

It is interesting to note that Godunov (1972) found the same non-conservative terms for symmetriz-
ability of the partial differential equation (PDE) system using an altogether different approach for
his derivations. The formulation of the ideal MHD system presented in (2.9a-d) supports eight
traveling plane wave solutions and is hence often referred to as the eight-wave formulation. As the
non-conservative term on the right-hand side is proportional to the divergence of the magnetic
field, it is, on the continuous level, nothing but adding zero in a clever way.

A remarkable outcome is that the obtained set of equations is known to have a number of
desirable properties lacking in the classical ideal MHD equations: The system (2.9a-d) is not
only symmetrizable (Godunov, 1972; Barth, 1999), but it is also invariant under a Galilean
transformation (translation with a constant velocity). Galilean invariance is considered necessary
property of any well-posed theory in non-relativistic physics.
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2.5 Entropy

Thermodynamics plays a vital role in describing and predicting the behavior of systems we observe
in our everyday life. The fundamentals are described in three laws. They are solely based on
empirical observations but have not been disproved to date.

There is yet another important property of the thermodynamical laws: they describe how a system
can not behave. Hence, they can decide which fluid behavior is physically meaningful and which is
not.

x

ρ

Fig. 2.3: Due to steepening, an initially smooth profile can evolve into a discontinuity that can no
longer be resolved on a finite grid. The arrows indicate the velocity of the right-going
shock front at three different times.

It is well known that for the Euler and ideal MHD equations, discontinuities in all physical
quantities may develop even from smooth initial data (see also Fig. 2.3). It turns out that solutions
for discontinuous data are not unique and, although all of the solutions of the Riemann problem are
mathematically valid, some of them might represent physically impossible fluid configurations. To
rule those out, one needs to supplement the PDE system by an additional admissibility criterion.

Fortunately, entropy can be used as such a criterion for the physical relevance of a given solution.
Investigations of hyperbolic PDEs, modeling entropy consistent fluid dynamics, have been the
subject of research for over fifty years (Godunov, 1961; Lax, 1967; Kružkov, 1970; Godunov,
1972; Kuznetsov, 1976; Mock, 1980; Harten, 1983; Tadmor, 1984; Tadmor, 1987; Merriam, 1989;
Tadmor, 2003; Roe, 2006; Ismail & Roe, 2009; Fjordholm et al., 2012; Tadmor, 2016; Winters &
Gassner, 2016; Derigs et al., 2016; Derigs et al., 2017; Winters et al., 2017; Derigs et al., 2018a;
Derigs et al., 2018b).

In the case of the Euler equations (and also ideal MHD), entropy is defined as the physical entropy
density,

S(q) = − ρs

γ − 1
with s = ln

p

ργ
(2.13)

(Landau, 1959, p. 315).
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Entropy, is conserved in smooth (continuous) flows,

∂

∂t
S + ∇ · (uS) = 0, (2.14a)

and decreasing in shock waves (discontinuous flows),

∂

∂t
S + ∇ · (uS) ≤ 0, (2.14b)

turning the balance law eq. (2.14a) into an inequality. Note that the sign is a matter of convention:
Whereas, in thermodynamics, entropy is described to only grow, mathematics and computational
physics define entropy to be only decreasing.

In the present work, I chose the mathematical sign convention as it is the commonly used convention
in the Journal of Computational Physics (JCP) in which I published my articles.

Entropy sign convention

If I would define the entropy in the thermodynamical sense (as an only increasing quantity),

S(q) = ρs

γ − 1
, (2.15)

then eq. (2.14b) would become
∂

∂t
S + ∇ · (uS) ≥ 0. (2.16)

A prime example of the usefulness of entropy stability as a physically motivated admissibility
criterion is that certain numerical schemes tend to “square” an initially smooth pulse (Merriam,
1989, Sec. 5.6). As such solutions have unphysical entropy production rates, entropy-aware
schemes avoid them by construction as they are designed to discard unphysical flow configurations
(see also Derigs et al., 2018b, Sec.5.7, p. 116 in this thesis).

2.6 Entropy aware schemes

A method is said to be entropy conservative if the local changes of entropy are the same as
described by the entropy equality (2.14a). It is said to be entropy stable if entropy is not only
always conserved but can also be “generated”3. This process is described by the entropy inequality
(2.14b).

From the second law of thermodynamics, kinetic and magnetic energy can be transformed
irreversibly into internal energy (heat). If additional dissipation is not included in an entropy con-
servative method, spurious oscillations will develop near discontinuities as energy is re-distributed
among its available forms at the smallest resolvable scale (Mishra, 2011).

3If entropy generation means reduction or increase in entropy depends on the sign convention.

16



2.6 Entropy aware schemes

We know that entropy is only conserved in purely smooth solutions. However, solutions to the
Euler and ideal MHD equations may develop discontinuities of significant strength even from
smooth initial conditions. Hence, entropy conserving schemes are only a first step into the direction
of entropy stable methods. Only these methods can be applied to arbitrary fluid configurations.

To obtain an entropy stable scheme, one contracts the ideal MHD equations into entropy space.
For this, Mock (1980) suggested defining entropy variables, which, in the case of the ideal MHD
equations are given by

v =
∂S(q)
∂q

=



γ−s
γ−1 − β‖u‖2

2βu

2βv
2βw
−2β
2βB1

2βB2

2βB3



, (2.17)

where S(q) and q are the physical entropy density (2.13), and the vector of conserved variables,

q =



ρ

ρu

ρv

ρw

E

B1

B2

B3



, (2.18)

respectively. The commonly used notation for the vector field components is B = [B1,B2,B3]⊺
and u = [u, v,w]⊺.

For convenience, I introduce a new quantity proportional to the inverse temperature,

β =
ρ

2p
∝ T−1, (2.19)

as suggested by Chandrashekar (2013).

Thanks to the strongly convex mathematical entropy function S(q), the mapping q → v is
one-to-one and one can use the entropy variables to contract the hyperbolic conservation law (2.1)
into entropy space,

v⊺ ·
(
∂q

∂t
+ ∇ · f

)
= 0 (2.20)

(Mock, 1980; Harten, 1983).

After many manipulations, one sees that the ideal MHD equations in form (2.9a-d) are entropy
consistent as the obtained entropy law,

∂

∂t
S + ∇ · (uS) = 0, (2.21)
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is identical to the entropy equality (2.14a). Thus, the system (2.9a-d) is suitable for construction
entropy conservative schemes. Although not immediately apparent, this result is significant. I will
come back to this when describing the new mathematical model I derived for this work.

The full derivation of entropy aware schemes is rather lengthy and technical. I carefully described
the procedure in Derigs et al. (2018b, Sec. 3.1) which is part of this thesis. For the sake of brevity,
I present here only the results of this derivation.

To simplify the discussion, but without lack of generality, I limit my analysis to the x-dimension.
As all dimensions are decoupled from each other,

∇ · f = ∂

∂x
f x +

∂

∂y
f y +

∂

∂z
f z, (2.22)

the extension to two or three spatial dimensions is straightforward. I described the procedure of
extending one-dimensional fluxes to multiple dimensions in Derigs et al. (2016, Sec. 3.1, p. 40 in
this thesis) and more extensively in Derigs et al. (2018a, beginning of Sec. 4.2, not included in
this thesis).

For the sake of convenience, I drop the x subscript from the flux vectors in the following.

2.6.1 Kinetic energy preservation

Correct simulation of the evolution of kinetic energy is a crucial requirement for accurate
simulations. A prime example are simulations involving turbulence, where there is an energy
cascade between the different eddy scales. Jameson (2008) detailed that the interface fluxes of a
conservative scheme can be constructed such that spurious kinetic energy cannot be produced
by the numerical fluxes. He denoted such schemes kinetic energy preserving (KEP) schemes.
The construction of a KEP scheme requires the fluxes of the continuity and momentum equations
to be constructed in a specific manner. The kinetic energy preserving property is desirable as
traditional Riemann solvers (“Godunov schemes”) are found to have wrong order of kinetic energy
dissipation and entropy production which leads to excessive damping of flow structures (Thornber
et al., 2008; Chandrashekar, 2013).

As I have shown in Derigs et al. (2017), the kinetic energy preserving property is favorable
regarding robustness of the numerical scheme particularly at high Mach numbers.

2.6.2 Entropy conserving scheme

In a numerical finite volume code, the continuous fluxes given in (2.9a-d) are computed at discrete
cell interfaces. The discrete kinetic energy preserving entropy conserving (KEPEC) numerical

18



2.6 Entropy aware schemes

flux at an interface described by the fluid configuration on its left (L) and right (R) side, reads

f KEPEC :=



ρln {{u}}
ρln {{u}}2

+ ptot − {{B1}}2

ρln {{u}} {{v}} − {{B1}} {{B2}}
ρln {{u}} {{w}} − {{B1}} {{B3}}

f ∗
E

0
{{u}} {{B2}} − {{v}} {{B1}}
{{u}} {{B3}} − {{w}} {{B1}}



, (2.23a-h)

with the averaged total pressure

ptot = p̃ +
1

2

( {{
B2

1

}}
+

{{
B2

2

}}
+

{{
B2

3

}} )
, (2.24)

and the discrete total energy flux

f ∗E =
f ∗a

2(γ − 1)βln
− 1

2
f ∗a

({{
u2

}}
+

{{
v

2
}}
+

{{
w

2
}})
+ f ∗b {{u}} + f ∗c {{v}} + f ∗d {{w}} + f ∗f {{B1}}

+ f ∗g {{B2}} + f ∗h {{B3}} −
1

2

({{
uB2

1

}}
+

{{
uB2

2

}}
+

{{
uB2

3

}})
+ {{B1}}

(
{{uB1}} + {{vB2}} + {{wB3}}

)
(2.25)

(Derigs et al., 2018b, Sec. 4.2). The numerical flux indices f ∗(·) represent the individual flux
components in (2.23).

The β averaged pressure is

p̃ =
{{ρ}}

2 {{β}} . (2.26)

The average of a quantity is defined as

{{·}} :=
(·)L + (·)R

2
. (2.27)

When applied to vectors, the average operators are evaluated separately for each vector component.

The logarithmic mean is defined as

(·)ln = n·o
nln(·)o, (2.28)

where the jump in a quantity is defined as

n·o = (·)R − (·)L. (2.29)

A numerically stable procedure to compute the logarithmic mean is described by Ismail & Roe
(2009, App. B).
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The discrete non-conservative term on the right-hand side of the ideal MHD equations is

Υ
x
i :=

nB1o

2∆x

©­­­«



0
BL

(u · B)L
uL


ª®®®¬i−1/2

+

nB1o

2∆x

©­­­«



0
BR

(u · B)R
uR


ª®®®¬i+1/2

. (2.30)

A numerical scheme build upon (2.23) and (2.30) conserves the discrete entropy by construction.

2.6.3 Entropy stable scheme

From the second law of thermodynamics, we know that kinetic and magnetic energy can irreversibly
be transformed into heat. This process is known as dissipation of energy. To respect this fundamental
physical process, the numerical scheme has to ensure that enough entropy is added to the solution
discretely satisfying the entropy inequality (2.14b).

The easiest and arguably most straightforward way of creating an entropy stable flux function is
to augment an entropy conserving baseline flux (as described in the preceding subsection) by a
suitable dissipation operator. The resulting kinetic energy preserving and entropy stable (KEPES)
flux,

f KEPES
= f KEPEC − 1

2
D nqo , (2.31)

is applicable to arbitrary flows. Finding suitable dissipation operators D such that the dissipation is
guaranteed to fulfill the entropy inequality is a major difficulty.

Scalar dissipation operator

A particularly simple dissipation operator is

Dscalar = |Λscalar | (2.32)

with the scalar diagonal matrix

Λscalar = diag(λmax, . . . , λmax), (2.33)

where λmax is the largest eigenvalue of the ideal MHD system. The matrix Λscalar is a diagonal
8-by-8 matrix.

If λmax is the largest global eigenvalue, eq. (2.32) describes a Lax-Friedrichs like dissipation
scheme (Lax, 1954). Although being known for stability, such schemes are also known for their
diffusivity, especially around shocks. The reason for this lies in the choice of the wave speed:
Dissipating according to the maximum wave speed present in the solution does not take into
account the local fluid properties.
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Choosing λmax as the local maximum eigenvalue in only the adjacent cells leads to a considerable
improvement in sharpness of results. Such schemes are known as local Lax-Friedrichs like or also
Rusanov like schemes (Rusanov, 1962).

As I have shown in Derigs et al. (2017, Sec. 4, pp. 74-76 in this thesis), the dissipation operator in
form (2.32) is not provably entropy stable. For achieving provable entropy stability, we have to
transform (2.31) from conservative into entropy space,

1

2
D nqo → 1

2
D H nvo , (2.34)

with a matrix H := ∂v
∂q

relating the conservative and entropy spaces. This is in agreement with
the observation of Barth (1999) who realized that entropy stable dissipation schemes should
incorporate the jump in entropy variables rather than in conservative variables. However, it turns
out that the matrix H is asymmetric and hence generally unsuitable for constructing entropy stable
schemes.

Fortunately, I found that it is possible to derive a suitable matrix Ĥ by relaxing the equality
nqo = H nvo in the total energy jump so that the equality reduces to an asymptotic approximation,

(nqo)i = (Ĥ nvo)i (2.35)

for i = {1,2,3,4,6,7,8} and
(nqo)5 ≃ (Ĥ nvo)5. (2.36)

The resulting matrix

Ĥ =



ρln ρln {{u}} ρln {{v}} ρln {{w}} E 0 0 0
ρln {{u}} ρln {{u}}2

+ {{p}} ρln {{u}} {{v}} ρln {{u}} {{w}}
(
E + {{p}}

)
{{u}} 0 0 0

ρln {{v}} ρln {{v}} {{u}} ρln {{v}}2
+ {{p}} ρln {{v}} {{w}}

(
E + {{p}}

)
{{v}} 0 0 0

ρln {{w}} ρln {{w}} {{u}} ρln {{w}} {{v}} ρln {{w}}2
+ {{p}}

(
E + {{p}}

)
{{w}} 0 0 0

E
(
E + {{p}}

)
{{u}}

(
E + {{p}}

)
{{v}}

(
E + {{p}}

)
{{w}} Ĥ5,5 τ {{B1}} τ {{B2}} τ {{B3}}

0 0 0 0 τ {{B1}} τ 0 0
0 0 0 0 τ {{B2}} 0 τ 0
0 0 0 0 τ {{B3}} 0 0 τ



,

(2.37)
with

Ĥ5,5 =
1

ρln

( (pln)2
γ − 1

+ E
2
)
+ {{p}}

(
{{u}}2

+ {{v}}2
+ {{w}}2

)
+ τ

3∑
i=1

(
{{Bi}}2

)
, (2.38)

pln
=

ρln

2βln
, {{p}} = {{ρ}}

2 {{β}} , E =
pln

γ − 1
+

1

2
ρln‖u‖2, (2.39)

‖u‖2
= 2

(
{{u}}2

+ {{v}}2
+ {{w}}2

)
−

({{
u2

}}
+

{{
v

2
}}
+

{{
w

2
}})

, and τ =
{{p}}
{{ρ}} (2.40)

is symmetric positive definite (see Derigs et al., 2017, Appendix A, for the proof).

As the derivation of this matrix is very technical and adds little additional information to this
introduction, I only note that it is extensively described in Derigs et al. (2017, Sec. 4, pp. 74ff in
this thesis).
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Using the said matrix, I derived a provably entropy stable scheme with scalar dissipation:

f KEPES
= f KEPEC − 1

2
Dscalar Ĥ nvo (2.41)

Being the most straightforward choice for a dissipation scheme, the scalar dissipation has some
drawbacks. One of them is that a scalar dissipation term cannot resolve contact discontinuities
exactly and will always add dissipation on interfaces separating zones of different densities.
Furthermore, it cannot dissipate selectively based on the waves present in the solution but will
always introduce much more dissipation than a selective dissipation scheme (Winters & Gassner,
2016, Sec. 6.4).

Selective dissipation scheme

A more complex dissipation operator is

Dmatrix = R|Λmatrix |R−1, (2.42)

where R is the matrix of right eigenvectors and Λmatrix is the diagonal matrix composed of the
eigenvalues of the flux Jacobian for the eight-wave ideal MHD system,

Λmatrix = diag(λ+f, λ+s, λ+a, λE, λD, λ−s, λ−a, λ−f),

with the wave speeds of two fast and slow magnetoacoustic waves (±f, ±s), two Alfvén waves
(±a), an entropy wave (E), and a divergence wave (D). Using the eigenvector scaling theorem of
Barth (1999), it is possible to relate the entropy Jacobian H and the right eigenvectors R, to create
a positive diagonal matrix such that

H = RTR⊺, (2.43)

with a positive diagonal scaling matrix T. To ensure that this entropy scaling exists, it must
be possible to symmetrize the system of PDEs. Fortunately, the ideal MHD equations with
non-conservative terms are symmetrizable as I pointed out in Sec. 2.4. Roe & Balsara (2006)
showed that the right eigenvectors may exhibit several forms of degeneracy. We obtained discrete
right eigenvectors and values free from these degeneracies in Winters et al. (2017).

The selective dissipation scheme is similar to Roe’s scheme (Roe, 2006; Ismail & Roe, 2009),
however, it gives greatly increased robustness, as we showed in Derigs et al. (2017) and Winters
et al. (2017).

Hybrid dissipation scheme

In Derigs et al. (2016) and Derigs et al. (2018b) we found that using a hybrid dissipation scheme,
continuously blending the scalar and the selective dissipation schemes, has additional benefits in
the robustness of our entropy stable numerical scheme.

22



2.6 Entropy aware schemes

In the hybrid scheme, eq. (2.41) and eq. (2.42) are combined4. The diagonal matrix of eigenvalues
is scaled to continuously blend the two schemes. The hybrid scheme has an identical form to
(2.42),

Dhybrid = R|Λhybrid |R−1, (2.44)

where the hybrid matrix is given by

|Λhybrid | = (1 − Ξ) |Λmatrix | + Ξ |Λscalar |, (2.45)

with the parameter-free pressure-based smoothness indicator

Ξ =

√
|pL − pR |
pL + pR

∈ [0,1] (2.46)

(Derigs et al., 2016, Sec. 3.5.2, p. 46 in this thesis). I depict the course of the smoothness indicator
in dependence of the ration of pressures in Fig. 2.4.

10−2 100 102

pL/pR

0.0

0.5

1.0

Ξ

Fig. 2.4: Parameter-free pressure-based smoothness indicator Ξ. The case Ξ ≈ 0 corresponds to a
smooth solution whereas Ξ→ 1 indicates a strong shock.

Combining eq. (2.31), and eq. (2.43) – (2.45), the hybrid entropy stable flux has the form

f KEPES
= f KEPEC − 1

2
R|Λhybrid |R−1(RTR⊺) nvo = f KEPEC − 1

2
R|Λhybrid |TR⊺ nvo . (2.47)

The pressure-based smoothness indicator (2.46) applies the more dissipative scalar term near
strong shocks and the less dissipative matrix term in smooth regions near rarefaction waves and at
contact discontinuities to ensure more accurate resolution of these features. I describe a possible
extension of this smoothness indicator to increase accuracy in the Outlook chapter (Sec. 8.2).

Using eq. (2.47), I can get the discrete form of the entropy inequality (see Derigs et al., 2018a,
Sec. 4.3.2),

∂

∂t
S + nuSo ≤ −1

2
nvo−1 R|Λhybrid |TR⊺ nvo , (2.48)

4this is possible as RR−1
= I

23



2 Theoretical background

where nuSo is the discrete analog of ∂
∂x
(uS). As the right-hand side,

1

2
nvo−1 R|Λhybrid |TR⊺ nvo ≥ 0 (2.49)

is a quadratic form (and is as such positive), we have

∂

∂t
S + nuSo ≤ 0. (2.50)

This proves that the numerical scheme (2.47) is entropy stable as it satisfies the entropy inequality
in a discrete sense.

Entropy sign convention

If I define the entropy in the thermodynamical sense as described in eq. (2.15), this leads to an
inversion of the sign on the entropy variables, vpos = −v. The entropy inequality would then be
described by eq. (2.52). The entropy stable flux (2.47) would be

f KEPES
= f KEPEC

+

1

2
R|Λhybrid |TR⊺

�
vpos

�
. (2.51)

As eq. (2.49) still holds, we have see that eq. (2.51) similarly fulfills the entropy inequality
(2.16):

∂

∂t
S + nuSo ≥ 0. (2.52)
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3 | The ideal GLM-MHD equations
3.1 The cleaning speed ch . . . . . . . . . . . . . . . . . . . . 27

3.2 Physical interpretation of the GLM correction . . . . . . . . . . . 28

The ideal GLM-MHD equations are a new mathematical model ensuring entropy stability with
effective inbuilt hyperbolic divergence cleaning. They couple Gauß’s law to the ideal MHD
equations in a novel entropy consistent way. Similar to Dedner et al. (2002), the idea is not
to strictly enforce the divergence-free condition (2.11), but rather to construct a scheme that
is designed to evolve towards a divergence-free state. For this, I investigated many options to
couple the divergence of the magnetic field into Faraday’s equation and found that a scheme with a
Galilean-invariant hyperbolic ansatz has favorable properties (see Derigs et al., 2018b, Sec. 3.4,
pp. 88-91 in this thesis, for the full derivation from first principles). The new mathematical model
I derived for thermodynamically consistent ideal MHD simulations reads:

The ideal GLM-MHD equations

∂

∂t



ρ

ρu

E

B

ψ



+ ∇ ·



ρu

ρ(u ⊗ u) +
(
p + 1

2 ‖B‖2
)
I − B ⊗ B

u
( 1

2 ρ‖u‖2
+

γp

γ−1 + ‖B‖2
)
− B(u · B) + chψB

u ⊗ B − B ⊗ u + chψI

chB



= −ΥGLM. (3.1a-e)

For the sake of convenience, I highlight the difference of my new mathematical model to the
eight-wave formulations of the ideal MHD equations (2.9a-d) in red.

The GLM-MHD equations feature a new non-conservative term

ΥGLM := (∇ · B)



0
B

u · B
u

0


+ (∇ψ) ·



0

0
uψ

0
u


, (3.2)

and an extended thermodynamic pressure equation,

p = (γ − 1)
(
E − 1

2
ρ‖u‖2 − 1

2
‖B‖2 − 1

2
ψ2

)
. (3.3)
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3 The ideal GLM-MHD equations

The newly introduced divergence-correcting field is denoted by ψ, where ch is the new hyperbolic
divergence cleaning speed. My definition of the generalized Lagrangian multiplier ψ, compared to
the definition of Dedner et al. (2002), results in a favorable set of entropy variables reducing the
complexity of the thermodynamic analysis. It is easily seen that for zero magnetic field divergence,
the correcting field is constant and the highlighted contributions in (3.1a-e) vanish, returning the
model to the ideal MHD equations (2.9a-d). Thus, the GLM modifications are consistent to the
ideal MHD model and correctly restore the continuous limit.

An important ingredient in my new model is that one needs to account for a form of magnetic field
correction energy carried by the ψ field. This is because the ψ field couples into the induction
equation,

d

dt
B = ∇ × (u × B) − ch∇ψ, (3.4)

and therefore alters the magnetic field and the energy stored therein. It stands to reason that the
correcting field contains some form of energy for which should be accounted. As the thermal
energy is computed by subtracting the kinetic and magnetic energies from the total energy, any
information regarding loss/gain of magnetic energy would be falsely attributed to thermal energy.
In Derigs et al. (2018b, eq. (3.12), p. 90 in this thesis), I found this additional ψ energy to be

Eψ =
1

2
ψ2. (3.5)

The similarity of this new energy to the magnetic field energy, Emag =
1
2 ‖B‖2 is undeniable.

Including this term in the total energy directly leads to the modifications in the total energy
equation (3.1c) and non-conservative term (3.2).

As the derived model is entirely new, I performed a full eigenstructure analysis in Derigs et al.
(2018b, Sec. 3.6, p. 92f in this thesis). The fast and slow magnetoacoustic (f/s), the Alfvén (a) and
the entropy (e) waves are identical to the ideal MHD case, whereas the divergence wave of the
eight-wave formulation splits into new left and right-going GLM waves. The eigenvalues of the
new ideal GLM-MHD system are

λ±f = u ± cf , (3.6a)

λ±s = u ± cs, (3.6b)

λ±a = u ± ca, (3.6c)

λe = u, (3.6d)

λ±ψ = u ± ch, (3.6e)

with

a2
= γ

p

ρ
, b =

B
√
ρ
, c2

a = b2
1, and

c2
f,s =

1

2

(
a2
+‖b‖2±

√
(a2
+ ‖b‖2)2 − 4a2b2

1

)
, (3.7)

where cf and cs are the fast and slow magnetoacoustic wave speeds, respectively, and ca is the Alfvén
wave speed. In the equations for c2

f,s, the plus sign corresponds to the fast magnetoacoustic speed
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3.1 The cleaning speed ch

cf , whereas the minus sign corresponds to the slow magnetoacoustic speed cs. All eigenvalues are
real and simple (they have an algebraic multiplicity of one). Hence, the ideal GLM-MHD scheme
is strictly hyperbolic. However, note that this is only true as long as magnetic fields are present. If
there are zero magnetic fields (compressible Euler equations), some waves may coincide.

As my system supports nine traveling waves, I call it the nine-wave scheme in the style of denoting
the ideal MHD system (supporting eight waves) as the eight-wave scheme.

Galilean invariance

The ideal GLM-MHD equation are invariant under a Galilean transformation, i.e., invariant to a
transformation into a frame of reference moving with a constant relative velocity u0,

x ′ = x − u0t, u′
= u − u0, t ′ = t,

as they show the expected transformation behavior of:

d

dt ′
=

d

dt
and

∂

∂t ′
=

∂

∂t
+ u0 · ∇

When setting ψ = ch = 0, one immediately gets the eight-wave formulation. Both GLM waves
join to form the commonly known (single) divergence wave with eigenvalue λD = u.

3.1 The cleaning speed ch

The cleaning velocity, ch, is the velocity with which the correction of the magnetic field is
propagated into the surrounding medium. Hence, the hyperbolic cleaning is most effective when
ch is as high as possible. Unfortunately, we cannot increase the cleaning velocity to an arbitrarily
high value as it is coupled into the CFL condition through the λ±ψ wave speed. Hence, beyond a
certain maximum value, it will affect the time step of the simulation which is undesirable in most
cases. In Derigs et al. (2018b, Sec. 3.7, p. 93 in this thesis), I carefully investigated the maximum
possible cleaning speed under the condition

λ±ψ ≤ max(λ±f, λ±a, λ±s, λE) (3.8)

resulting in a maximum CFL-compliant cleaning velocity

ch ≤ max
Ω

(cf ), (3.9)

where maxΩ(cf ) is the maximum fast magnetoacoustic wave speed in the entire simulation. This
result is favorable as it ensures that there will always be a non-vanishing cleaning speed.

A local, instead of a global, definition of ch can be advantageous regarding a locally higher
cleaning efficiency. Unfortunately, spatially varying cleaning speeds cannot be implemented in an
entropy-consistent way. In comparison to the discrete scheme I derived one would have to include
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3 The ideal GLM-MHD equations

ch in the jumps of the total entropy update (Derigs et al., 2018b, eq. (4.41), p. 100 in this thesis) as
highlighted in red:

nvo · f ∗ = nρuo +
�
βu‖B2‖

�
+ 2 nβB1chψo − 2 {{B1}} nβ(u · B)o (3.10)

This leads to slightly increased complexity as nβB1chψo will contain more mixed terms than what
I showed in Derigs et al. (2018b, eq. (A.6)):

nβB1chψo = {{β}} nB1chψo + {{B1chψ}} nβo

= {{β}}
(
{{B1}} nchoψ + {{ψ}} nchB1o

)
+ {{B1chψ}} nβo

= {{β}}
(
{{B1}} ({{ch}} nψo + {{ψ}} ncho) + {{ψ}} ({{ch}} nB1o + {{B1}} ncho)

)
+ {{B1chψ}} nβo

= nψo {{β}} {{B1}} {{ch}} + nB1o {{β}} {{ψ}} {{ch}} + ncho 2 {{β}} {{ψ}} {{B1}} + nβo {{B1chψ}}
(3.11)

Unfortunately, due to the absence of ch in the entropy variables, this results in an additional
equation when comparing to (A.7a) - (A.7i) in my paper. This equation,

ncho ({{β}} {{ψ}} {{B1}}) = 0, (3.12)

turns out to be problematic. As {{β}} > 0 and {{ψ}} {{B1}} . 0, eq. (3.12) inevitably requires
ncho = 0. Hence, it seems not possible to construct an entropy aware discrete GLM-MHD scheme
with spatially varying cleaning speeds.

3.2 Physical interpretation of the GLM correction

As described before, magnetic fields affect the surrounding fluid only locally through the Lorentz
force. Changes in the magnetic field topology are, however, non-local as the magnetic field is
globally constrained by the divergence-free condition (2.11). As the ideal MHD system does not
include this fundamental constraint, the global field topology stays unconstrained and magnetic
field divergence emerges. Although the ideal MHD equations in form (2.9a-d) correctly treat
non-zero magnetic field divergence, numerical instabilities can still occur due to energy piling up
in the magnetic field at stagnation points.

The ideal GLM-MHD equations are a substantial improvement over the ideal MHD equations
concerning magnetic field divergence treatment. Through the new scalar field ψ, I couple the
divergence-free constraint into the system. It takes care of propagating the corrections, which are
necessary to maintain the physical correctness of the solution, outwards into the ambient medium
with the “cleaning” speed ch.

The ultimate effect of the GLM correction can best be made clear with a simple example. In
Figs. 3.1 to 3.4, I show the temporal evolution of a simulation starting from purposely defined
non-divergence-free initial conditions. The initial conditions in many variables are constant

28



3.2 Physical interpretation of the GLM correction

(uniform density, pressure, zero velocity). I add a homogeneous magnetic field in x-direction, where
I cut out a cylindrical region in the center of the computational domain. An equivalent physical
experiment would be a region with a homogeneous magnetic field having a superconducting wire
at its center. The truncated magnetic field leads to a significant initial magnetic field divergence,

∇B = ∂

∂x
Bx , 0. (3.13)

In this section, I use B{x,y,z } instead of B{1,2,3} for the sake of readability.

Fig. 3.1 illustrates the initial conditions which feature a significant initial magnetic field divergence.
On the top panel, I show a slice of the magnetic field (left: x-component, right: y-component). On
the bottom left, I plot the scalar field ψ for visualization purpose and the magnetic field divergence
on the bottom right. I overplot magnetic field lines (in red) in the top left panel. In Fig. 3.2, I plot
the same quantities only a few time steps after the initial conditions. The magnetic field lines
become bend around the region with zero magnetic fields as the scheme corrects the magnetic
field topology. One can nicely see the generated correction field in the ψ plot (bottom left).

Fig. 3.3 shows the evolution of the simulation after a few more timesteps. The ψ wave is
isotropically expanding from the initial magnetic field discontinues around the cylindrical region.
As it propagates outward, it is correcting the magnetic field topology in the area through which
it travels. Accordingly, the ∇ · B plot shows that the strong initial magnetic field divergence at
the center of the computations domain has decreased notably (bottom right panel). As expected,
there is some “new” magnetic field divergence at the front of the GLM wave as the magnetic field
is just being corrected here and, in front of the ψ wave, the magnetic field is still uncorrected,
creating a kink in the magnetic field lines. As can be seen in the top right panel, magnetic energy is
redistributed from Bx into the By component to correct the magnetic field topology. The magnetic
field lines start to bend around the region of zero magnetic fields as expected and depicted in the
introduction (Fig. 1.2) so that the magnetic field outside of the radius of influence of the ψ wave is
still identical to the initial state.

In Fig. 3.4, I plot the magnetic field after one Alfvén wave crossing time. The initial magnetic
field divergence is removed, and the system is brought into a configuration in agreement with
Gauß’s law (2.11). The numerical solution obeys the second law of thermodynamics and is in
this sense physically meaningful. It reached an almost stationary state already at t ≈ 80 % of
the Alfvén crossing time. This is not surprising as the correction speed, ch, is given by the fast
magnetoacoustic wave and we have cf ≥ ca.

Of course, this example is rather academic but it nevertheless provides valuable information to
support the physical interpretation of the entropy-consistent GLM correction. More realistic tests
involve simulations where errors in the divergence-free constraint are (continuously) generated
by the numerical scheme over time. Such tests, as the MHD rotor or the Orszag-Tang MHD
vortex, start from purely smooth initial data and generate non-trivial magnetic field configurations
involving fast shocks.

I carefully tested my scheme using these and other tests in Derigs et al. (2018b, Sec. 5, pp. 107-117
in this thesis). Comparisons to reference solutions computed with a constraint transport scheme
prove the applicability of my new scheme for such benchmark tests.
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3 The ideal GLM-MHD equations
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Fig. 3.1: GLM divergence correction test: Initial conditions set. The magnetic field is set up in
x-direction where I exclude a cylindric region, causing a notable initial violation of the
divergence-free constraint as can be seen on the bottom right plot. I overplot magnetic
field lines (in red) in the top left panel.

x

x

x

x

y

y

y

y

Fig. 3.2: GLM divergence correction test: Snapshot only shortly after the initial conditions. The
correction is constantly propagating the necessary magnetic field corrections outwards,
reducing the strength of the local magnetic field divergence at the origin.
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Fig. 3.3: GLM divergence correction test: Snapshot after 10 % of the Alfvén crossing time. As
the ψ wave is propagating outwards, the magnetic field topology is corrected.
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Fig. 3.4: GLM divergence correction test: Snapshot after one Alfvén wave
crossing time. The magnetic field has been brought into a physically
consistent configuration. The simulation reached an almost stationary
configuration at this point. The scanable hyperlink to the right links
to a movie showing the temporal evolution of the GLM divergence
correction test.
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This cumulative dissertation is based on work that has been presented in the internationally
respected Journal of Computational Physics (JCP) that focuses on computational aspects and
algorithmic development to numerically model physical problems. This journal was established in
1966 and generally seeks to emphasize numerical methods that cross disciplinary boundaries. All

articles included in this thesis are accepted and have been published.

4.1 Contribution overview

This section contrasts my own contributions to the paper with the contributions of my collaborators
and co-authors. I am the main contributor in all included articles. Dr. Andrew Winters,
Prof. Dr. Stefanie Walch, and Prof. Dr.-Ing. Gregor Gassner assisted significantly in my research.

Prof. Dr. Stefanie Walch primarily supervised my work and helped me in finding the correct physics
interpretations for observed phenomena and continuously supported my endeavor of developing a
new numerical scheme for the simulation of astrophysical phenomena. She was my first point of
call whenever I had questions.

Prof. Dr.-Ing. Gregor Gassner showed me the way into mathematical modeling and the underlying
mathematical concepts of entropy stability. His support, especially for the numerical aspects of this
work, was essential for all, and especially my third article in which I derived the new mathematical
model, the ideal GLM-MHD equations.

Dr. Andrew Winters is an expert in the field of entropy stable methods. He helped me understand
the various derivation techniques I used throughout my research and continuously assisted me with
complex derivations (see individual contributions mentioned before each included article).
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The new ideas we generated in our regular interdisciplinary meetings eventually lead to all three
works. Hence, they are included as authors on all publications as they contributed to all aspects of
my research. Without their help, none of the included works would have been possible.
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4.2 Publication I

4.2 Publication I

Derigs, D., Winters, A. R., Gassner, G. J., Walch, S., (Apr. 2016). “A novel high-order, entropy
stable, 3D AMR MHD solver with guaranteed positive pressure.” In: Journal of Computational
Physics 317, pp. 223–256. issn: 0021-9991.
doi: 10.1016/j.jcp.2016.04.048. arXiv: 1605.03572.

The first paperpresented in this cumulative thesis describes the technical details of an implementation
of a significantly extended variant of the entropy-stable solver described in Winters & Gassner
(2016). I implemented the scheme into the multi-physics, multi-scale adaptive mesh refinement
(AMR) simulation code FLASH (Fryxell et al., 2000). The accuracy, robustness and computational
efficiency is demonstrated with a number of tests, including comparisons to available MHD
implementations in FLASH.

Contribution overview

I developed and implemented the numerical scheme, performed all simulations, and analyzed them.
Andrew Winters and Gregor Gassner gave advise while I developed a new high-order adaptive
mesh refinement (AMR) scheme based on the first-order scheme they presented in Winters &
Gassner (2016). Stefanie Walch gave advise and helped me clarifying the needs for astrophysical
applications.

Stefanie Walch, Gregor Gassner and Andrew Winters edited the paper.
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We describe a high-order numerical magnetohydrodynamics (MHD) solver built upon a 
novel non-linear entropy stable numerical flux function that supports eight travelling 
wave solutions. By construction the solver conserves mass, momentum, and energy and 
is entropy stable. The method is designed to treat the divergence-free constraint on the 
magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The 
solver described herein is especially well-suited for flows involving strong discontinuities. 
Furthermore, we present a new formulation to guarantee positivity of the pressure. We 
present the underlying theory and implementation of the new solver into the multi-

physics, multi-scale adaptive mesh refinement (AMR) simulation code FLASH (http :/ /flash .
uchicago .edu). The accuracy, robustness and computational efficiency is demonstrated with 
a number of tests, including comparisons to available MHD implementations in FLASH.

 2016 Elsevier Inc. All rights reserved.

1. Introduction

Modelling complex non-linear astrophysical phenomena is a central task in the field of astrophysics where laboratory 
experiments are very difficult if not entirely impossible. Examples of interesting phenomena include the study of stellar 
evolution, like the star formation process and supernovae explosions, pre-stellar accretion discs and many more. Using 
simulations allows us to study the internals of complex systems that cannot been seen in experiments and observations.

In astrophysics, a flow involving magnetized gas is typically ionized, compressible, and often supersonic. Since the in-
terstellar gas has essentially infinite conductivity [1], we treat the flow by solving the ideal magnetohydrodynamics (MHD) 
equations. From the hyperbolic nature of the ideal MHD equations, it is known that discontinuous solutions may develop 
even from smooth initial data. Obtaining stable numerical results for the variety of physical flow regimes is extremely 
challenging, particularly for the natural requirement that the numerical scheme must be both accurate and robust. In this 
paper, we present a novel three-dimensional high-order, conservative, quasi-multifluid, entropy stable, eight wave MHD 
solver developed for the numerical modelling of MHD flows. It is equally well suited for one, two, or three-dimensional 
hydrodynamics (HD) and MHD simulations.

The core of the novel MHD solver is the use of entropy stable flux functions developed in [2]. Entropy stable algo-
rithms have the benefit that, by construction, the numerical method is nearly isentropic in smooth regions and entropy is 
guaranteed to be increasing near discontinuities. Thus, the numerics precisely follow the physics of the second law of ther-
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modynamics. Another advantage of entropy stable approximations is that one can limit the amount of dissipation added to 
the numerical approximation to guarantee entropy stability. The development and investigation of entropy stable algorithms 
for the ideal MHD equations has been considered by several authors [3–5,2].

The entropy stable formulation also addresses the issue of divergence cleaning for approximate solutions of the ideal 
MHD equations. The proof of entropy stability in [2] required an additional source term that acts analogously to a hyperbolic 
divergence cleaning technique [6]. That is, errors introduced into the divergence-free condition are advected away with the 
fluid velocity.

The scheme handles another major robustness issue in numerical approximations of state-of-the-art high-order MHD 
solvers – the possible appearance of negative pressures. Negative pressures are a numerical artifact arising due to the 
problem of finite numerical precision. This phenomenon has been reported frequently in the literature [7–23]. In current 
codes, negative pressures are avoided by adding artificially high amounts of dissipation or by introducing non-conservative 
low pressure limits. Negative pressures can arise due the fact that the internal energy is obtained by subtracting the kinetic 
and magnetic energies from the conserved total energy. In many situations, such as high Mach number or low plasma β
flows (β ∝ p/‖B‖2), the internal energy can be several orders of magnitude smaller then either the kinetic or magnetic 
energies. Thus, discretisation errors in the total energy could be significant enough to result in negative pressures. The 
inevitable consequence is the failure of the numerical scheme.

We describe how the novel solver uses the entropy as an auxiliary equation to eliminate this issue and derive a novel 
expression for the pressure which completely avoids the subtraction problem. The new pressure positivity guaranteeing 
formulation is not tied to any specific numerical flux function. It remains general and it is straightforward to retrofit into 
any existing HD/MHD schemes if the underlying numerical approximation is constructed in a way that satisfies certain 
criteria on the entropy (see Sec. 3.6).

The new solver achieves high-order accuracy in space and time while remaining attractive from a computational point 
of view. The numerical scheme is extended to high-order in space with spatial reconstruction techniques. In particular, 
we use a third order spatial approximation with the newly developed reconstruction technique of Schmidtmann et al. [24]. 
High-order accuracy in time is obtained using the family of strong stability preserving (SSP) Runge–Kutta methods developed 
by Gottlieb et al. [25].

We provide here details of the novel solver as well as its implementation into the multi-scale multi-physics simulation 
code FLASH [26,27]. FLASH is publicly available and has a wide international user base. The remainder of this paper is 
organized as follows: Sec. 2 provides the necessary background information to discuss the novel numerical solver. In Sec. 3
we describe, in detail, the new solver. The most important aspects of which are the entropy stable numerical fluxes and the 
new pressure positivity guaranteeing formulation. Sec. 4 presents a variety of numerical results that demonstrate the utility 
of the new solver. We compare our results to already available MHD implementations in FLASH where applicable. Sec. 5, 
presents our concluding remarks.

2. Governing equations and discretisation

We first provide the necessary background to discuss the novel MHD solver. This includes a brief description of the ideal 
MHD equations, the concept of entropy conservation and stability, and an outline of the finite volume scheme used for the 
spatial discretisation.

2.1. Ideal MHD equations

The ideal MHD model assumes that a fluid is a good electric conductor and neglects non-ideal effects, e.g. viscosity or 
resistivity. It is governed by a system of conservation laws

∂

∂t

⎡
⎢⎢⎣

ρ
ρu

E

B

⎤
⎥⎥⎦ + ∇ ·

⎡
⎢⎢⎢⎢⎣

ρu

ρ(u ⊗ u) +
(
p + 1

2
‖B‖2

)
I− B ⊗ B

u
(
E + p + 1

2
‖B‖2

)
− B(u · B)

B ⊗ u − u ⊗ B

⎤
⎥⎥⎥⎥⎦

= 0, (2.1)

∇ · B = 0, (2.2)

where ρ , ρu, and E are the mass, momenta, and total specific energy of the plasma system, p is the thermal pressure, 
I is the identity matrix, and B is the magnetic field, also referred to as magnetic flux density. Since our velocities are 
non-relativistic, Maxwell’s displacement current may be ignored in the Lorentz force term. We consider the non-dimensional 
form of the ideal MHD equations. Details concerning physical units can be found in Appendix D.

Numerical methods for multidimensional ideal MHD must satisfy some discrete version of the divergence-free condi-
tion (2.2). There are several approaches to control the error in ∇ · B and in depth review of many methods can be found 
in Tóth [17]. The thermal pressure is related to the conserved quantities through the ideal gas law for problems in which 
relativistic, viscous, and resistive effects can be neglected:
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p = (γ − 1)

(
E − ρ

2
‖u‖2 − 1

2
‖B‖2

)
(2.3)

with the ratio of specific heats γ > 1.

Note that if we take the divergence of Faraday’s equation the magnetic continuity equation

∂

∂t
(∇ · B) + ∇ ·

(
u(∇ · B)

)
= 0, (2.4)

is obtained. From (2.4) we see that the divergence of the magnetic field may be treated as an advected scalar. Thereby, the 
robustness and accuracy of a numerical scheme can be significantly improved [28]. This improvement is primarily because 
the advection of the generated errors prevents the accumulation at fixed locations. The eigenmode which is advected with 
the flow in (2.4) is referred to as the divergence wave.

We include the Janhunen source term [18] in the ideal MHD equations (2.1) which is proportional to ∇ · B . The use of a 
source term to control the error in the divergence free condition has known issues, such as errors can build up at stagnation 
points as well as in periodic or closed domains. The only mechanism present to remove these divergence errors is the nu-
merical dissipation of a scheme, but true hyperbolic divergence cleaning methods can remove such limitations [6]. However, 
the Janhunen source term preserves the conservation of mass, momentum, total energy and allows for the construction of 
an entropy stable approximation [2]. We explicitly “clean” magnetic field divergence errors in a post-processing step, as will 
be described later. The governing equations in conjunction with the Janhunen source term are now a system of balance 
laws

∂

∂t

⎡
⎢⎢⎣

ρ
ρu

E

B

⎤
⎥⎥⎦ + ∇ ·

⎡
⎢⎢⎢⎢⎣

ρu

ρ(u ⊗ u) +
(
p + 1

2
‖B‖2

)
I− B ⊗ B

u
(
E + p + 1

2
‖B‖2

)
− B(u · B)

B ⊗ u − u ⊗ B

⎤
⎥⎥⎥⎥⎦

= −(∇ · B)

⎡
⎢⎢⎣

0

0

0

u

⎤
⎥⎥⎦ . (2.5)

Note that the expression “source term” is common in this context, even though the term actually involves spatial derivatives.
To simplify the discussion of the new solver we first consider the modified ideal MHD system (2.5) in one spatial 

dimension

∂

∂t
Q + ∂

∂x
F = ϒ, (2.6)

where Q = Q (x, t) is the vector of conservative variables, F (Q ) the flux vector, and ϒ(Q ) is the vector source term

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
ρu

ρv

ρw

E

B1

B2

B3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ u

ρu2 + p + 1
2
‖B‖2 − B2

1
ρ u v − B1B2

ρ u w − B1B3

u
(
E + p + 1

2
‖B‖2

)
− B1 (u · B)

0

u B2 − v B1

u B3 − w B1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ϒ = −∂B1

∂x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

u

v

w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.7)

In Sec. 3.1 we provide a detailed discussion of the multi-dimensional extension of the solver.

2.2. Entropy conservation and stability

This section serves as a brief introduction to entropy and numerical partial differential equations. A thorough review of 
this topic has been presented by Tadmor [29]. Work specifically related to entropy and the ideal MHD equations can be 
found in [4,2].

It is well-known that solutions of balance laws like (2.6) may develop discontinuities in finite time, so we consider 
solutions of the balance laws (2.6) in the weak sense. Unfortunately, the weak solution is not unique. Thus, we require an 
additional admissibility condition on the solution to guarantee that the numerical approximation will converge to a weak 
solution that is consistent with the second law of thermodynamics. In the case of ideal MHD a suitable condition can be 
defined in terms of the physical entropy density, as defined by Landau [30, p. 315], divided by the constant (γ − 1) for 
convenience, i.e.

S(Q ) = ρs

γ − 1
with s = ln

(
pρ−γ

)
, (2.8)

where γ is the adiabatic index and s is the entropy per particle. The approximation obeys the second law of thermodynam-

ics and is based on an entropy condition for two regimes:
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1. For smooth solutions, one can design numerical methods to be entropy conservative if, discretely, the local changes of 
entropy are the same as predicted by the continuous entropy conservation law

∂

∂t
S + ∂

∂x
F = 0, (2.9)

where we define the corresponding entropy flux

F (Q ) = uS = ρus

γ − 1
. (2.10)

2. For discontinuous solutions, the approximation is said to be entropy stable if the entropy always possesses the correct 
sign and the numerical scheme produces more entropy than an entropy conservative scheme and satisfies the entropy 
inequality

∂

∂t
S + ∂

∂x
F ≥ 0. (2.11)

From the second law of thermodynamics, kinetic as well as magnetic energy can be transformed irreversibly into heat 
(internal energy). If additional dissipation is not included in an entropy conservative method, spurious oscillations will 
develop near discontinuities as energy is re-distributed at the smallest resolvable scale [31]. A numerical scheme requires a 
diffusion operator to match such a physical process.

For the entropy stable solver discussed in this paper we use the provably entropy stable approximate Riemann solver 
derived in [2].

2.3. Finite volume scheme

The finite volume method is a discretisation technique for partial differential equations especially useful for the approx-
imation of systems of hyperbolic conservations laws. The finite volume method is designed to approximate conservation 
laws in their integral form, e.g.,

∫

V

Q t dx+
∫

∂V

F · n̂dS = 0. (2.12)

In one spatial dimension we divide the interval, V , into cells

V i =
[
xi−1/2, xi+1/2

]
, (2.13)

and the integral equation of a balance law with a source term becomes

d

dt

xi+1/2∫

xi−1/2

Q dx+
[
F ∗ (

xi+1/2

)
− F ∗ (

xi−1/2

) ]
=

xi+1/2∫

xi−1/2

ϒ dx. (2.14)

A common approximation is to assume a constant solution within the cell [32, p. 436]:

xi+1/2∫

xi−1/2

Q dx ≈
xi+1/2∫

xi−1/2

Q i dx = Q i�xi . (2.15)

Note that the finite volume solution is typically discontinuous at the boundaries of the cells. To resolve this, we introduce 
the idea of a “numerical flux”, F ∗(Q R , Q L), often derived from the (approximate) solution of a Riemann problem. The 
function F ∗ takes the two states of the solution at an element interface and returns a single flux value. For consistency, we 
require that

F ∗(Q , Q ) = F , (2.16)

that is, the numerical flux is equivalent to the physical flux if the states on each side of the interface are identical.
Next, we address the discretisation of the source term ϒ in (2.14). There is a significant amount of freedom in the source 

term discretisation. The explicit discretisation of the source term is given in Sec. 3.4. We note that the discrete source term 
at each left (i − 1/2) and right (i + 1/2) interface will contribute in cell i. So, the semi-discrete finite volume method is

(
Q t

)
i
+ 1

�xi

[
F ∗
i+1/2 − F ∗

i−1/2

]
= 1

2

(
ϒ i−1/2 + ϒ i+1/2

)
. (2.17)
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3. Description of the novel entropy stable MHD solver

Here we describe the FLASH implementation of the entropy stable ES solver in three spatial dimensions. In Sec. 3.1 we 
discuss the extension of the solver to three dimensions using dimensional splitting. Sec. 3.2 presents a spatial reconstruction 
scheme used to achieve a high-order approximation. We describe the explicit time integration technique in Sec. 3.3. The 
entropy conservative and entropy stable numerical flux functions are described in Sec. 3.4 and Sec. 3.5, respectively. The 
new strategy to numerically guarantee the positivity of the pressure is described in Sec. 3.6. The adaptive mesh refinement 
(AMR) functionality of FLASH and the new implementation is found in Sec. 3.7. Next, in Sec. 3.8, a brief summary of 
a quasi-multifluid implementation is provided. Sec. 3.9 describes how to couple gravity into the entropy stable solver. 
The treatment of the divergence-free condition in higher spatial dimensions is described in Sec. 3.10. Finally, Sec. 3.11

summarizes the MHD update procedure in FLASH.

3.1. Multi-dimensionality

We extend the one-dimensional set of MHD equations (2.6) to two or three spatial dimensions. In the case of an un-
derlying grid structure that is logically rectangular1 (like Cartesian grid geometries) a simple and efficient way of extending 
the one-dimensional Riemann solver to higher spatial dimensions is to use dimensional splitting. The method of dimensional 
splitting has become popular in fluid dynamics as it allows us to apply our knowledge about one-dimensional systems 
directly to multi-dimensional systems. Using the dimensional splitting method, one-dimensional problems along each coor-
dinate direction are solved in turn to determine the fluxes across the faces of a finite volume cell. It has proven to be an 
inexpensive way of extending one-dimensional high-resolution methods to higher dimensions [32, p. 103].

We experience that in multi-physics simulations, commonly performed using FLASH, the MHD solver accounts for less 
than 10% of the overall CPU time (e.g. [33]). Thus, an MHD discretisation which allows large time steps is beneficial for 
the overall computational efficiency of the multi-physics framework. It is well-known that dimensionally split schemes give 
larger time steps than comparable unsplit schemes where the dimensionality directly enters the CFL condition. Although 
the technique of dimensional splitting reduces the accuracy of the solver to formally second-order, the overall increase in 
efficiency is often favourable for practical applications.

If the three-dimensional semi-discrete problem can be written in the form of
(
Q t

)
i
+ A(Q ) + B(Q ) + C(Q ) = 0, (3.1)

then the total update (3.1) can be split up into an x-sweep

(
Q t

)
i
+ A(Q ) = 0, (3.2)

a y-sweep

(
Q t

)
i
+ B(Q ) = 0, (3.3)

and a z-sweep

(
Q t

)
i
+ C(Q ) = 0, (3.4)

where A(Q ), B(Q ), and C(Q ) are operators for the vector of quantities Q in x, y, and z-directions, respectively. Each of 
the sweep operators is a compact notation to write the numerical flux and source term contributions for a given spatial 
direction. For example, the operator A(Q ) in three dimensions has the form

A(Q ) = 1

�xi

(
F ∗
i+1/2, j,k − F ∗

i−1/2, j,k

)
− 1

2

(
ϒ i−1/2, j,k + ϒ i+1/2, j,k

)
. (3.5)

Therefore, in each sweep direction, separate solutions of the Riemann problem and source term values are computed to 
update the quantities stored in Q n according to (2.17).

To compute the sweeps in y- and z-directions, any direction dependent quantities, i.e. velocity and magnetic field com-

ponents, are rotated in order to solve them with the same algorithm that is used for the x-sweep.

3.2. Spatial reconstruction

The finite volume method used by the FLASH framework approximates the solution with quantities which are constant 
within each cell. If one considers these values as point-wise approximations of the solution located at each cell centre, this 
method computes the numerical interface fluxes at a distance of �x/2 from an interface. Rather than using piecewise con-
stant data, we use reconstructed quantities within each cell, ( Q̃ i)L,R . Reconstruction functions, (pi)L,R , allow the computation 
of the approximated interface quantities

1 Not strictly rectangular since cells of different spatial sizes are allowed to coexist on the same grid.
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Fig. 1. Graphical representation of the quantities used in (3.7) and (3.8). Reconstructed quantities used for the computation of the numerical fluxes are 
highlighted in blue. The cell-centred quantities are printed in black. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 2. Principle of our spatial reconstruction. This example shows the parabolic reconstruction of a specific density pattern. The cell-centred quantities, 
ρi−2 , ρi−1 , ρi , and ρi+1 , are represented by dots. Our scheme uses a local three-point stencil and is thereby computationally very efficient.

( Q̃ i)L = Q i −
1

2
(pi)L, and ( Q̃ i)R = Q i +

1

2
(pi)R. (3.6)

The reconstructed quantities (3.6) are then used to compute high-order accurate numerical fluxes in the finite volume 
scheme (2.17), i.e.

F̃ i−1/2 = F ∗

((
Q̃ i−1

)
R
,
(
Q̃ i

)
L

)
and F̃ i+1/2 = F ∗

((
Q̃ i

)
R
,
(
Q̃ i+1

)
L

)
. (3.7)

The resulting high-order accurate semi-discrete approximation, reorganizing (2.17), is of the form

(
Q t

)
i
= 1

�xi

(
F̃ i−1/2 − F̃ i+1/2

)
+ 1

2

(
ϒ i−1/2 + ϒ i+1/2

)
, (3.8)

as illustrated in Fig. 1.
For our reconstruction we use the third order accurate shock capturing limiting procedure for numerical solutions of hy-

perbolic conservation laws recently described by Schmidtmann et al. [24]. Their scheme utilizes a local piecewise-parabolic 
reconstruction away from discontinuities (see Fig. 2) and reads

(pi)L = p(Q i−1, Q i, Q i+1) = +2

3
Q i−1 − 1

3
Q i −

1

6
Q i+1 =

2δ
i− 1

2
− δi+ 1

2

3
, (3.9)

(pi)R = p(Q i+1, Q i, Q i−1) = −1

6
Q i−1 − 1

3
Q i +

2

3
Q i+1 =

2δ
i+ 1

2
− δi− 1

2

3
, (3.10)

with

δi− 1
2

= Q i − Q i−1 and δi+ 1
2

= Q i+1 − Q i . (3.11)

However, such a reconstruction is known to cause oscillations in non-smooth solutions. This can be seen as a direct con-
sequence of Godunov’s Theorem [34]. To avoid oscillations, we use the limiting procedure of Schmidtmann et al. [24] to 
switch to a lower-order accurate reconstruction near large gradients, shocks and discontinuities.

3.3. Strong stability preserving time integration

The solution of a system of hyperbolic conservation laws may not be smooth. In such cases inaccurate time-integration 
schemes can suffer from poor performance such as an excessively small time step size due to the presence of spuri-
ous oscillations as well as the progressive smearing, clipping or squaring of the numerical approximation. To alleviate 
such performance issues, we consider a third order accurate explicit high-order strong-stability-preserving (SSP) low-storage 
Runge–Kutta time-integration scheme [25]. Such schemes are also referred to in the literature as total variation diminishing

(TVD) [35]. However, Gottlieb et al. [36] showed this moniker is misleading as their strong stability property holds in any 
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norm and not only the TVD norm. We complete the discretisation of the reconstructed method (3.8) with the third order 
SSP Runge–Kutta scheme:

Q ′ = Q n + �t · Q t(Q
n), (3.12)

Q ′′ = 3

4
Q n + 1

4

(
Q ′ + �t · Q t(Q

′)
)
, (3.13)

Q n+1 = 1

3
Q n + 2

3

(
Q ′′ + �t · Q t(Q

′′)
)
. (3.14)

SSP Runge–Kutta schemes consist of convex combinations of explicit forward Euler integration. Thus, the family of methods 
are guaranteed to be stable under the same time step restriction [25]. We find that the third order SSP Runge–Kutta time 
integration enables us to use larger time steps, which is favourable in our multi-physics framework.

To select a stable time step for a computational run we use the CFL condition

�t ≤ CFL ·min

[
�x

λx
max

,
�y

λ
y
max

,
�z

λz
max

]
, (3.15)

where λd
max is the speed of the largest wave at time step n travelling in d = {x, y, z} direction, CFL is the user-definable CFL 

coefficient, CFL ∈ (0, 1]. If λmax is known exactly, then the choice CFL= 1.0 may be adequate [37, p. 222]. However, λmax

is usually computed in some approximate way. Thus, a more conservative choice for the CFL coefficient is typically used in 
practice (e.g. CFL= 0.8).

3.4. Entropy conserving numerical flux

For the entropy analysis of the ideal MHD equations the divergence-free condition is incorporated into the system of 
conservation laws as a source term [38,18]. Both the Powell [28] and Janhunen [18] source terms treats the magnetic 
field as an advected scalar. However, the Janhunen source term remains conservative in the momentum and total energy 
equations and restores the positivity of the Riemann problem as well as Lorentz invariance [39].

The discussion of the entropy conserving numerical flux function of [2] requires the introduction of some notation. We 
introduce the jump ❏·❑, the arithmetic mean (·)A as well as the logarithmic mean (·)ln of the left/right states, denoted by 
(·)L and (·)R , respectively. These operators are defined as

❏·❑ = (·)R − (·)L, (·)A = (·)L + (·)R
2

, and (·)ln = ❏·❑

❏ln(·)❑
. (3.16)

A numerically stable procedure to compute the logarithmic mean is described by Ismail and Roe [40, Appendix B]. For 
convenience we also introduce

z1 =
√

ρ

p
, and z5 = √

ρp. (3.17)

3.4.1. Source term discretisation
It was shown in [2] that the Janhunen source term can be used to design numerical schemes that guarantee the discrete 

conservation of the entropy density for the ideal MHD equations. Guaranteeing this discrete conservation of the entropy 
density requires a particular discretisation of the Janhunen source term:

1

2

(
ϒ i−1/2 + ϒ i+1/2

)
, (3.18)

with

ϒ i−1/2 = −❏B1❑i−1/2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

(uz21)
A(B1)

A

(�xz21B1)
A

(vz21)
A(B2)

A

(�xz21B2)
A

(wz21)
A(B3)

A

(�xz21B3)
A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i−1/2

, and ϒ i+1/2 = −❏B1❑i+1/2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0
(uz21)

A(B1)
A

(�xz21B1)
A

(vz21)
A(B2)

A

(�xz21B2)
A

(wz21)
A(B3)

A

(�xz21B3)
A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i+1/2

. (3.19)
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3.4.2. Entropy conserving flux function
The recently developed provably entropy conserving flux of Winters and Gassner [2] reads:

F ∗,ec =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̂û1

p̂1 + ρ̂û2
1 + 1

2

(
B̊1 + B̊2 + B̊3

)
− B̊1

ρ̂û1 v̂1 − B̂1B2

ρ̂û1 ŵ1 − B̂1B3

γ
γ −1

û1 p̂2 + 1
2
ρ̂û1

(
û2
1 + v̂21 + ŵ2

1

)
+ û2

(
B̂2
2 + B̂2

3

)
− B̂1

(
v̂2 B̂2 + ŵ2 B̂3

)

0

û2 B̂2 − v̂2 B̂1

û2 B̂3 − ŵ2 B̂1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.20)

with the averaged quantities and products

ρ̂ = (z1)
A (z5)

ln , p̂1 = (z5)
A

(z1)
A
, p̂2 = γ + 1

2γ

(z5)
ln

(z1)
ln

+ γ − 1

2γ

(z5)
A

(z1)
A
,

û1 = (z1u)A

(z1)
A

, v̂1 = (z1v)A

(z1)
A

, ŵ1 = (z1w)A

(z1)
A

,

û2 =
(
z21u

)A
(
z21

)A , v̂2 =
(
z21v

)A
(
z21

)A , ŵ2 =
(
z21w

)A
(
z21

)A , (3.21)

B̂1 = (B1)
A , B̂2 = (B2)

A , B̂3 = (B3)
A , B̂1B2 = (B1B2)

A ,

B̊1 =
(
B2
1

)A
, B̊2 =

(
B2
2

)A
, B̊3 =

(
B2
3

)A
, B̂1B3 = (B1B3)

A .

In the case of smooth solutions, the entropy conserving flux (3.20) conserves the entropy density of the system up to the 
precision of the scheme. In order for the numerical scheme to be applicable for possibly non-smooth solutions we must 
extend the purely entropy conserving flux to become an entropy stable flux.

3.5. Entropy stabilization

Entropy conserving approximations suffer breakdown in the presence of discontinuities, which results in large oscilla-
tions in post-shock regions. Therefore, we require dissipation to be added to the approximation in an entropy consistent 
manner to guarantee discrete satisfaction of the entropy inequality (2.11). The work [2] derived two provably entropy stable 
approximate Riemann solvers for the ideal MHD equations. In this work we present a new hybrid entropy stable approx-
imation that continuously combines these two entropy stable fluxes. This introduces explicit non-linearity to permit the 
calculation of sharp shock fronts and contact discontinuities.

3.5.1. Entropy stable flux functions
To build an entropy stable approximation we use the entropy conservative approximation (3.20) as a baseline. In partic-

ular the work [2] presented two possible dissipation terms that can be added to the entropy conserving scheme:

ES-Roe: a matrix dissipation entropy stabilization. Similar to a Roe type method it selectively applies dissipation to each 
of the travelling wave solutions, particularly close to shocks.

ES-LLF: a scalar dissipation entropy stabilization. A simple, local Lax–Friedrichs type dissipation mechanism. Due to the 
simplicity of ES-LLF it cannot distinguish between the various waves present in the MHD flow and can, therefore, 
lead to a severe smearing of the approximation near discontinuities.

Here we outline the construction of the ES-Roe stabilization. The ES-LLF stabilization follows almost immediately. 
To build the matrix dissipation term we first select the dissipation matrix to be |̂A|. That is the absolute value of the flux 
Jacobian for the ideal MHD 8-wave formulation:

Â = F Q + P = A+ P, (3.22)

where A is the flux Jacobian for the homogeneous ideal MHD equations and P is the Powell source term [28] written in 
matrix form, i.e.
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P
∂ Q

∂x
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

0 0 0 0 0 B1 0 0

0 0 0 0 0 B2 0 0

0 0 0 0 0 B3 0 0

0 0 0 0 0 u · B 0 0

0 0 0 0 0 u 0 0

0 0 0 0 0 v 0 0

0 0 0 0 0 w 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∂

∂x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
ρu

ρv

ρw

ρe

B1

B2

B3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ∂B1

∂x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

B1

B2

B3

u · B
u

v

w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.23)

The design of the entropy stable matrix dissipation term requires the specific form of the flux Jacobian (3.22) because it 
must be possible to relate the eigenvectors of (3.22) to the entropy Jacobian matrix [41]. This relationship is referred to 
as creating entropy scaled eigenvectors, e.g. [41,42]. To ensure that this entropy scaling exists, the system of PDEs must be 
symmetrizable. It is known that the Powell source term restores the symmetric property to the ideal MHD system [42,38], 
whereas the Janhunen source term does not restore symmetry. However, both source terms allow to contract the MHD 
equation to the entropy evolution equation and hence both source terms can be used to construct entropy conserving (or 
stable) discretisations. We choose the Janhunen source term to construct the entropy conservative discretisation, as this gives 
us conservation of mass, momentum and energy unlike a method based on the Powell source term. Thus, the consistent 
symmetric part of the flux is based on the Janhunen source term. As long as the additional stabilization term is guaranteed 
to dissipate entropy, the scheme is entropy stable. Hence, for the design of the stabilization term only, we are considering 
the flux Jacobian that incorporates the Powell source term, as this guarantees that the entropy scaled eigenvectors exist for 
the ideal MHD system, which is necessary in order to get the Roe type dissipation term.

The matrix type stabilization term requires the eigenstructure of the dissipation matrix (3.22)

Â = R̂DR̂−1. (3.24)

The matrix Â supports eight propagating plane-wave solutions:

• two fast magnetoacoustic waves (± f ),

• two slow magnetoacoustic waves (±s),

• two Alfvén waves (±a),

• an entropy wave (E),
• a divergence wave (D).

It is known that a naively scaled set of right eigenvectors will exhibit several forms of degeneracy that are carefully de-
scribed by Roe and Balsara [43]. We follow the same rescaling procedure of Roe and Balsara to improve the numerical 
behaviour of the fast/slow magnetoacoustic eigenvectors. The matrix of right eigenvectors is

R̂ = [ r̂+f | r̂+a | r̂+s | r̂E | r̂D | r̂−s | r̂−a | r̂−f ] , (3.25)

with the eigenvectors ̂r, and corresponding eigenvalues λ [42,43,2]

Entropy and Divergence Waves: λE,D = u

r̂E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

u

v

w
‖u‖2
2

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, r̂D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

B1

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.26)

Alfvén Waves: λ±a = u ± b1

r̂±a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

±ρ
3
2 β3

∓ρ
3
2 β2

∓ρ
3
2 (β2w − β3v)

0

−ρβ3

ρβ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.27)
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Magnetoacoustic Waves: λ± f ,±s = u ± c f ,s

r̂± f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α f ρ

α f ρ(u ± c f )

ρ
(
α f v ∓ αscsβ2σ (b1)

)

ρ
(
α f w ∓ αscsβ3σ (b1)

)


± f

0

αsaβ2
√

ρ

αsaβ3
√

ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, r̂±s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αsρ

αsρ (u ± cs)

ρ
(
αsv ± α f c f β2σ (b1)

)

ρ
(
αsw ± α f c f β3σ (b1)

)


±s

0

−α f aβ2
√

ρ

−α f aβ3
√

ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.28)

where we introduced several convenience variables


±s = αsρ‖u‖2
2

− aαfρb⊥ + αsρa
2

γ − 1
± αscsρu ± αfcfρσ (b1)(vβ2 + wβ3),


±f =
αfρ‖u‖2

2
+ aαsρb⊥ + αfρa

2

γ − 1
± αfcfρu ∓ αscsρσ (b1)(vβ2 + wβ3),

c2a = b21, c2f,s = 1

2

(
(a2 + b2) ±

√
(a2 + b2)2 − 4a2b21

)
, a2 = γ

p

ρ
, (3.29)

b2 = b21 + b22 + b23, b2⊥ = b22 + b23, b = B
√

ρ
, β1,2,3 = b1,2,3

b⊥
,

α2
f = a2 − c2s

c2
f
− c2s

, α2
s =

c2
f
− a2

c2
f
− c2s

, σ (ω) =
{

+1 if ω ≥ 0,

−1 otherwise
.

In (3.29), for the wave speed computation c2
f,s
, the plus sign corresponds to the fast magnetoacoustic speed, c2

f
, and the 

minus sign corresponds to the slow magnetoacoustic speed, c2s .
The entropy stable dissipation term is built from three components:

• Entropy scaled matrix of right eigenvectors: R̊ = R̂
√
T, where T is the diagonal scaling matrix

T = diag

(
1

2ργ
,

p

2ρ3
,

1

2ργ
,

ρ(γ − 1)

γ
,
p

ρ
,

1

2ργ
,

p

2ρ3
,

1

2ργ

)
. (3.30)

For the complete motivation and details on the entropy scaling of eigenvectors see Barth [42].
• Diagonal matrix of eigenvalues: For ES-Roe each wave component is weighted with a different eigenvalue, whereas

ES-LLF weights all wave components identically

|DES−Roe| = diag
(
|λ+ f |, |λ+a|, |λ+s|, |λE|, |λD|, |λ−s|, |λ−a|, |λ− f |

)
, (3.31a)

|DES−LLF| = diag
(
λmax, λmax, λmax, λmax, λmax, λmax, λmax, λmax

)
. (3.31b)

The maximum eigenvalue λmax is given by

λmax = max
(
|λ+ f |, |λ+a|, |λ+s|, |λE|, |λD|, |λ−s|, |λ−a|, |λ− f |

)
. (3.32)

• Jump in the entropy vector: ❏v❑
The term ❏v❑ is the jump between left and right states of the entropy vector, which is defined as a vector field whose 
components are partial derivatives of the entropy density (2.8) with respect to the fluid quantities Q ,

v = dS

dQ
= −

[
γ − s

γ − 1
− ρ‖u‖2

2p
,

ρu

p
,

ρv

p
,

ρw

p
, −ρ

p
,

ρB1

p
,

ρB2

p
,

ρB3

p

]⊺
, (3.33)

with the physical entropy, s, defined in (2.8).

The general form of the ES-Roe, and ES-LLF numerical flux functions is

FES = F ∗,ec + 1

2
R̊|D|R̊T ❏v❑, (3.34)

where F ∗,ec is the entropy conserving numerical flux (3.20). Note that the only difference between the ES-Roe and ES-
LLF stabilizations is in the selection of the diagonal matrix of eigenvalues D. The matrix of right eigenvectors and the 
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eigenvalues are discretely computed from the previously defined average quantities (3.21) to ensure consistency, in the 
presence of vanishing magnetic fields, with the entropy stable Euler solver of Ismail and Roe [40].

3.5.2. Hybrid entropy stabilization
Chandrashekar [44] points out that most, if not all, schemes which resolve grid aligned stationary contact discontinuities 

exactly suffer from the carbuncle effect as the profiles around shocks can exhibit spurious oscillations. This can also be true 
in our case as our flux function guarantees only the correct sign of the entropy but not necessarily the correct amount 
of entropy production. However, a flux function must generate enough entropy across a shock to guarantee monotonicity 
[45]. The usual fix for this problem, i.e. increasing the amount of induced dissipation, causes poor resolution of features of 
boundary layers or near shocks. Another possibility is to switch the numerical scheme to a more dissipative one only near 
shocks and use a high resolution Riemann solver in smooth parts of the flow [46]. It is straightforward to implement such 
an idea in the current context because entropy stable schemes have the freedom to select the eigenvalues that essentially 
control the amount of dissipation.

The local Lax–Friedrichs type scalar dissipation, ES-LLF, effectively suppresses the carbuncle phenomenon. However, 
we want to use the more accurate Roe type matrix dissipation, ES-Roe, in regions without large pressure jumps to be able 
to track smooth parts of the solutions with more accuracy. To achieve this goal we construct a hybrid entropy stabilization
scheme, called ES-Hybrid, that blends the ES-Roe and the ES-LLF scheme continuously. In the hybrid scheme, a new 
diagonal matrix of eigenvalues is defined as

|DES−Hybrid(�)| = (1 − �)|DES−Roe| + �|DES−LLF|, (3.35)

with the limits

lim
�→0

|DES−Hybrid(�)| = |DES−Roe|,

lim
�→1

|DES−Hybrid(�)| = |DES−LLF|.
(3.36)

As was done in [44], we define the parameter � ∈ [0, 1] using a simple local pressure jump indicator

� =
∣∣∣∣∣
pL − pR

pL + pR

∣∣∣∣∣

1/2

. (3.37)

From the design of the pressure indicator (3.37), the scheme uses mainly the less dissipative ES-Roe scheme for smooth 
parts of the flow (but also near e.g. contact discontinuities), while the more dissipative ES-LLF entropy-stabilization is 
used near strong shocks.

3.6. Pressure positivity guaranteeing formulation

We next address the issue that negative pressures may be introduced by a numerical scheme. This has been described in 
previous publications, e.g. [22,19,20]. We present here a general and physically motivated solution to the specific numerical 
issue of negative pressures.

In a classical higher order Godunov method, the internal energy and thereby the thermal pressure, pth , is obtained by 
subtracting the kinetic and magnetic energies from the conserved total energy (2.3). In many situations, as in high-Mach 
number or low plasma-beta flows (β ∝ p/‖B‖2), the internal energy can be several orders of magnitude smaller then the 
kinetic or magnetic energies. Thus, discretisation errors in the total energy might be significant enough to result in negative 
pressures leading to a failure of the numerical scheme. This problem is often addressed by enforcing low pressure limits. 
However, it is questionable if the simulation can then still give a physically meaningful solution. Therefore, it is important 
to design a conservative pressure positivity guaranteeing scheme that is physically convincing.

3.6.1. Previous investigations
Ryu et al. [22] state that in regions where the gas is very cold compared to the bulk kinetic energy, the flow cannot be 

treated using the total energy approach as the errors in calculating the total energy can be larger than the internal energy 
itself. In order to overcome this difficulty, they solve an entropy conservation equation and extract the pressure directly 
wherever the internal energy is much less than the kinetic energy, i.e. Eth/Ekin ≪ 1. They present several different criteria 
used to select whether to compute the pressure from the total energy or from their entropy formulation.

Balsara and Spicer [19] extend the idea of Ryu et al. to MHD flows and present two strategies to prevent negative 
pressures. Their “strategy 1” is to use the pressure computed from the entropy density only in those cells where the 
thermal pressure could potentially become negative. In all other cells, they use the thermal pressure given by (2.3). Their 
“strategy 2” uses the pressure computed from the entropy everywhere except in regions near strong magnetosonic shocks 
or a flow configuration that may develop such shocks. They justify the validity of their approach by noting that their work 
deals with magnetospheric problems. There are no shocks present in a magnetosphere, but there still remains a positivity 
problem.
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Li [15] extends the ideas of Balsara and Spicer to an implementation of two new equations: The entropy equation used 
in [19] and an internal energy equation. Similar to the previously mentioned works, he points out that these equations 
should not be used close to or within regions that contain shocks. His shock detection scheme sets a floor value for the 
internal energy in cells near a shock.

Balsara [20] presents a general strategy to address problems where the positivity of density and pressure is uncertain. 
His work addresses the problem that positivity can be lost when using reconstruction schemes. He presents a self-adjusting 
strategy for enforcing the positivity of the pressure. However, we realize that the positivity problem of pressure can also be 
encountered with schemes that are first-order accurate in space and as such do not utilize a reconstruction scheme. This is 
due to the problem of subtracting large numbers with accordingly large discretisation errors as stated above.

The work of Ersoy et al. [10] relies on improving the resolution in problematic regions. They utilize a discrete measure 
of the entropy in order to stabilize their computation. They use the local entropy production as a mesh refinement criterion 
on their computational grid.

3.6.2. Derivation of a new pressure formulation

The current solver is built from an entropic perspective. Thus, at any time in the computation, we can compute the en-
tropy density as well as the discrete entropy flux. With these tools we determine a value for the pressure that is guaranteed 
to be positive. From the computed entropy density for each cell within the computational domain, we use (2.8) to derive a 
new expression for the pressure in the cells:

ps = exp

[
γ − 1

ρ
S + γ ln(ρ)

]
. (3.38)

From (3.38), it is immediately clear that this “entropy pressure” will always be positive as exp(x) > 0, x ∈ R. Hence, our 
solver fulfils the desired property of being pressure positivity guaranteeing under all circumstances.

We note that our scheme can be used in a similar way as described by Balsara and Spicer [19]. However, our scheme 
includes a proper treatment of the entropy at shocks. It is applicable in all regions of the flow and not only in sufficiently 
smooth regions.

The current scheme is: Use the “normal” scheme as long as the internal energy is large enough after the update with 
the criterion E int/Etot > smalleint with the user-definable parameter smalleint that defaults to 0.01. If the internal 
energy is smaller than the criterion, we switch to the entropy pressure formulation without violating the conservation of 
total energy.

3.6.3. Implementation of the entropy pressure formulation

It is straightforward for a given semi-discrete finite volume method to compute the entropy update of the method. This 
is because we know how to convert the equations into entropy space. We contract the semi-discrete equations (possibly 
including some reconstruction technique) (3.8) with the entropy vector (3.33) to obtain

vT
(
Q t

)
i
= vT

(
1

�xi

(
F̃ i−1/2 − F̃ i+1/2

)
+ 1

2

(
ϒ i−1/2 + ϒ i+1/2

))
. (3.39)

From the chain rule and definition of the entropy vector (3.33) we know that

vT
(
Q t

)
i
= (St)i . (3.40)

So, we have an expression for the time evolution of the entropy density

(St)i = vT

(
1

�xi

(
F̃ i−1/2 − F̃ i+1/2

)
+ 1

2

(
ϒ i−1/2 + ϒ i+1/2

))
, (3.41)

where, as was shown in [2], the entropy stable fluxes provide a discrete approximation to the spatial derivative of the 
entropy flux, i.e.

∂

∂x
(uS) ≈ vT

(
1

�xi

(
F̃ i−1/2 − F̃ i+1/2

)
+ 1

2

(
ϒ i−1/2 + ϒ i+1/2

))
. (3.42)

Thus, we see that (3.41) is a consistent, discrete update for the entropy. This new discrete equation for the entropy density 
can be added to the MHD system (2.5) and evolved in time with the other fluid quantities. We reiterate that, by construc-
tion, the entropy stable approximation will guarantee that entropy is consistent with the second law of thermodynamics 
everywhere. Thus, the proposed positive pressure guaranteeing method is valid in any region of the flow. The implemented 
procedure is:

1. We update the entropy density Sn+1 with the same time integration scheme used to obtain Q n+1 .

2. If the updated energies violate the criterion En+1
int

/En+1
tot > smalleint, we use (3.38) to get pn+1

s .

3. Finally, we recompute the updated internal energy from pn+1
s to make the scheme consistent.
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Fig. 3. Two blocks with different levels of refinement (i.e. mesh 
resolution). A single x sweep is highlighted in red. The guard cells 
are not shown in this figure.

Fig. 4. An adaptive grid 2D simulation with different levels of refinement. The interior 
cells of one of the blocks are highlighted in yellow. The according guard cells are 
shown in grey. Guard cells that extend into blocks having a different grid size are 
interpolated. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

3.7. AMR functionality

FLASH incorporates an adaptive mesh refinement (AMR) strategy using the PARAMESH library [47], through which the 
grid is organized in a block structured, oct-tree adaptive grid. The presented entropy stable solver is fully incorporated 
into FLASH’s AMR functionality to optimize computational costs. For completeness we briefly discuss the underlying AMR 
structure, and parallelization in FLASH. With AMR, the local spatial resolution can be dynamically controlled. This allows 
the maximization of the computational efficiency of the overall simulation as higher resolution is placed only where it is 
needed.

Parallelization is achieved by dividing the computational domain into several blocks (sub-domains). A block contains a 
number of computational cells (NXB, NYB, and NZB in the x, y, and z-direction, respectively). The default block contains 
NX|Y|ZB = 8. Each block is surrounded by a fixed number of guard cells in each spatial direction, providing the block 
with information from its neighbouring blocks. The complete computational domain consists of a number of blocks (most 
likely with different physical sizes). The three-dimensional structure of the blocks is sketched in Fig. 3, while a simple 
two-dimensional slice through an adaptive grid is shown in Fig. 4. Three rules apply in the creation of refined blocks:

1. A refined block must be one-half of the size of the parent block in each spatial dimension (e.g. each refinement of a 
block gives 8 additional blocks in three-dimensional computations).

2. Refined blocks must fit within the parent block and are not allowed to overlap into other blocks (they have to be 
aligned).

3. Blocks sharing a common border are not allowed to differ in more than one level of refinement.

Each block contains all information about local and neighbouring cells, making the blocks with the surrounding guard 
cells self-contained computational domains which allows efficient parallel computation using the Message Passing Interface 
(MPI) framework. We configure AMR in such a way that adaptive refinement is allowed after each two consecutive time 
steps (nrefs= 2).

3.8. Quasi-multifluid implementation

The ability to track the exact composition of a gas is of central importance in astrophysical simulations as they include 
detailed chemical networks to treat heating, cooling, as well as molecule formation and destruction to mimic the behaviour 
of the interstellar medium (ISM) [48,33,49].

In order to track the different chemical species in the gas, advection equations of the form

∂ Xℓρ

∂t
+ ∇ · (Xℓρ u) = 0, (3.43)

are solved, where Xℓ is the fractional abundance of the ℓth species (H, H+, H2, He, etc.) with the unity constraint 
∑

ℓ Xℓ = 1. 
For each species the flow of the quantity is calculated by multiplying the fractional abundances of the species in the cells 
with the total density fluxes. Our scheme was originally devised for a perfect gas with a constant ratio of specific heats, γ . 
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We generalize our scheme for a multi-species fluid with variable γ by adopting a mean value of γ at the cell interfaces as 
suggested by Murawski [50].

We implement the multi-species advection in a similar way as recommended by Plewa & Müller [51] (known as Con-
sistent Multi-fluid Advection (CMA) method). That is, we ensure that the species fluxes are consistent during the advection. 
Note that many existing schemes instead normalize the abundances after the advection step. However, as Glover et al. [52]
pointed out, this procedure lacks any formal justification and can lead to large systematic errors in the abundance of the 
least abundant chemical species.

In addition to the multifluid approach using different chemical species, we implement mass tracer fields (also called 
mass scalars or tracerfields). These are field variables which are advected similar to species mass fractions by an equation 
of the form

∂ψρ

∂t
+ ∇ · (ψρ u) = 0 , (3.44)

where ψ is the mass fraction, and ψρ is the partial density of the traced mass.

Our implementation of the mass tracer fields into the MHD solver allows the use of any number of such fields. Thus, the 
mass tracer fields are a flexible tool for tracing different mass quantities according to individual requirements. For example, 
a mass tracer field could be used to follow the distribution of metals in the interstellar gas with virtually no additional 
computational costs.

3.9. Coupling to gravity

The inclusion of gravity in the ideal MHD equations (2.1) introduces a force into the right-hand side of the momentum 
equations

∂

∂t
ρu + ∇ ·

[
ρ(u ⊗ u) +

(
p + 1

2
‖B‖2

)
I− B ⊗ B

]
= −ρ∇φ, (3.45)

where the gravitational potential φ satisfies Poisson’s equation

∇2φ = 2πGρ, (3.46)

with the universal gravitational constant G that is an empirical physical constant involved in the calculations of gravitational 
forces between two bodies.

FLASH provides several algorithms for solving the Poisson equation (3.46). We tested our implementation with a Barns & 
Hut tree-based algorithm implemented by R. Wünsch (Poisson/BHTree) [53] and the Fourier transform-based multigrid 
algorithm Poisson solver (Poisson/Multigrid) [54].

3.10. Magnetic field divergence treatment

Within the MHD equations (2.1), the divergence free condition of the magnetic field (2.2) is not modelled directly. While 
this constraint is physically fulfilled at any time, we will see that care must be taken to fulfil this constraint numerically.

The extension to higher spatial dimensions, as described in Sec. 3.1, has been performed in a straightforward manner 
by relying on the Cartesian grid structure. In one dimension the divergence-free condition implies that the longitudinal 
component of the magnetic field is constant over time. However, this conclusion does not generalize to two and three 
spatial dimensions.

Instead, due to discretisation errors, a non-zero divergence of the magnetic field occurs over time which inevitably leads 
to the issue that the conservation of the magnetic flux cannot be maintained. These discretisation errors effectively generate 
numerical magnetic monopoles that grow exponentially during the computation and cause the magnetic field to no longer 
be solenoidal. From the equations of ideal MHD (2.1) it is clear that these monopoles cause an artificial force parallel to B .

In Sec. 2.1, we noted that errors in the divergence-free condition are dealt with by treating the divergence of the magnetic 
field as an additional fluid quantity to prevent accumulation of errors when the divergence is non-zero in the computational 
domain. The eigenmode which is advected with the flow in (2.4) is referred to as the divergence wave. This procedure might 
be understood as a form of divergence cleaning for the magnetic field. However, numerical experiments show that this 
approach might not be sufficient to maintain adequate divergence-free magnetic fields throughout simulations.

Concerning divergence cleaning, there are different techniques available (see e.g. [55]). One particular example is the 
elliptic projection, based on the Helmholtz decomposition, originally developed by Chorin [56]. Brackbill and Barnes [57]
and Marder [58] developed a projection method in the context of the MHD equations. This method effectively suppresses the 
growth of unphysical magnetic monopoles locally as shown by Murawski [50] and Tóth [17]. The projection method has 
successfully been applied by e.g. Zachary et al. [21], Balsara [59], and more recently by Crockett et al. [60]. We implement 
the projection method for divergence cleaning as a separate post-processing step and note that our original scheme remains 
unchanged.
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Fig. 5. Principle of the one-dimensional solution update with four guard cells.

The general downside of this scheme may be the high computational costs caused by the projection approach. Our 
implementation is based of the realization that although the divergence problem is of elliptical character, its influence is 
only local. Accordingly, we design our implementation of the projection method in a way that is purely local and thereby 
computationally favourable.

To enforce the divergence-free constraint we subtract the portion of the magnetic field that violates ∇ · B = 0. Suppose 
that the divergence of the magnetic field in the computation is non-zero. An easy fix to this problem is the addition of a 
correction field B̃ such that

∇ ·
(
B + B̃

)
= 0. (3.47)

To guarantee physical consistency of the magnetic field correction, it is clear that B̃ must not cause any additional current

j ∝ ∇ × B̃ = 0. (3.48)

Hence, we conclude that B̃ must have the form

B̃ = ∇φ, (3.49)

where φ is a scalar potential. Combining (3.47) and (3.49) we obtain

�φ = ∇2φ = −∇ · B. (3.50)

Note that the Laplace operator, �, has the physical interpretation for non-equilibrium diffusion as the extent to which a 
point represents a source or sink of some concentration. The resulting scalar potential can then be used to evaluate B̃
according to (3.49) and, thus, clean the magnetic field B:

B

∣∣∣
∇·B=0

= B + B̃. (3.51)

By the projection of the cell-centred magnetic fields onto the space of divergence-free magnetic fields, one is left with 
fields at the next time step which are divergence-free to very good approximation. We note that projecting the magnetic 
field in the way described is consistent with the underlying cell-centred scheme.

An alternative approach to divergence cleaning that should be mentioned is the constraint transport method developed 
by Evans and Hawley [61] or Balsara and Spicer [62] (reviewed in [17]). In this approach, the divergence-free constraint is 
satisfied by placing the staggered magnetic field at cell faces instead of cell centres. On such a grid, the MHD equations can 
be approximated such that they preserve numerical solenoidality of the magnetic field by construction. Note that Balsara 
and Kim [63] found advantages for the staggered-mesh in their comparison between divergence-cleaning and divergence-free
methods for stringent test cases. However, the staggered grid approach has the downside of being much more expensive in 
terms of storage. In addition, it is not clear if provably stable schemes can be constructed for staggered-meshes [64].

The precise implementation of our divergence cleaning approach is described in further detail in Appendix B.

3.11. MHD update procedure

On logically Cartesian grid geometries, it is straightforward to solve multi-dimensional problems as sets of one-
dimensional problems by using the dimensional split approach. This approach is the principle of the new ES solver. The 
MHD equations are solved as one-dimensional problems along each coordinate direction in turn (x, y, and z-sweeps) in 
order to determine the fluxes through the finite volume cell surfaces.

Each one-dimensional sweep (like the one highlighted in Fig. 5) works as follows:

1. First, the quantities are converted from primitive to conservative form (e.g. velocity to momentum).

2. For y and z-sweeps the solution array is rotated such that we solve this sweep as if it would be an x-sweep. This allow 
us to use our one-dimensional algorithms without modification.

3. For each cell within the array, the reconstructed quantities ( Q̃ i−1)R and ( Q̃ i)L are computed using the spatial recon-
struction scheme (see Sec. 3.2) at the current time.
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4. Then, the entropy stable numerical fluxes as well as the source terms are computed using the algorithms described in 
Secs. 3.4 and 3.5.

The default behaviour is to use the ES-Hybrid flux due to its flexibility. However, the user can easily change which flux 
function the computation uses with a single switch. Depending on the settings, either the entropy conserving fluxes, F ∗,ec , 
the matrix dissipation entropy stable fluxes, F ES−Roe , the scalar dissipation entropy stable fluxes, F ES−LLF , or the hybrid 
entropy stable fluxes, FES−Hybrid are used.

5. After this preparation, the solution array is updated using the time integration scheme described above.
6. The updated internal energies are then derived from the updated total energy.

We update the total energy as it is a conserved quantity. From the updated total energy, we derive the internal energy by 
subtracting the magnetic and kinetic energies as suggested in [65]:

En+1
int

= En+1
tot −

(
En+1
mag + En+1

kin

)
with Enmag = 1

2

∥∥Bn
∥∥2

, and Enkin = 1

2
ρn

∥∥un
∥∥2

(3.52)

If the computed internal energy fails the criterion E int/Etot > smalleint, then the total energy update is done with the 
pressure computed from the entropy density described in Sec. 3.6.

7. Finally, the variables are converted to primitive form as other FLASH modules expect primitive variables.
8. In higher dimensions, the divergence cleaning procedure, described in Sec. 3.10, is used to diffuse away errors in the 

divergence-free condition as a post-processing step.

4. Numerical results

We demonstrate the utility, robustness, and accuracy of the new solver by computing the solution to several well-known 
HD and MHD test problems. The version of FLASH on hand is 4.3 as of 18th July, 2015. We consider six numerical test 
cases to test the performance of our new solver and compare to results obtained using already available MHD solver imple-

mentations for FLASH. A test that extends the well-known Shu–Osher test to MHD is presented in Sec. 4.1 which is used 
to test the ES scheme’s artificial dissipation in 1D. The propagation of smooth Alfvén waves is studied in Sec. 4.2. We forgo 
the presentation of further one-dimensional results as we felt multi-dimensional results were more valuable to the present 
discussion. The application of the entropy stable MHD solver to the shock tube problems of Brio and Wu [66], Ryu and Jones 
[67], and Torrilhon [68] can be found in Winters and Gassner [2]. In Sec. 4.3 we further explore the accuracy of the method 
in multiple spatial dimensions by considering the Orszag–Tang vortex problem. The MHD rotor problem originally proposed 
by Balsara [62] is investigated in Sec. 4.4. The MHD Rotor is also used in Sec. 4.5 to compare CPU timing and memory 
consumption of the new ES solver and the other schemes. Sec. 4.6 provides an example of using gravity with the new 
solver by considering the Jeans instability. We note that the Jeans instability is a pure HD configuration and demonstrates 
that the new MHD solver remains applicable to flows with vanishing magnetic fields. Finally, we test the conservation of the 
available MHD schemes using the involving MHD blast wave test discussed in Sec. 4.7. All tests, except the Jeans instability 
test, are performed using dimensionless units. Each test is run with CFL= 0.8 unless specified otherwise.

4.1. MHD version of Shu–Osher test (1D)

The test proposed by Shu and Osher [69] is commonly used to test a scheme’s ability to resolve small-scale fluid features 
in the presence of a supersonic shock. A sinusoidal density/entropy perturbation is added downstream of a Mach 3 shock 
wave. The interaction of the shock wave with the perturbations gives rise to complex fluid features as the shock amplifies 
the initial oscillations. This test is an excellent testbed to measure the numerical (artificial) viscosity of a scheme. Addition-
ally, the presence of a supersonic shock is used to demonstrate the robustness and stability of a scheme [70]. We consider a 
complex MHD version of the Shu–Osher problem recently developed by Susanto [71]. We present the initial conditions for 
this test in Table 1. The left and right boundaries are taken sufficiently far from the initial discontinuity such that they do 
not influence the solution. This test has no analytic solution, so we compute a reference solution on a highly refined grid 
using the MHD_8Wave solver for comparison.

Fig. 6 shows the density at t = 0.7 for all solvers. Using the same number of cells, we see that the ES-Hybrid solver 
captures the small-scale flow features much better than the other schemes available in FLASH. Also, no stability or over-
shoot problems are visible in the solutions.

According to previous investigations, e.g. [73], a scheme is considered “acceptable” for capturing supersonic turbulence if 
the dynamics can be captured well with 400 cells. However, the entropy stable scheme is also able to resolve the dynamics 
of the flow with a much lower spatial resolution (the result used in Fig. 6 is 208 cells in total).
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Table 1

Initial conditions and runtime parameters: MHD Shu–Osher test (1D).
x ≤ x0 x > x0

ρ 3.5 1+ 0.2sin(5x)

u 5.8846 0

v 1.1198 0

w 0 0

p 42.0267 1

B1 1 1

B2 3.6359 1

B3 0 0

Domain size {xmin, xmax} = {−5,5}
Initial shock location x0 = −4

Boundary conditions Zero-gradient (“outflow”)

Simulation end time tmax = 0.7

Adiabatic index γ = 5/3

Fig. 6. Density of the MHD Shu–Osher problem at t = 0.7. These plots be compared to Fig. 1 of [72] or Fig. 3.9 of [71]. We used an adaptive grid resolution 
of up to 256 cells. The reference solution is computed on a uniform grid of 4096 cells.

Table 2

Initial conditions and runtime parameters: Smooth Alfvén wave test (1D, 2D).
Density ρ 1.0

Pressure p 0.1

Velocity u B⊥ ·
(
− sin(α), cos(α),0

)⊺ + Bz ·
(
0,0,1

)⊺

Mag. field B B‖ · (cos(α), sin(α),0)⊺ + u

Domain size {x, y}min = {0.0,0.0}
{x, y}max = {1/ cos(α),1/ sin(α)}

Boundary conditions Periodic

Simulation end time tmax = 5.0

Adiabatic index γ = 5/3

4.2. Smooth Alfvén wave (1D, 2D)

The smooth Alfvén wave test [17] is used to compare the accuracy of MHD schemes for smooth flows. The initial 
circularly polarized Alfvén wave propagates across a periodic domain. For the 2D test, we incline the smooth Alfvén wave 
by an angle of α = 45◦ relative to the x-axis. The Alfvén wave speed is |v A | = B‖/

√
ρ = 1 and thus, the wave is expected 

to return to its initial state at each time t ∈ N. This test is run to a final time tmax = 5.0 with a CFL number of 0.6. We 
introduce additional notation for a perpendicular coordinate x‖ = x · cos(α) + y · sin(α) as well as the parallel, B‖ = 1.0, 
and perpendicular, B⊥ = 0.1 sin(2πx‖), magnetic fields. The field in z-direction is given by B z = 0.1 cos(2πx‖). The initial 
conditions listed in Table 2 ensure that the magnetic pressure is constant.

The ability to propagate Alfvén waves over long times and distances is crucial for e.g. MHD turbulence simulations. If the 
Alfvén waves are damped strongly because of inherent numerical dissipation in a scheme, the code will fail to capture the 
resulting turbulence behaviour correctly as MHD turbulence is mainly sustained by Alfvén waves [74].

4.2.1. One dimensional test
In the one dimensional smooth Alfvén wave test we check the spatial high resolution properties of our scheme. For suf-

ficiently smooth fields, i.e. in cases where discontinuous features are absent, the used reconstruction technique is designed 
to achieve third order accuracy (see Sec. 3.2).

To test the accuracy of our scheme, we run several simulations with varying resolutions and compute the L1 and L2
errors for the quantity B⊥ = B y cos(α) − Bx sin(α) as described in Appendix E. The obtained errors are plotted as a function 
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Fig. 7. L1 (solid lines) and L2 (dashed lines) errors measured with the smooth Alfvén wave test in 1D. We omit the lines for the ES-Roe and ES-LLF
schemes as they are visually indistinguishable from ES-Hybrid (cf. Table 3).

Table 3

Computed errors and experimental order of convergence (EOC) for B2 after five oscillation of the Alfvén wave in one dimension 
(t = 5.0). Sorted by increasing errors from left to right.

EC ES-Roe ES-Hybrid ES-LLF USM MHD_8Wave Bouchut5

N = 8 L1 error 7.17 · 10−3 < 1.43 · 10−2 = 1.43 · 10−2 = 1.43 · 10−2 < 2.76 · 10−2 ≈ 2.81 · 10−2 < 4.60 · 10−2

L2 error 7.76 · 10−3 < 1.55 · 10−2 = 1.55 · 10−2 = 1.55 · 10−2 < 3.00 · 10−2 ≈ 3.06 · 10−2 < 5.03 · 10−2

N = 16 L1 error 1.02 · 10−3 < 1.31 · 10−3 = 1.31 · 10−3 = 1.31 · 10−3 < 4.74 · 10−3 < 4.84 · 10−3 < 8.78 · 10−3

L2 error 1.13 · 10−3 < 1.46 · 10−3 = 1.46 · 10−3 = 1.46 · 10−3 < 5.24 · 10−3 < 5.35 · 10−3 < 1.21 · 10−2

EOC (L1) 2.82 3.45 3.45 3.45 2.54 2.54 2.39

EOC (L2) 2.78 3.41 3.41 3.41 2.52 2.52 2.05

N = 32 L1 error 1.31 · 10−4 < 1.41 · 10−4 = 1.41 · 10−4 = 1.41 · 10−4 < 7.41 · 10−4 < 7.69 · 10−4 < 2.33 · 10−3

L2 error 1.46 · 10−4 < 1.57 · 10−4 = 1.57 · 10−4 = 1.57 · 10−4 < 8.24 · 10−4 < 8.56 · 10−4 < 3.14 · 10−3

EOC (L1) 2.95 3.22 3.22 3.22 2.68 2.65 1.92

EOC (L2) 2.95 3.21 3.21 3.21 2.67 2.64 1.95

N = 64 L1 error 1.66 · 10−5 ≈ 1.69 · 10−5 = 1.69 · 10−5 = 1.69 · 10−5 ≪ 1.41 · 10−4 < 1.52 · 10−4 < 4.87 · 10−4

L2 error 1.85 · 10−5 ≈ 1.88 · 10−5 = 1.88 · 10−5 = 1.88 · 10−5 ≪ 1.57 · 10−4 < 1.69 · 10−4 < 7.92 · 10−4

EOC (L1) 2.98 3.06 3.06 3.06 2.39 2.34 2.25

EOC (L2) 2.99 3.06 3.06 3.06 2.39 2.34 1.99

N = 128 L1 error 2.09 · 10−6 ≈ 2.10 · 10−6 = 2.10 · 10−6 = 2.10 · 10−6 ≪ 3.20 · 10−5 < 3.52 · 10−5 < 1.05 · 10−4

L2 error 2.32 · 10−6 ≈ 2.33 · 10−6 = 2.33 · 10−6 = 2.33 · 10−6 ≪ 3.55 · 10−5 < 3.91 · 10−5 < 1.97 · 10−4

EOC (L1) 2.99 3.01 3.01 3.01 2.14 2.11 2.22

EOC (L2) 2.99 3.01 3.01 3.01 2.14 2.11 2.01

of the number of grid points in logarithmic scale in Fig. 7 and are listed in Table 3. As can be seen, third order accuracy is 
achieved, already at very low resolutions.

Fig. 8 shows B⊥ vs. x⊥ at time t = 5 for the one dimensional Alfvén wave test. As we know that the solution is smooth, 
we disable the entropy stabilization term described in Sec. 2.2 and obtain an entropy conserving EC scheme ( ). The
EC solution shows very little dissipation. Note that the EC scheme is only applicable to smooth solutions and should not 
be used for arbitrary flows. We observe that the different ES schemes ( , , and ) resolve the Alfvén wave 
with the least dissipation of all tested MHD solvers (except the entropy conserving scheme) while their results are virtually 
identical. The MHD_8Wave implementation ( ) [28,70] as well as the unsplit USM implementation ( ) [75,76,70] are 
considerably more diffusive. They show second order convergence. Finally, we note that the Bouchut5 implementation 
( ) [12] has the highest measured amount of dissipation for this one dimensional test case.

4.2.2. Two dimensional test
Fig. 9 shows B⊥ vs. x⊥ at time t = 5 for the two dimensional Alfvén wave test. The EC solution ( ) shows again 

very little dissipation. As before, the ES schemes resolve the Alfvén wave with the least dissipation of all tested MHD 
solvers while the ES-Roe scheme ( ) is least dissipative and the ES-LLF scheme ( ) is slightly more diffusive. As 
expected for smooth problems, the ES-Hybrid scheme ( ) gives results that are identical to those computed using the
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Fig. 8. Smooth Alfvén wave test after five crossing times. For the left plot, we used a fixed grid of 8 cells. For the right plot we use a grid of 16 cells. The 
exact solution shows the initial configuration at the given resolution.

Fig. 9. Smooth Alfvén wave test after five crossing times. These plots be compared to Fig. 8 of [17] or Fig. 4 of [4]. For the left plot, we used a fixed grid of 
16 × 16 cells. For the right plot we use a grid of 32 × 32 cells. The exact solution shows the initial configuration at the given resolution. We use CFL= 0.6

to remove artificial wave steeping effects in the USM solver solution.

ES-Roe scheme. The MHD_8Wave implementation ( ) gives similar results compared to the ES solver but is slightly 
more diffusive. The unsplit USM implementation ( ) shows a higher dissipation compared to the ES or MHD_8Wave
implementations and its zero-crossing points are clearly shifted at the lower resolution run. We find that the Bouchut5
implementation ( ) has the highest amount of dissipation for this smooth test case. Note that the dissipation of the 
Alfvén waves is significantly reduced in higher dimensions if multidimensional Riemann solvers with sub-structure are 
used, as was shown by Balsara [74].

In Fig. 10 we plot the evolution of the conserved quantities as well as the individual energies. Looking, for example, at 
the magnetic energy, Emag , it can be seen that the EC scheme introduces the least amount of dissipation. It is followed 
by our entropy stable schemes ES-Roe/ES-Hybrid and ES-LLF. The MHD_8Wave and the USM implementations show 
higher dissipation while the Bouchut5 implementation shows the highest amount of dissipation. If one would only look at 
the internal energy, one might conclude that the MHD_8Wave solver introduces even less dissipation that the ES schemes. 
However, one has to be cautious with such a conclusion because both MHD_8Wave as well as Bouchut5 fail to preserve 
total energy conservation.

We list the computed L1 and L2 errors for the quantity B⊥ in Table 4. They support our conclusions given above, 
e.g. ES-Roe and ES-Hybrid give identical solutions for smooth problems. Due to dimensional splitting, the obtained 
results are only second-order accurate in space.
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Fig. 10. Evolution of the conserved quantities as well as the individual energies in the smooth Alfvén wave test over five crossing times (16 × 16 cells).

4.3. Orszag–Tang MHD vortex (2D)

The Orszag–Tang vortex problem [77] is a two-dimensional, spatially periodic problem well suited for studies of MHD 
turbulence. Thus, it has become a classical test for numerical MHD schemes. It includes dissipation of kinetic and magnetic 
energy, magnetic reconnection, formation of high-density jets, dynamic alignment and the emergence and manifestation 
of small-scale structures. The Orszag–Tang MHD vortex problem starts from non-random, smooth initial data. As the flow 
evolves it gradually becomes increasingly complex, forming intermediate shocks. Thus, this problem demonstrates the tran-
sition from initially smooth data to compressible, supersonic MHD turbulence. The initial data is chosen such that the root 
mean square values of the velocity and the magnetic fields as well as the initial Mach number are all one. The average 
plasma beta is β = 10

3
.

Additionally, we compute the experimental convergence order for the available MHD schemes after 10% of the total 
runtime. At this time, the solution is already very complex but still smooth. As there is no analytic solution available, 
we compare to a high resolution simulation obtained using our entropy-conserving (EC) scheme on an uniform grid of 
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Table 4

Computed errors and experimental order of convergence (EOC) for B⊥ after five oscillation of the Alfvén wave in two dimen-

sions (t = 5.0). Sorted by increasing errors from left to right.
EC ES-Roe ES-Hybrid ES-LLF MHD_8Wave USM Bouchut5

N = 16 L1 error 8.34 · 10−3 < 1.34 · 10−2 = 1.34 · 10−2 < 1.62 · 10−2 < 2.43 · 10−2 < 3.96 · 10−2 < 4.15 · 10−2

L2 error 9.26 · 10−3 < 1.47 · 10−2 = 1.48 · 10−2 < 1.80 · 10−2 < 2.69 · 10−2 < 4.39 · 10−2 < 4.54 · 10−2

N = 32 L1 error 1.83 · 10−3 < 2.36 · 10−3 = 2.36 · 10−3 < 2.76 · 10−3 < 3.61 · 10−3 < 1.11 · 10−2 < 1.67 · 10−2

L2 error 2.05 · 10−3 < 2.64 · 10−3 = 2.64 · 10−3 < 3.06 · 10−3 < 3.94 · 10−3 < 1.19 · 10−2 < 1.84 · 10−2

EOC (L1) 2.19 2.50 2.51 2.55 2.75 1.83 1.31

EOC (L2) 2.17 2.48 2.49 2.56 2.77 1.88 1.30

N = 64 L1 error 4.36 · 10−4 < 4.73 · 10−4 = 4.73 · 10−4 < 5.10 · 10−4 < 6.78 · 10−4 < 4.03 · 10−3 < 7.79 · 10−3

L2 error 4.93 · 10−4 < 5.37 · 10−4 = 5.37 · 10−4 < 5.73 · 10−4 < 7.38 · 10−4 < 4.85 · 10−3 < 8.65 · 10−3

EOC (L1) 2.06 2.32 2.32 2.44 2.41 1.46 1.10

EOC (L2) 2.06 2.30 2.30 2.41 2.42 1.30 1.09

N = 128 L1 error 1.08 · 10−4 ≈ 1.10 · 10−4 = 1.10 · 10−4 ≈ 1.12 · 10−4 < 1.56 · 10−4 < 1.57 · 10−3 < 3.87 · 10−3

L2 error 1.22 · 10−4 ≈ 1.25 · 10−4 = 1.25 · 10−4 ≈ 1.28 · 10−4 < 1.73 · 10−4 < 1.89 · 10−3 < 4.30 · 10−3

EOC (L1) 2.01 2.10 2.10 2.18 2.12 1.36 1.01

EOC (L2) 2.01 2.10 2.10 2.16 2.09 1.36 1.01

Table 5

Initial conditions and runtime parameters: Orszag–Tang MHD vortex test.
Density ρ 1.0

Pressure p 1.0/γ

Velocity u (− sin(2π y), sin(2πx), 0.0)⊺

Mag. field B 1
γ (− sin(2π y), sin(4πx), 0.0)⊺

Domain size {x, y}min = {0.0,0.0}
{x, y}max = {1.0,1.0}

Boundary conditions All: periodic

Adaptive refinement on Density, magnetic field

Simulation end time tmax = 0.5

Adiabatic index γ = 5/3

Table 6

Computed errors and experimental order of convergence (EOC) for pmag = 1
2
‖B‖2 before the onset 

of discontinuities in the Orszag–Tang MHD vortex test (t = 0.05).

EC ES-Hybrid Bouchut5 USM MHD_8Wave

N = 16 L1 error 6.59 · 10−3 < 7.00 · 10−3 < 7.25 · 10−3 < 8.08 · 10−3 < 8.18 · 10−3

L2 error 8.51 · 10−3 < 8.71 · 10−3 < 9.32 · 10−3 < 1.02 · 10−2 ≈ 1.03 · 10−2

N = 32 L1 error 1.60 · 10−3 ≈ 1.63 · 10−3 < 2.08 · 10−3 ≈ 2.09 · 10−3 ≈ 2.12 · 10−3

L2 error 2.02 · 10−3 ≈ 2.06 · 10−3 < 2.65 · 10−3 ≈ 2.69 · 10−3 ≈ 2.63 · 10−3

EOC (L1) 2.04 2.10 1.80 1.95 1.95

EOC (L2) 2.07 2.08 1.81 1.93 1.96

N = 64 L1 error 4.01 · 10−4 ≈ 3.99 · 10−4 < 5.13 · 10−4 < 5.55 · 10−4 ≈ 5.55 · 10−4

L2 error 5.17 · 10−4 ≈ 5.14 · 10−4 < 6.60 · 10−4 < 7.25 · 10−4 > 7.06 · 10−4

EOC (L1) 2.00 2.03 2.02 1.91 1.93

EOC (L2) 1.97 2.00 2.01 1.81 1.90

1024 × 1024 cells. We compute the L1 and L2 errors as well as the experimental order of convergence and list them in 
Table 6. They coincide with our results presented in the preceding section. As in Sec. 4.2, we find the results to be at most 
second-order accurate in space due to dimensional splitting.

Fig. 11 displays the evolution of the density of a plasma given the initial conditions listed in Table 5. As the solution 
evolves in time, the initial vortex splits into two vortices. Sharp gradients accumulate and the vortex pattern becomes 
increasingly complex due to highly non-linear interactions between multiple intermediate shock waves travelling at different 
speeds. The result compares very well with results given in the literature, e.g. [78–80], as well as with the solution of the 
Orszag–Tang MHD vortex obtained using the MHD_8Wave, the Bouchut5, and the unsplit USM implementations (shown 
in Fig. 12).

4.4. MHD rotor (2D)

The MHD rotor problem [62] describes a rapidly spinning dense cylinder embedded in a magnetized, homogeneous 
medium at rest. Due to centrifugal forces, the dense cylinder is in non-equilibrium. As the rotor spins with the given initial 
rotating velocity, the initially uniform magnetic field will wind up the rotor. The wrapping of the rotor by the magnetic field 
leads to strong torsional Alfvén waves launched into the ambient fluid. Due to the onset and propagation of strong Alfvén 
waves, this test is relevant for the understanding of star formation. The initial conditions are listed in Table 7.

This test demonstrates that our solver is able to resolve torsional Alfvén waves, which is particularly visible in the plot 
of the magnetic pressure (right plot in Fig. 13). The Mach number M (see Fig. 13) shows that the rotor is, up to a certain 
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Fig. 11. Orszag–Tang MHD vortex test: Density plots with superimposed magnetic field directions. ES-Hybrid scheme with an adaptive grid resolution 
up to 512 × 512. The time step is shown in the upper right corner of each plot. These plots can be compared to e.g. Fig. 1 of [78]. The lower right plot 
(t = 0.5) can be compared to e.g. Fig. 10 of [79] and Fig. 14 of [80].

Fig. 12. Orszag–Tang MHD vortex test: Density plots with an adaptive grid resolution up to 512 ×512 at t = 0.5. The MHD solver used is given in the upper 
right corner of each plot.

radial distance, still in uniform rotation. Beyond this radius, the rotor has exchanged momentum with its environment and 
decelerated. In the left plot of Fig. 13 we present the magnetic field superimposed on the fluid density, ρ . It is clearly seen 
that the magnetic field basically maintains its initial shape outside of the region of influence of the Alfvén waves. Inside, 
the magnetic field is refracted by the MHD discontinuities. In Fig. 14 we present six snapshots of the evolution of the fluid 
density (as well as the AMR grid) up to the final time t = tmax . This is shortly before the torsional Alfvén waves leave the 
computational domain and after the cylinder has rotated almost 180◦ .

4.5. Comparison of computational efficiency (2D)

We perform a memory and CPU time comparison on a uniform grid. We compare the new ES solver implementation 
against the Bouchut 5 wave (Bouchut5) [12], Powell’s 8 wave (MHD_8Wave) [28], and the unsplit staggered mesh (USM) 
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Table 7

Initial conditions and runtime parameters: MHD rotor test.
r ≤ r0 r ∈ (r0, r1) r ≥ r1

ρ 10.0 1.0+ 9.0 f (r) 1.0

p 1.0 1.0 1.0

B1 5/
√
4π 5/

√
4π 5/

√
4π

B2 0.0 0.0 0.0

B3 0.0 0.0 0.0

u −20.0�y −20.0 f (r)�y 0.0

v 20.0�x 20.0 f (r)�x 0.0

w 0.0 0.0 0.0

With r =
√

(x− xcentre)2 + (y − ycentre)2 , 
�x = (x − xcentre), �y = (y − ycentre), and 
f (r) = r1−r

r1−r0

Domain size {x, y}min = {0.0,0.0}
{x, y}max = {1.0,1.0}

Inner radius r0 = 0.1

Outer radius r1 = 0.115

x-Centre xcentre = 0.5

y-Centre ycentre = 0.5

Boundary conditions All: zero-gradient (“outflow”)

Adaptive refinement on Density, magnetic field

Simulation end time tmax = 0.15

Adiabatic index γ = 1.4

Fig. 13. MHD rotor test: Adaptive grid resolution up to 512 ×512. From left to right: density ρ with overlayed magnetic field, total pressure ptot = p + pmag , 
Mach number M with overlayed velocity vectors, and magnetic pressure pmag = 1

2
‖B‖2 . This plot can directly be compared to Fig. 7 of [2], Fig. 14 of [79], 

and Fig. 2 of [62].

[75,76] solver implementations applied to the MHD Rotor problem, described in the preceding section. For this test we use 
identical runtime parameters. The AMR grid is fixed to level 5.

We present the results of the study in Table 8. Note that the effective computational costs are very implementation 
specific. We see that the ES solver uses slightly less memory than the other schemes. The ES solver needs more compu-

tational time per time step since the Runge–Kutta time integration scheme involves the full flux computation and spatial 
reconstruction procedure in each of the intermediate stages. The higher computational costs per time step can be – at least 
partially – compensated by choosing a larger CFL coefficient. We neglect this benefit here and run all simulations with a 
fixed CFL number to give a fair comparison. For USM we use a second order accurate Roe-type Riemann solver, previously 
used for the numerical tests in [76].

4.6. Gravitational instability

A particularly simple example of gravitational instability was discovered by Jeans [81]. This phenomenon is of great 
astrophysical interest in the context of star formation and cosmic structure growth. The configuration is a useful test for 
the coupling of multi-dimensional gravity to hydrodynamics in a computational code. The Jeans instability allows one to 
study the pressure dominated and gravity dominated limits as well as the numerical method’s behaviour between the 
two limits. We start from an infinite homogeneous medium at rest and consider a small perturbation in density. We 
shall suppose that the initial fluctuations in density and pressure take place adiabatically, so that p0 = γ ρ0 . The ini-
tial conditions for this test are summarized in Table 9. We use the direct multigrid fast Fourier transform Poisson solver 
(Grid/GridSolvers/Multigrid/fft) for the computation of the gravitational source term.

We obtain the dispersion relation of a self-gravitating fluid by solving the perturbed wave equations by planar wave 
solutions in Fourier space. From the relation,

ω2 = a20k
2 − 4πGρ0, (4.1)

we define the Jeans wavenumber

k J =
√
4πGρ0

a0
≈ 2.75 (4.2)
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Fig. 14. MHD rotor test: Density evolution on a logarithmic scale with superimposed AMR grid. Adaptive grid resolution up to level 8 (up to 1024 × 1024

cells).

with the gravitational constant, G = 6.674 · 10−8 cm3 g−1 s−2 , and the adiabatic sound speed a0 = √
γ p0/ρ0 ≈ 1.29 cms−1

where the given numbers correspond to the initial conditions used. The Jeans wavenumber number is very important as it 
defines a scale on which gravitational effect become dominant in astrophysical systems. As long as k > k J , the perturbation 
is stable and oscillates with a real frequency of ω. This is the case with our chosen initial conditions, as k ≈ 11 > 2.75 ≈ k J . 
However, if k < k J , the perturbation grows exponentially in time as ω is purely imaginary. An overdense region would 
become denser and denser, leading to gravitational collapse [82]. We compute the oscillation frequency, ω, by measuring 
the time interval required for the energy to undergo exactly ten oscillations. The analytical expression for the kinetic, 
internal, and potential energies are provided in Appendix A.
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Table 8

Comparison of computational efficiency. The memory consumption is measured for 
the whole flash4 process, while the computational time corresponds only to the 
time used by the MHD solver as given by FLASH’s code performance summary.

Scheme Memory consumption (MB) CPU time (s)

ES 88.5 11.18

Bouchut5 90.7 7.43

MHD_8Wave 95.4 7.80

USM 143.5 12.16

Table 9

Runtime parameters and initial conditions: Jeans Instability test (2D).

Density ρ [g cm−3] ρ0 · [1+ δ(x)]

Pressure p [dyn cm−2] p0 · [1+ γ δ(x)]

Perturbation δ(x) δ0 · cos (k · x)
Velocity u [cm s−1] 0

Magnetic field B [G] 0

With ρ0 = 1.5 · 107 g cm−3 , δ0 = 1 · 10−3 , 
and p0 = 1.5 · 107 dyncm−2

Domain size [cm] {x, y}min = {0.0,0.0}
{x, y}max = {1.0,1.0}

Boundary conditions All: periodic

Simulation end time [s] tmax = 5.0

Adiabatic index γ = 5/3

Wave vector k [cm−1] 2π/λ with λ = (0.5,0,0)⊺

Fig. 15. Jeans Gravitational Instability test: Plot of internal, kinetic, and gravitational energies. (Left) The energy changes for all solvers agree well early in the 
computation. (Right) As time progresses we see the dissipation of energy by each solver differs. The ES solver exhibits the least dissipation of the solvers 
tested and shows the best agreement with the analytic solution. We use a fixed resolution of 64 × 64 cells. We give the exact solution in Appendix A.

The resulting kinetic and internal (thermal) energies as functions of ωt are shown in Fig. 15. We performed the simula-

tions using a uniform resolution of 64 × 64 grid cells and chose a small CFL coefficient of CFL= 0.1 to limit the maximum 
time step for all solvers. The small CFL coefficient is not chosen for stability reasons, but to ensure enough data is gener-
ated to create smooth plots. As can be seen in Fig. 15, all solvers agree well in the beginning. Again, the EC scheme can 
be used as the solution is smooth. We note that the EC scheme shows essentially no dissipation even at the final time 
t = 5.0. All remaining solvers dissipate energy in some capacity. We see from Fig. 15 that the ES solver is considerably 
less dissipative than the other tested solvers. Furthermore, the ES scheme agrees well with the analytic solution, while 
the other schemes fail to maintain the exact oscillation period at later times and dissipate much of the energy of the 
dynamics.

Publications

60



248 D. Derigs et al. / Journal of Computational Physics 317 (2016) 223–256

Table 10

Initial conditions and runtime parameters: MHD blast wave test.
r ≤ r0 r ∈ (r0, r1) r ≥ r1

ρ 1.0 1.0 1.0

p 1000.0 0.1+ 999.9 f (r) 0.1

B1
100√
4π

100√
4π

100√
4π

B2 0.0 0.0 0.0

B3 0.0 0.0 0.0

u 0.0 0.0 0.0

v 0.0 0.0 0.0

w 0.0 0.0 0.0

With r =
√

(x− xcentre)2 + (y − ycentre)2 , 
and f (r) = r1−r

r1−r0

Domain size {x, y, z}min = {−0.5,−0.5,−0.5}
{x, y, z}max = {0.5,0.5,0.5}

Inner radius r0 = 0.09

Outer radius r1 = 0.1

Explosion centre xcentre = (0.0,0.0,0.0)

Boundary conditions All: periodic

Adaptive refinement on Density, pressure

Simulation end time tmax = 0.01

Adiabatic index γ = 1.4

Fig. 16. MHD blast wave test: Adaptive grid resolution up to 512 × 512. Top left: density ρ . Top right: Mach number M . Lower left: magnetic pressure 
pmag = 1

2
‖B‖2 . Lower right: Plasma-β = p/pmag . The density and magnetic pressure plots can be compared to Fig. 13 of [79]. The plots of density and 

magnetic pressure can directly be compared to Fig. 4 of [62].

4.7. MHD blast wave (2D, 3D)

The two-dimensional version of the MHD blast wave problem was studied by [62]. We use an extended three-
dimensional version to demonstrate the robustness of our scheme in simulations involving regimes with low thermal 
pressures and high kinetic as well as magnetic energies in three dimensions. This test problem leads to the onset of strong 
MHD discontinuities, relevant to astrophysical phenomena where magnetic fields can have strong dynamical effects. It de-
scribes an initially circular pressure pulse. We choose here a relative magnitude of 104 for comparison with [62]. The initial 
conditions used are listed in Table 10.

The chosen initial conditions result in a very low plasma-β parameter, β = 2p/B2 ≈ 2.5 ·10−4 . The MHD explosion emits 
fast magnetosonic shock waves propagating with high velocities. The explosion is highly anisotropic and the displacement of 
the gas in the transverse y and z-direction is inhibited. This leads to the phenomenon that the explosion bubble is strongly 
distorted according to the initial magnetic field (in the x-direction). Furthermore, we see that the Mach number spans a 
broad range from 0 up to 42. As can be seen from the results in Fig. 16 showing the density, Mach number, magnetic 
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Fig. 17. MHD blast wave test: Linear density plots. Top: B1 = 100/
√
4π . Bottom: B1 = 0.

pressure and the plasma-β at t = 0.01, the out-going blast wave shows no grid alignment effect. We also tested the new
ES solver with relative pressure magnitudes of 105 and 106 without finding any numerical defects.

In Fig. 17, we show zoomed linear density plots of the fast expanding shock front computed with our ES-Hybrid, the
Bouchut5 [12], the unsplit USM [76,75], and the MHD_8Wave [28] solvers. As can be seen, the blast wave front has a 
elliptical shape as is expected due to the strong influence of the magnetic field. If we run the same simulation without 
magnetic fields, i.e. the hydrodynamic limit B = 0, we observe numerical defects close to the Cartesian grid axes in all 
simulation runs except the one using the ES solver. Ismail et al. [45] showed that even schemes which have increased 
dissipation and do not show 1D shock instabilities can still suffer from the carbuncle phenomenon in multiple dimensions. 
We emphasize that there are no numerical artifacts in the hydrodynamic limit when using the ES-Hybrid solver.

Fig. 18 shows the evolution of the conserved quantities as well as the individual energies. We observe that the ES
scheme is mass, momentum, and total energy conservative also in this extreme test. The other MHD solvers fail to maintain 
the conservation of total energy by a small amount. Also, the MHD_8Wave solver fails to preserve the conservation of 
momentum as expected with the addition of the Powell source term. All solvers conserve mass up to machine precision. 
Fig. 19 shows a 3D variant of this test [70].

5. Conclusion

In this work we describe and test an implementation of a high-order, entropy stable numerical method for MHD prob-
lems. Entropy stable numerical fluxes serve as the core of the new entropy stable MHD solver. The implementation is 
implemented as a new module for the multi-physics FLASH framework [26] offering adaptive mesh refinement and large-
scale, multi-processor simulations.

The new scheme is implemented with three entropy stable variants: Roe type dissipation (ES-Roe), local Lax–Friedrichs 
type dissipation (ES-LLF), and a hybrid dissipation term that uses a pressure switch to use ES-Roe in smooth regions and 
the more dissipative ES-LLF near pressure discontinuities (ES-Hybrid). The integration in time uses a strong stability 
preserving (SSP) Runge–Kutta method.

The numerical approximation is built from an entropic point of view. Thus, at a given time, it is possible to compute the 
current entropy density for all cells in the computational domain. We exploit this additional knowledge of the entropy and 
reformulate the computation to guarantee positivity of the pressure while maintaining the conservation of the total energy 
of the system. This reformulation prevents non-physical negative pressures which can occur numerically if the internal 
energy is a small fraction of the total energy.

We presented a variety of numerical results for the new entropy stable solver implementation for HD and MHD flows in 
multiple spatial dimensions. These numerical tests served to demonstrate the flexibility and robustness of the new solver. 
The testing included a recently developed shock-tube experiment, smooth Alfvén wave propagation, the Orszag–Tang MHD 
vortex, the MHD Rotor, and the strong MHD explosion test. The coupling of gravity to our new solver has been tested using 
the Jeans instability test. We compared the physical aspects of the numerical results, CPU timing and memory consumption 
of the new entropy stable scheme against the 8-wave, Bouchut 5-wave and unsplit MHD solver implementations already 
available for FLASH.

We found in these comparisons that the newly implemented entropy stable approximation was the most accurate in 
smooth regions of a flow. Also, it was shown that the entropy stable scheme was the only one that maintains the conserva-
tion of total energy during the computation.
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Fig. 18. MHD blast wave test: Evolution of the total conserved quantities as well as the individual energies in the Bx = 100/
√
4π simulation run. It can 

easily be seen that the ES solver preserves the total energy well while the other schemes fail to preserve the total energy.

The new FLASH MHD module is freely available upon contact with the corresponding author.
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Fig. 19. MHD blast wave test: Adaptive grid resolution up to 128 × 128 × 128 cells. Three-slice plot. Linear plot of density, ρ , using the same colour range 
as used in Fig. 16.

Appendix A. Analytic solution of the gravitational instability test

We list here the analytic solution for the gravitational instability test as given in [82,70].
Kinetic energy:

Ekin(t) = 1

8

ρ0δ
2
0 |ω|2L2
k2

(
1− cos(2ωt)

)
(A.1)

Internal energy:

E int(t) − E int(0) = −1

8
ρ0a

2
0δ

2L2
(
1− cos(2ωt)

)
(A.2)

Potential energy:

Epot(t) = −1

2

πGρ2
0δ20 L

2

k2

(
1+ cos(2ωt)

)
(A.3)

where L is the length of the computational domain, and k is the magnitude of the wave vector k.

Appendix B. Diffusive magnetic field correction

We present here the equations used for the implementation of the diffusive divergence error method described in 
Sec. 3.10. First and second derivatives are approximated by central second-order finite differences. Fig. B.1 illustrates the 
location of the different indices in the two dimensional case.

B̃ ′
1 = ∂2

x B1 + ∂x(∂yB2) + ∂x(∂zB3) = B1,i+1, j,k − 2B1,i, j,k + B1,i−1, j,k

�x2

+
B2,i+1, j+1,k−B2,i+1, j−1,k

2�y
− B2,i−1, j+1,k−B2,i−1, j−1,k

2�y

2�x

+
B3,i+1, j,k+1−B3,i+1, j,k−1

2�z
− B3,i−1, j,k+1−B3,i−1, j,k−1

2�z

2�x
(B.1)

B̃ ′
2 = ∂2

y B2 + ∂y(∂xB1) + ∂y(∂zB3) = B2,i, j+1,k − 2B2,i, j,k + B2,i, j−1,k

�y2

+
B1,i+1, j+1,k−B1,i−1, j+1,k

2�x
− B1,i+1, j−1,k−B1,i−1, j−1,k

2�x

2�y

+
B3,i, j+1,k+1−B3,i, j+1,k−1

2�z
− B3,i, j−1,k+1−B3,i, j−1,k−1

2�z

2�y
(B.2)
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Fig. B.1. Illustration of index locations in 2D.

B̃ ′
3 = ∂2

z B3 + ∂z(∂xB1) + ∂z(∂yB2) = B3,i, j,k+1 − 2B3,i, j,k + B3,i, j,k−1

�z2

+
B1,i+1, j,k+1−B1,i−1, j,k+1

2�x
− B1,i+1, j,k−1−B1,i−1, j,k−1

2�x

2�z

+
B2,i, j+1,k+1−B2,i, j−1,k+1

2�y
− B2,i, j+1,k−1−B2,i, j−1,k−1

2�y

2�z
(B.3)

B̃ = �x2�y2�z2

�x2�y2 + �x2�z2 + �y2�z2

(
B̃ ′
1, B̃

′
2, B̃

′
3

)⊺

(B.4)

In 2D, we instead have:

B̃ = �x2�y2

�x2 + �y2

(
B̃ ′
1, B̃

′
2,0

)⊺

(B.5)

Note that in 2D computations the dark red highlighted parts are zero and can be neglected.

Appendix C. Flowchart

In this section we provide flowcharts to detail and outline the workflow of the new ES MHD solver. We divide the 
flowchart description of the algorithm into three parts. The first, shown in Fig. C.4, depicts the global solver procedure for 
a single stage (of the possibly multi-stage) Runge–Kutta method. The second flowchart in Fig. C.2 displays the workflow for 
the computation of the numerical fluxes. The third flowchart in Fig. C.3 displays the workflow for the update of the solution 
array.

Fig. C.2. Flowchart showing the flux computation proce-
dure of the ES solver. For a full description see Fig. C.4.

Fig. C.3. Flowchart showing the solution update proce-
dure of the ES solver. For a full description see Fig. C.4.
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Fig. C.4. Flowchart showing the principle of operation of the ES solver. The steps “Flux computation” and “Solution update” is depicted in separate 
flowcharts, shown in Fig. C.2 and C.3, respectively.

Appendix D. Dimensional MHD equations

The dimensional MHD equations are given by

∂

∂t

⎡
⎢⎢⎣

ρ
ρu

E

B

⎤
⎥⎥⎦+∇ ·

⎡
⎢⎢⎢⎢⎣

ρu

ρ(u ⊗ u) +
(
p + ‖B‖2

2μ0

)
I− B⊗B

μ0

u
(
E + p + ‖B‖2

2μ0

)
− B(u·B)

μ0

B ⊗ u − u ⊗ B

⎤
⎥⎥⎥⎥⎦

= 0, (D.1)

where the thermal pressure is related to the conserved quantities through the ideal gas law:
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Table D.1

Simulation units with different settings of the compilation-time parameter HY_UNIT.

Unit system Non-dimensional SI CGS

#define HY_UNIT 0 1 2

Length ℓ 1 m cm

Time t 1 s s

Density ̺ 1 kgm−3 g cm−3

Velocities u 1 ms−1 cms−1

Specific energy E 1 Jm−3 erg cm−3

Pressure p 1 Nm−2 dyn cm−2

Magnetic field B 1 T G

with μ0 = 1 4π · 10−7 T2 m3 J−1 4π G2 cm3 erg−1

p = (γ − 1)

(
E − ρ

2
‖u‖2 − ‖B‖2

2μ0

)
. (D.2)

The unit system is determined at compilation time through the user-definable parameter HY_UNIT in the ES.h parameter 
file. In non-dimensional units, (D.1) and (D.2) are identical to (2.1) and (2.3).

The chosen unit system leads to different internal conversion factors within our implementation. The resulting units of 
the simulation quantities are listed in Table D.1. Depending on the setting, the according vacuum permeability constant, μ0 , 
is chosen. Note that both the specific energy, E , and the pressure, p, are of the same units.

Appendix E. Error norms and the experimental order of convergence

The discrete L1- and L2-errors are defined by

‖�u(t)‖L1 = 1

Nd

N∑

i, j=1

∣∣∣∣u
exact
i, j − usolution

i, j

∣∣∣∣, and ‖�u(t)‖L2 =

√√√√√ 1

Nd

N∑

i, j=1

(
uexact
i, j − usolution

i, j

)2

,

where N is the number or grid points in each direction, and d is the number of spatial dimensions. After computing the 
norms of the errors, we obtain the experimental order of convergence (EOC) using

EOC(i → j) =
log

(
‖�ui(t)‖

)
− log

(
‖�u j(t)‖

)

log
(
Ni/N j

) . (E.1)

Appendix F. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jcp.2016.04.048.

References

[1] D.W. Goldsmith, Thermal instabilities in interstellar gas heated by cosmic rays, Astrophys. J. 161 (1970) 41–54, http://dx.doi.org/10.1086/150511.
[2] A.R. Winters, G.J. Gassner, Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys. 304 (2016) 

72–108, http://dx.doi.org/10.1016/j.jcp.2015.09.055.
[3] F. Bouchut, C. Klingenberg, K. Waagan, A multiwave approximate Riemann solver for ideal MHD based on relaxation, I: theoretical framework, Numer. 

Math. 108 (1) (2007) 7–42, http://dx.doi.org/10.1007/s00211-007-0108-8.
[4] P. Chandrashekar, C. Klingenberg, Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes, SIAM J. Numer. Anal. 

54 (2) (2016) 1313–1340, http://dx.doi.org/10.1137/15M1013626.

[5] J.A. Rossmanith, High-order discontinuous Galerkin finite element methods with globally divergence-free constrained transport for ideal MHD, ArXiv 
e-prints, arXiv:1310.4251.

[6] A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, M. Wesenberg, Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys. 175 (2) 
(2002) 645–673, http://dx.doi.org/10.1006/jcph.2001.6961.

[7] A.J. Christlieb, Y. Liu, Q. Tang, Z. Xu, Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydro-

dynamic equations, SIAM J. Sci. Comput. 37 (4) (2015) A1825–A1845, http://dx.doi.org/10.1137/140971208.
[8] F. Huazheng, F. Xueshang, Splitting based scheme for three-dimensional MHD with dual time stepping, Chin. J. Space Sci. 35 (1) (2015) 9, http://dx.doi.

org/10.11728/cjss2015.01.009.

[9] C.M. Xisto, J.C. Páscoa, P.J. Oliveira, A pressure-based high resolution numerical method for resistive MHD, J. Comput. Phys. 275 (2014) 323–345, 
http://dx.doi.org/10.1016/j.jcp.2014.07.009.

[10] M. Ersoy, F. Golay, L. Yushchenko, Adaptive multiscale scheme based on numerical density of entropy production for conservation laws, Cent. Eur. 
J. Math. 11 (8) (2013) 1392–1415, http://dx.doi.org/10.2478/s11533-013-0252-6.

[11] D.S. Spicer, H. Luo, J.E. Dorband, K.M. Olson, P.J. MacNeice, A new 3D, fully parallel, unstructured AMR MHD high order Godunov code for modeling 
Sun–Earth connection phenomena, J. Atmos. Sol.-Terr. Phys. 4 (2013), preprint, submitted for publication. The article can be found and downloaded 
from http://einstein.physics.drexel.edu/~solarweather/unstructuredcode.pdf.

[12] K. Waagan, C. Federrath, C. Klingenberg, A robust numerical scheme for highly compressible magnetohydrodynamics: nonlinear stability, implementa-

tion and tests, J. Comput. Phys. 230 (9) (2011) 3331–3351, http://dx.doi.org/10.1016/j.jcp.2011.01.026.

4.2 Publication I

67



D. Derigs et al. / Journal of Computational Physics 317 (2016) 223–256 255

[13] X. Zhang, C.-W. Shu, On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. 
Comput. Phys. 229 (23) (2010) 8918–8934, http://dx.doi.org/10.1016/j.jcp.2010.08.016.

[14] V. Wheatley, H. Kumar, P. Huguenot, On the role of Riemann solvers in discontinuous Galerkin methods for magnetohydrodynamics, J. Comput. Phys. 
229 (3) (2010) 660–680, http://dx.doi.org/10.1016/j.jcp.2009.10.003.

[15] S. Li, A simple dual implementation to track pressure accurately, in: N.V. Pogorelov, E. Audit, G.P. Zank (Eds.), Numerical Modeling of Space Plasma 
Flows, in: Astronomical Society of the Pacific Conference Series, vol. 385, 2008, pp. 273–278.

[16] S. Li, H. Li, R. Cen, CosmoMHD: a cosmological magnetohydrodynamics code, Astrophys. J. Suppl. Ser. 174 (2008) 1–12, http://dx.doi.org/10.1086/
521302, arXiv:astro-ph/0611863.

[17] G. Tóth, The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys. 161 (2) (2000) 605–652, http://dx.doi.org/10.1006/
jcph.2000.6519.

[18] P. Janhunen, A positive conservative method for magnetohydrodynamics based on HLL and Roe methods, J. Comput. Phys. 160 (2) (2000) 649–661, 
http://dx.doi.org/10.1006/jcph.2000.6479.

[19] D.S. Balsara, D. Spicer, Maintaining pressure positivity in magnetohydrodynamic simulations, J. Comput. Phys. 148 (1) (1999) 133–148, http://dx.doi.org/
10.1006/jcph.1998.6108.

[20] D.S. Balsara, Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys. 231 (22) (2012) 
7504–7517, http://dx.doi.org/10.1016/j.jcp.2012.01.032.

[21] A.L. Zachary, A. Malagoli, P. Colella, A higher-order Godunov method for multidimensional ideal magnetohydrodynamics, SIAM J. Sci. Comput. 15 (2) 
(1994) 263–284, http://dx.doi.org/10.1137/0915019.

[22] D. Ryu, J.P. Ostriker, H. Kang, R. Cen, A cosmological hydrodynamic code based on the total variation diminishing scheme, Astrophys. J. 414 (1993) 
1–19, http://dx.doi.org/10.1086/173051.

[23] B. Einfeldt, C.-D. Munz, P.L. Roe, B. Sjögreen, On Godunov-type methods near low densities, J. Comput. Phys. 92 (2) (1991) 273–295, http://dx.doi.org/
10.1016/0021-9991(91)90211-3.

[24] B. Schmidtmann, B. Seibold, M. Torrilhon, Relations between WENO3 and third-order limiting in finite volume methods, J. Sci. Comput., 
http://dx.doi.org/10.1007/s10915-015-0151-z.

[25] S. Gottlieb, On high order strong stability preserving Runge–Kutta and multi step time discretizations, J. Sci. Comput. 25 (1) (2005) 105–128, 
http://dx.doi.org/10.1007/s10915-004-4635-5.

[26] B. Fryxell, K. Olson, P. Ricker, F.X. Timmes, M. Zingale, D.Q. Lamb, P. MacNeice, R. Rosner, J.W. Truran, H. Tufo, FLASH: an adaptive mesh hydrodynamics 
code for modeling astrophysical thermonuclear flashes, Astrophys. J. Suppl. Ser. 131 (2000) 273–334, http://dx.doi.org/10.1086/317361.

[27] A. Dubey, L.B. Reid, K. Weide, K. Antypas, M.K. Ganapathy, K. Riley, D.J. Sheeler, A. Siegal, Extensible component-based architecture for FLASH, a 
massively parallel, multiphysics simulation code, Parallel Comput. 35 (10–11) (2009) 512–522, http://dx.doi.org/10.1016/j.parco.2009.08.001.

[28] K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. De Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys. 
154 (2) (1999) 284–309, http://dx.doi.org/10.1006/jcph.1999.6299.

[29] E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer. 
12 (2003) 451–512, http://dx.doi.org/10.1017/s0962492902000156.

[30] L.D. Landau, Fluid Mechanics, vol. 6, Pergamon, 1959.
[31] S. Mishra, Entropy stable high-order schemes for systems of conservation laws, in: Modern Techniques in the Numerical Solution of Partial Differential 

Equations.

[32] R.J. LeVeque, D. Mihalas, E.A. Dorfi, E. Müller, Computational Methods for Astrophysical Fluid Flow, Saas-Fee Advanced Course, Lecture Notes 1997 
Swiss Society for Astrophysics and Astronomy, vol. 27, Springer Science & Business, Media, 1998.

[33] S. Walch, P. Girichidis, T. Naab, A. Gatto, S.C.O. Glover, R. Wünsch, R.S. Klessen, P.C. Clark, T. Peters, D. Derigs, C. Baczynski, The SILCC (simulating 
the lifecycle of molecular clouds) project, I: chemical evolution of the supernova-driven ISM, Mon. Not. R. Astron. Soc. 454 (1) (2015) 238–268, 
http://dx.doi.org/10.1093/mnras/stv1975.

[34] S.K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. 89 (3) (1959) 
271–306.

[35] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Stat. Comput. 9 (6) (1988) 1073–1084, http://dx.doi.org/10.1137/0909073.
[36] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (1) (2001) 89–112, http://dx.doi.org/

10.1137/S003614450036757X.

[37] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edition, Springer, 2009.
[38] S. Godunov, Symmetric form of the equations of magnetohydrodynamics, Numer. Methods Mech. Contin. Med. 1 (1972) 26–34.
[39] P.J. Dellar, A note on magnetic monopoles and the one-dimensional MHD Riemann problem, J. Comput. Phys. 172 (1) (2001) 392–398, http://dx.doi.org/

10.1006/jcph.2001.6815.

[40] F. Ismail, P.L. Roe, Affordable, entropy-consistent Euler flux functions, II: entropy production at shocks, J. Comput. Phys. 228 (15) (2009) 5410–5436, 
http://dx.doi.org/10.1016/j.jcp.2009.04.021.

[41] M.L. Merriam, An entropy-based approach to nonlinear stability, NASA Tech. Memo. 101086 (64) (1989) 1–154.
[42] T.J. Barth, Numerical methods for gasdynamic systems on unstructured meshes, in: D. Kröner, M. Ohlberger, C. Rohde (Eds.), An Introduction to Recent 

Developments in Theory and Numerics for Conservation Laws, in: Lecture Notes in Computational Science and Engineering, vol. 5, Springer, Berlin, 
Heidelberg, 1999, pp. 195–285.

[43] P.L. Roe, D.S. Balsara, Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math. 56 (1) (1996) 57–67, http://dx.doi.org/10.1137/
S003613999427084X.

[44] P. Chandrashekar, Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations, 
arXiv:1209.4994.

[45] F. Ismail, P.L. Roe, H. Nishikawa, A proposed cure to the carbuncle phenomenon, in: H. Deconinck, E. Dick (Eds.), Computational Fluid Dynamics 2006, 
Springer, Berlin, Heidelberg, 2009, pp. 149–154.

[46] J.J. Quirk, A contribution to the great Riemann solver debate, Int. J. Numer. Methods Fluids 18 (6) (1994) 555–574, http://dx.doi.org/10.1002/
fld.1650180603.

[47] K. Olson, PARAMESH: a parallel, adaptive grid tool, in: A. Deane, A. Ecer, G. Brenner, D. Emerson, J. McDonough, J. Periaux, N. Satofuka, D. Tromeur-

Dervout (Eds.), Parallel Computational Fluid Dynamics 2005, Elsevier, Amsterdam, 2006, pp. 341–348.
[48] A. Gatto, S. Walch, M.-M.M. Low, T. Naab, P. Girichidis, S.C.O. Glover, R. Wünsch, R.S. Klessen, P.C. Clark, C. Baczynski, T. Peters, J.P. Ostriker, J.C. Ibáñez-

Mejía, S. Haid, Modelling the supernova-driven ISM in different environments, Mon. Not. R. Astron. Soc. 449 (1) (2015) 1057–1075, http://dx.doi.org/
10.1093/mnras/stv324.

[49] S.C.O. Glover, P.C. Clark, Molecular cooling in the diffuse interstellar medium, Mon. Not. R. Astron. Soc. 437 (2014) 9–20, http://dx.doi.org/10.1093/
mnras/stt1809, arXiv:1305.7365.

[50] K. Murawski, Analytical and Numerical Methods for Wave Propagation in Fluid Media, Stability, Vibration and Control of Systems, Series A, World 
Scientific Pub. Co. Inc., 2003.

Publications

68



256 D. Derigs et al. / Journal of Computational Physics 317 (2016) 223–256

[51] T. Plewa, E. Müller, The consistent multi-fluid advection method, Astron. Astrophys. 342 (1999) 179–191, arXiv:astro-ph/9807241.
[52] S.C.O. Glover, C. Federrath, M.-M. Mac Low, R.S. Klessen, Modelling CO formation in the turbulent interstellar medium, Mon. Not. R. Astron. Soc. 404 

(2010) 2–29, http://dx.doi.org/10.1111/j.1365-2966.2009.15718.x, arXiv:0907.4081.
[53] J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature 324 (1986) 446–449, http://dx.doi.org/10.1038/324446a0.
[54] P.M. Ricker, A direct multigrid Poisson solver for oct-tree adaptive meshes, Astrophys. J. Suppl. Ser. 176 (2008) 293–300, 

http://dx.doi.org/10.1086/526425, arXiv:0710.4397.
[55] C. Altmann, Explicit discontinuous Galerkin methods for magnetohydrodynamics, Ph.D. thesis, Universität Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 

2012, http://elib.uni-stuttgart.de/opus/volltexte/2013/7998.
[56] A.J. Chorin, The numerical solution of the Navier–Stokes equations for an incompressible fluid, Bull. Am. Math. Soc. 73 (6) (1967) 928–931.
[57] J.U. Brackbill, D.C. Barnes, The effect of nonzero ∇ · b on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys. 35 (3) (1980) 

426–430, http://dx.doi.org/10.1016/0021-9991(80)90079-0.
[58] B. Marder, A method for incorporating Gauss’ law into electromagnetic {PIC} codes, J. Comput. Phys. 68 (1) (1987) 48–55, http://dx.doi.org/10.1016/

0021-9991(87)90043-X.

[59] D.S. Balsara, Total variation diminishing scheme for adiabatic and isothermal magnetohydrodynamics, Astrophys. J. Suppl. Ser. 116 (1) (1998) 133–153, 
http://dx.doi.org/10.1086/313093.

[60] R.K. Crockett, P. Colella, R.T. Fisher, R.I. Klein, C.F. McKee, An unsplit, cell-centered Godunov method for ideal MHD, J. Comput. Phys. 203 (2005) 
422–448, http://dx.doi.org/10.1016/j.jcp.2004.08.021.

[61] C.R. Evans, J.F. Hawley, Simulation of magnetohydrodynamic flows – a constrained transport method, Astrophys. J. 332 (1988) 659–677, http://dx.
doi.org/10.1086/166684.

[62] D.S. Balsara, D. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic 
simulations, J. Comput. Phys. 149 (2) (1999) 270–292, http://dx.doi.org/10.1006/jcph.1998.6153.

[63] D.S. Balsara, J. Kim, A comparison between divergence-cleaning and staggered-mesh formulations for numerical magnetohydrodynamics, Astrophys. J. 
602 (2004) 1079–1090, http://dx.doi.org/10.1086/381051.

[64] K. Waagan, A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics, J. Comput. Phys. 228 (23) (2009) 8609–8626, http://dx.doi.org/
10.1016/j.jcp.2009.08.020.

[65] P. Colella, P.R. Woodward, The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys. 54 (1) (1984) 174–201, 
http://dx.doi.org/10.1016/0021-9991(84)90143-8.

[66] M. Brio, C.C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys. 75 (2) (1988) 400–422, 
http://dx.doi.org/10.1016/0021-9991(88)90120-9.

[67] D. Ryu, T.W. Jones, Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow, Astrophys. J. 442 (1995) 228–258, 
http://dx.doi.org/10.1086/175437.

[68] M. Torrilhon, Uniqueness conditions for Riemann problems of ideal magnetohydrodynamics, J. Plasma Phys. 69 (3) (2003) 253–276, http://dx.doi.
org/10.1017/s0022377803002186.

[69] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys. 83 (1) (1989) 32–78, http://dx.
doi.org/10.1007/978-3-642-60543-7_14.

[70] Flash Center for Computational Science, University of Chicago, FLASH user’s guide. http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug_4p3.
pdf.

[71] A. Susanto, High-order finite-volume schemes for magnetohydrodynamics, Ph.D. thesis, University of Waterloo, 2014, https://uwspace.uwaterloo.ca/

handle/10012/8597.

[72] R. Balasubramanian, K. Anandhanarayanan, An ideal magnetohydrodynamics solver with artificial compressibility analogy divergence-cleaning, pp. 1–8, 
http://www.nal.res.in/CFDsympo16/FULL%20PAPERS-AeSICFD16/CP5.pdf, 2014.

[73] V.K. Chakravarthy, K. Arora, D. Chakraborty, A simple hybrid finite volume solver for compressible turbulence, Int. J. Numer. Methods Fluids 77 (2015) 
707–731, http://dx.doi.org/10.1002/fld.4000.

[74] D.S. Balsara, Multidimensional Riemann problem with self-similar internal structure, part I: application to hyperbolic conservation laws on structured 
meshes, J. Comput. Phys. 277 (2014) 163–200, http://dx.doi.org/10.1016/j.jcp.2014.07.053.

[75] D. Lee, A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional magnetohydrodynamics, J. Comput. Phys. 243 
(2013) 269–292, http://dx.doi.org/10.1016/j.jcp.2013.02.049.

[76] D. Lee, A.E. Deane, An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics, J. Comput. Phys. 228 (4) (2009) 952–975, 
http://dx.doi.org/10.1016/j.jcp.2008.08.026.

[77] S.A. Orszag, C.-M. Tang, Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech. 90 (01) (1979) 129–143, http://dx.
doi.org/10.1017/s002211207900210x.

[78] J. Balbás, E. Tadmor, A central differencing simulation of the Orszag Tang vortex system, IEEE Trans. Plasma Sci. 33 (2005) 470–471, http://dx.
doi.org/10.1109/TPS.2005.845282.

[79] P. Londrillo, L. Del Zanna, High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J. 530 (2000) 508–524, http://dx.
doi.org/10.1086/308344, arXiv:astro-ph/9910086.

[80] W. Dai, P.R. Woodward, A simple finite difference scheme for multidimensional magnetohydrodynamical equations, J. Comput. Phys. 142 (2) (1998) 
331–369, http://dx.doi.org/10.1006/jcph.1998.5944.

[81] J.H. Jeans, The stability of a spherical nebula, Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 199 (312–320) (1902) 1–53, http://dx.doi.org/10.1098/
rsta.1902.0012.

[82] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover Books on Physics Series, Dover Publications, 1961.
[83] M.J. Turk, B.D. Smith, J.S. Oishi, S. Skory, S.W. Skillman, T. Abel, M.L. Norman, yt: a multi-code analysis toolkit for astrophysical simulation data, 

Astrophys. J. Suppl. Ser. 192 (2011) 9+, http://dx.doi.org/10.1088/0067-0049/192/1/9, arXiv:1011.3514.

4.2 Publication I

69





4.3 Publication II

4.3 Publication II

Derigs, D., Winters, A. R., Gassner, G. J., Walch, S., (Feb. 2017). “A novel averaging technique
for discrete entropy-stable dissipation operators for ideal MHD.” In: Journal of Computational
Physics 330, pp. 624–632. issn: 0021-9991.
doi: 10.1016/j.jcp.2016.10.055. arXiv: 1610.06584.

The second paper presented in this cumulative thesis is a follow-up to the first paper. It is concerned
with constructing robust fluxes and dissipation terms within the framework of entropy stable
approximations. The core motivation of this work is that we discovered that the widely used
formulation of Ismail & Roe (2009) can exhibit unphysical mass transfer and easily breaks down
for initial conditions commonly found in astrophysical simulations.

In this paper, I present a derivation technique for uniquely defined discrete entropy stable schemes.
It is the foundation stone for a few follow-up works that have already been published (see, e.g.,
Winters et al., 2017)
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Entropy stable schemes can be constructed with a specific choice of the numerical flux 
function. First, an entropy conserving flux is constructed. Secondly, an entropy stable 
dissipation term is added to this flux to guarantee dissipation of the discrete entropy. 
Present works in the field of entropy stable numerical schemes are concerned with 
thorough derivations of entropy conservative fluxes for ideal MHD. However, as we show 
in this work, if the dissipation operator is not constructed in a very specific way, it cannot 
lead to a generally stable numerical scheme.

The two main findings presented in this paper are that the entropy conserving flux of 
Ismail & Roe can easily break down for certain initial conditions commonly found in 
astrophysical simulations, and that special care must be taken in the derivation of a 
discrete dissipation matrix for an entropy stable numerical scheme to be robust.
We present a convenient novel averaging procedure to evaluate the entropy Jacobians 
of the ideal MHD and the compressible Euler equations that yields a discretization with 
favorable robustness properties.

 2016 Elsevier Inc. All rights reserved.

1. Introduction

The applications of ideal magnetohydrodynamics (MHD) are ubiquitous in science and engineering. Accordingly, the 
design of numerical schemes for the approximation of this particular set of hyperbolic conservation laws has undergone ex-
tensive development. The ideal MHD model assumes that a fluid is a good electric conductor and neglects non-ideal effects, 
e.g. viscosity or resistivity. It is governed by a system of conservation laws together with the divergence-free condition

∂

∂t
q + ∇ · f = ∂

∂t

⎡

⎢

⎢

⎢

⎣

̺

̺u

E

B
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⎥

⎥
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+∇ ·
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⎢
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̺u
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2
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)
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u
(

1
2
̺‖u‖2 + γ p

γ −1
+ ‖B‖2

)

− B(u · B)

u ⊗ B − B ⊗ u

⎤

⎥

⎥

⎥

⎦

= 0, (1.1)

where ̺, ̺u, and E are the mass, momenta, and total specific energy of the plasma system, p is the thermal pressure, I is 
the 3 × 3 identity matrix, and B is the magnetic field, also referred to as magnetic flux density. f is the multidimensional 
flux function.
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It is well-known that solutions to (1.1) may contain discontinuities in the form of shocks, even for smooth initial data. 
Hence, solutions are sought in the weak sense [1]. However, weak solutions are not unique and need to be supplemented 
with extra admissibility criteria. Following the work of e.g. [2–5], we use the concept of entropy stability to construct 
discretizations that agree with the second law of thermodynamics.

In this paper we describe a technique suitable for the derivation of a flux dissipation term that guarantees entropy 
stability. Sec. 2 provides the necessary background of entropy numerical fluxes. In Sec. 3 we motivate our choice for the 
baseline entropy conserving flux and apply our technique to derive a simple dissipation operator in Sec. 4. In Sec. 5 we 
investigate the computational costs of our modifications. Finally, in Sec. 6, we revisit the two main findings of this work 
using simple numerical tests from the field of astrophysics.

2. Entropy stable numerical flux functions

For smooth solutions, one can design numerical methods to be entropy conservative if, discretely, the local changes of 
entropy are the same as predicted by the continuous entropy conservation law. For discontinuous solutions, the approxima-

tion is said to be entropy stable if the entropy always possesses the correct sign and the numerical scheme produces more 
entropy than an entropy conservative scheme and satisfies the entropy inequality (where we use the mathematical notation 
that entropy is a decaying function)

∂

∂t
S + ∇ · (uS) ≤ 0, (2.1)

with the entropy density S = − ̺s
γ −1

, the corresponding entropy flux uS , and the specific nondimensional thermodynamic 

entropy s = ln
(

p̺−γ
)

, where γ = cp
cv

is the ratio of specific heats [2]. Because entropy conservative schemes will produce 
high-frequency oscillations near shocks (see e.g. [3]), we need to add a carefully designed dissipation term to ensure that 
the entropy is guaranteed to dissipate.

Therefore, in order to create an entropy stable numerical approximation, we use a suitable entropy conserving flux as a 
base and add a numerical dissipation term. The resulting numerical flux is of the form

f ∗ = f ∗,ec − 1

2
D ❏q❑ , (2.2)

where D is a suitable dissipation operator, and q is the vector of conserved quantities. We define the jump operator as 
❏·❑ = (·)R − (·)L . Of utmost concern for entropy stability is to formulate the dissipation term in (2.2) such that the numerical 
flux fulfills the entropy inequality (2.1).

If we make the choice of D to be

D = |λmax|I, (2.3)

where λmax is the largest eigenvalue of the ideal MHD system, we can rewrite the dissipation term

1

2
D ❏q❑ = 1

2
|λmax|I ❏q❑ , (2.4a)

= 1

2
|λmax|H ❏v❑ , (2.4b)

where v is the vector of entropy variables and H = ∂v
∂q

is a matrix that relates the variables in conserved and entropy space. 
This particularly simple choice for the dissipation term leads to a scalar dissipation term. Note that a scalar dissipation term 
cannot resolve contact discontinuities exactly, as it will always add dissipation on surfaces that separate zones of different 
densities. The reformulation of the dissipation term to incorporate the jump in entropy variables (rather than the jump in 
conservative variables) is done to be able to guarantee entropy stability [6]. The question is how should the entropy Jacobian 
be evaluated at the interface, where values from left and right are available.

3. Break down of Ismail and Roe’s entropy conservative scheme and the KEPEC flux

First, we consider the widely used Ismail and Roe (IR) entropy conservative flux for Euler flows (see e.g. [7,8]). Define 
the arithmetic mean and the logarithmic mean of any strictly positive quantity as

{{·}} = (·)L + (·)R
2

, (·)ln = ❏·❑
❏ln(·)❑ ,

where a stable numerical algorithm to compute the logarithmic mean when (·)R ≈ (·)L is given in [8, App. B].
Using the parameter vector z, the mass flux at an interface is given by

f IR̺ = ˜̺ ũ, where ˜̺ = {{z1}}zln3 , and ũ = {{z2}}
{{z1}}

with z =
[√

̺

p
,

√

̺

p
u,

√
̺p

]⊺

. (3.1)
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Consider the following initial conditions representing a very simplified form of a strong shock in a uniform moving medium,

γ = 1.4, pL = [1,10,1] , and pR =
[

1,10,10−6
]

with p = [̺,u, p] . (3.2)

Using a Finite Volume (FV) update (see e.g. [2]) with a CFL coefficient of c = 0.6 we find

̺′
L ≈ −37.5 and ̺′

R ≈ 37.5

after the first time step (see also section 6). Clearly, the greatly overestimated mass flux is unphysical and the scheme 
breaks down. Note that the wrong mass flux cannot be compensated by the stabilization term, since any stabilization in the 
mass flux is proportional to the jump in density, which is zero according to (3.2).

If we, however, use the kinetic energy preserving entropy-conservative (KEPEC) flux presented by Chandrashekar [9] and 
recently extended to ideal MHD by Winters & Gassner [3], the mass flux is

f KEPEC̺ = ̺ln{{u}}. (3.3)

We obtain the updated densities

̺′
L ≈ 1.0− 9× 10−10 and ̺′

R ≈ 1.0+ 9× 10−10.

Note that even for much higher pressure jumps, there is no pathological behavior as seen in the mass flux with the z
parametrization (3.1). Since example conditions given in (3.2) are typical in astrophysical simulations, we conclude that the 
IR scheme is not suitable as an underlying entropy conservative scheme when constructing entropy stable schemes in a 
general way. Therefore, we use the KEPEC flux as the baseline entropy conserving flux in (2.2).

We further note that this example will equally fail in the case of ideal MHD.

4. Derivation technique for the discrete entropy Jacobian

The entropy variables for an ideal gas with entropy s = −(γ − 1) ln(̺) − ln(β) − ln(2) are

v = ∂ S

∂q
=

[

γ − s

γ − 1
− β‖u‖2, 2βu,2βv,2βw,−2β,2βB1,2βB2,2βB3

]

⊺

, β = ̺

2p
∝ 1

T
. (4.1)

The goal is to derive the averages in such a way that the relation ❏q❑ = H ❏v❑ holds. The entries of the matrix H are 
derived step-by-step through the solution of 64 linear equations:

❏q❑ =

✉
✇✇✇✇✇✇✇✇✇✈

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̺
̺u
̺v

̺w

E

B1

B2

B3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⑥
⑧⑧⑧⑧⑧⑧⑧⑧⑧⑦

!=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

H1,1 H1,2 . . . . . . H1,7 H1,8

H2,1 H2,2 . . . . . . H2,7 H2,8

...
...

. . .
. . .

...
...

...
...

. . .
. . .

...
...

H7,1 H7,2 . . . . . . H7,7 H7,8

H8,1 H8,2 . . . . . . H8,7 H8,8

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

✉
✇✇✇✇✇✇✇✇✇✇✈

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

γ −s
γ −1

− β‖u‖2
2βu

2βv

2βw

−2β

2βB1

2βB2

2βB3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⑥
⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑦

= H ❏v❑ . (4.2)

The procedure is to multiply each row of H with the expanded jump in the entropy variables. By examining each equation 
individually, all unknown entries of the discrete matrix are found.

The derivation of the first row of H is straightforward and therefore serves as an excellent example for the derivation 
technique. First, we use properties of the linear jump operator [3] to expand the jump in both the conservative and the 
entropy variables

❏q❑ =

✉
✇✇✇✇✇✇✇✇✇✈

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̺
̺u
̺v

̺w

E

B1

B2

B3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⑥
⑧⑧⑧⑧⑧⑧⑧⑧⑧⑦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

❏̺❑
{{̺}} ❏u❑ + {{u}} ❏̺❑
{{̺}} ❏v❑ + {{v}} ❏̺❑
{{̺}} ❏w❑ + {{w}} ❏̺❑

(

{{β−1}}
2(γ −1)

+ 1
2
{{u2}}

)

❏̺❑ + {{̺}}
(

{{u}} ❏u❑ + {{v}} ❏v❑ + {{w}} ❏w❑
)

− {{̺}}
2β2(γ −1)

❏β❑ +
3
∑

i=1

{{B i}} ❏B i ❑

❏B1❑
❏B2❑
❏B3❑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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❏v❑ =

✉
✇✇✇✇✇✇✇✇✇✇✈

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

γ −s
γ −1

− β‖u‖2
2βu

2βv

2βw

−2β

2βB1

2βB2

2βB3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⑥
⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

❏̺❑

̺ln + ❏β❑

β ln(γ −1)
−

(

{{u2}} + {{v2}} + {{w2}}
)

❏β❑ − 2{{β}}
(

{{u}} ❏u❑ + {{v}} ❏v❑ + {{w}} ❏w❑
)

2{{β}} ❏u❑ + 2{{u}} ❏β❑
2{{β}} ❏v❑ + 2{{v}} ❏β❑
2{{β}} ❏w❑ + 2{{w}} ❏β❑

−2 ❏β❑
2{{β}} ❏B1❑ + 2{{B1}} ❏β❑
2{{β}} ❏B2❑ + 2{{B2}} ❏β❑
2{{β}} ❏B3❑ + 2{{B3}} ❏β❑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

with

β2 = 2{{β}}2 − {{β2}}, and {{u2}} = {{u2}} + {{v2}} + {{w2}}.
According to (4.2), the entries of the first row of H can be obtained by solving

❏̺❑ = H1,1

( ❏̺❑
̺ln

+ ❏β❑
β ln(γ − 1)

−
(

{{u2}} + {{v2}} + {{w2}}
)

❏β❑ − 2{{β}}
(

{{u}} ❏u❑ + {{v}} ❏v❑ + {{w}} ❏w❑
)

)

+H1,2

(

2{{β}} ❏u❑ + 2{{u}} ❏β❑
)

+H1,3

(

2{{β}} ❏v❑ + 2{{v}} ❏β❑
)

+H1,4

(

2{{β}} ❏w❑ + 2{{w}} ❏β❑
)

+H1,5

(

−2 ❏β❑
)

+H1,6

(

2{{β}} ❏B1❑ + 2{{B1}} ❏β❑
)

+H1,7

(

2{{β}} ❏B2❑ + 2{{B2}} ❏β❑
)

+H1,8

(

2{{β}} ❏B3❑ + 2{{B3}} ❏β❑
)

.

From this equation, we directly obtain the entries of the first row of the discretized entropy Jacobian,

H1 =
[

̺ln ̺ln{{u}} ̺ln{{v}} ̺ln{{w}} E 0 0 0
]

, (4.3)

where we introduced additional notation for compactness

pln = ̺ln

2β ln
, E = pln

γ − 1
+ 1

2
̺ln‖u‖2, and ‖u‖2 = 2

(

{{u}}2 + {{v}}2 + {{w}}2
)

−
(

{{u2}} + {{v2}} + {{w2}}
)

.

One finds that the forthright solution of (4.2) leads to an asymmetric, i.e. not provably entropy stable, matrix H. Hence, 
it is not possible to derive a symmetric matrix such that the equality ❏q❑ = H ❏v❑ holds exactly for all components of q. 
However, if special care is taken during the expansion of the total energy term, a matrix Ĥ that obeys the required property 
can be found. It guarantees equality in all but the jump in energy term where the equality reduces to an asymptotic one. 
The modified jump in total energy reads

❏E❑ =
(

1

2(γ − 1)β ln
+ 1

2
‖u‖2

)

❏̺❑ − ̺ln

2(γ − 1)

❏β❑
(β ln)2

+ {{̺}}
(

{{u}} ❏u❑ + {{v}} ❏v❑ + {{w}} ❏w❑
)

+
3

∑

i=1

(

{{B i}} ❏B i ❑
)

≃ ❏E❑ . (4.4)

Using ❏E❑ in place of ❏E❑, we can solve (4.2) using the previously described technique where we have (❏q❑)i = (Ĥ ❏v❑)i

for i = {1, 2, 3, 4, 6, 7, 8} and (❏q❑)5 ≃ (Ĥ ❏�v❑)5 . We get the complete dissipation matrix

Ĥ=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̺ln ̺ln{{u}} ̺ln{{v}} ̺ln{{w}} E 0 0 0

̺ln{{u}} ̺ln{{u}}2 + {{p}} ̺ln{{u}}{{v}} ̺ln{{u}}{{w}}
(

E + {{p}}
)

{{u}} 0 0 0

̺ln{{v}} ̺ln{{v}}{{u}} ̺ln{{v}}2 + {{p}} ̺ln{{v}}{{w}}
(

E + {{p}}
)

{{v}} 0 0 0

̺ln{{w}} ̺ln{{w}}{{u}} ̺ln{{w}}{{v}} ̺ln{{w}}2 + {{p}}
(

E + {{p}}
)

{{w}} 0 0 0

E
(

E + {{p}}
)

{{u}}
(

E + {{p}}
)

{{v}}
(

E + {{p}}
)

{{w}} Ĥ5,5 τ {{B1}} τ {{B2}} τ {{B3}}
0 0 0 0 τ {{B1}} τ 0 0

0 0 0 0 τ {{B2}} 0 τ 0

0 0 0 0 τ {{B3}} 0 0 τ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4.5)

with

Ĥ5,5 = 1

̺ln

( (pln)2

γ − 1
+ E

2
)

+ {{p}}
(

{{u}}2 + {{v}}2 + {{w}}2
)

+ τ

3
∑

i=1

(

{{B i}}2
)

, {{p}} = {{̺}}
2{{β}} , and τ = {{p}}

{{̺}} .

The discrete entropy Jacobian for the compressible Euler equations is

ĤEuler =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

̺ln ̺ln{{u}} ̺ln{{v}} ̺ln{{w}} E

̺ln{{u}} ̺ln{{u}}2 + {{p}} ̺ln{{u}}{{v}} ̺ln{{u}}{{w}}
(

E + {{p}}
)

{{u}}
̺ln{{v}} ̺ln{{v}}{{u}} ̺ln{{v}}2 + {{p}} ̺ln{{v}}{{w}}

(

E + {{p}}
)

{{v}}
̺ln{{w}} ̺ln{{w}}{{u}} ̺ln{{w}}{{v}} ̺ln{{w}}2 + {{p}}

(

E + {{p}}
)

{{w}}
E

(

E + {{p}}
)

{{u}}
(

E + {{p}}
)

{{v}}
(

E + {{p}}
)

{{w}} 1
̺ln

(

(pln)2

γ −1
+ E

2
)

+ {{p}}
(

{{u}}2 + {{v}}2 + {{w}}2
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (4.6)
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Clearly, the discrete entropy Jacobian matrices (4.5) and (4.6) are symmetric. It is straightforward, albeit laborious, to 
verify using Sylvester’s criterion that the discrete matrices are symmetric positive definite (SPD). Due to the structure of the 
dissipation term (2.4b), the SPD property of the new matrices guarantees that the numerical flux (2.2) complies with the 
entropy inequality (2.1) discretely.

Next, we exemplarily test the equality (2.4a) = (2.4b) for a single entry of the obtained matrix for ideal MHD (4.5), 
namely the mass flux using the initial conditions (3.2). If we use the discrete entropy Jacobian derived in this work, we find

Ĥ1 =
[

̺ln ̺ln{{u}} ̺ln{{v}} ̺ln{{w}} pln

γ −1
+ 1

2
̺ln‖u‖2 0 0 0

]

⇒ Ĥ1 · ❏v❑ = 0 = ❏̺❑
as expected.

If we, however, chose a naive averaging, this equality does not hold any longer. Assume that all entries of the entropy 
Jacobian are given by arithmetic means of the primitive variables, e.g.

H1 =
[

{{̺}} {{̺}}{{u}} {{̺}}{{v}} {{̺}}{{w}} {{p}}
γ −1

+ 1
2
{{̺}}{{u2}}

]

we find

⇒ H1 · ❏v❑ ≈ 1.25× 106 �= ❏̺❑ ,

which will inevitably lead to negative densities for any practical CFL coefficient.

This short numerical experiment highlights the main massage of this work that even if one uses a suitable baseline 
entropy conserving flux, the stabilization term still has to be constructed carefully in order to obtain a stable numerical 
scheme.

We can use this to create a local Lax–Friedrichs (LLF) like numerical scheme

f KEPES,LLF = f KEPEC − 1

2
|λlocal

max |Ĥ ❏v❑ (4.7)

where

λlocal
max = max(λmax,R, λmax,L) (4.8)

is the largest of the local ideal MHD wave speeds (i.e. eigenvectors of the ideal MHD system)

λ±f = u ± cf, λ±s = u ± cs, λ±a = u ± ca, λD,E = u (4.9)

with

c2a = b21, c2f,s = 1

2

(

a2 + ‖b‖2 ±
√

(a2 + ‖b‖2)2 − 4a2b21

)

, (4.10)

a2 = γ
p

̺
, b = B√

̺
, b2⊥ = b22 + b23, and β1,2,3 = b1,2,3

b⊥
,

where cf and cs are the fast and slow magnetoacoustic wave speeds, respectively. ca is the Alfvén wave speed. In (4.10), the 
plus sign corresponds to the fast magnetoacoustic speed, cf , and the minus sign corresponds to the slow magnetoacoustic 
speed, cs . Some eigenvalues may coincide depending on the magnetic field strength and direction. Hence, the complete set 
of eigenvectors is not obtained in a straightforward way [10,11].

5. A note on computational complexity

We are interested in the computational complexity of our proposed scheme in comparison to the IR scheme and less 
complicated dissipation operators. In order to quantitatively investigate the numerical complexity we prepared a benchmark 
program written in FORTRAN. We take the full numerical flux functions from [2, (3.20)] (IR flux) and [3, (B.3)] (KEPEC flux) 
and compute the fluxes from random initial conditions.

In Table 1, we list the computational time in CPUs needed for ten million iterations on a single core. We disable the au-
tomatic code optimization of the compiler (i.e. ifort -O0 test.F90) for a fair comparison of the numerical complexity 
of the algorithms. As can be seen, the entropy conserving flux of Ismail and Roe (IR) is about 60% more costly than the 
kinetic energy preserving entropy conserving flux (KEPEC). This might be surprising on the first hand, but one has to keep 
in mind that the IR flux makes use of the complex z vector parametrization, introducing a considerable amount of hidden 
additional complexity.

A second question goes towards the computational costs of the entropy stable fluxes where the new matrix dissipa-
tion operator we found requires very specific averages. Therefore, we want to compare the computational time needed to 
compute the scheme given by (4.7) to three numerical schemes:
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Table 1

Computing the entropy conserving flux.

IR EC flux KEPEC flux

1.553 ± 0.007 0.975± 0.002

Table 2

Computing the stabilization terms.

non-ES scheme naive H matrix new Ĥ matrix

0.227± 0.002 5.467± 0.007 6.063± 0.010

Non-ES scheme This scheme is given by a simple LLF stabilization:

f
non-ES,LLF = f KEPEC − 1

2
|λlocal

max | ❏q❑ . (5.1)

Ad hoc dissipation operator We arbitrarily choose arithmetic means in the entropy Jacobian:

f
KEPES,naive = f KEPEC − 1

2
|λlocal

max |H ❏v❑ . (5.2)

This procedure is consistent with present literature since it has not been mentioned before that special care has 
to be taken when selecting the dissipation operator.

New dissipation operator For this scheme, we use the entropy Jacobian derived in this work:

f KEPES = f KEPEC − 1

2
|λlocal

max |Ĥ ❏v❑ . (5.3)

Note that the scheme given by (5.3) is identical to (4.7).

The three schemes given by (5.1)–(5.3) rely on the same baseline flux, the kinetic energy preserving entropy conservative 
(KEPEC) ideal MHD flux. The only difference is in the selection of the stabilization term.

As can be seen in Table 2, the non-entropy stable, very simple dissipation term is much faster than the computation 
involving the entropy Jacobian matrix. However, as shown in the numerical results section, both (5.1) and (5.2) lead to a 
breakdown of the scheme in the first timestep. Although (5.3) is the most expensive stabilization in this comparison, it 
is the only stable scheme that does not suffer from a breakdown. We find that the computation of the new Ĥ matrix 
involves about 27% higher computational costs compared to the H matrix with ad hoc averages. This only minor increase 
in computational costs can be attributed to the fact that, although we have to compute more complicated averages, we 
precalculate them once and use the stored result when filling the matrix.

Note that a significant portion of the execution time (≈ 40%) is spend in the FORTRAN function MATMUL used to multiply 
the entropy Jacobian with the jump of the entropy vector. Hence, an optimized version may increase the computational 
efficiency considerably.

6. Numerical tests

We illustrate the increased robustness of the scheme derived in this work by considering two simple one dimensional 
test problems.

6.1. Shock in fast moving magnetized background medium – breakdown of the IR scheme

As a first robustness test, we consider a demanding problem involving a shock traveling though a fast moving and mag-

netized medium. This test represents typical situations in large-scale astrophysical simulations namely supernova explosions 
in various environments, e.g. [12]. We take the first numerical experiment given in this paper (3.2) and create a full numer-

ical test. The test is computed on a uniform grid of 256 cells with a CFL coefficient of 0.8 and a domain size of x ∈ [−1, 1]. 
We select uniform density, ̺ = 1, uniform velocity of the background u = [10, 0, 0]⊺ as well as a uniform background 
magnetic field B = [1 × 10−2, 0, 0]. To simulate the strong explosion, we inject a pressure discontinuity with pin = 1.0 at 
|xin| ≤ 0.1. Outside of this injection region, we set pout = 1 × 10−6 . We use periodic boundary conditions and compute the 
solution at tend = 5 × 10−2 using an ideal gas equation of state with an adiabatic index of γ = 5/3.

The result of this test is shown in Fig. 1. We observe that the IR scheme fails during the first time step even for greatly 
lowered CFL coefficients. However, this test can easily be computed using the KEPEC + the new scalar dissipation flux 
derived in this work (4.7). As expected, two shock fronts develop, propagating outwards. The “explosion” is moving to the 
right with the initial background velocity, leading to a final displacement of u · tend = 0.5 at tend = 5 × 10−2 .
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Fig. 1. Result of the fast shock propagating through a magnetized medium which is moving in x-direction with a constant speed. We show the result of 
the first time step (t ≈ 4 × 10−4 , top) and the set simulation end time (tend = 5 × 10−2 , bottom). The IR scheme (left) fails in the first time step, while the 
new scheme derived in this work (right) is stable.

Fig. 2. Density (top) and thermal pressure (bottom) plots of the shock propagating through a fast magnetized medium test at t ≈ 4 × 10−4 . The simple LLF 
scheme (left) over-stabilizes the total energy update, leading to a break down because of negative pressures. The KEPES scheme with the naively averaged 
dissipation operator (center) produces both negative densities and pressures. The scheme involving the correctly averaged dissipation operator (right) is 
stable.

6.2. Importance of the averaging in the dissipation operator

As a second robustness test, we use the previously described test case and use the three different stabilizations terms 
described in section 5. We find that the two stabilizations which are not carefully constructed for entropy stability fail for 
the demanding test case described above.

In Fig. 2 we see a failure of the simple non-entropy stable LLF scheme (left) as well as of the scheme involving the 
naively averaged entropy Jacobian H (middle). The LLF scheme overestimates the stabilization of the total energy and hence 
leads to negative thermal pressures in two cells. The naive KEPES scheme breaks down because the required equalities 
❏q❑ ≃ H · ❏v❑ are not approximated well for very large jumps in neither the conservative nor the entropy variables. Therefore, 
this demanding test triggers a breakdown of the scheme, leading to large negative densities (min(̺) ≈ −4) as well as small 
negative pressures (min(p) ≈ −1.4 × 10−5). In direct comparison, we see that interchanging the discrete entropy Jacobian 
matrix1 is sufficient to make the scheme robust.

1 Which is the only difference between (5.2) and (5.3).
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7. Conclusion

In this work we present a technique that is convenient for the derivation of discrete entropy Jacobian operators. We 
exemplarily apply the technique to a very simple choice of a Rusanov-like mean value entropy Jacobian that guarantees 
fulfillment of the entropy inequality for ideal MHD and the compressible Euler equations. It emerges that a unique averaging 
technique is required and it is shown that a discrete SPD entropy Jacobian matrix can be obtained choosing specific averages 
during the expansion of the jump in total energy.

As a baseline flux, we choose the kinetic energy preserving entropy conservative flux recently presented in [3,9] since we 
experience unphysical results with the entropy conserving flux of Ismail and Roe for shocks in moving media as we show 
using a simple test problem in the numerical results section. Future work on the field of entropy-stable approximations can 
benefit from the knowledge of the required averaging technique presented in this paper. Follow up work will describe more 
complex matrix dissipation terms.
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Appendix A. Application of Sylvester’s criterion

We give here the eight determinants of the leading principal minors (M1−8) of the obtained matrix for ideal MHD Ĥ
(4.5). Since ̺, p, τ > 0, γ > 1, the SPD property is immediately clear.

|M1| =
∣

∣

∣

[

̺ln
]∣

∣

∣
= ̺ln,

|M2| =
∣

∣

∣

∣

[

̺ln ̺ln{{u}}
̺ln{{u}} ̺ln{{u}}2 + {{p}}

]∣

∣

∣

∣

= ̺ln{{p}},

|M3| =

∣

∣

∣

∣

∣

∣

⎡

⎣

̺ln ̺ln{{u}} ̺ln{{v}}
̺ln{{u}} ̺ln{{u}}2 + {{p}} ̺ln{{u}}{{v}}
̺ln{{v}} ̺ln{{v}}{{u}} ̺ln{{v}}2 + {{p}}

⎤

⎦

∣

∣

∣

∣

∣

∣

= ̺ln({{p}})2,

|M4| = · · · = ̺ln({{p}})3,

|M5| = · · · = ̺ln({{p}})3
(

τ
(

{{B1}}2 + {{B2}}2 + {{B3}}2
)

+ 2
pln

γ − 1

pln

̺ln

)

,

|M6| = · · · = ̺ln({{p}})3τ
(

τ
(

{{B2}}2 + {{B3}}2
)

+ 2
pln

γ − 1

pln

̺ln

)

,

|M7| = · · · = ̺ln({{p}})3τ 2

(

τ {{B3}}2 + 2
pln

γ − 1

pln

̺ln

)

,

|M8| = |Ĥ| = · · · = 2
({{p}})3(pln)2τ 3

(γ − 1)
.
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The third paper presented in this cumulative thesis presents a modified form of the ideal
magneto-hydrodynamic (MHD) equations with the aid of generalized Lagrangian multiplier
(GLM) to incorporate the divergence-free condition. Moreover, we consider non-zero magnetic
field divergence and develop the ideal MHD equations from compressible Euler equations to
include a non-conservative term that is proportional to the divergence-free condition. Importantly,
this non-conservative term guarantees that the Lorentz force is correctly captured when ∇ · B , 0.
Finally, an entropy-stable numerical flux function is derived and employed on the AMR code
FLASH for a representative number of numerical test cases.

One of the prominent novelties in this research is the idea of evolving towards a divergence-free state
instead of strictly enforcing the divergence-free condition from the outset. Proper consideration is
given to the effect of the non-conservative terms (magnetic field divergence) in general. To underline
the importance of our work in a more general physics framework, a continuous entropy analysis of
several well-known MHD formulations with the GLM ansatz is performed to demonstrate that they
fail to follow the second law of thermodynamics discretely.

Contribution overview

The topic of this extensive work is the development of a new mathematical model we propose as a
replacement for the long used ideal MHD model. This work would not been possible without the
continued support from my collaborators. I did all derivations in this work (except section 4.3.2)
myself. I furthermore did all simulations, analyzed and interpreted them.

Stefanie Walch helped me with the correct physical interpretation of the consequences of my
findings especially in the second chapter. Furthermore, she provided general advise throughout my
entire research and raised questions that where interesting to address.

Gregor Gassner assisted me in finding, e.g., a technique to extend the scheme to arbitrary high
spatial order retaining the entropy stability property. Moreover, he suggested numerical tests and
gave invaluable advise that helped strengthen the entire article.

Andrew Winters derived the GLM-based changes for the matrix dissipation terms (section 4.3.2)
for my new model based on the techniques we developed in Winters et al. (2017).

Marvin Bohm contributed the idea of assuming a specific form of the ideal MHD non-conservative
term from the outset of the derivations. This enabled me to greatly simplify the derivation of
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the discrete entropy stable schemes and slightly reduce the overall arithmetic complexity of the
scheme. I extended and applied his suggestion to my new ideal GLM-MHD system.
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The paper presents two contributions in the context of the numerical simulation of 
magnetized fluid dynamics. First, we show how to extend the ideal magnetohydrodynamics 
(MHD) equations with an inbuilt magnetic field divergence cleaning mechanism in such a 
way that the resulting model is consistent with the second law of thermodynamics. As a 
byproduct of these derivations, we show that not all of the commonly used divergence 
cleaning extensions of the ideal MHD equations are thermodynamically consistent. 
Secondly, we present a numerical scheme obtained by constructing a specific finite volume 
discretization that is consistent with the discrete thermodynamic entropy. It includes a 
mechanism to control the discrete divergence error of the magnetic field by construction 
and is Galilean invariant. We implement the new high-order MHD solver in the adaptive 
mesh refinement code FLASH where we compare the divergence cleaning efficiency to the 
constrained transport solver available in FLASH (unsplit staggered mesh scheme).

 2018 Elsevier Inc. All rights reserved.

1. Introduction

Widespread applications of the ideal magnetohydrodynamic (MHD) equations emerged in many disciplines, including, 
but not limited to, astrophysical and magnetically confined fusion plasma applications. The mentioned applications, usually 
deal with extreme conditions like near vacuum up to ultra-high density environments where shocks of varying type and 
strength are the rule rather than the exception. Hence, the accuracy and robustness of numerical simulation codes are very 
important.

Yet, the mathematical model of ideal MHD has some shortcomings that can cause the results to become unphysical. 
As neither the full set of universally valid thermodynamics laws nor the divergence-free condition of the magnetic field is 
directly coupled into the classic mathematical model of ideal MHD, it is possible to obtain physically invalid solutions.

In order to single out physically relevant solutions, we have to augment the system with additional admissibility criteria. 
One admissibility criterion in the case of ideal MHD is the divergence-free condition of the magnetic field that is expressed 
by Gauß’s law for magnetism

* Corresponding author.
E-mail address: derigs @ph1.uni -koeln .de (D. Derigs).

https://doi.org/10.1016/j.jcp.2018.03.002
0021-9991/ 2018 Elsevier Inc. All rights reserved.
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∇ · B = 0. (1.1)

The implementation of (1.1) into a numerical approximation is a major difficulty. As detailed in the early 1980s by Brackbill 
and Barnes [1, eq. (2)], numerical discretization errors always have a noticeable impact on the temporal evolution of the 
magnetic field divergence:

∂

∂t
(∇ · B) = 0+O

(

�xm, �tn
)

, (1.2)

where �x and �t are the space and time discretization steps, and m, n ≥ 0 are scheme dependent constants that also 
depend on the smoothness of the problem. Since the advent of sufficiently powerful computers, many approaches have been 
proposed to address this issue and “clean” such errors, including projection methods, constrained transport, and hyperbolic 
divergence cleaning. We give a brief overview over these methods with special focus on the hyperbolic divergence cleaning 
as we find it particularly useful in the context of highly efficient, highly parallelizable numerical schemes for large-scale 
applications.

Another natural admissibility criterion is given by the universally valid laws of thermodynamics. Most numerical schemes 
do not take the second law of thermodynamics directly into account but rather equip the system with a minute amount 
of diffusion. We seek to derive a numerical scheme that complies with the laws of thermodynamics and especially the 
second law, i.e. the entropy inequality. Following the work of e.g. [2–5], we use this law as an additional admissibility 
criterion to construct discretizations that agree with the laws of thermodynamics. In this way, we enforce that the solution 
does not converge towards physically irrelevant solutions which increases their numerical robustness, as thermodynamically 
impossible physical processes that could e.g. lead to negative thermal pressures are forbidden.

In this work, we derive a new mathematical model that is built to explicitly take into account all the mentioned relevant 
physics in order to impede unphysical results of numerical simulations. We start from first principles to avoid commonly 
done simplifications that, as we explain herein, make the typically used classic mathematical model of ideal MHD unsuitable 
in describing the behavior of physical flows in certain regimes of numerically computed, discrete solutions.

For this, we derive a new system of equations, which we deem the ideal GLM-MHD equations, that allows the construc-
tion of a novel magnetic field divergence diminishing scheme that naturally complies with thermodynamics. Furthermore, 
we investigate our new model in great detail and present both the methods we use as well as the details to allow a 
straightforward implementation of our scheme into the reader’s own simulation code.

We shortly summarize the new contributions presented in this work:

• We derive the ideal MHD equations from the compressible Euler equations where we explicitly allow non-zero magnetic 
field divergence in Maxwell’s equations. We physically motivate and highlight important findings (Sec. 2)

• We derive a new physically motivated mathematical model, the ideal GLM-MHD equations which we thoroughly investi-
gate from both mathematical and physical perspectives (Sec. 3.4)

• We derive entropy stable numerical flux functions. We give all necessary details to code the high-order scheme we are 
describing in a straightforward manner (Secs. 4.2 and 4.3)

2. The ideal MHD equations in the case of ∇ · B �= 0

We begin with the three-dimensional compressible Euler equations describing non-magnetized single-fluid flows. We 
then couple the effect of magnetic fields to the model. We find that the classic model of ideal MHD in the form of con-
servation laws is not valid for arbitrary flows, but only for fluids where (1.1) holds exactly. Interestingly, our derivations 
reveal results that are known from previous publications [6,7] while our independent and fundamentally different approach 
motivates these findings with a solely physically motivated mindset which eases the interpretation.

An important first step is, due to the findings of Brackbill and Barnes [1, eq. (2)], see also (1.2), that we shouldn’t 
assume the divergence-free condition of the magnetic field (1.1) is fulfilled exactly at all times in numerical simulations. In 
fact, Dirac [8] showed that quantum mechanics does not preclude the existence of isolated magnetic monopoles although 
physicists often reason that magnetic monopoles are unlikely to exist. Their reasoning mainly comes from the fact that 
quantum mechanics, as it is usually established, seems possible only when there are no isolated magnetic monopoles. 
Dirac, however, disproved this view. One of the most important theoretical motivations of introducing magnetic monopoles 
is to obtain Maxwell’s equations in symmetric form with regard to charges. Note that the Maxwell equations retain all 
their properties, such as invariance under a global duality transformation that mixes electric and magnetic fields [9], when 
magnetic monopoles are included, whether or not they exist.

During the derivation of the classic ideal MHD equations in conservative form, (1.1) is used to simplify the computations. 
However, this ultimately destroys the validity of the system of ideal MHD equations for flows where the divergence-free 
condition is not fulfilled to a certain extent, which is generally the case in discrete approximations. This is commonly found 
in simulations due to errors caused by any given numerical approximation. Note that this more general form of the ideal 
MHD equations is, of course, perfectly valid in the case of ∇ · B = 0, as the only difference is that certain terms aren’t 
neglected early on in the derivation.
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We start from the three-dimensional compressible Euler equations written compactly as a system of conservation laws,

∂

∂t
q + ∇ · f = ∂

∂t

⎡

⎣

̺
̺u
E

⎤

⎦+ ∇ ·

⎡

⎢
⎣

̺u

̺(u ⊗ u) + pI

u
( 1
2̺‖u‖2 + γ p

γ −1

)

⎤

⎥
⎦=

⎡

⎣

0
F

Ea

⎤

⎦ ,

(a)

(b)

(c)
(2.1)

where ̺, ̺u, and E are the density, volume specific momenta, and total energy density of the plasma system, p is the 
thermal pressure, I is the 3 × 3 identity matrix. F and Ea denote the sum of all (external) forces and energy source terms 
which are important for the fluid. The multidimensional flux function is denoted by f . The flux Jacobian has only real 
eigenvalues and the right eigenvectors are linearly independent, i.e. the compressible Euler equations are hyperbolic. We 
assume that the total energy and the thermal pressure are related through the ideal gas law

p = ̺RT = (γ − 1)

(

E − 1

2
̺‖u‖2

)

, (2.2)

with the ratio of specific heats, γ = cp
cv
.

For coupling electromagnetic fields to the fluid, we must examine the equations which describe their behavior. The 
generalized Maxwell’s equations for non-vanishing magnetic charge densities are

∇ · E = ρe

ε0
, (a) ∇ · B = μ0ρm, (b) ∇ × B = 1

c2
∂E

∂t
+ μ0 je, (c) − ∇ × E = ∂B

∂t
+ μ0 jm, (d)

(2.3)

where E and B are the electric and magnetic fields [9, Sec. 6.11]. The charge densities are ρe,m , where the subscript e refers 
to electric charges and m refers to magnetic charges. A similar distinction is made for the current densities, je,m := ρe,mu. 
The equations (2.3) are invariant under a global duality transformation that mixes electric and magnetic fields [9]. This 
underlines that the limitation ρm = 0 is only a convention.

By investigating how the magnetic field influences the fluid we can integrate the effects of magnetic fields into the 
compressible Euler equations. For this, we consider the Lorentz force caused by the electric and magnetic fields, denoted 
by F L . In our derivations, we assume that the magnetic field in the only cause of external forces, i.e. F ≡ F L and use it 
on the right-hand side momentum equation (2.1b). If the system contains additional forces, e.g. gravitational acceleration or 
radiation, these forces need to be added to the momentum equation as well. The most general form of the Lorentz force is

F L = qe (E + u × B) + qm

(

B − u × E

c2

)

, (2.4)

where qe,m are the electric and magnetic charges. Note that the second term on the right-hand side vanishes for qm ∝
∇ · B = 0, see [10]. The total Lorentz force per unit volume is then

F L = ee(ni − ne)E + ee(niui − neue) × B + em(ni − ne)B − em
niui − neue

c2
× E (2.5)

where the ions and electrons are denoted by subscripts i, and e, respectively. Their number densities are ni,e . The unit 
charges of electric and magnetic monopoles are denoted by ee and em , respectively. The quasi-neutrality assumption, n :=
ni = ne , that is due to the single-fluid model leads to

F L = nee(u I − uE) × B − nem

c2
(u I − uE)E

= je × B − 1

c2
jm × E, (2.6)

where we can use the magnetic current density given by (2.3b)

jm = ρmu = μ−1
0 (∇ · B)u. (2.7)

We use the ideal Ohm’s law for ionized fluids in motion,

E + u × B = η je = 0, (2.8)

with the assumption of vanishing resistivity, η = 0, i.e. infinite conductivity of the plasma which is an essential assumption 
of ideal MHD, to obtain

F L = je × B + 1

c2
jm × (u × B)

= 1

μ0

(

∇ × B − 1

c2
∂E

∂t

)

× B + 1

c2
(∇ · B)u × (u × B). (2.9)
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With this result, we add the magnetic forces into the momentum equation to obtain the non-divergence-free form of the 
ideal MHD momentum equation

∂

∂t
(̺u) + ∇ ·

(

̺(u ⊗ u) +
(

p + 1

2μ0
‖B‖2

)

I− B ⊗ B

μ0

)

= ∇ · B
μ0

(
1

c2
u × (u × B) − B

)

− 1

μ0c2
∂E

∂t
× B. (2.10)

In the non-relativistic limit, ‖u‖ ≪ c, (2.10) simplifies to become

∂

∂t
(̺u) + ∇ ·

(

̺(u ⊗ u) +
(

p + 1

2μ0
‖B‖2

)

I− B ⊗ B

μ0

)

= −∇ · B
μ0

B (2.11)

as the displacement current, where the rightmost term in (2.10) can be neglected for a Newtonian theory of MHD [11, 
Sec. 3.1.4]. We observe that (2.11) reduces to the standard form of the momentum equation in the ideal MHD equation 
system for ∇ · B → 0. Note that the non-relativistic limit is not a restriction in our derivations, but a natural assumption as 
we chose to start from the compressible Euler equations (2.1) which are themselves derived for the non-relativistic case.

Now that we accounted for the influence of the magnetic field on the fluid in the momentum equation, we must add a 
new evolution equation for the magnetic field components to the system of equations. From (2.3), we obtain the generalized 
induction equation

∂B

∂t
= −∇ × E − μ0 jm. (2.12)

Using (2.8) we get

∂B

∂t
− ∇ × (u × B) = −μ0 jm = −(∇ · B)u. (2.13)

The obtained induction equation (2.13) is added in the system of compressible Euler equations to model the evolution of 
the magnetic field.

To close the system of the generalized ideal MHD equations, we need to compute the total energy equation including 
the effects of the aforementioned modifications. The total energy update equations is

∂E

∂t
= ∂

∂t

(

1

2
̺‖u‖2 + ǫ + 1

2
‖B‖2

)

. (2.14)

After many manipulations, that can be found in Appendix E, we find

∂E

∂t
+ ∇ ·

(

u

(
1

2
̺‖u‖2 + γ p

γ − 1
+ ‖B‖2

2μ0

)

− B(u · B)

μ0

)

= −μ−1
0 (∇ · B)(u · B), (2.15)

which is the commonly known form of the ideal MHD total energy conservation law equipped with a non-conservative part 
on the right hand side. Note that, for the sake of convenience, we set μ0 = 1 hereafter to express the ideal MHD equations 
in dimensionless units. See Appendix G for a full presentation of the ideal MHD equations in physical units.

We summarize the ideal MHD equations in their general form to be

∂

∂t
q + ∇ · f = ∂

∂t

⎡

⎢
⎢
⎣

̺

̺u

E

B

⎤

⎥
⎥
⎦

+ ∇ ·

⎡

⎢
⎢
⎢
⎣

̺u

̺(u ⊗ u) +
(

p + 1
2‖B‖2

)

I− B ⊗ B

u
( 1
2̺‖u‖2 + γ p

γ −1 + ‖B‖2
)

− B(u · B)

u ⊗ B − B ⊗ u

⎤

⎥
⎥
⎥
⎦

= −(∇ · B)

⎡

⎢
⎢
⎣

0
B

u · B
u

⎤

⎥
⎥
⎦

(a)
(b)
(c)
(d)

(2.16)

with the new pressure equation that includes the magnetic energy

p = (γ − 1)

(

E − 1

2
̺‖u‖2 − 1

2
‖B‖2

)

(2.17)

defined in the domain 
 ⊂ R3 .
A remarkable outcome of the physically motivated derivation is that we obtain a set of equations which is known to have 

a number of desirable properties lacking in the classical ideal MHD equations. The system (2.16a–d) is not only symmetriz-
able [12] but also Galilean invariant [3,7,13]. The non-conservative terms found on the right hand side were first mentioned 
by Godunov [6] who investigated whether the equations of ideal MHD can be put into symmetric hyperbolic form. Inter-
estingly, he found the same additional non-conservative terms were required to obtain a PDE system that is symmetrizable, 
he took an altogether different approach. The formulation of ideal MHD system considered here is often referred to as the 
eight-wave formulation, because it supports eight traveling plane wave solutions. As the non-conservative term on the right 
hand side is proportional to the divergence of the magnetic field, it is, on the continuous level, nothing but adding zero in 
a clever way. Further advantages are that the flux Jacobian has only real eigenvalues and the right eigenvectors are linearly 
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independent, i.e. the ideal MHD equations in form (2.16a–d) are hyperbolic. We will further investigate on the importance 
of these consequences later in this work.

Numerical simulations of this system are known to be more stable than the same numerical methods applied to the 
original ideal MHD equations. This has been demonstrated by Powell [7] and numerically confirmed by others (see e.g. [14, 
Sec. 6.1]). From the derivations allowing for ∇ · B �= 0 a new physical understanding for the addition of the non-conservative 
terms emerge and it is clear that their appearance are essential parts of the system. We conclude that the classical ideal 
MHD equations are invalid for regions where ∇ · B �= 0 even if this deviation is only minor when the divergence of the 
magnetic field is controlled to a sufficient degree. This is due to the fact that classical ideal MHD models contain the 
divergence-free condition as a decoupled partial differential equation and hence assume that ∇ · B �= 0 can never happen. 
However, our fundamentally physically motivated derivation reveals that classical numerical schemes which neglect the 
magnetic field divergence terms on the right hand side of (2.16a–d) may discretely describe the wrong physics if they 
cannot assure (1.1) pointwise.

Without the non-conservative terms, a modeled magnetized fluid may not behave in a physically correct way if the 
magnetic field divergence is not negligible. To highlight this, we investigate what effect the Lorentz force has on the fluid 
with and without the derived non-conservative terms:

1. Lorentz force with non-conservative terms

F L = je × B = (∇ × B) × B

= −∇ ·
(
1

2
‖B‖2 − B ⊗ B

)

− (∇ · B)B (2.18)

The projection of the Lorentz force onto the magnetic field is

F L · B

‖B‖ = 0, (2.19)

so F L ⊥ B as expected and the fluid does not feel a force parallel to the magnetic field lines even in the presence of 
non-vanishing magnetic field divergence.

2. Lorentz force without non-conservative terms

F̂ L = −∇ ·
(
1

2
‖B‖2 − B ⊗ B

)

(2.20)

The projection of this form of the Lorentz force onto the magnetic field is

F̂ L · B

‖B‖ = −(∇ · B)‖B‖. (2.21)

We see that a modeled magnetized fluid only behaves correctly if the magnetic field divergence is zero or at least 
negligible. In case of any notable non-zero magnetic field divergence, the fluid feels an artificial force parallel to the 
magnetic field lines. This leads to physically wrong behavior and makes it clear that the ideal MHD system without the 
correct choice of non-conservative terms is invalid in the case of ∇ · B �= 0. Note that F̂ L is identical to the divergence 
of the Maxwell stress tensor for vanishing electric fields.

In the eight-wave formulation of ideal MHD, the magnetic field divergence is an advected quantity with the fluid. This 
can easily be seen by taking the divergence of the induction equation (2.16d),

∂

∂t
(∇ · B) = −∇ ·

(

∇ × (u × B)
)

− μ0∇ · jm) = −∇ · (μ0 jm) = −∇ ·
(

u(∇ · B)
)

,

⇒ ∂

∂t
(∇ · B) + ∇ · (u(∇ · B)) = 0. (2.22)

The appearance of the non-conservative term in the total energy equations can be understood using similar reasoning. 
Assume a positive magnetic field divergence which may also be expressed as a source of magnetic field. Such a source may 
generate additional magnetic and/or kinetic energy when moving through the fluid. If, however, we artificially enforce total 
energy conservation by neglecting the non-conservative term on the total energy, this increase in energy can inevitably lead 
to a loss of internal energy. This is due to the fact that internal energy is the reminder of the subtraction of the other 
energies from the total energy (2.17). Hence, errors in the computation of the energies will always be shifted into the 
computed internal energy. It is clear that in a region with sufficiently strong magnetic sources, the pressure could easily 
become negative if the total energy is not corrected accordingly from the magnetic fields. If, however, the non-conservative 
term is included, then the gain in total energy is accounted by the non-conservative term in the total energy evolution 
equation. In other words, as we do not strictly enforce total energy conservation. Thus, the thermal energy is not artificially 
modified and the positivity of a numerical scheme is improved.
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Furthermore, the non-conservative terms are necessary to ensure Galilean invariance of the system for any ∇ · B �= 0. 
Note that Galilean invariance is a necessary property of any well-posed theory in non-relativistic physics.

Although we derive the ideal MHD equations for the general case of arbitrary ∇ · B , we want to minimize the magnetic 
field divergence everywhere in numerical simulations to match the evolution simulation results to the observational con-
straint (1.1). Hence, the remainder of this paper is concerned with the derivation of an entropy stable scheme that starts 
from the equations derived in this section. The scheme we build will discretely satisfy the second law of thermodynamics 
as well as minimize the divergence of the magnetic field by construction.

3. Incorporating the divergence-free constraint into the model

In this section, we investigate the coupling of the magnetic field divergence into the ideal MHD equations. The investiga-
tions in this section are, in principle, self-sufficient and independent from any non-conservative parts being present in the 
system of equations. However, we will merge new findings with our results from Sec. 2 wherever appropriate to construct 
a mathematical model that is valid in regions of non-vanishing magnetic field divergence.

There exist different ways of enforcing (1.1) discretely, commonly called divergence cleaning techniques as they are 
designed to “clean up” divergence errors made by the numerical algorithms. Many schemes are designed to “treat” the 
divergence errors in the magnetic field, but never get rid of them entirely. The conventional divergence cleaning methods 
are shortly described in the following.

3.1. Non-conservative term approach

With the non-conservative term approach (also known as source term approach, e.g. [7]), a non-conservative term is 
added to the system of conservation laws that acts to minimize magnetic field divergence. Source terms generally lead to 
a loss of conservation in the quantities they affect which may be undesirable. The non-conservative term we use in this 
work can be understood as advecting non-zero magnetic field divergence with the fluid speed (2.22). As the authors found 
in previous work (e.g. [2]) such a divergence advection is especially problematic at stagnation points of the flow where 
magnetic field divergence can build up due to the dependence of the divergence cleaning on the local fluid velocity. Hence, 
the non-conservative term approach is typically insufficient to ensure the numerical fulfillment of (1.1) on its own.

3.2. Projection method

An alternative approach is the projection method described by Brackbill and Barnes [1] and Marder [15]. The projection 
method has successfully been applied by, e.g. Zachary et al. [16], Balsara [17], and more recently by Crockett et al. [18]
as well as the authors [2]. The projection method is implemented for divergence cleaning as a completely separate post-
processing step, i.e. the original scheme remains unchanged. It has been extensively described by the authors in [2, Sec. 3.10]. 
In essence, the projection method acts as a source term and affects the conservation of the magnetic field, but it changes 
the magnetic field components in an unpredictable way. Therefore, it is unclear if cleaning the divergence errors with a 
projection method can build a numerical scheme that is thermodynamically consistent.

3.3. Constrained transport

Another approach is the constrained transport method developed by Evans and Hawley [19] or Balsara and Spicer [20]
(reviewed in [21]). This method originally comes from the staggered-mesh scheme of Yee [22] for electromagnetism in 
a vacuum. Technically, the divergence-free constraint is satisfied by representing the magnetic field as cell face averaged 
quantities (as opposed to the usual choice of cell center volume averages). On such a grid, the MHD equations can be 
approximated such that they preserve numerical solenoidality of the magnetic field by construction through Stokes’ theorem. 
Note that Balsara and Kim [23] found advantages for the staggered-mesh in their comparison between divergence-cleaning
and divergence-free methods for stringent test cases. However, it is not clear if provably entropy stable schemes can be 
constructed for staggered-meshes [24].

3.4. Generalized Lagrangian multipliers

As detailed by Munz et al. [25], the divergence constraint for the electric field can be coupled with the induction equation 
by introducing a new real scalar field ψ also known as generalized Lagrangian multiplier (GLM). Dedner et al. [26] applied this 
technique to ideal MHD in order to incorporate the divergence-free condition (1.1) into the ideal MHD equations. However, 
as we will show later, the GLM modification of the ideal MHD equations as presented by Dedner et al. is inconsistent with 
the second law of thermodynamics as we show in Sec. 4.1.1.

In this work, we describe a novel entropy consistent formulation involving generalized Lagrangian multipliers. We call 
the resulting scheme the ideal GLM-MHD system. Similar to Dedner et al., the idea is not to enforce the divergence-free 
condition (1.1) exactly, but rather to construct a scheme that is designed to evolve towards a divergence-free state.
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We couple the divergence of the magnetic field to Faraday’s equation and add a new evolution equation for ψ using a 
hyperbolic ansatz. The new equations read:

d

dt
B = ∇ × (u × B) =⇒ d

dt
B = ∇ × (u × B) − ch∇ψ ,

d

dt
ψ := −ch(∇ · B) (3.1)

where we highlight the modifications in red. Note that we specified (3.1) using Lagrangian derivatives, also known as 
convective derivatives. The advantage is that this directly leads to a Galilean invariant formulation.

The newly introduced divergence-correcting field is denoted by ψ , where ch is the hyperbolic divergence cleaning speed. Our 
definition of the generalized Lagrangian multiplier ψ , compared to the definition of Dedner et al. results in a nicer set of 
entropy variables reducing the complexity of the forthcoming thermodynamic analysis. It is easily seen that for vanishing 
magnetic field divergence the correcting field ψ → 0 and the highlighted contributions in (3.1) vanish, returning the model 
to the ideal MHD equations as derived in Sec. 2. Thus, the GLM modifications to the ideal MHD model are consistent and 
correctly restore the continuous limit.

Before we continue, we re-write (3.1) into a form similar to (2.16) for the sake of convenience:

∂

∂t
B + ∇ · (u ⊗ B − B ⊗ u + chψI) + u(∇ · B) = 0, (3.2a)

∂

∂t
ψ + ch(∇ · B) + u · ∇ψ = 0, (3.2b)

where we again highlight the modification with respect to (2.16d) in red.
If we assume that the solution is sufficiently smooth, such that all derivatives are well defined, we differentiate with 

respect to time and space to obtain the following relations from (3.2):

∂

∂t
(∇ · B) = −∇ ·

(

u(∇ · B)
)

− ch∇2ψ = − 1

ch

∂2

∂t2
ψ − 1

ch

∂

∂t
(u · ∇ψ), and (3.3)

∂

∂t
(∇2ψ) = −ch∇2(∇ · B) − ∇2(u · ∇ψ) = −c−1

h

∂

∂t
∇ ·
(

u(∇ · B)
)

− c−1
h

∂2

∂t2
(∇ · B). (3.4)

From these relations, it is straightforward to derive wave equations for both the magnetic field divergence as well as the 
correcting field ψ

∂2

∂t2
(∇ · B) − c2h∇2(∇ · B) − ch∇2(u · ∇ψ) + ∂

∂t
∇ · (u(∇ · B)) = 0, (3.5)

and

∂2

∂t2
ψ − c2h∇2ψ − ch∇ · (u · ∇ψ) + ∂

∂t

(

u · ∇ψ
)

= 0. (3.6)

We see that the two wave equations (3.5) and (3.6) are coupled through the term ch∇ · (u · ∇ψ) and we look at a combined 
wave equation,

∂2

∂t2
(∇ · B) − c2h∇2(∇ · B) + ∂

∂t
∇
(

u(∇ · B)
)

= ∂2

∂t2
(∇̂ψ) − c2h∇2(∇̂ψ) + ∂

∂t
∇(u · (∇̂ψ)), (3.7)

where we used the notation ∇̂ψ :=
∑

i=x,y,z
∂ψ
∂ i

.
Here, we see a complex interaction between the divergence treatment due to the advection of the magnetic monopoles 

with the fluid velocity, u, and the newly introduced GLM correction field, ψ , as well as the hyperbolic cleaning speed, 
ch . This complex interaction is expected as ψ and B are not independent quantities, but a gradient in ψ is created by a 
non-zero divergence in the magnetic field. As such, we investigate the behavior of the magnetic field divergence based on 
(3.7). It is important to note that the effects described in the following take place simultaneously. However, for the sake of 
simplicity, we split the analysis into separate parts and discuss the effect as if they are independent.

Wave components in (3.7):

∂2

∂t2
(∇ · B) − c2h∇2(∇ · B) = 0 (3.8)

This part is a wave equation describes the isotropic propagation of ∇ · B with constant speed ch . So, local diver-
gence errors by this part of (3.7) are isotropically propagated away from where they have been created with finite 
speed ch . Looking back at the initially discussed source term approach, it becomes clear that the GLM approach 
does not suffer from the problem of accumulating magnetic field divergence at stagnation points of the fluid as 
this term is independent of the fluid velocity, u, and we always have ch > 0.
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∂2

∂t2
(∇̂ψ) − c2h∇2(∇̂ψ) = 0 (3.9)

We see that ∇̂ψ propagates isotropically with constant speed ch , just as the magnetic field divergence.

Advective components in (3.7):

∂

∂t
(∇ · B) + ∇ · (u(∇ · B)) = 0 (3.10)

This equation is a standard advection equation describing the transport of ∇ · B by bulk motion. It is clear 
that (3.10), as a continuity equation, conserves ∇ · B by construction. This part is a direct consequence of the 
non-conservative terms we derived in Section 2 and corresponds to the “divergence wave” of the well-known 
eight-wave formulation.

∂

∂t
(∇̂ψ) + ∇ · (u(∇̂ψ)) = 0 (3.11)

As before, we see that ∇̂ψ behaves identically to the magnetic field divergence in that it is advected with the 
flow. Just like (3.10), this passive advection equation is an expected result for a Galilean invariant formulation.

In (3.1) we introduce the possibility to advect the divergence error with the correcting field ψ . Also, the correcting field 
couples into the induction and therefore can alter the magnetic field. This transfer of information between the magnetic 
field components and the correcting field is important for divergence cleaning, but raises the question of how can ψ affect 
the magnetic energy Emag = 1

2‖B‖2 . It stands to reason that the correcting field contains some form of “energy” for which 
we should account. As the thermal energy is computed by subtracting the kinetic and magnetic energies from the total 
energy, any information regarding loss/gain of magnetic energy would be falsely attributed into thermal energy.

Tricco and Price [27] investigated the effect of Dedner et al.’s GLM modification of the ideal MHD equations in the 
framework of smoothed particles hydrodynamics (SPH). They pointed out that the energy contained within the ψ field 
should be defined such that, in the absence of damping terms, any change in magnetic energy should be balanced by a 
corresponding change in the energy stored in the correcting field. Hence, we introduce a new kind of energy stored in 
the ψ field, Eψ , which becomes a new component of the total fluid energy, E , for ensuring total energy conservation. As 
B and ψ both have units of magnetic fields, and because we observe a surprising symmetry between B1 and ψ in the 
one-dimensional form of (3.1) for vanishing fluid velocities,

(B1)t + ch(ψ)x + u(B1)x = 0, and (ψ)t + ch(B1)x + u(ψ)x = 0,

we make the ansatz

Eψ := 1

2
ψ2. (3.12)

Since we introduce a new form of energy into the system, we must account for its temporal evolution. Therefore, we 
investigate the effect which the modifications (3.2a) and (3.2b) have on the conservation law for the total energy, E =

p
γ −1 + ̺

2 ‖u‖2 + 1
2‖B‖2 + 1

2ψ2 . To do so we examine the evolution of the magnetic energy

∂

∂t

(
1

2
‖B‖2

)

= B · ∂B

∂t
︸︷︷︸

(3.2a)

= −B · ∇ (u ⊗ B − B ⊗ u) − chB · ∇ψ + (B · u)(∇ · B), (3.13)

as well as a contribution from the new ψ field energy (3.12)

∂

∂t

(
1

2
ψ2
)

= ψ · ∂ψ

∂t
︸︷︷︸

(3.2b)

= −chψ(∇ · B) + uψ(∇ψ). (3.14)

Since

chB · ∇ψ + chψ(∇ · B) = ch∇ · (ψB),

we find that the correct form of the total energy conservation equation for ideal GLM-MHD is given by

∂

∂t

(
1

2
̺‖u‖2 + p

γ − 1
+ 1

2
‖B‖2 + 1

2
ψ2
)

= −∇ ·
(

u

(
1

2
̺‖u‖2 + p

γ − 1
+ p + ‖B‖2

)

− B(u · B) + chψB

)

− (B · u)(∇ · B) + uψ(∇ψ). (3.15)
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Hence, the new ideal GLM-MHD system reads

∂
∂t

q + ∇ · f = ∂
∂t

⎡

⎢
⎢
⎢
⎣

̺
̺u
E

B

ψ

⎤

⎥
⎥
⎥
⎦

+ ∇ ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺u

̺(u ⊗ u) +
(

p + 1
2‖B‖2

)

I− B ⊗ B

u
( 1
2̺‖u‖2 + γ p

γ −1 + ‖B‖2
)

− B(u · B) + chψB

u ⊗ B − B ⊗ u + chψI

chB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −ϒGLM,

(a)

(b)

(c)

(d)

(e)

(3.16)

with

ϒGLM := (∇ · B)

⎡

⎢
⎢
⎢
⎢
⎣

0
B

u · B
u

0

⎤

⎥
⎥
⎥
⎥
⎦

+ (∇ψ) ·

⎡

⎢
⎢
⎢
⎣

0

0
uψ

0
u

⎤

⎥
⎥
⎥
⎦

(3.17)

and the new thermodynamic pressure

p = (γ − 1)ǫ and ǫ = E − 1

2
̺‖u‖2 − 1

2
‖B‖2 − 1

2
ψ2. (3.18)

If the divergence of the magnetic field is zero, the new system is identical to the original ideal MHD system (2.16). If, 
however, the initial solution does not satisfy the divergence-free constraint then the deviations will decay. This new set 
of equations ensures that any magnetic divergence caused by inaccuracies of a numerical method for the ideal GLM-MHD 
system remains small.

The ideal GLM-MHD system is invariant under a Galilean transformation, i.e. invariant to a transformation into a frame of 
reference moving with a constant relative velocity u0 (x′ = x− u0t , u′ = u − u0 , t′ = t). It shows the correct transformation 
behavior of d

dt′ = d
dt and ∂

∂t′ = ∂
∂t

+ u0 · ∇ .
Next, we investigate the structure of the obtained ideal GLM-MHD system and discuss crucial properties such as the 

hyperbolicity as well as the partially altered eigenstructure of the new system. We then compare the new set of equations 
to existing formulations in the beginning of the next section.

3.5. Multi-dimensional structure of the ideal GLM-MHD equations

To simplify the discussion of the new system we write (3.16) in one-dimensional form,

∂

∂t
q + ∂

∂x
f x + ϒ

x = 0, (3.19)

where q = q(x, t) is the vector of conservative variables, f x(q) is the flux vector in x-direction, and ϒ is the non-
conservative term.

q =
[

̺ ̺u ̺v ̺w E B1 B2 B3 ψ
]
⊺

, (3.20)

f x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺ u

̺u2 + p + 1
2‖B‖2 − B1B1

̺ u v − B1B2

̺ u w − B1B3

uÊ − B1
(

u · B
)

+ chψB1

chψ

u B2 − v B1

u B3 − w B1

chB1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ϒ
x = ∂B1

∂x

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
B1

B2

B3

u · B
u

v

w

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ ∂ψ

∂x

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
uψ

0
0
0
u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.21)

with

Ê := 1

2
̺‖u‖2 + γ p

γ − 1
+ ‖B‖2. (3.22)

We limit the analysis of the ideal GLM-MHD system (3.16) to one spatial dimension in the following. The main motivation 
for this restriction is because the analysis of the eigenstructure as well as the derivation of the numerical fluxes described 
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later in this work proved to be quite intense. However, this restriction is done without loss of generality because the spatial 
dimensions are decoupled. Thus, for completeness, we summarize the results of the derivations in the y and z-direction in 
Appendix F.

3.6. Eigenvalues of the ideal GLM-MHD system

An important step in the investigation of the properties of the system is to compute the eigenvalues of the ideal GLM-
MHD system, which are the speeds of the different waves involved in the solution. In doing so we find that the new ideal 
GLM-MHD system does not show a degeneracy of the eigenvalues like in the eight-wave formulation of ideal MHD where 
the entropy and divergence waves travel with the same speed, and hence have the same eigenvalue [7, Sec. 3.5.1].

First, we compute the flux Jacobian of the ideal GLM-MHD system

Ax := ∂ f x

∂q
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0 0

1
2 (γ − 1)‖u‖2 − u2 u (3− γ ) v (1− γ ) w (1− γ ) γ − 1 −B1 γ B2 (2− γ ) B3 (2− γ ) ψ (1− γ )

−u v v u 0 0 −B2 −B1 0 0

−u w w 0 u 0 −B3 0 −B1 0

A5,1 A5,2 u v (1− γ ) − B1 B2
̺ u w (1− γ ) − B1 B3

̺ u γ ch ψ − uγ B1 − vB2 − wB3 B2 u (2− γ ) − B1 v B3 u (2− γ ) − B1 w B1 ch − ψ u γ

0 0 0 0 0 0 0 0 ch
B1 v−B2 u

̺
B2
̺ − B1

̺ 0 0 −v u 0 0

B1 w−B3 u
̺

B3
̺ 0 − B1

̺ 0 −w 0 u 0

0 0 0 0 0 ch 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(3.23)

with

Ax
5,1 = −2γ u

(

E − 1

2
ψ2
)

+ 2B1 (u · B + uB1) + 2u(γ − 1)
(

̺‖u‖2
)

+ u(γ − 2)

(
1

2
‖B‖2

)

, (3.24)

Ax
5,2 = −1

2
(γ − 1)

(

‖u‖2 + 2u2
)

+ γ

̺

(

E − 1

2
‖B‖2 − 1

2
ψ2
)

+
B2
2 + B2

3

̺
. (3.25)

We then add the non-conservative term written in matrix form

ϒ
x = ∂B1

∂x

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
B1

B2

B3

u · B
u

v

w

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ ∂ψ

∂x

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
uψ

0
0
0
u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 B1 0 0 0
0 0 0 0 0 B2 0 0 0
0 0 0 0 0 B3 0 0 0
0 0 0 0 0 u · B 0 0 uψ

0 0 0 0 0 u 0 0 0
0 0 0 0 0 v 0 0 0
0 0 0 0 0 w 0 0 0
0 0 0 0 0 0 0 0 u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∂

∂x

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺
̺u
̺v

̺w

E

B1

B2

B3

ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:= ϒ̂
x ∂q

∂x
, (3.26)

to (3.23) and obtain

Ax
ϒ

:= Ax + ϒ̂
x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0 0

1
2 (γ − 1)‖u‖2 − u2 u (3− γ ) v (1− γ ) w (1− γ ) γ − 1 B1 (1− γ ) B2 (2− γ ) B3 (2− γ ) ψ (1− γ )

−u v v u 0 0 0 −B1 0 0

−u w w 0 u 0 0 0 −B1 0

A5,1 A5,2 u v (1− γ ) − B1 B2
̺ u w (1− γ ) − B1 B3

̺ u γ ch ψ − uB1(1− γ ) B2 u (2− γ ) − B1 v B3 u (2− γ ) − B1 w ch B1 + uψ(1− γ )

0 0 0 0 0 u 0 0 ch

B1 v−B2 u
̺

B2
̺ − B1

̺ 0 0 0 u 0 0

B1 w−B3 u
̺

B3
̺ 0 − B1

̺ 0 0 0 u 0

0 0 0 0 0 ch 0 0 u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.27)

From (3.27) we compute the eigenvalues of the ideal GLM-MHD system in x-direction:

λx
±f = u ± cf, λx

±s = u ± cs, λx
±a = u ± ca, λx

E = u, λx
±ψ = u ± ch, (3.28)
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Fig. 1. Spacetime sketch of a typical Riemann fan spanned by the eigenvalues (3.28) with some global ch that equals the fastest magnetoacoustic speed 
present in the entire numerical simulation. We do this to not affect the global time step size, see Section 3.7.

with

c2a = b21, c2f,s = 1

2

(

a2 + ‖b‖2 ±
√

(a2 + ‖b‖2)2 − 4a2b21

)

, a2 = γ
p

̺
, b = B

√
̺

, (3.29)

where cf and cs are the fast and slow magnetoacoustic wave speeds, respectively, and ca is the Alfvén wave speed. In 
(3.29), the plus sign corresponds to the fast magnetoacoustic speed, cf , and the minus sign corresponds to the slow mag-
netoacoustic speed, cs . We find that all eigenvalues have multiplicity one. They are depicted in Fig. 1 Note that, however, 
some eigenvalues may coincide depending on the magnetic field strength and direction. Hence, it is not straightforward to 
compute the complete set of eigenvectors [28,29].

We see that the divergence wave, commonly found when analyzing the original ideal MHD system in conjunction with 
the source term, splits into a left and a right going ψ-wave. If we set ψ = ch = 0, Ax

ϒ
becomes identical to the flux Jacobian 

matrix of the eight-wave formulation of the ideal MHD equations and we recover a single divergence wave with eigenvalue 
λx
D = u.
We note that due to λx

±ψ �= ch , we find that the commonly chosen approximation to set ch = max(λ) (see e.g. [30, 
Section 3.4]) may lead to a violation of the CFL criterion, which may cause robustness issues when the CFL number is not 
adapted accordingly.

3.7. The hyperbolic propagation speed ch

An important issue is how to select the cleaning wave speed ch . We implement the new numerical scheme for the ideal 
GLM-MHD system in the multi-physics code FLASH (see [2]) where we often experience that the MHD solver accounts 
for 10% of the overall CPU time in real applications (see e.g. [31]). As such, it is important to determine a cleaning speed 
ch such that the propagation of the ψ field is most effective, but does not influence the size of the time step compared 
to standard ideal MHD implementations. We immediately see that this requirement is fulfilled by choosing ch to be the 
difference between the maximum eigenvalue, λmax , and the maximum fluid speed,

ch = λmax − umax,
, (3.30)

where umax,
 = max



(|u|, |v|, |w|) is the largest (physical) speed found in the entire simulation domain.

If the fluid speed is zero (i.e. at stagnation points) the divergence correction is most effective with ch = λmax . If 
umax,
 �= 0, then ch is reduced such that neither of the ψ eigenvalues exceed the maximum of the remaining wave speeds 
to guarantee that the GLM modification does not negatively affect the time step of the simulation. Note that (3.30) also 
suggests that the simple and commonly used choice ch = a · λmax may be inappropriate for any value of a ∈ (0, 1].

Note that it is possible to select values for ch that exceed (3.30). However, this would lead to the approximation being 
dominated by the ψ-wave and, hence, will shrink the time step size. Nevertheless, this will result in (even) faster correction 
of the magnetic field divergence, although the authors have not felt this necessary in the numerical results obtained for 
this work. Another possibility, although rarely seen in the literature, could be a local, instead of a global value for the 
hyperbolic cleaning speed, ch . However, this would add ch as yet another field variable which we want to avoid in the 
highly parallelized targeted framework. Nonetheless, we mention this as a feasible part of future works.

3.8. Alternative non-conservative terms

From the derivations of the generalized ideal MHD equations for non-vanishing magnetic field divergence, we found that 
particular non-conservative terms are necessary to ensure the validity of the numerical scheme in situations in which (1.1) is 
not fulfilled exactly. However, it is known that schemes which do not preserve exact conservation of the physical quantities 
can produce erroneous shock speeds, e.g. [13]. In cases where ∇ · B = 0, there is no non-conservative contribution to any 
of the physical quantities. Note that this is not only the case for vanishing magnetic fields, but for arbitrary configurations, 
given that a numerical approximation is properly initialized. Even in the presence of ∇ · B �= 0, the non-conservative part 
in e.g. the total energy equation could be attributed to excess energy in the magnetic field caused by sources/sinks present 
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in the solution. The importance of the non-conservative term in the momentum equations has already been discussed in 
Sec. 2 and is important to ensure F L ⊥ B wherever ∇ · B �= 0.

Nevertheless, there are at least three possibilities to construct an entropy stable scheme for ideal MHD:

1. The full non-conservative terms as derived in Sec. 2:

ϒ
magnetic =

(
∂B1

∂x
+ ∂B2

∂ y
+ ∂B3

∂z

)

︸ ︷︷ ︸

∇·B

[

0 B1 B2 B3 u · B u v w 0
]
⊺

. (3.31)

2. Only the non-conservative terms needed to ensure F L ⊥ B:

ϒ
magnetic
BB :=

(
∂B1

∂x
+ ∂B2

∂ y
+ ∂B3

∂z

)

︸ ︷︷ ︸

∇·B

[

0 B1 B2 B3 0 0 0 0 0
]
⊺

. (3.32)

This non-conservative terms have first been suggested by Brackbill and Barnes [1].
3. Furthermore, Janhunen [13] presented non-conservative terms that add the advection of the magnetic field, see (2.22), 

but preserve the conservation in all thermodynamics quantities:

ϒ
magnetic
J :=

(
∂B1

∂x
+ ∂B2

∂ y
+ ∂B3

∂z

)

︸ ︷︷ ︸

∇·B

[

0 0 0 0 0 u v w 0
]
⊺

. (3.33)

The conservative formulation, i.e. ϒ0 := 0, of the ideal MHD equations is not entropy consistent as demonstrated by 
Godunov in the 1970s [6]. Because v · ϒmagnetic = v · ϒmagnetic

BB = v · ϒmagnetic
J = 2β(u · B), all of the non-conservative terms 

mentioned are interchangeable in an entropic sense. That is, they all ensure entropy consistency of the scheme. We note 
that only the first one, ϒmagnetic , symmetrizes the PDE system [6] and complies with our derivation of the ideal MHD 
equations in the general case where ∇ · B �= 0.

Earlier publications, e.g. [14, Sec. 6.1], investigated all four non-conservative terms choices, including the non-entropy 
consistent fully conservative formulation, and found that the full non-conservative terms, ϒmagnetic , has the best properties 
with respect to numerical stability and accuracy in the sense of convergence to analytic solutions. We found little difference 
between the full and the Janhunen non-conservative terms in all of our numerical tests, however, due to the reasoning 
given in Sec. 2, we perform all numerical tests in the following section using the full non-conservative terms (3.31). An 
exception to this is a two-dimensional shock tube test described in Sec. 5.5, as this test is specifically designed to show a 
breakdown of the eight-wave formulation. Here, we explicitly test the scheme also against the non-conservative terms that 
was suggested by Janhunen, ϒmagnetic

J , but find no notable difference to using the full non-conservative terms.

3.9. Alternative GLM ansatz

We also considered alternative entropy-consistent GLM-modifications. If one uses an Eulerian instead of a Lagrangian 
ansatz for the ψ evolution equation (compare to (3.1)),

d

dt
B = ∇ × (u × B) =⇒ d

dt
B = ∇ × (u × B) − ch∇ψ ,

∂

∂t
ψ := −ch(∇ · B), (3.34)

we obtain the same fluxes as before (3.16), however with a slightly simpler source term:

ϒGLM,alt := (∇ · B)
[

0 B u · B u 0
]⊺

(3.35)

Although one can see the absence of the non-conservative ψu ·∇ψ term on the right hand side of the total energy equation 
as an advantage, the resulting scheme is not Galilean invariant. This is immediately seen by computing the eigenstructure 
of this alternative system. While all other wave speeds stay the same, the GLM wave speeds takes the form

λ±ψ,alt = 1

2

(

u ±
√

u2 + 4c2
h

)

. (3.36)

They are clearly not Galilean invariant. However, Galilean invariance is an important physical property for our new scheme 
and therefore we do not pursue this alternative ansatz any further in this work. Nevertheless, it should be noted that 
using (3.34), one can build an entropy stable scheme, e.g. [32]. We derived and implemented a numerical scheme for this 
alternative ansatz and find similar results without Galilean invariance. However, we observe slightly reduced robustness.
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4. Deriving an entropy stable numerical scheme

In this section, we briefly introduce the concept of entropy conservation and stability on the continuous level for the 
ideal GLM-MHD equations and derive numerical flux functions that can be used to implement an entropy stable numerical 
scheme for ideal MHD simulations. Furthermore, we perform an entropy analysis for several known GLM formulations. 
A broader introduction to the concept of entropy has been given by the authors in [2,3] as well as in the pioneering works 
of Tadmor [5,33] and Barth [34].

We want to construct a numerical scheme that not only complies with a subset of the thermodynamical laws, but that 
is in agreement with all universally valid laws of thermodynamics – including the second law of thermodynamics, i.e. the 
entropy inequality.

We define the physical entropy density, divided by the constant (γ − 1) for convenience to be

S(q) = − ̺s

γ − 1
with s = ln

p

̺γ
= −(γ − 1) ln(̺) − ln(β) − ln(2) and β = ̺

2p
∝ 1

T
, (4.1)

where s is the entropy per particle, and β is the inverse temperature. An approximation obeys the second law of thermo-
dynamics in two regimes:

1. For smooth solutions, we can design numerical methods to be entropy conservative if, discretely, the local changes of 
entropy are the same as predicted by the continuous entropy conservation law

∂

∂t
S + ∇ · (uS) = 0. (4.2a)

2. For discontinuous solutions, the approximation is said to be entropy stable if the entropy always possesses the correct 
sign (where we use the mathematical notation that entropy is a decaying function) and the numerical scheme produces 
more entropy than an entropy conservative scheme and satisfies the entropy inequality

∂

∂t
S + ∇ · (uS) ≤ 0, (4.2b)

that can be interpreted as the entropy conservation law (4.2a) augmented with a non-positive entropy source term.

For switching from conserved to entropy space, we introduce the entropy variables

v = ∂ S

∂q
=
[

γ − s

γ − 1
− β‖u‖2, 2βu, 2βv, 2βw, −2β, 2βB1, 2βB2, 2βB3, 2βψ

]
⊺

. (4.3)

4.1. Continuous entropy analysis

Now that we prepared the necessary framework for an entropy analysis, we are interested in the agreement of the pro-
posed new ideal GLM-MHD system (3.16) with (4.2a). We examine how the individual components of the ideal GLM-MHD 
flux contract into entropy space to see if it is possible to construct schemes from (3.16) which comply with the continu-
ous entropy conservation law. In addition, we analyze the applicability of entropy analysis to different ideal MHD + GLM 
systems already available in the literature.

To increase the clarity of the following derivations, we split the new flux into three pieces:

f x = f x,hydro + f x,magnetic + f x,ψ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺ u

̺u2 + p

̺ u v

̺ u w

u
( 1
2̺‖u‖2 + γ p

γ −1

)

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
2‖B‖2 − B1B1

−B1B2

−B1B3

u‖B‖2 − B1
(

u · B
)

0
u B2 − v B1

u B3 − w B1

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ ch

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0

ψB1

ψ

0
0
B1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.4)

We contract the ideal GLM-MHD system (3.16) into entropy space using the entropy variables (4.3) and, for convenience, 
multiply by 1

2β . The non-conservative term, ϒ, is defined in (3.21). Looking at the individual components of the flux one 
after another we obtain
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1

2β
v · ∂

∂x
f x,hydro =

(
1

2β

γ − s

γ − 1
− 1

2
‖u‖2

)

(̺u)x + u(̺u2 + p) + v(̺uv)x + w(̺uw)x −
(

u

(
γ p

γ − 1
+ 1

2
̺‖u‖2

))

x

= · · · = − 1

2β

(
̺us

γ − 1

)

x

= 1

2β
(uS)x, (4.5)

1

2β
v ·
(

∂

∂x
f x,magnetic + ϒ

x,magnetic
)

= u

(
1

2
‖B‖2 − B1B1

)

x

− v
(

B1B2
)

x
− w

(

B1B3
)

x
−

(

u‖B2‖ − B1(u · B)
)

x
+ B2(uB2 − vB1)x + B3(uB3 − wB1)x −

u(B1)xB1 + v(B1)xB2 + w(B1)xB3 −
((B1)xuB1 + (B1)xvB2 + (B1)xwB3) +
B1(B1)xu + B2(B1)xv + B3(B1)xw = · · · = 0, (4.6)

1

2β
v ·
(

∂

∂x
f x,ψ + ϒ

x,ψ

)

= −ch(ψB1)x − uψ(ψ)x + chB1(ψ)x + chψ(B1)x + ψu(ψ)x

= ch [−(B1ψ)x + B1(ψ)x + ψ(B1)x]+ uψ(ψ)x − uψ(ψ)x = 0 (4.7)

where we introduce the abbreviated notation (·)x = ∂(·)
∂x

. This gives an overall contribution of

v ·
(

∂

∂x
f x + ϒ

x

)

= v ·
(

∂

∂x
f x,hydro + ∂

∂x
f x,magnetic + ∂

∂x
f x,ψ + ϒ

x,magnetic + ϒ
x,ψ

)

= (uS)x. (4.8)

From the definition of the entropy variables, v · qt = St , we immediately obtain the entropy conservation law in one spatial 
dimension,

v ·
(

qt + ∂

∂x
f x + ϒ

x

)

= St + (uS)x = 0. (4.9)

We perform the same computations for the remaining two spatial dimensions

v ·
(

∂

∂ y
f y + ϒ

y

)

= (uS)y = 0, (4.10)

v ·
(

∂

∂z
f z + ϒ

z

)

= (uS)z = 0, (4.11)

and find the entropy balance law in three dimensions

v · (∇ · f + ϒ) = ∇ · (uS) =⇒ v · (qt + ∇ · f + ϒ) = St + ∇ · (uS) = 0. (4.12)

This equation is identical to the continuous entropy conservation law (4.2a). Therefore, the new ideal GLM-MHD system is 
suitable for building an entropy conserving numerical scheme. Note that when omitting the non-conservative terms, entropy 
consistency is lost for the ideal MHD equations [3,12].

In the remainder of this section, we compute the entropy balance equation for GLM-modified ideal MHD systems which 
have been presented in the literature to highlight that our system is the first presented consistent ideal MHD system with 
GLM divergence treatment that is fully compatible with thermodynamics.

4.1.1. Continuous entropy analysis of Dedner et al.’s ansatz
Dedner et al. [26] presented the first GLM modified ideal MHD system. Their hyperbolic and conservative modification 

of the ideal MHD equations (their eq. (25)) reads

∂

∂t
q + ∇ · f D = ∂

∂t

⎡

⎢
⎢
⎢
⎣

̺
̺u
E

B

ψ

⎤

⎥
⎥
⎥
⎦

+ ∇ ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺u

̺(u ⊗ u) +
(

p + 1
2‖B‖2

)

I− B ⊗ B

u
(

E + p + 1
2‖B‖2

)

− B(u · B)

u ⊗ B − B ⊗ u + ψI

c2
h
B

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −
c2
h

c2p

⎡

⎢
⎢
⎢
⎣

0
0

0
0

ψ

⎤

⎥
⎥
⎥
⎦

= −ϒD, (4.13)

with

p = (γ − 1)

(

E − 1

2
̺‖u‖2 − 1

2
‖B‖2

)

. (4.14)

The entropy variables for this system are
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vD = ∂ S

∂q
=
[

γ − s

γ − 1
− β‖u‖2, 2βu, 2βv, 2βw, −2β, 2βB1, 2βB2, 2βB3, 0

]
⊺

. (4.15)

Repeating the computations presented above for Dedner et al.’s equations, we obtain

vD · (∇ · f D + ϒD) = ∇ · (uS) + 2β
[

− (u · B) · (∇ · B) + B · ∇ψ
]

�= ∇ · (uS), (4.16)

which is not conformable with the continuous entropy conservation law (4.2a) and, as such, it cannot be used to construct 
an entropy conserving scheme. At first glance it seems like we could still fulfill (4.2b) to construct an entropy stable scheme. 
However, this is not possible either, because we cannot guarantee the correct sign of the term (u · B) · (∇ · B) − B · ∇ψ .

It is well known that a non-conservative term that is proportional to the magnetic field divergence is necessary for 
entropy consistency, e.g. [3,12]. However, when we repeat the computation including the non-conservative terms we found 
in this work, we cancel only one of the extraneous terms from (4.16). Even when assuming cp → ∞, one further term 
remains

vD · (∇ · f D + ϒD + ϒ) = ∇ · (uS) + 2βB · ∇ψ �= ∇ · (uS), (4.17)

which is still not conformable with the continuous entropy conservation law or stability as we cannot predict the sign of 
the product B · ∇ψ .

Note that due to the zero value in the ninth component of the entropy variables in the scheme of Dedner et al., (4.16), the 
mapping between physical and entropy space is not bijective. As such, a one-to-one correspondence between conservative 
and entropy space does not exist. Hence, the equations (4.13) are not suitable for constructing an entropy stable scheme 
[33, Section 2].

4.1.2. Continuous entropy analysis of Dedner et al.’s ansatz (extended version)
In the same work, Dedner et al. also presented an extended GLM system, which involves additional non-conservative 

terms. They call this system (their eq. (24)) the extended GLM (EGLM) formulation of the MHD equations which has been 
adapted in many other works, e.g. [35–37]. This extended system is given by

∂

∂t
q + ∇ · f D = ∂

∂t

⎡

⎢
⎢
⎢
⎣

̺
̺u
E

B

ψ

⎤

⎥
⎥
⎥
⎦

+ ∇ ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺u

̺(u ⊗ u) +
(

p + 1
2‖B‖2

)

I− B ⊗ B

u
(

E + p + 1
2‖B‖2

)

− B(u · B)

u ⊗ B − B ⊗ u + ψI

c2
h
B

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
−(∇ · B)B

−B · ∇ψ

0

− c2
h

c2p
ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= −ϒEGLM. (4.18)

Doing the entropy contraction for Dedner et al.’s EGLM equations, we find

vD · (∇ · f D + ϒEGLM) = ∇ · (uS), (4.19)

which is in agreement with the continuous entropy conservation law (4.2a). However, the zero in the ninth entropy variable 
makes the construction of an entropy conservative scheme impossible. Furthermore, it is in conflict with the general term 
we found when deriving the ideal MHD equations in Sec. 2. The non-conservative terms in the total energy contribution 
is not proportional to the magnetic field divergence and hence may be of significant magnitude. Nevertheless, our finding 
underlines Dedner et al.’s observation that their EGLM scheme has superior robustness properties, since it is in agreement 
with thermodynamics.

4.1.3. Continuous entropy analysis of Dedner et al.’s ansatz (extended version, Galilean invariant)
In the same work, Dedner et al. presented a third scheme which is a variant of his extended GLM system (their eq. (38)) 

that includes the eight-wave formulation to achieve Galilean invariance. We will call this system Galilean invariant extended 
GLM (GI-EGLM) for convenience. It is given by

∂

∂t
q + ∇ · f D = ∂

∂t

⎡

⎢
⎢
⎢
⎣

̺
̺u
E

B

ψ

⎤

⎥
⎥
⎥
⎦

+ ∇ ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺u

̺(u ⊗ u) +
(

p + 1
2‖B‖2

)

I− B ⊗ B

u
(

E + p + 1
2‖B‖2

)

− B(u · B)

u ⊗ B − B ⊗ u + ψI

c2
h
B

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −ϒGI-EGLM, (4.20)

with
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ϒGI-EGLM :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

(∇ · B)B

(u · B)(∇ · B) + B · ∇ψ

u(∇ · B)

u · ∇ψ + c2
h

c2p
ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.21)

Doing the entropy contraction for Dedner et al.’s GI-EGLM equations, we find

vD · (∇ · f D + ϒGI-EGLM) = ∇ · (uS). (4.22)

We have again obtained the continuous entropy conservation law (4.2a), however, the same limitations as with the EGLM 
terms (preceding section) apply. These equations seem to be the most preferable of the equations Dedner et al. presented 
as they are both in agreement with the continuous entropy conservation law as also contain the non-conservative we found 
to be necessary in Section 2 for ∇ · B �= 0. Nevertheless, they are not suitable for constructing entropy stable numerical 
schemes as the mapping between physical and entropy space, given by (4.16), is not bijective.

4.1.4. Continuous entropy analysis of Mackey and Lim’s ansatz

Mackey and Lim [38] presented a version of Dedner et al.’s ansatz with improved performance. They modified the total 
energy flux to be

f ML = f D +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0

⎡

⎢
⎣

B1 f
B1
D

B2 f
B2
D

B3 f
B3
D

⎤

⎥
⎦

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.23)

to address gas pressure dips which appear ahead of oblique shocks in axisymmetric models of magnetized jets. The entropy 
variables remain unchanged, vML = vD , and we obtain

vML · (∇ · f ML) = ∇ · (uS) − 2β
[

(u · B) · (∇ · B) + B · (∇ψ) + ∇ · (ψB)
]

�= ∇ · (uS), (4.24)

which is not conformable with the continuous entropy inequality (4.2a,b) either.
We repeat the computation including the non-conservative terms we found and obtain

vML · (∇ · f ML + ϒ) = ∇ · (uS) − 2β
[

B · (∇ψ) + ∇ · (ψB)
]

�= ∇ · (uS), (4.25)

which is still not conformable with the continuous entropy conservation law as we cannot predict the sign of neither 
B · (∇ψ) nor ∇ · (ψB).

4.1.5. Continuous entropy analysis of Tricco and Price’s ansatz
Tricco and Price [27,39] presented a constrained formulation of Dedner et al.’s hyperbolic divergence cleaning for SPH. 

The constraint they impose is that magnetic energy modified due to the cleaning process must be balanced by a new kind 
of correction energy which is correlated to ψ . We repeat their derivations with our definition of (3.12) and verified the 
same behavior for our scheme. Their modified form of the ideal MHD equations for SPH reads (their eqs. (5) and (6) in [39])

∂

∂t
q + ∇ · f TP = ∂

∂t

⎡

⎢
⎢
⎢
⎣

̺
̺u
E

B

ψ

⎤

⎥
⎥
⎥
⎦

+ ∇ ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺u

̺(u ⊗ u) +
(

p + 1
2‖B‖2

)

I− B ⊗ B

u
( 1
2̺‖u‖2 + γ p

γ −1 + ‖B‖2
)

− B(u · B)

u ⊗ B − B ⊗ u + ψI

c2
h
B

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −ϒTP, (4.26)

with

ϒTP :=

⎡

⎢
⎢
⎢
⎢
⎣

0
0

0
u(∇ · B)

1
2ψ(∇ · u) + u · ∇ψ

⎤

⎥
⎥
⎥
⎥
⎦

, (4.27)
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and

p = (γ − 1)

(

E − 1

2
̺‖u‖2 − 1

2
‖B‖2 − 1

2

ψ2

c2
h

)

. (4.28)

The entropy variables for this system are

vTP = ∂ S

∂q
=
[

γ − s

γ − 1
− β‖u‖2, 2βu, 2βv, 2βw, −2β, 2βB1, 2βB2, 2βB3, 2βc

−2
h

ψ

]
⊺

. (4.29)

We find

vTP ·
(

∇ · f TP + ϒTP
)

= ∇ · (uS) + β

c2
h

∇ · (ψ2u) �= ∇ · (uS), (4.30)

which is inconsistent with the entropy conservation law such that – although the modified ideal MHD system of Tricco 
and Price are valid in the framework of SPH – it can neither be used to construct an entropy conserving nor an entropy 
stable scheme for a FV scheme as we can not predict the sign of the term ∇ · (ψ2u). Repeating the computation including 
the non-conservative terms we found earlier also in the momentum and total energy equations does not change the result 
(4.30) as the two additional terms cancel in entropy space.

To summarize, we demonstrated that it is important to account for energy transfers between the magnetic field and a 
correcting field used to control numerical errors in the divergence-free constraint. This lead to a modification of the total 
energy equation (as well as the induction equations) that ensures the model remains in agreement with the second law 
of thermodynamics. Additionally, we showed that the entropy analysis of other proposed GLM-type hyperbolic divergence 
methods from the literature are incompatible to build numerical approximations that discretely satisfy entropy conservation.

For implementing our new mathematical model as an algorithm usable for computer simulations, it has to be discretized. 
We will see that although the divergence diminishing property of the ideal GLM-MHD system rather trivially extends from 
continuous into discrete space, we have to pay special attention to the transfer of the entropy consistency property into a 
discrete numerical algorithm.

4.2. Derivation of an entropy conserving numerical scheme

In this section we describe the derivation of an entropy conserving approximation for the ideal GLM-MHD equations 
(3.16). We drop the superscripts (·)x for convenience as the following derivation is concerned with the derivation of the 
numerical scheme in x-direction only. Note that we do this without loss of generality. As shown in [2, Sec. 3.1] and [3, 
Appendix A], the flux derivations easily extend to higher spatial dimensions. The derivations shown herein are closely 
related to the derivations done by Winters and Gassner [3] and Chandrashekar and Klingenberg [40] for entropy stable 
fluxes.

4.2.1. Discrete entropy conservation
When we contract the ideal GLM-MHD equations with the entropy variables, we obtain the entropy conservation law 

with additional terms proportional to the magnetic field divergence,

∂

∂t
S + ∇ · F + 2β(u · B)(∇ · B) = 0. (4.31)

Hence, to ease the following derivations, we assume that we can rewrite the non-conservative terms using a homoge-
neous function of degree one, with respect to the entropy variables, in the form [12,40]

φ(v) := v · ∂φ

∂v
= 2β(u · B). (4.32)

A suitable candidate function is

φ(v) = v2v6 + v3v7 + v4v8

v5
, (4.33)

where differentiating with respect to the entropy variables,

∂φ

∂v
=
[

0 B u · B u 0
]
⊺ =: � (4.34)

reveals the vector components of the non-conservative term (3.21), which is now connected through

ϒ = (∇ · B)� = (∇ · B)
∂φ

∂v
. (4.35)

Hence, in the following, we consider the one dimensional PDE system in the form
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∂

∂t
q + ∂

∂x
f + �(v)(∇ · B) = 0, (4.36)

that is identical to (3.19) but contains the order one homogeneity condition (4.32).
We assume left and right cell-averages, denoted by L and R, with cell sizes �xL and �xR separated by a common 

interface. We discretize the one-dimensional ideal GLM-MHD equations (3.19) semi-discretely and derive an approximation 
for the fluxes at the interface in between the two adjacent cells (the i + 1/2 interface):

�xL
∂

∂t
qL = f L − f ∗ − �xL

2

❏B1❑
�xL

�L, and �xR
∂

∂t
qR = f ∗ − f R − �xR

2

❏B1❑
�xR

�R, (4.37)

where the adjacent states L and R are separated by a numerical interface flux f ∗ . We define the jump in a quantity as 
❏·❑ := (·)R − (·)L . Note that both cells are also affected by the physical fluxes f L,R .

Next, we convert (4.37) from physical to entropy space to get the semi-discrete entropy update in each cell

�xL
∂

∂t
SL = vL ·

(

f L − f ∗ − ❏B1❑
2

�L

)

(a) and �xR
∂

∂t
SR = vR ·

(

f ∗ − f R − ❏B1❑
2

�R

)

, (b) (4.38)

where we again use that St = v · qt .
By combining (4.38a,b), setting �xL = �xR =: �x and using the homogeneity condition v · � = φ (see (4.32)), we obtain 

the total entropy update

�x
∂

∂t

(

SL + SR) = ❏v❑ · f ∗ − ❏v · f ❑ − {{φ}} ❏B1❑ , (4.39)

where the average of a state is defined as {{·}} := ((·)L + (·)R)/2. When applied to vectors, the average and jump operators 
are evaluated separately for each vector component.

To have the finite volume update satisfy the discrete entropy conservation law, the entropy flux due to the finite volume 
flux must coincide with the discrete entropy flux uS from (4.2a). We define the entropy flux potential as [40]

� = v · f − uS + φB1 = ̺u + βu‖B2‖ + 2βchB1ψ (4.40)

and rewrite (4.39) using the linearity of the jump operator to obtain

❏v❑ · f ∗ = ❏�❑ − {{B1}} ❏φ❑ = ❏̺u❑ +
�

βu‖B2‖
③

+ 2ch ❏βψB1❑ − 2 {{B1}} ❏β(u · B)❑ , (4.41)

where we used that

{{φ}} ❏B1❑ = ❏φB1❑ − {{B1}} ❏φ❑ . (4.42)

We denote (4.41) as the discrete entropy conservation condition for the ideal GLM-MHD equations. Since this is a scalar 
equation, there are several possible solutions for the numerical flux vector f ∗ . However, there is the additional requirement 
that the numerical flux must be consistent, i.e. f ∗(q, q) = f severely limiting the number of possible solutions.

With all necessary components collected, we solve (4.41) to obtain the new entropy conserving numerical flux. The full 
derivation is shown in Appendix A. The numerical flux function reads

f KEPEC,GLM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺ln {{u}}
̺ln {{u}}2 + ptot − {{B1}}2

̺ln {{u}} {{v}} − {{B1}} {{B2}}
̺ln {{u}} {{w}} − {{B1}} {{B3}}

f ∗
5

ch {{ψ}}
{{u}} {{B2}} − {{v}} {{B1}}
{{u}} {{B3}} − {{w}} {{B1}}

ch {{B1}}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.43)

with

ptot = p̃ + 1

2

({{

B2
1

}}

+
{{

B2
2

}}

+
{{

B2
3

}})

, and (4.44)

f ∗
5 = f ∗

1

[
1

2(γ − 1)β ln
− 1

2

({{

u2
}}

+
{{

v2
}}

+
{{

w2
}})
]

+ f ∗
2 {{u}} + f ∗

3 {{v}} + f ∗
4 {{w}}+
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+ f ∗
6 {{B1}} + f ∗

7 {{B2}} + f ∗
8 {{B3}} + f ∗

9 {{ψ}} − 1

2

({{

uB2
1

}}

+
{{

uB2
2

}}

+
{{

uB2
3

}})

+

+ {{B1}}
(

{{uB1}} + {{vB2}} + {{wB3}}
)

− ch {{B1ψ}} , (4.45)

the logarithmic mean (·)ln = ❏·❑
❏ln(·)❑

, and the specifically averaged pressure, p̃ =
{{

̺
}}

2{{β}} . A numerically stable procedure to 
compute the logarithmic mean is described by Ismail and Roe [41, App. B].

We compute the magnetic field divergence in the discretized non-conservative term using central differencing:

ϒ
x,magnetic
i

:=
(

(B1)i+1 − (B1)i−1

2�x

)

︸ ︷︷ ︸

central derivative

⎡

⎢
⎢
⎢
⎣

0
B i

(u · B)i
ui

0

⎤

⎥
⎥
⎥
⎦

= 1

2�x

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

⎛

⎜
⎜
⎜
⎝

❏B1❑

⎡

⎢
⎢
⎢
⎣

0
BL

(u · B)L
uL

0

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

i−1/2

+

⎛

⎜
⎜
⎜
⎝

❏B1❑

⎡

⎢
⎢
⎢
⎣

0
BR

(u · B)R
uR

0

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

i+1/2

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

(4.46)

Similarly, we also find the ψ correlated non-conservative term

ϒ
x,ψ

i
:=
(

(ψ)i+1 − (ψ)i−1

2�x

)

⎡

⎢
⎢
⎢
⎣

0
0

(uψ)i
0

ui

⎤

⎥
⎥
⎥
⎦

= 1

2�x

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

⎛

⎜
⎜
⎜
⎝

❏ψ ❑

⎡

⎢
⎢
⎢
⎣

0
0

(uψ)L
0
uL

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

i−1/2

+

⎛

⎜
⎜
⎜
⎝

❏ψ ❑

⎡

⎢
⎢
⎢
⎣

0
0

(uψ)R
0
uR

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

i+1/2

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

(4.47)

The full discrete non-conservative term is simply given by the sum of the two terms presented above:

ϒ
x
i = ϒ

x,magnetic
i

+ ϒ
x,ψ

i
(4.48)

We highlight that the newly derived numerical flux function (4.43) conserves the discrete entropy by construction. 
Furthermore, in the case of vanishing magnetic fields, the scheme is not only entropy conserving (EC), but also kinetic energy 
preserving (KEP) [42]. As has been shown by the authors, the kinetic energy preserving property is favorable in terms of 
robustness of the scheme particularly at high Mach numbers [43].

When investigating the consistency of the obtained numerical flux function (4.43) we assume that the left/right states 
are identical and find

f KEPEC,GLM =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺u

̺u2 + p + 1
2‖B‖2 − B2

1

̺uv − B1B2

̺uw − B1B3

u
( 1
2̺‖u‖2 + γ p

γ −1 + ‖B‖2
)

− B1
(

u · B
)

+ chψB1

chψ

uB2 − vB1

uB3 − wB1

chB1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= f x, (4.49)

where we used that

u(B2
2 + B2

3) − B1(vB2 + wB3) = u‖B2‖ − B1(u · B). (4.50)

Thus, we have shown that the newly derived entropy conservative numerical flux for the ideal GLM-MHD equations given 
by (4.43) is consistent with the physical flux, and, together with the discretization of the non-conservative terms (4.48), 
conserves the discrete entropy by construction. We note that the non-conservative terms (4.48) vanish when the left/right 
states are identical, reflecting convergence to the continuous case where the divergence of the magnetic field should vanish.

We stress that the presented way of deriving the entropy conservative scheme is not unique. We prefer the numerical 
flux presented herein as it avoids problematic non-conservative term discretizations which is what we found in previous 
works [44].
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4.3. Derivation of an entropy stable numerical scheme

The entropy of a closed system is only conserved if the solution remains smooth. If additional dissipation is not included 
in an entropy conservative method, spurious oscillations will develop near discontinuities as energy is re-distributed at the 
smallest resolvable scale [45]. Hence, entropy conserving schemes may suffer breakdown in the presence of discontinuities. 
From the second law of thermodynamics we know that kinetic and/or magnetic energy can be transformed irreversibly into 
heat, which we denote as dissipation (also known as “thermalization”). Accordingly, we require dissipation is added to the 
approximation such that discrete satisfaction of the entropy inequality (4.2b) is guaranteed. A numerical scheme requires a 
diffusion operator to match such a physical process.

In order to create an entropy stable numerical flux function, we use the KEPEC flux (4.43) as a baseline flux and add a 
general form of numerical dissipation to compute a kinetic energy preserving and entropy stable (KEPES) numerical flux that 
is applicable to arbitrary flows

f KEPES = f KEPEC − 1

2
D ❏q❑ , (4.51)

where D is a suitable dissipation matrix that is guaranteed to cause a negative contribution in (4.2b).

4.3.1. Scalar dissipation term (Lax–Friedrichs and Rusanov schemes)

If we make the simple choice of D to be

DLF = |λglobal
max |I, (4.52)

where λ
global
max = max(λmax,i=1,...,N) is the largest eigenvalue of the ideal GLM-MHD system in the whole computational 

domain, we can rewrite the dissipation term

1

2
DLF ❏q❑ = 1

2
|λglobal

max |I ❏q❑ = 1

2
|λglobal

max |Ĥ ❏v❑ ≃ 1

2
|λglobal

max |H ❏v❑ , (4.53)

where Ĥ = ∂q
∂v

is a matrix that relates the variables in conserved and entropy space. This choice for the dissipation term 

leads to a scalar dissipation term, also called Lax–Friedrichs (LF) type dissipation. While the entropy Jacobian, Ĥ, is easily 
found in continuous space, it was shown in [43] that it is highly non-trivial to discretize this matrix for use in a numerical 
scheme. The requirement is to average the quantities in such a way that the relation ❏q❑ = H ❏v❑ holds whenever possible. 
The reformulation of the dissipation term to incorporate the jump in entropy variables (rather than the jump in conservative 
variables) is done to ensure entropy stability by guaranteeing a negative contribution in the entropy inequality [3].

The entries of the matrix H are derived step-by-step through the solution of 81 equations similar to what was done in 
[43, Section 4] for the unmodified ideal MHD equations. Details are given in Appendix B. We summarize the symmetric H
matrix:

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺ln ̺ln {{u}} ̺ln {{v}} ̺ln {{w}} E 0 0 0 0

̺ln {{u}} ̺ln {{u}}2 + p̃ ̺ln {{u}} {{v}} ̺ln {{u}} {{w}}
(

E + p̃
)

{{u}} 0 0 0 0

̺ln {{v}} ̺ln {{v}} {{u}} ̺ln {{v}}2 + p̃ ̺ln {{v}} {{w}}
(

E + p̃
)

{{v}} 0 0 0 0

̺ln {{w}} ̺ln {{w}} {{u}} ̺ln {{w}} {{v}} ̺ln {{w}}2 + p̃
(

E + p̃
)

{{w}} 0 0 0 0

E
(

E + p̃
)

{{u}}
(

E + p̃
)

{{v}}
(

E + p̃
)

{{w}} H5,5 τ {{B1}} τ {{B2}} τ {{B3}} τ {{ψ}}
0 0 0 0 τ {{B1}} τ 0 0 0

0 0 0 0 τ {{B2}} 0 τ 0 0

0 0 0 0 τ {{B3}} 0 0 τ 0

0 0 0 0 τ {{ψ}} 0 0 0 τ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(4.54)

E = 1

2
̺ln‖u‖2 + pln

γ − 1
, τ = {{p}}

{{

̺
}} = 1

2 {{β}} , and (4.55)

H5,5 = 1

̺ln

(
(pln)2

γ − 1
+ E

2
)

+ p̃
(

{{u}}2 + {{v}}2 + {{w}}2
)

+ τ

3
∑

i=1

{{B i}}2 + τ {{ψ}}2 . (4.56)

With the particular averaging of the matrix H it can be shown that

(❏q❑)i = (H ❏v❑)i, i = 1,2,3,4,6,7,8,9 and (❏q❑)5 ≃ (H ❏v❑)5. (4.57)
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So, the equality holds for each term except for the jump in total energy. The relation that the jump in total energy only holds 
asymptotically was necessary to create a discrete dissipation operator that is still symmetric [43, Sec. 4]. It is straightforward, 
using Sylvester’s criterion, to verify that the discrete matrix (4.54) is symmetric positive definite (SPD) [43, Appendix A].

Due to the structure of the dissipation term (4.53), the SPD property of the discrete matrix guarantees that the numerical 
flux

f KEPES,LF = f KEPEC − 1

2
|λglobal

max |H ❏v❑ , (4.58)

complies with the entropy inequality (4.2b) on the discrete level. Although the LF flux is quite dissipative (especially for 
slow waves), it has the advantage that it very numerically stable, non-oscillatory [3], and easy to implement.

A natural reason for the diffusivity of LF lies in its global nature. The wave speeds involved are the maximum allowed 
speeds in the computational domain and do not take into account the local wave speeds of the solution. Indeed, Rusanov 
[46] showed that a less diffusive, yet stable scheme can be built using a local, instead of a global, wave speed measure. The 
resulting dissipation term is the Rusanov or local Lax–Friedrichs (LLF) stabilization term:

f KEPES,LLF = f KEPEC − 1

2
|λlocal

max |H ❏v❑ with λlocal
max = max(λmax,R, λmax,L). (4.59)

4.3.2. Matrix dissipation term
We create a less diffusive operator than LF or LLF if we select the dissipation matrix in (4.51) to be

DMD = R|�|R−1, (4.60)

where R is the matrix of right eigenvectors and � is the diagonal matrix of the eigenvalues of the flux Jacobian for the 
ideal MHD system. Here we focus on the particular mean states at which the matrix R is evaluated. For entropy stable 
schemes there exists a particular scaling of the eigenvectors that relates the matrix R to the entropy Jacobian H [12] such 
that

H = RZR
⊺. (4.61)

The derivation and entropy scaling of the eigenvectors is provided in Appendix D. From this scaling we rewrite the dissipa-
tion term

1

2
DMD ❏q❑ = 1

2
R|�|R−1 ❏q❑ ≃ 1

2
R|�|R−1

H ❏v❑ (in the sense of (4.57))

= 1

2
R|�|R−1

RZR
⊺ ❏v❑ = 1

2
R|�|ZR

⊺ ❏v❑ .

(4.62)

We already know the particular averaging needed for the matrix H from (4.54). Next, we use these known averages and 
the condition (4.61) to determine the mean state evaluations for R and Z . This creates a unique averaging procedure for 
the matrix dissipation term (4.62) while retaining the almost equal property (4.57).

It is straightforward, albeit laborious, to relate the entries of the matrix H and determine the 81 individual components 
of the matrices R and Z . An outline of the general technique and justification of the somewhat unconventional averaging 
strategies that result in the final form is provided in [44]. We forgo the algebraic details and after many manipulations, 
present the unique averaging procedure for the discrete eigenvector and scaling matrices.

Due to the complicated structure of the eigenvectors the presentation of the final form is divided into three parts. First, 
we give the specific averages for several convenience variables

�̂±s = α̂s̺
ln‖u‖2
2

− aβ α̂f̺
lnb̄⊥ + α̂s̺

ln(aln)2

γ − 1
± α̂sĉs̺

ln {{u}} ± α̂fĉf̺
lnσ (b̄1)({{v}} χ̄2 + {{w}} χ̄3),

�̂±f =
α̂f̺

ln‖u‖2
2

+ aβ α̂s̺
lnb̄⊥ + α̂f̺

ln(aln)2

γ − 1
± α̂fĉf̺

ln {{u}} ∓ α̂sĉs̺
lnσ (b̄1)({{v}} χ̄2 + {{w}} χ̄3),

ĉ2a = b̄21, ĉ2f,s = 1

2

(

(ā2 + b̄2) ±
√

(ā2 + b̄2)2 − 4ā2b̄21

)

, p̃ =
{{

̺
}}

2 {{β}} , ā2 = γ
p̃

̺ln
,

(aln)2 = γ
pln

̺ln
, (aβ)2 = γ

1

2 {{β}} , b̄2 = b̄21 + b̄22 + b̄23, b̄2⊥ = b̄22 + b̄23, χ̄2,3 = b̄2,3

b̄⊥
,

b̄21,2,3 =
{{

B1,2,3
}}2

̺ln
, α̂2

f = ā2 − ĉ2s

ĉ2f − ĉ2s
, α̂2

s =
ĉ2f − ā2

ĉ2f − ĉ2s
, σ (ω) =

{

+1 if ω ≥ 0,

−1 otherwise
.

(4.63)
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Next, we give the average of the right eigenvector matrix

R =
[

r+f | r+a | r+s | r+ψ | rE | r−ψ | r−s | r−a | r−f
]

. (4.64)

Here each of the discrete eigenvectors are

GLM Waves: λ±ψ Entropy Wave : λE Alfvén Waves: λ±a

r±ψ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0

{{B1}} ± {{ψ}}
1
0
0

±1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.65) rE =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
{{u}}
{{v}}
{{w}}
1
2‖u‖2

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.66) r±a =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0

±̺ln
√
{{

̺
}}

χ̄3

∓̺ln
√
{{

̺
}}

χ̄2

∓̺ln
√
{{

̺
}}

(χ̄2 {{w}} − χ̄3 {{v}})
0

−̺lnχ̄3

̺lnχ̄2

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.67)

Fast and Slow Magnetoacoustic Waves: λ±f,±s

r±f =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α̂f̺
ln

α̂f̺
ln({{u}} ± ĉ f )

̺ln
(

α̂f {{v}} ∓ α̂sĉsχ̄2σ (b̄1)
)

̺ln
(

α̂f {{w}} ∓ α̂sĉsχ̄3σ (b̄1)
)

�̂±f

0

α̂sa
β χ̄2

√

̺ln

α̂sa
β χ̄3

√

̺ln

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.68) r±s =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α̂s̺
ln

α̂s̺
ln
(

{{u}} ± ĉs
)

̺ln
(

α̂s {{v}} ± α̂fĉfχ̄2σ (b̄1)
)

̺ln
(

α̂s {{w}} ± α̂fĉfχ̄3σ (b̄1)
)

�̂±s

0

−α̂fa
β χ̄2

√

̺ln

−α̂fa
β χ̄3

√

̺ln

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.69)

The mean state for the diagonal scaling matrix is

Z = diag

(

1

2γ ̺ln
,

1

4 {{β}} (̺ln)2
,

1

2γ ̺ln
,

1

4 {{β}} ,
̺ln(γ − 1)

γ
,

1

4 {{β}} ,
1

2γ ̺ln
,

1

4 {{β}} (̺ln)2
,

1

2γ ̺ln

)

, (4.70)

and the diagonal matrix of eigenvalues for the ideal GLM-MHD system is

� = diag
(

λ̂+f | λ̂+a | λ̂+s | λ̂+ψ | λ̂E | λ̂−ψ | λ̂−s | λ̂−a | λ̂−f

)

, (4.71)

where we describe the discrete evaluation of the wave speeds in the following subsection.
The final form of the entropy stable numerical flux with the matrix dissipation term takes the form [3,12]

f ∗,KEPES,MD = f ∗,KEPEC − 1
2R|�|ZR

⊺ ❏v❑ . (4.72)

4.4. Discrete eigenvalues of the ideal GLM-MHD system

An important aspect of utmost concern for robustness and stability of the numerical scheme we construct is how to 
define the discrete wave speeds, λ, at the interfaces. From (3.28) we know that the wave speeds in continuous space are 
given by

λ±f = u ± cf, λ±s = u ± cs, λ±a = u ± ca, λE = u, and λ±ψ = u ± ch. (4.73)

However, in discretized space, we have to compute the eigenvalues at each interface from the discrete left and right 
states, qL,R . First, we compute a discrete flux Jacobian as was described, in a different context, in [43]. From this matrix we 
compute the eigenvalues of the discrete ideal GLM-MHD system at the interface between the left and right cells and obtain:
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λ̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ̂+f

λ̂+a

λ̂+s

λ̂+ψ

λ̂E

λ̂−ψ

λ̂−s

λ̂−a

λ̂−f

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{{u}} + ĉf
{{u}} + ĉa

{{u}} + ĉs
{{u}} + {{ch}}

{{u}}
{{u}} − {{ch}}
{{u}} − ĉs

{{u}} − ĉa

{{u}} − ĉf

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

right going fast magnetoacoustic wave
right going Alfvén wave
right going slow magnetoacoustic wave

right going GLM wave
entropy wave

left going GLM wave
left going slow magnetoacoustic wave
left going Alfvén wave
left going fast magnetoacoustic wave

(4.74)

The precise form of the discrete speeds (ĉf,s,a) as well as technical details are summarized in Appendix C.

4.5. Mixed hyperbolic/parabolic GLM ansatz

Dedner et al. [26], Wesenberg [47] and Tricco and Price [39] found that the best approximation of ψ may be obtained 
by a mixed hyperbolic/parabolic ansatz. Hence, we supplement (3.16e) with an additional source term

ϒ
α =

[

0 0 0 0 αψ
]
⊺

, (4.75)

with the parabolic diffusion rate α ∈ [0, ∞) that controls the damping of the ψ field. Through the addition of this source 
term, the ψ field is no longer a conserved quantity, but is actively dissipated. Clearly, including such a dissipative term 
makes the derivation of an entropy conserving scheme impossible. However, if we carefully compute the entropy budget of 
the source term (4.75), we find that the contribution to the entropy is guaranteed to have the correct sign, i.e. it fulfills the 
entropy inequality and is still suitable for creating an entropy stable scheme,

v · (qt + ∂

∂x
f x + ϒ

x + ϒ
α) ⇒ ∂

∂t
S + ∇ · (uS) = −2βαψ2 ≤ 0 with α, β ≥ 0. (4.76)

The effect of this additional source term on the evolution of the total energy is found by looking at the temporal 
evolution of the ψ field,

∂

∂t

(
1

2
ψ2
)

= ψ · ∂ψ

∂t
= −chψ(∇ · B) + uψ(∇ψ) + αψ2. (4.77)

The resulting system is given by (3.16) with an additional source term αψ2 on the right hand side of the total energy. 
We chose to ignore this additional source term on the total energy equation, thus any energy dissipated from the ψ field 
directly enters the thermal pressure.

The source term (4.75) introduces a new free parameter α which requires further analysis. We see that for the purely 
hyperbolic case, i.e. α = 0, we can derive an entropy conserving scheme. Furthermore, for any α > 0, entropy is guaranteed 
to be dissipated but never destroyed. There are several choices one can make in selecting the damping parameter α. As 
discussed by Dedner et al. [26, Section 4], a favorable choice for the damping parameter is a fixed proportion of decay 
(parabolic) to transport (hyperbolic) with a ratio cr := c2p/ch at all times. In their observation this choice of α resulted in 
satisfactory numerical results that are independent of the grid resolution or the scheme used. Dedner et al. [26, p. 661]
define the optimal ratio as cr = 0.18,

α =
c2
h

c2p
= ch

cr
= ch

0.18
. (4.78)

As we show in the numerical results section, the mixed GLM ansatz gives very good results and is in fact even necessary 
for periodic boundary conditions.

4.6. High-order accurate entropy stable scheme

The scheme we discussed so far is first order in space and still continuous in time. In the following subsections, we 
discuss its extension to the fully discrete case with high-order accuracy.

4.6.1. Temporal accuracy
A very simple time integrator is the Euler scheme, where the solution is advanced in small time steps in which the flux 

is assumed to be constant. The Euler scheme is only first-order accurate in time, i.e. the solution is accurate to O(�t). For-
tunately, the temporal order can be increased by replacing the time integrator by a suitable higher-order scheme, e.g. strong 
stability preserving (SSP) Runge–Kutta (RK) schemes [48]. However, high-order accurate time integrators come at significant 
additional computational costs so one has to always find a compromise between (temporal) accuracy and computational 
resources. For the numerical tests we present in this work, we use a third order SSPRK time integrator.
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Table 1

High-order coefficients {ξp,r}pr=1 for up to 16th order accuracy. Coefficients for even higher order can be computed from (4.81).
Accuracy 2p ξp,1 ξp,2 ξp,3 ξp,4 ξp,5 ξp,6 ξp,7 ξp,8

2 1
4 4

3 − 1
6

6 3
2 − 3

10
1
30

8 8
5 − 2

5
8

105 − 1
140

10 5
3 − 10

21
5
42 − 5

252
1

630

12 12
7 − 15

28
10
63 − 1

28
2

385 − 1
2772

14 7
4 − 7

12
7
36 − 7

132
7

660 − 7
5148

1
12012

16 16
9 − 28

45
112
495 − 7

99
112
6435 − 4

1287
16

45045 − 1
51480

4.6.2. Spatial accuracy
Unfortunately, higher spatial accuracy is harder to obtain for finite volume schemes because we only have cell-averaged 

quantities available, although we need interface values for computing the numerical fluxes. There are, essentially, two ways 
to achieve high-order accuracy in space: The first, and most often used one, is the technique of “spatial reconstruction” 
where an algorithm is used to deduce an interface value based on a certain stencil on the cell-averaged quantities. The 
simplest approximation is to assume that the values at the interfaces are identical to the cell-averages. Unsurprisingly, the 
solution obtained using such an approximation is only first-order accurate in space, i.e. the solution is accurate to O(�x). 
There exists a vast amount of literature on the technique of spatial reconstruction. The authors give an extensive introduction 
in [49, Section 4.1].

The second approach, uses the fact that the entropy conserving flux describes the rate of change for the quantities over 
an interface and, as such, is a first order derivative with respect to time over a fixed volume. Using a suitable extrapolation, 
we can construct arbitrarily accurate entropy conservative interface fluxes through linear combinations of our computation-
ally inexpensive entropy conservative flux derived in Section 4.2 as shown below.

Given suitable coefficients {ξp,r}pr=1 (see Table 1), the entropy conserving flux

2p f ECi−1/2 :=
p
∑

r=1

ξp,r

r
∑

s=1

f EC(ui−s,ui−s+r) (4.79)

is 2pth-order accurate in space, i.e.

1

�x

(
2p f ECi+1/2 − 2p f ECi−1/2

)

= ∂

∂x
f (u)

∣
∣
∣
x=xi

+O(�x2p) (4.80)

[50, Theorem 4.4]. The coefficients {ξp,r}pr=1 are obtained by solving the p linear equations given by

p
∑

r=1

iξp,r = 1,
p
∑

r=1

r2s−1ξp,r = 0 (s = 2, . . . , p). (4.81)

As an example, we summarize the second- to sixth-order accurate entropy conserving fluxes below:

• Second-order accurate EC interface flux (p = 1)

(4.82)

• Fourth-order accurate EC interface flux (p = 2)

(4.83)

• Sixth-order accurate EC interface flux (p = 3)

6 f ECi−1/2 =3

2
f (ui−1,ui) − 3

10

(

f (ui−2,ui) + f (ui−1,ui+1)
)

+ 1

30

(

f (ui−3,ui) + f (ui−2,ui+1) + f (ui−1,ui+2)
)

(4.84)
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Up to now it is unknown how to discretize the non-conservative terms to obtain a high-order accurate approximation. The 
source term added to the numerical fluxes is given by

ϒ
x = (∇ · B)x

[

0 B u · B u 0
]⊺ + (u · (∇ψ))x

[

0 0 ψ 0 1
]⊺

, (4.85)

where, in its discretized version, it is a high-order representation of the divergence and gradient operators in combination 
with the cell-centered quantities in cell i,

2p
ϒ

x
i = 2p(∇ · B)xi

[

0 B u · B u 0
]⊺

i
+ 2p(u · (∇ψ))xi

[

0 0 ψ 0 1
]⊺

i
(4.86)

with

2p(∇ · B)xi := 1

2�x

p
∑

r=1

ξp,r(B1,i+r − B1,i−r) and 2p(u · (∇ψ))xi := ui

2�x

p
∑

r=1

ξp,r(ψi+r − ψi−r) (4.87)

Again, we summarize the resulting non-conservative terms for second- to sixth-order accuracy below:

• Second-order accurate magnetic field divergence (p = 1)

2(∇ · B)xi = B1,i+1 − B1,i−1

2�x
(4.88)

2(u · ∇ψ)i = ui

ψi+1 − ψi−1

2�x
(4.89)

2
ϒi = 2(∇ · B)xi

[

0 B u · B u 0
]⊺

i
+ 2(u · (∇ψ))xi

[

0 0 ψ 0 1
]⊺

i
(4.90)

• Fourth-order accurate magnetic field divergence (p = 2)

4(∇ · B)xi =
4
3 (B1,i+1 − B1,i−1) − 1

6 (B i,i+2 − B i,i−2)

2�x
(4.91)

4(u · ∇ψ)i = ui

4
3 (ψi+1 − ψi−1) − 1

6 (ψi+2 − ψi−2)

2�x
(4.92)

4
ϒi = 4(∇ · B)xi

[

0 B u · B u 0
]⊺

i
+ 4(u · (∇ψ))xi

[

0 0 ψ 0 1
]⊺

i
(4.93)

• Sixth-order accurate magnetic field divergence (p = 3)

6(∇ · B)xi =
3
2 (B1,i+1 − B1,i−1) − 3

10 (B1,i+2 − B1,i−2) + 1
60 (B1,i+3 − B1,i−3)

2�x
(4.94)

6(u · ∇ψ)xi = ui

3
2 (ψi+1 − ψi−1) − 3

10 (ψi+2 − ψi−2) + 1
60 (ψi+3 − ψi−3)

2�x
(4.95)

6
ϒi = 6(∇ · B)xi

[

0 B u · B u 0
]⊺

i
+ 6(u · (∇ψ))xi

[

0 0 ψ 0 1
]⊺

i
(4.96)

Unfortunately, one cannot apply the same technique for the entropy stable part of the numerical fluxes. As detailed 
by Fjordholm [51, Sec. 3.2], a specific reconstruction procedure (preferably done in entropy rather than in conservative 
variables) can be used to ensure high-order entropy stability. To do so, we ensure that the sign of the reconstructed jump, 
k❏v❑i−1/2 , is the same sign as the naive jump, ❏v❑i−1/2 .

5. Numerical tests

We demonstrate the numerical magnetic divergence evolution of the new entropy stable numerical scheme for ideal 
GLM-MHD derived in this work by computing several ideal MHD test problems. We use the finite volume code FLASH

in version 4.5. The technical aspects of our testbed are described in great detail in [2]. We use fourth-order accurate 
entropy-conservative as well as third-order accurate entropy-stable fluxes (limited reconstruction [52]) in space as well 
as a third-order accurate SSP RK time integration scheme [48] and a CFL coefficient of 0.8 for all tests. With our numerical 
tests we focus on the magnetic field divergence cleaning effectiveness of the new entropy stable ideal GLM-MHD system. 
A numerical validation of the entropy conservation properties of the new numerical flux is given as a supplementary test 
case.

Note that, given its nature, a suitable choice for the initial value for ψ is ψ0 = ψ(t = 0) = 0. This has two reasons:

1. Only gradients of ψ appear in the numerical fluxes. Hence, given divergence-free initial conditions, we should initialize 
the ψ field with a constant value everywhere such that ∇ψ0 = 0, initially.

2. We define the energy in the ψ field as Eψ = 1
2ψ2 . In a divergence-free state, it makes sense to have this “correction 

field energy” equal to zero, suggesting ψ0 = 0 everywhere.
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Table 2

Initial conditions and runtime parameters: artificial non-zero magnetic field divergence test (1D).

Density ̺ 1.0
Pressure p 1.0
Velocity u 0

Mag. field B [B1(x) 0 0]⊺

Domain size {xmin, xmax} = {−1,1}
Boundary conditions outflow or periodic
Simulation end time tmax = 5.0
Adiabatic index γ = 1.4

B1(x) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

0.0 x ≤ −0.8

−2(x+ 0.8) −0.8 < x ≤ −0.6

exp
(

− (x/0.11)2

2

)

−0.6 < x ≤ 0.6

0.5 x > 0.6

(5.1)

Fig. 2. Initial x component of the magnetic field of the artificial non-zero magnetic field divergence test (1D).

Fig. 3. Magnetic field B1 of the artificial non-zero magnetic field divergence test at four different times. We show the magnetic field evolution computed 
using the new GLM-KEPES flux (blue lines), together with the solution obtained using the KEPES flux that is not using the GLM technique for divergence 
cleaning (dashed, gray lines). Note that t = 1,2,3 corresponds to one, two, and three Alfvén crossing times. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

5.1. Artificial non-zero magnetic field divergence test (1D)

The behavior of any numerical scheme, given non-zero initial divergence is of high interest as non-zero divergence may 
also be caused by poorly chosen initial conditions. The scheme must deal with the divergence errors properly in order to 
produce a credible solution. This artificial numerical test starts from a magnetic field with non-zero divergence involving not 
only smooth gradients but also steps making it a more challenging test for the divergence cleaning method. The remaining 
quantities are flat. We select a fixed resolution of 256 uniformly distributed cells. We present the initial conditions for this 
test in Table 2. The magnetic field in the x-direction is given by (5.1) in Fig. 2. Note that these initial conditions intentionally 
violate the constraint ∇ · B = 0 by a significant amount.

In Fig. 3, we compare the result of this test against the one obtained using the kinetic energy preserving entropy stable 
(KEPES) solver for ideal MHD [43] at different times. The new GLM-KEPES solver treats the substantial initial divergence 
error correctly and removes any divergence in the magnetic field quickly. The KEPES solver is, however, only capable of 
dissipating the magnetic field slightly due to numerical dissipation caused by the spatial and temporal discretizations. Note 
that we can obtain similar results with our scheme if we enforce ch = 0 throughout the simulation. It is obvious that a 
scheme that is not capable of removing significant divergence errors in the solution generates unsatisfactory numerical 
results. We set α = 0 in this test case (hyperbolic cleaning only) and use outflow boundaries. In the following, we use 
periodic boundary conditions. Note that for outflow boundary conditions, the errors can quickly leave the computational 
domain. However, as can be seen in Fig. 4, a solely hyperbolic cleaning (α = 0) is not sufficient to reduce the divergence 
for periodic boundary conditions. This is easily understood as the divergence error cannot be advected “out” of the com-
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Fig. 4. Artificial non-zero magnetic field divergence test: Evolution of the integrated absolute magnetic field divergence in the artificial non-zero magnetic 
field divergence test in one dimension using periodic boundary conditions. It is clear the magnetic field divergence evolution with mixed cleaning is 
favorable.

Table 3

Initial conditions and runtime parameters: Divergence advection test (2D) [27].

̺ =
{

1.0 if x ≤ 0.5

2.0 else

B =
[

Bx 0 1√
4π

]
⊺

, u = 0, p = 6.0

Bx =

⎧

⎨

⎩

1√
4π

(
(

r
r0

)8
− 2

(
r
r0

)4
+ 1

)

if r ≤ r0,

0 else.

Domain size x, y ∈ [−0.5,1.5]
Radial extent r0 = 1/

√
8

Boundary conditions all: periodic
Simulation end time tmax = 1.0
Adiabatic index γ = 5/3

with r =
√

x2 + y2

Fig. 5. Divergence advection test: Evolution of the integrated absolute magnetic field divergence in the advection test in two dimensions. We test various 
choices of the damping parameter.

putational domain anymore. Hence, additional damping is essential in order to reduce the divergence error over time, as 
suggested by Dedner et al. [26, Section 4], denoted by “mixed (ch based)” in the figure.

5.2. Divergence advection test (2D)

Another simple test case for the cleaning efficiency is the two-dimensional divergence advection test presented by Tricco 
and Price [27, Sec. 5.2]. It consists of divergence in the magnetic field artificially induced in the initial conditions that is 
advected by a uniform flow and is a variant of the “peak in B1” test presented by Dedner et al. [26, Sec. 5]. This test includes 
a density step that is used to examine the reflection and refraction of the divergence waves as they transit between media 
of different densities. The initial conditions are listed in Table 3.
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Table 4

Initial conditions and runtime parameters: 2D MHD rotor test [2].
r ≤ r0 r ∈ (r0, r1) r ≥ r1

̺ 10.0 1.0+ 9.0 f (r) 1.0
p 1.0 1.0 1.0
B1 5/

√
4π 5/

√
4π 5/

√
4π

B2 0.0 0.0 0.0
B3 0.0 0.0 0.0
u −20.0�y −20.0 f (r)�y 0.0
v 20.0�x 20.0 f (r)�x 0.0
w 0.0 0.0 0.0

with f (r) = r1−r
r1−r0

,

r =
√

(x− xcenter)2 + (y − ycenter)2 ,
�x = (x− xcenter), �y = (y − ycenter)

Domain size x, y ∈ [0,1]
Inner radius r0 = 0.1
Outer radius r1 = 0.115
x-center xcenter = 0.5
y-center ycenter = 0.5
Boundary conditions all: outflow
Adaptive refinement on density, magnetic field
Simulation end time tmax = 0.15
Adiabatic index γ = 1.4

Fig. 6. MHD rotor test (t = 0.15): Adaptive grid resolution up to 512 × 512 (each shown rectangle encloses 8 × 8 cells). The marked area is shown in Fig. 7.

Our findings are plotted in Fig. 5. We find similar results compared to the one-dimensional test with periodic boundary 
conditions as the semi-adaptive choice suggested by Dedner et al. gives the best cleaning behavior.

5.3. MHD Rotor test

The MHD rotor problem [20] describes a rapidly spinning dense cylinder embedded in a magnetized, homogeneous 
medium at rest. Due to centrifugal forces, the dense cylinder is not in equilibrium. As the rotor spins with the given initial 
rotating velocity, the initially uniform magnetic field will wind up. The wrapping of the rotor by the magnetic field leads to 
strong toroidal Alfvén waves launched into the ambient fluid. The initial conditions are listed in Table 4.

The reference solution has been obtained using the unsplit staggered mesh (USM) solver implemented in FLASH [53]. 
The USM solver uses constrained transport to ensure the solenoidal constraint of the magnetic field on a staggered mesh 
geometry. An advantage of our numerical scheme, compared to the staggered mesh USM solver, is that it requires apprecia-
bly less memory (see e.g. [2, Sec. 4.5]). This makes our scheme computationally attractive on many modern supercomputing 
systems where simulations are commonly memory-limited, e.g. [31]. As can be seen in Figs. 6 and 7, the results obtained 
using the KEPES-GLM scheme show much smaller divergence artifacts and hence are much closer to the reference solution 
than the solution computed with the same numerical solver but without GLM correction (where we artificially set ch = 0).

In the zoom-in figure (Fig. 7) we see density (top row) and pressure (2nd row) minima visible in the GLM solution at 
(x, y) ≈ (0.4, 0.64) which are absent in the reference solution. To check for a possible wrong behavior of our scheme we 
re-ran the reference solution, obtained with the unsplit staggered mesh solver of FLASH, with an adaptive resolution of up 
to 2048 × 2048 (four-fold). With the higher resolution run we confirm the extrema seen with our scheme and conclude 
that, in this test case, our scheme is able to capture finer details than the reference simulation on the same resolution.

The USM solver uses a formulation that ensures that the numerical divergence is zero at the cell face-centered magnetic 
fields,

(∇ · B)facei, j = bx,i+1/2, j − bx,i−1/2, j

�x
+ by,i, j+1/2 − by,i, j−1/2

�y
, (5.2)

where bx,y,z describes the face-centered magnetic field components [53, eq. (20)]. Note that this way of computing the 
magnetic field divergence is different from our treatment of the magnetic fields at the cell-centers as defined in (4.48):
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Fig. 7. MHD rotor test: Zoom-in plot of Fig. 6. Left to right: Disabled GLM, enabled GLM, and two reference solution obtained using the unsplit staggered 
mesh solver implemented in FLASH. The left reference solution is obtained on a similar (adaptive) grid, while the right reference solution (labeled “HR”) 
is obtained on a grid that was 4× finer resolution in each spatial direction. Top to bottom: Gas density ̺, gas pressure p, magnetic pressure, 1

2 ‖B‖2 , and 
magnetic field divergence (two plots). The upper magnetic field divergence plot shows the magnetic field divergence computed using the method that is 
used in the corresponding numerical scheme. The lower plot shows the magnetic field divergence computes using central-differencing over the cell-center 
variables (5.3). We see that in this context our GLM scheme shows a comparable result to the constrained transport scheme.

(∇ · B)celli, j = Bx,i+1, j − Bx,i−1, j

2�x
+ B y,i, j+1 − B y,i, j−1

2�y
(5.3)

We see that for the USM solver, the face-centered magnetic field divergence (5.2) is indeed on the order of machine precision 
at any time. Hence, the USM solver itself solves the ideal MHD equations always in regions with vanishing magnetic field 
divergence. However, the cell-centered magnetic field divergence (5.3) is not guaranteed to vanish. While this is not an issue 
for the scheme itself, it may be relevant for schemes that use the cell-centered values for post-processing the numerical 
results. In fact, we find that the cell-centered magnetic field divergence is comparable between our scheme with GLM 
correction and the USM result which highlights the effectiveness of our scheme, cf. the bottom panels in Fig. 7.

5.4. Orszag–Tang MHD vortex

The Orszag–Tang vortex problem [2,54] is a two-dimensional, spatially periodic problem well suited for studies of MHD 
turbulence. Thus, it has become a classical test for numerical MHD schemes. It includes dissipation of kinetic and magnetic 
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Table 5

Initial conditions and runtime parameters: Orszag–Tang MHD vortex [2].

Density ̺ 1.0
Pressure p 1.0/γ
Velocity u

[

− sin(2π y) sin(2πx) 0
]⊺

Mag. field B γ −1
[

− sin(2π y) sin(4πx) 0
]⊺

Domain size x, y ∈ [0,1]
Boundary conditions all: periodic
Adaptive refinement on density, magnetic field
Simulation end time tmax = 0.5
Adiabatic index γ = 5/3

Fig. 8. Orszag–Tang MHD vortex: Adaptive grid resolution up to 256 × 256. The simulation domain is fully refined at the shown time, t = 0.5, for the given 
refinement criteria. The marked area is shown in Fig. 10.

Fig. 9. Orszag–Tang MHD vortex: Evolution of the integrated absolute magnetic field divergence. We test various choices of the damping parameter. The 
numerical results shown in this section use the ch based damping.

energy, magnetic reconnection, the formation of high-density jets, dynamic alignment and the emergence and manifesta-
tion of small-scale structures. The Orszag–Tang MHD vortex problem starts from non-random, smooth initial data. As the 
flow evolves it gradually becomes increasingly complex, forming intermediate shocks. Thus, this problem demonstrates the 
transition from initially smooth data to compressible, supersonic MHD turbulence.

Fig. 8 shows the density of the plasma at t = 0.5 given the initial conditions listed in Table 5. As the solution evolves 
in time, the initial vortex splits into two vortices. Sharp gradients accumulate and the vortex pattern becomes increasingly 
complex due to highly non-linear interactions between multiple intermediate shock waves traveling at different speeds. We 
compute the solution using a comparably low resolution of up to 256 × 256 in order to demonstrate that our numerical 
scheme is able to resolve sharp features on low to intermediate resolutions. The result compares very well with results 
given in the literature, e.g. [55–57].

In Fig. 9, we plot the temporal evolution of the integrated absolute magnetic field divergence in this test. In contrast to 
the first two test cases presented in this work, this test is different in that there is no initial magnetic field divergence but 
the magnetic field divergence is naturally generated by the numerical scheme as the simulation evolves. It is not surprising 
that the eight-wave (“no GLM”) solution shows the largest divergence error. Again, the ch based damping leads to an efficient 
divergence treatment.

As before, we see very good agreement between the GLM-KEPES and the USM reference solution (cf. Fig. 10). Again, the 
divergence errors contaminate the solution notably in the uncorrected case (“no GLM”), leading to unphysical oscillations in 
both, density and pressure.
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Fig. 10. Orszag–Tang MHD vortex: Zoom-in plot of Fig. 8. Left to right: Disabled GLM, enabled GLM, and two reference solutions obtained using the unsplit 
staggered mesh solver implemented in FLASH. The left reference solution is obtained on a similar (adaptive) grid, while the right reference solution 
(labeled “HR”) is obtained on a uniform grid that was 4× finer in each spatial direction. Top to bottom: Gas density ̺, gas pressure p, magnetic pressure, 
1
2 ‖B‖2 , and magnetic field divergence (two plots). The upper magnetic field divergence plot shows the magnetic field divergence computed using the 
method that is used in the corresponding numerical scheme. The lower plot shows the magnetic field divergence computes using central-differencing over 
the cell-center variables (5.3). We see that our GLM scheme, again, shows a similar result to the constrained transport scheme (on the same grid) when 
looking at the cell-centered magnetic field divergence. Visible artifacts are caused by recent adaptive mesh refinements.

5.5. 2D shock tube test for the effect of the non-conservative terms

This oblique magnetized shock tube was first proposed by Ryu et al. [58]. Tóth used it later to show the failure of the 
conventional eight-wave scheme to obtain the correct values of the magnetic fields. The formulation he tested used the 
same non-conservative source term (2.16) in the evolution of the ideal MHD equations [21]. This shock tube is bounded by 
a left- and a right-going fast shock wave as well as a left- and right-facing slow rarefaction, a right-going slow shock wave, 
and a contact discontinuity. Thus, it is suitable for testing the correct behavior of a numerical code that is facing a variety 
of different MHD waves within the same solution. The initial conditions are described in Table 6.

The shock tube is rotated by an angle of θ = tan−1(2) ≈ 63◦ . Since the magnetic field is initially uniform, the initial 
conditions trivially fulfill (1.1) for any discretization of the divergence-free condition at any rotation angle. The computational 
domain is a narrow strip where the top and bottom boundaries are given by “shifted” periodic boundary conditions. We 
depict our realization of these boundary conditions in Fig. 11. Note that the realization of the shifted boundary conditions 
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Table 6

Initial conditions and runtime parameters.

x < xshock x > xshock

Density ̺ 1.0
Pressure p 20.0 1.0
Velocity u‖ 10 −10

u⊥ ,w 0
Mag. field [B‖, B⊥, Bz] (4π)−0.5

[

5 5 0
]⊺

Domain size x ∈ [0,1] y ∈ [0,8/N]
Boundary conditions see text
Shock position xshock = 0.5
Simulation end time tmax = 0.08/

√
5

Adiabatic index γ = 5/3

Fig. 11. Special boundary conditions for the 2D shock tube test. The outermost blocks are fixed to the initial conditions indicated by orange (left) and green 
(right) (color online). The inner blocks use special shifted periodic boundary conditions where the values of the inner computation domain (center unshaded 
cells) are copied to the surrounding cells (shaded cells) as indicated by the arrows. This can be done without changing the results of the computation due 
to (−2, 1) translational symmetry [21, Sec. 6.3.2.].

Fig. 12. 2D shock tube test: Plot of the parallel component of the magnetic field at t = tmax . As can be seen, the non-conservative terms have a notable 
influence on the perpendicular magnetic field, B⊥ . We see that the GLM correction improves the accuracy of the solution significantly. Furthermore, we 
note that the reduced form of the non-conservative terms (the “Janhunen” non-conservative terms) gives similar results as the results obtained using the 
full non-conservative terms as derived in Sec. 2.

is done by copying the cell values after each solver step according to the specific (−2, 1) translational symmetry resulting 
from the chosen rotation angle. We ensure that the outermost cells still contain the initial conditions by ensuring that 
the simulation is ended before the shock reaches the boundaries of the computational domain. These specific boundary 
conditions ensure that effects coming from the boundaries of the computational domains do not influence the flow in our 
region of interest. Similar to Tóth, we use a uniform grid with Ncells,x = 256, which translates into 32 blocks in x and 1 
block in y direction in FLASH’s grid configuration. We compare our numerical results to the analytic solution of this test.

The parallel component of the magnetic field, B‖ = B1 cos θ + B2 sin θ should be a constant for all time. Note that, we 
obtain similar errors to those found by Tóth for an entropy stable eight-wave scheme without GLM correction [21, Fig. 12]. 
Also, our baseline scheme yields similar results to what he found earlier for his scheme [21, Fig. 11]. If we, however, use 
our entropy stable GLM treatment at the same time, we see that the errors introduced by the non-conservative terms are 
reduced significantly (cfm. Fig. 12). Note that the solutions obtained when using the full vs. the reduced non-conservative 
terms are basically indistinguishable.

We chose this test as Tóth used it specifically to point to a potential weakness of the non-conservative formulation. 
However, he also points out that this scheme performs well in many other test cases. We see that our entropy-stable 
scheme which contains both, the eight-wave as well as GLM methods, greatly enhances the solution quality of this specific 
test case, making the scheme preferable in comparison to a standard eight-wave formulation.
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Table 7

Initial conditions: Brio and Wu MHD shock tube [28].
x < xshock x ≥ xshock

̺ 1 0.125
p 1 0.1
u 0 0

B1 0.75 0.75
B2 1 -1
B3 0 0

Domain size xmin = 0, xmax = 1
Initial shock position xshock = 0.5
Boundary conditions all: periodic
Simulation end time tmax = 0.1
Adiabatic index γ = 2.0

Fig. 13. Entropy conservation test, SSP RK3 time integration.

5.6. Entropy conservation test for the new ideal GLM-MHD system

The mathematical entropy conservation obtained in Sec. 4.2 is in the semi-discrete sense. That is, the discrete entropy is 
conserved up to the errors introduced by the temporal approximation. Hence, we can use the error in the conservation of 
the total entropy with respect to the chosen time step size as a measurement for the temporal discretization error. We use 
a 3rd order accurate SSP RK time integration scheme as mentioned in Sec. 4.6. Hence, we expect the entropy conservation 
error,

�S := |S(t = 0) − S(t = tend)| ,

to behave like

�S ∝ (�t)3. (5.4)

As our test of choice, we run the two-dimensional version of the Brio and Wu magnetohydrodynamical shock tube 
problem [28] with a number of different fixed time step lengths �t . This test includes discontinuities, a magnetic field 
and is performed in multiple dimensions and starts from discontinuous initial conditions. Hence, it utilizes the full set of 
features of the entropy aware scheme we derived in this work. We keep the previously used periodic boundary conditions 
to eliminate any possible influence from the boundaries of the domain and to ensure that we observe a closed system. We 
construct the two-dimensional initial conditions by rotating the one-dimensional conditions (see Table 7) at a 45◦ angle. 
The fluid is initially at rest on either side of the interface.

Note that the entropy conserving scheme cannot describe systems with discontinuities as it cannot add the physically 
needed dissipation. We limit the end time step to tend = 10−3 when the oscillations have not grown too large as to cause 
numerical instabilities. Our sole intention is to show that even under high stresses and with active divergence cleaning our 
scheme is still capable of conserving the thermodynamic entropy correctly.

We ran a number of simulations using logarithmically equally spaced time steps and plot the measured entropy con-
servation error. In Fig. 13, we see that for very fine temporal resolution (i.e. very small time steps) the approximation 
tapers around 10−14 . This is caused by the finite precision of the numerical approximation and expected due to floating 
point arithmetic issues [59]. We conclude there exists a natural limit for the accuracy of the entropy conservation in our 
scheme. This test demonstrates that we are able to successfully construct a numerical scheme that is capable of cleaning 
the divergence in agreement with the second law of thermodynamics.
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Table 8

Initial conditions: Modified Sod shock tube test [60, Section 11.5.1].
x < xshock x ≥ xshock

̺ 1 0.125
p 1 0.1
u 0.75 0
v 0 0
w 0 0
B 0 0

Domain size xmin = 0, xmax = 1
Initial shock position xshock = 0.5
Boundary conditions all: zero-gradient
Simulation end time tmax = 0.2
Adiabatic index γ = 1.4

Fig. 14. Entropy consistency test (HD variant): Plot of the fluid density, ̺, at t = tmax . On the right panel we show a zoom-in of the plot on the left. The 
entropy glitch of the original Roe scheme is apparent whereas there is no inconsistency visible in our numerical scheme.

5.7. Entropy consistency test

In this section, we elaborate on the importance of entropy consistency for the proposed ideal GLM-MHD scheme. Nu-
merical tests suitable for assessing the entropic properties of numerical models have been summarized e.g. by Toro [60, 
Section 11.5]. We first look at the “entropy glitch” test and later amend this test with magnetic fields.

Toro describes a modified variant of Sod’s well-known shock tube test [61, Section 3], where he added a constant 
velocity on the left side of the initial shock. We summarize the initial conditions in Table 8. The given initial conditions 
result in a solution that consists of a left sonic rarefaction wave, a contact discontinuity, and a right shock wave. This test 
nicely shows the necessity of entropy consistency, as some widely used schemes – such as the original Roe scheme – fail 
to numerically solve this test correctly when compared to the exact solution. The numerics can produce an unphysical 
jump feature in the rarefaction wave, also known as “entropy glitch”. It arises in the presence of sonic rarefaction waves if 
schemes are not constructed with entropy consistency in mind [62]. In Fig. 14, we plot the numerical solution obtained on 
an adaptive grid of up to 512 cells using an implementation of the original Roe scheme in FLASH’s USM solver (parameter
RiemannSolver = “Roe”), our numerical entropy stable scheme (denoted by “ES”) and a highly-resolved (2048 cells, 
uniform grid) reference solution obtained using an LLF scheme. We immediately see that the numerical solution of the 
original Roe scheme exhibits a discontinuity within the wave. This discontinuity is not only unphysical, it also violates the 
entropy condition [60, Section 11.4.1]. Our numerical scheme is not affected by this issue and behaves just as expected. 
Note that we verified the absence of any unphysical discontinuity also for higher and lower resolution. The size of the 
jump of the entropy glitch reduces for increased resolution but never disappears completely. It is apparent that, using our 
numerical scheme, the reference solution is matched with a comparably lower adaptive resolution as in Fig. 14. Although 
the solution obtained using the Roe scheme fully resolves the region around the “entropy glitch”, it still fails to obtain the 
correct physical result.

For assessing entropy consistency in the presence of magnetic fields, we design a new test. It seems an obvious choice 
to start the design of such a test from a well known MHD shock tube just as the one described by Brio and Wu [28]. We 
similarly add a constant velocity on the left-hand side where we precompute the velocity of the rarefaction wave in the 
solution to create a rarefaction wave with a sonic point in this new test case. We summarize the initial conditions proposed 
for this test in Table 9.

In Fig. 15, we plot the numerical solution. We see that, due to the compound wave in this MHD test, the left rarefaction 
wave is much smaller in the MHD case. Although clearly present, the entropy glitch could be overlooked with too low 
resolution and misinterpreted as a dissipative/dispersive effect. As before, we see an unphysical discontinuity in the left 
rarefaction wave that violates the entropy condition. In contrast, the result obtained using our numerical scheme is free of 
any entropy violating parts in the solution.
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Table 9

Initial conditions: Modified Brio and Wu shock tube test.
x < xshock x ≥ xshock

̺ 1 0.125
p 1 0.1
u 1.75 0
v ,w 0 0
B1 0.75 0.75
B2 1 −1
B3 0 0

Domain size xmin = 0, xmax = 1
Initial shock position xshock = 0.5
Boundary conditions all: zero-gradient
Simulation end time tmax = 0.1
Adiabatic index γ = 2.0

Fig. 15. Entropy consistency test (MHD variant): Plot of the fluid density, ̺, at t = tmax . On the right panel we show a zoom-in of the plot on the left. The 
entropy glitch of the original Roe scheme is apparent whereas there is no inconsistency visible in our numerical scheme.

6. Conclusion

In this work, we describe a physically motivated mathematical model that is suitable for building numerical schemes for 
ideal MHD flows. We call our system the “ideal GLM-MHD equations” in agreement with earlier publications. The signifi-
cance of our modifications is, as shown in this work, that they lead to the first entropy consistent hyperbolic formulation 
of the ideal MHD equations with effective inbuilt divergence cleaning. One major benefit of this approach is that divergence 
cleaning is done alongside the hydrodynamical flux computations so no additional communication or globally coupled com-
putations are introduced when implementing our scheme. This underlines its usability for highly-parallelized numerical 
simulation codes as it does not only ease the process of parallelization but also allows unaffected scaling of the scheme on 
over dozens of thousands of computing cores.

We carefully investigate the properties of the proposed mathematical model and discuss the implications of, e.g., the 
new eigenvalues that come from the GLM waves while we explain how our new model converges to already known models 
in various limits such as vanishing cleaning speed, vanishing magnetic field divergence and altogether vanishing magnetic 
fields.

For demonstrating the numerical feasibility of our model, we derive a set of magnetic field divergence diminishing 
entropy conservative and entropy stable fluxes. Note that these can be used to build entropy stable numerical approxima-
tions that respect the fundamental laws of thermodynamics by construction. Our decision to build entropy stable numerical 
fluxes – in contrast to, e.g. HLL fluxes, was due to the fact that entropy stability plays a crucial dual role in ensuring both 
the physical relevance of the simulation results as well as the numerical robustness of the scheme.

We conclude our analysis and derivations with a section presenting numerical results obtained using the new entropy 
stable solver implementation for MHD flows in multiple spatial dimensions with adaptive mesh refinement. These numerical 
tests serve to demonstrate the flexibility of the new solver, the utility as well as the rigor of the implemented divergence 
diminishing formulation. We found that additional damping is not strictly needed when dealing with boundary conditions 
that allow the divergence errors to be advected out of the computational domain, but found the additionally possible ψ
wave damping useful when this is not possible, e.g., due to periodic boundary conditions that do not allow the divergence 
errors to leave the simulation domain.
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Appendix A. Derivation of the entropy conserving numerical ideal GLM-MHD flux

First, we use the properties of the linear jump operator

❏ab❑ = {{b}} ❏a❑ + {{a}} ❏b❑ ,
�
a2

③
= 2 {{a}} ❏a❑ ,

to expand the jump in entropy variables
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With the known jump in entropy variables, we expand the LHS of (4.41) componentwise to find
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where we introduce the logarithmic mean (·)ln = ❏·❑
❏ln(·)❑

. A numerically stable procedure to compute the logarithmic mean 

is described by Ismail and Roe [41, Appendix B]. In the algorithm to compute (·)ln we chose ǫ = 1 × 10−3 to increase the 
accuracy of the entropy conservative approximation to close to machine precision.

Next, we expand the individual components on the RHS of (4.41) into combinations of linear jumps
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2 {{β}} {{u}} {{B1}}
)

+ ❏B2❑
(

2 {{β}} {{u}} {{B2}}
)

+ ❏B3❑
(

2 {{β}} {{u}} {{B3}}
)

, (A.4)

❏β(u · B)❑ = ❏βuB1❑ + ❏βvB2❑ + ❏βwB3❑
= ❏β❑ ({{uB1}} + {{vB2}} + {{wB3}}) + ❏u❑ {{β}} {{B1}} + ❏v❑ {{β}} {{B2}} + ❏w❑ {{β}} {{B3}}

+ ❏B1❑ {{β}} {{u}} + ❏B2❑ {{β}} {{v}} + ❏B3❑ {{β}} {{w}} , (A.5)

and

❏βB1ψ ❑ = {{β}} ❏B1ψ ❑ + {{B1ψ}} ❏β❑ = {{β}}
(

{{B1}} ❏ψ ❑ + {{ψ}} ❏B1❑
)

+ {{B1ψ}} ❏β❑
= ❏ψ ❑ {{β}} {{B1}} + ❏B1❑ {{β}} {{ψ}} + ❏β❑ {{B1ψ}} . (A.6)

After rewriting every term in the discrete entropy conservation equation (4.41) into linear jumps, we obtain the yet 
unknown components of the entropy conserving ideal GLM-MHD flux function:

❏̺❑ : f ∗
1

❏̺❑
̺ln

= {{u}} ❏̺❑ (A.7a)

❏u❑ : −2 f ∗
1 {{β}} {{u}} ❏u❑ + 2 f ∗

2 {{β}} ❏u❑ =
{{

̺
}}

❏u❑ + {{β}}
(
{{

B2
1

}}

+
{{

B2
2

}}

+
{{

B2
3

}}
)

❏u❑ −

− 2 {{β}} {{B1}}2 ❏u❑ (A.7b)

❏v❑ : −2 f ∗
1 {{β}} {{v}} ❏v❑ + 2 f ∗

3 {{β}} ❏v❑ = −2 {{β}} {{B1}} {{B2}} ❏v❑ (A.7c)

❏w❑ : −2 f ∗
1 {{β}} {{w}} ❏w❑ + 2 f ∗

4 {{β}} ❏w❑ = −2 {{β}} {{B1}} {{B3}} ❏w❑ (A.7d)

❏B1❑ : 2 f ∗
6 {{β}} ❏B1❑ = 2 {{β}} {{B1}} {{u}} ❏B1❑ − 2 {{β}} {{B1}} {{u}} ❏B1❑ + 2ch {{β}} {{ψ}} ❏B1❑

= 2 {{β}} ch {{ψ}} ❏B1❑ (A.7e)

❏B2❑ : 2 f ∗
7 {{β}} ❏B2❑ = 2 {{β}} {{B2}} {{u}} ❏B2❑ − 2 {{β}} {{B1}} {{v}} ❏B2❑ (A.7f)

❏B3❑ : 2 f ∗
8 {{β}} ❏B3❑ = 2 {{β}} {{B3}} {{u}} ❏B3❑ − 2 {{β}} {{B1}} {{w}} ❏B2❑ (A.7g)

❏ψ ❑ : 2 f ∗
9 {{β}} = 2ch {{β}} {{B1}} (A.7h)

❏β❑ : f ∗
1

β ln(γ − 1)
❏β❑ − f ∗

1

({{

u2
}}

+
{{

v2
}}

+
{{

w2
}})

❏β❑ + 2 f ∗
2 {{u}} ❏β❑ + 2 f ∗

3 {{v}} ❏β❑

+ 2 f ∗
4 {{w}} ❏β❑ − 2 f ∗

5 ❏β❑ + 2 f ∗
6 {{B1}} ❏β❑ + 2 f ∗

7 {{B2}} ❏β❑ + 2 f ∗
8 {{B3}} ❏β❑ + 2 f ∗

9 {{ψ}} ❏β❑
=
(
{{

uB2
1

}}

+
{{

uB2
2

}}

+
{{

uB2
3

}}
)

❏β❑ − 2 {{B1}}
(

{{uB1}} + {{vB2}} + {{wB3}}
)

❏β❑
+ 2ch {{B1ψ}} ❏β❑ (A.7i)

Solving (A.7a)–(A.7i) gives the numerical entropy conserving flux function f ∗:

f ∗
1 = ̺ln {{u}} (A.8a)

f ∗
2 = f ∗

1 {{u}} − {{B1}}2 +
{{

̺
}}

2 {{β}} + 1

2

({{

B2
1

}}

+
{{

B2
2

}}

+
{{

B2
3

}})

(A.8b)

f ∗
3 = f ∗

1 {{v}} − {{B1}} {{B2}} (A.8c)

f ∗
4 = f ∗

1 {{w}} − {{B1}} {{B3}} (A.8d)

f ∗
5 = f ∗

1

[
1

2(γ − 1)β ln
− 1

2

({{

u2
}}

+
{{

v2
}}

+
{{

w2
}})
]

+ f ∗
2 {{u}} + f ∗

3 {{v}} + f ∗
4 {{w}}

+ f ∗
6 {{B1}} + f ∗

7 {{B2}} + f ∗
8 {{B3}} + f ∗

9 {{ψ}} − 1

2

(
{{

uB2
1

}}

+
{{

uB2
2

}}

+
{{

uB2
3

}}
)

+ {{B1}} ({{uB1}} + {{vB2}} + {{wB3}}) − ch {{B1ψ}} . (A.8e)

f ∗
6 = ch {{ψ}} (A.8f)

f ∗
7 = {{u}} {{B2}} − {{v}} {{B1}} (A.8g)

4.4 Publication III

119



D. Derigs et al. / Journal of Computational Physics 364 (2018) 420–467 457

f ∗
8 = {{u}} {{B3}} − {{w}} {{B1}} (A.8h)

f ∗
9 = ch {{B1}} (A.8i)

Appendix B. Discrete version of the entropy Jacobian

The entries of the matrix H are derived step-by-step through the solution of 81 equations in a similar fashion as done 
in [43] for the unmodified ideal MHD equations (64 equations):

❏q❑ =

✉
✇✇✇✇✇✇✇✇✇✇✇✈

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺
̺u
̺v

̺w

E

B1

B2

B3

ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⑥
⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑦

!=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1,1 H1,2 . . . . . . . . . H1,8 H1,9

H2,1 H2,2 . . . . . . . . . H2,8 H2,9
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

H8,1 H8,2 . . . . . . . . . H8,8 H9,9

H9,1 H9,2 . . . . . . . . . H9,8 H9,9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

✉
✇✇✇✇✇✇✇✇✇✇✇✇✇✈

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ −s
γ −1 − β‖u‖2

2βu
2βv

2βw

−2β
2βB1

2βB2

2βB3

2βψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⑥
⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑦

= H ❏v❑ . (B.1)

First, we expand the jump in both the conservative and the entropy variables

❏q❑ =

✉
✇✇✇✇✇✇✇✇✇✇✇✈

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺
̺u
̺v

̺w

E

B1

B2

B3

ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⑥
⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

❏̺❑
{{

̺
}}

❏u❑ + {{u}} ❏̺❑
{{

̺
}}

❏v❑ + {{v}} ❏̺❑
{{

̺
}}

❏w❑ + {{w}} ❏̺❑
( 1
2(γ −1)β ln + 1

2 ‖u‖2
)

❏̺❑ +
{{

̺
}} (

{{u}} ❏u❑ + {{v}} ❏v❑ + {{w}} ❏w❑
)

−
{{

̺
}}

2(γ −1)β2
❏β❑ + {{B1}} ❏B1❑ + {{B2}} ❏B2❑ + {{B3}} ❏B3❑ + {{ψ}} ❏ψ ❑

❏B1❑

❏B2❑

❏B3❑

❏ψ ❑

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(B.2)

❏v❑ =

✉
✇✇✇✇✇✇✇✇✇✇✇✇✇✈

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ −s
γ −1 − β‖u‖2

2βu
2βv

2βw

−2β
2βB1

2βB2

2βB3

2βψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⑥
⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

❏̺❑
̺ln + ❏β❑

β ln(γ −1)
−
( {{

u2
}}

+
{{

v2
}}

+
{{

w2
}} )

❏β❑ − 2 {{β}}
(

{{u}} ❏u❑ + {{v}} ❏v❑ + {{w}} ❏w❑
)

2 {{β}} ❏u❑ + 2 {{u}} ❏β❑
2 {{β}} ❏v❑ + 2 {{v}} ❏β❑
2 {{β}} ❏w❑ + 2 {{w}} ❏β❑

−2 ❏β❑
2 {{β}} ❏B1❑ + 2 {{B1}} ❏β❑
2 {{β}} ❏B2❑ + 2 {{B2}} ❏β❑
2 {{β}} ❏B3❑ + 2 {{B3}} ❏β❑
2 {{β}} ❏ψ ❑ + 2 {{ψ}} ❏β❑

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.3)
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with

β2 = 2 {{β}}2 −
{{

β2
}}

, pln = ̺ln

2β ln
, and ‖u‖2 = 2

(

{{u}}2 + {{v}}2 + {{w}}2
)

−
({{

u2
}}

+
{{

v2
}}

+
{{

w2
}})

.

(B.4)

Note that the jump in E contains the specific modifications found in [43] to allow the derivation of a symmetric dissipation 
matrix.

Appendix C. Discrete eigenvalues of the ideal GLM-MHD system

First, we transform the system into primitive variables as the analysis in conservative variables proved to be highly 
complicated. This is straightforward because we can swap between variable spaces with the matrix

M = ∂q

∂ω
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0

u ̺ 0 0 0 0 0 0 0

v 0 ̺ 0 0 0 0 0 0

w 0 0 ̺ 0 0 0 0 0
1
2‖u‖2 ̺ u ̺ v ̺ w 1

γ −1 B1 B2 B3 ψ

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (C.1)

and its inverse which can be used to go back to conservative variables

M−1 = ∂ω

∂q

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0
− u

̺
1
̺ 0 0 0 0 0 0 0

− v
̺ 0 1

̺ 0 0 0 0 0 0

− w
̺ 0 0 1

̺ 0 0 0 0 0
γ−1
2 ‖u‖2 u (1− γ ) v (1− γ ) w (1− γ ) γ − 1 B1 (1− γ ) B2 (1− γ ) B3 (1− γ ) ψ (1− γ )

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(C.2)

where ξ is the vector of primitive variables, ξ :=
[

̺ u v w p B1 B2 B3 ψ
]
⊺
.

The equation system

∂

∂t
q + Aϒ

∂

∂x
q = 0 (C.3)

can now be rewritten as

M
∂

∂t
ξ + AϒM

∂

∂x
ξ = 0,

∂

∂t
ξ +M−1AϒM

∂

∂x
ξ = 0,

∂

∂t
ξ + C

∂

∂x
ξ = 0. (C.4)

Comparing (C.3) and (C.4) we find that the matrix Aϒ can be transformed to primitive space to obtain the primitive 
matrix C := M−1AϒM
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C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u ̺ 0 0 0 0 0 0 0

0 u 0 0 1
̺ 0 B2

̺
B3
̺ 0

0 0 u 0 0 0 − B1
̺ 0 0

0 0 0 u 0 0 0 − B1
̺ 0

0 γ p 0 0 u 0 0 0 0

0 0 0 0 0 u 0 0 ch

0 B2 −B1 0 0 0 u 0 0

0 B3 0 −B1 0 0 0 u 0

0 0 0 0 0 ch 0 0 u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (C.5)

The matrices Aϒ and C are similar, i.e. they have the same eigenvalues but not necessarily the same eigenvectors.1

From

∂

∂t
ξ + C

∂

∂x
ξ = ∂

∂t
ξ +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u ̺ 0 0 0 0 0 0 0
0 u 0 0 1

̺ 0 B2
̺

B3
̺ 0

0 0 u 0 0 0 − B1
̺ 0 0

0 0 0 u 0 0 0 − B1
̺ 0

0 γ p 0 0 u 0 0 0 0
0 0 0 0 0 u 0 0 ch
0 B2 −B1 0 0 0 u 0 0
0 B3 0 −B1 0 0 0 u 0
0 0 0 0 0 ch 0 0 u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺

u

v

w

p

B1

B2

B3

ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x

(C.6)

= ∂

∂t
ξ +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u(̺)x + ̺(u)x

u(u)x + 1
̺ (p)x + B2

̺ (B2)x + B3
̺ (B3)x

uvx − B1
̺ (B2)x

uwx − B1
̺ (B3)x

γ p(u)x + u(p)x

u(B1)x + ch(ψ)x

B2(u)x − B1(v)x + u(B2)x

B3(u)x − B1(w)x + u(B3)x

ch(B1)x + u(ψ)x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0, (C.7)

we see that we cannot bring the system into flux form for primitive variables. Hence, we refrain from calling C the primitive 
flux Jacobian, since it is not possible to bring the system described by

∂

∂t
ξ + C

∂

∂x
ξ = 0, (C.8)

into flux form for primitive variables. Therefore, unlike the matrix A in flux form, the coefficient matrix C in primitive 
variable form is not the flux Jacobian of any flux function f (ξ). We can easily see that, as the entries on the diagonal of 
C are all equal to u, and they are the only ones depending on u, the matrix C describes a Galilean invariant scheme [26, 
Section 3], as expected.

In the next step, we make the discrete ansatz, where we discretize the update of the primitive variables in the spatial 
dimension like

− ∂

∂t
ξ = C

∂

∂x
ξ (C.9)

=
R∫

L

(

C
∂

∂x
ξ

)

dx (C.10)

≈ �x

2

∑

k={L,R}

(

C
∂

∂x
ξ

)

k

(C.11)

1 The eigenvectors are transformed according to the base changing matrix M.
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= �x

2

(

CL
ξR − ξ L

�x
+ CR

ξR − ξ L

�x

)

(C.12)

= 1

2
(CL + CR)(ξR − ωL) (C.13)

= {{C}} ❏ω❑ , (C.14)

where we used the trapezoidal rule for approximating the integral on the RHS of (C.10) using the left and right states. We 
immediately see that the discretized version of the coefficient matrix, C, is the continuous coefficient matrix, C, arithmeti-
cally averaged in each entry, Ĉ := {{C}} = 1

2 (CL + CR):

Ĉ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{{u}}
{{

̺
}}

0 0 0 0 0 0 0

0 {{u}} 0 0
{{

̺−1
}}

0
{{

B2
̺

}} {{
B3
̺

}}

0

0 0 {{u}} 0 0 0 −
{{

B1
̺

}}

0 0

0 0 0 {{u}} 0 0 0 −
{{

B1
̺

}}

0

0 γ {{p}} 0 0 {{u}} 0 0 0 0

0 0 0 0 0 {{u}} 0 0 {{ch}}
0 {{B2}} −{{B1}} 0 0 0 {{u}} 0 0

0 {{B3}} 0 −{{B1}} 0 0 0 {{u}} 0

0 0 0 0 0 {{ch}} 0 0 {{u}}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (C.15)

The eigenvalues of Ĉ are:

λ̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{{u}} −

√

2

√

{{B1}}
{{

B1
̺

}}

{{p}}
{{

̺−1
}}

γ +{{p}}
{{

̺−1
}}

γ +{{B3}}
{{

B3
̺

}}

+{{B2}}
{{

B2
̺

}}

+{{B1}}
{{

B1
̺

}}

+
√

−2

√

{{B1}}
{{

B1
̺

}}

{{p}}
{{

̺−1
}}

γ +{{p}}
{{

̺−1
}}

γ +{{B3}}
{{

B3
̺

}}

+{{B2}}
{{

B2
̺

}}

+{{B1}}
{{

B1
̺

}}

2

{{u}} −

√

2

√

{{B1}}
{{

B1
̺

}}

{{p}}
{{

̺−1
}}

γ +{{p}}
{{

̺−1
}}

γ +{{B3}}
{{

B3
̺

}}

+{{B2}}
{{

B2
̺

}}

+{{B1}}
{{

B1
̺

}}

−
√

−2

√

{{B1}}
{{

B1
̺

}}

{{p}}
{{

̺−1
}}

γ +{{p}}
{{

̺−1
}}

γ +{{B3}}
{{

B3
̺

}}

+{{B2}}
{{

B2
̺

}}

+{{B1}}
{{

B1
̺

}}

2

{{u}} +

√

2

√

{{B1}}
{{

B1
̺

}}

{{p}}
{{

̺−1
}}

γ +{{p}}
{{

̺−1
}}

γ +{{B3}}
{{

B3
̺

}}

+{{B2}}
{{

B2
̺

}}

+{{B1}}
{{

B1
̺

}}

−
√

−2

√

{{B1}}
{{

B1
̺

}}

{{p}}
{{

̺−1
}}

γ +{{p}}
{{

̺−1
}}

γ +{{B3}}
{{

B3
̺

}}

+{{B2}}
{{

B2
̺

}}

+{{B1}}
{{

B1
̺

}}

2

{{u}} +

√

2

√

{{B1}}
{{

B1
̺

}}

{{p}}
{{

̺−1
}}

γ +{{p}}
{{

̺−1
}}

γ +{{B3}}
{{

B3
̺

}}

+{{B2}}
{{

B2
̺

}}

+{{B1}}
{{

B1
̺

}}

+
√

−2

√

{{B1}}
{{

B1
̺

}}

{{p}}
{{

̺−1
}}

γ +{{p}}
{{

̺−1
}}

γ +{{B3}}
{{

B3
̺

}}

+{{B2}}
{{

B2
̺

}}

+{{B1}}
{{

B1
̺

}}

2

{{u}} −
√

{{B1}}
{{

B1
̺

}}

{{u}} +
√

{{B1}}
{{

B1
̺

}}

{{u}} − {{ch}}
{{u}} + {{ch}}

{{u}}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.16)

After many manipulations, we find a greatly simplified form of the discrete eigenvalues using the discrete wave speeds

ĉa = |b̂1|, ĉf,s = 1

2

(√

â2 + b̂2 + 2
√

â2b̂21 ±
√

â2 + b̂2 − 2
√

â2b̂21

)

, (C.17)

with the special discrete averages

b̂
2 = {{B}} ·

{{
B

̺

}}

, â2 = γ {{p}}
{{

̺−1}} , b̂2 = b̂21 + b̂22 + b̂23. (C.18)

In (C.17), the plus sign corresponds to the fast magnetoacoustic speed, cf , and the minus sign corresponds to the slow 
magnetoacoustic speed, cs .
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The simplified eigenvalues of the ideal GLM-MHD system are:

λ̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ̂+f

λ̂+a

λ̂+s

λ̂+ψ

λ̂E

λ̂−ψ

λ̂−s

λ̂−a

λ̂−f

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{{u}} + ĉf
{{u}} + ĉa

{{u}} + ĉs
{{u}} + {{ch}}

{{u}}
{{u}} − {{ch}}
{{u}} − ĉs

{{u}} − ĉa

{{u}} − ĉf

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

right going fast magnetoacoustic wave
right going Alfvén wave
right going slow magnetoacoustic wave

right going GLM wave
entropy wave

left going GLM wave
left going slow magnetoacoustic wave
left going Alfvén wave
left going fast magnetoacoustic wave

(C.19)

Appendix D. Eigenstructure

We outline the steps to obtain the eigenstructure of the flux Jacobian for the new ideal GLM-MHD system. For this 
one-dimensional analysis we forgo the addition of the matrix superscript (·)x for the sake of convenience. We have already 
computed the flux Jacobian, Ax

ϒ
, (3.27) for the new system. For an entropy stable numerical flux with a matrix dissipation 

term we require a relationship between the entropy Jacobian, H, and the right eigenvectors, R.
The eigendecomposition of the matrix Aϒ supports nine propagating plane-wave solutions:

• two fast magnetoacoustic waves (±f),
• two slow magnetoacoustic waves (±s),
• two Alfvén waves (±a),
• an entropy wave (E),
• two GLM waves (±ψ ).

It is known that the right eigenvectors may exhibit several forms of degeneracy that are carefully described by Roe and 
Balsara [63]. We follow the same rescaling procedure of Roe and Balsara to improve the numerical behavior of the fast/slow 
magnetoacoustic eigenvectors.

To compute the eigenvectors it is more convenient to work with primitive variables, ω, and then convert back to conser-
vative space as noted in Appendix C. Once we know the eigenvectors in primitive space, RC we return to conservative space 
by

R�R−1 = AP = MCM−1 = (MRC)�(MRC)
−1, (D.1)

with the eigenvalue matrix �. The matrix of right eigenvectors is given by

R := MRC =
[

r+f | r+a | r+s | r+ψ | rE | r−ψ | r−s | r−a | r−f
]

, (D.2)

with the eigenvectors r:

GLM Waves: λ±ψ = u ± ch , Entropy Wave: λE = u, and Alfvén Waves: λ±a = u ± ca

r±ψ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0

B1 ± ψ

1
0
0

±1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, rE =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
u

v

w
‖u‖2
2
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, r±a =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0

±̺
3
2 χ3

∓̺
3
2 χ2

∓̺
3
2 (χ2w − χ3v)

0
−̺χ3

̺χ2

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (D.3)
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Magnetoacoustic Waves: λ±f,±s = u ± cf,s

r±f =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αf̺

αf̺(u ± cf)

̺ (αfv ∓ αscsχ2σ (b1))

̺ (αfw ∓ αscsχ3σ (b1))

�±f

0

αsaχ2
√

̺

αsaχ3
√

̺

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, r±s =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αs̺

αs̺ (u ± cs)

̺ (αsv ± αfcfχ2σ (b1))

̺ (αsw ± αfcfχ3σ (b1))

�±s

0

−αfaχ2
√

̺

−αfaχ3
√

̺

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (D.4)

where we introduced several convenience variables

�±s = αs̺‖u‖2
2

− aαf̺b⊥ + αs̺a
2

γ − 1
± αscs̺u ± αfcf̺σ (b1)(vχ2 + wχ3), b2 = b21 + b22 + b23,

�±f =
αf̺‖u‖2

2
+ aαs̺b⊥ + αf̺a

2

γ − 1
± αfcf̺u ∓ αscs̺σ (b1)(vχ2 + wχ3), b2⊥ = b22 + b23,

c2a = b21, c2f,s = 1

2

(

(a2 + b2) ±
√

(a2 + b2)2 − 4a2b21

)

, a2 = γ
1

2β
, b2 = B2

̺
,

α2
f = a2 − c2s

c2f − c2s
, α2

s =
c2f − a2

c2f − c2s
, χ1,2,3 = b1,2,3

b⊥
, σ (ω) =

{

+1 if ω ≥ 0,

−1 otherwise
.

Appendix E. Derivation of the total energy equation

The total energy equation (2.15) is obtained as described by (2.14):

∂E

∂t
= ∂

∂t

(

1

2
̺‖u‖2 + ǫ + 1

2
‖B‖2

)

. (E.1)

For now, we compute the contributions of the momentum and induction equation intentionally without the non-
conservative terms to avoid confusion:

1. Kinetic energy without non-conservative term on the momentum equation

∂

∂t

(

1

2
̺‖u‖2

)

= ∂

∂t

(

1

2

(̺u)2

̺
+ 1

2

(̺v)2

̺
+ 1

2

(̺w)2

̺

)

= u(̺u)t + v(̺v)t + w(̺w)t − 1

2
‖u‖2(̺)t

= −1

2
u2 (3̺(u)x + u(̺)x

)

︸ ︷︷ ︸

− 1
2 (̺u2)x

−u(p)x − 1

2
u
(

−(B1)
2
x + (B2)

2
x + (B3)

2
x

)

−1

2

(

2̺uv(v)x + ̺v2(u)x + (̺)xuv
2
)

︸ ︷︷ ︸

− 1
2 (̺uv)x

−1

2

(

2̺uw(w)x + ̺w2(u)x + (̺)xuw
2
)

︸ ︷︷ ︸

− 1
2 (̺uw)x

+ vB1(B2)x + v(B1)xB2
︸ ︷︷ ︸

v(B1B2)x

+ wB1(B2)x + w(B1)xB2
︸ ︷︷ ︸

w(B1B3)x

= −
{

u

(
1

2
̺‖u‖2

)}

x

− u(p)x − 1

2
u
(

−(B1)
2
x + (B2)

2
x + (B3)

2
x

)

+ v(B1B2)x + w(B1B3)x (E.2)
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2. Internal energy

∂

∂t
ǫ = 1

γ − 1

∂p

∂t
= −1

γ − 1
(u(p)x + γ p(u)x) (E.3)

3. Magnetic energy without non-conservative term on the induction equation

∂

∂t

(
1

2
‖B‖2

)

= B ·
(

∂B

∂t

)

=

⎡

⎣

B1

B2

B3

⎤

⎦ ·

⎛

⎝− ∂

∂x

⎡

⎣

0
uB2 − vB1

uB3 − wB1

⎤

⎦

⎞

⎠

= −B2(uB2)x + B2(vB1)x − B3(uB3)x + B3(wB1)x (E.4)

Summing them all up, we obtain (we color code the individual contributions for the sake of readability)

∂

∂t

(
1

2
̺‖u‖2

)

+ ∂ǫ

∂t
+ ∂

∂t

(
1

2
‖B‖2

)

(E.5)

= −
{

u

(
1

2
̺‖u‖2

)}

x

− u(p)x − 1

2
u
(

−(B1)
2
x + (B2)

2
x + (B3)

2
x

)

+ v(B1B2)x + w(B1B3)x

− 1

γ − 1
(u(p)x + γ p(u)x) − B2(uB2)x + B2(vB1)x − B3(uB3)x + B3(wB1)x (E.6)

= −
{

u

(
1

2
̺‖u‖2

)}

x

−u(p)x + γ p(u)x + γ u(p)x − u(p)x

γ − 1
︸ ︷︷ ︸

− γ
γ −1 (up)x

+ uB1(B1)x −B2
2(u)x − u(B2

2)x
︸ ︷︷ ︸

−(uB2
2)x

−B2
3(u)x − u(B2

3)x
︸ ︷︷ ︸

−(uB2
3)x

+ vB1(B2)x + 2vB2(B1)x + B1B2(v)x
︸ ︷︷ ︸

(vB1B2)x+vB2(B1)x

+ wB1(B3)x + 2wB3(B1)x + B1B3(w)x
︸ ︷︷ ︸

(wB1B3)x+wB3(B1)x

(E.7)

This means the total energy conservation law (using the induction equation and the given momentum conservation law 
without the non-conservative terms) is

∂E

∂t
+ ∂

∂x

(

u

(
1

2
̺‖u‖2 + γ p

γ − 1
+ ‖B‖2

)

− B(u · B)

)

=
↓
+ (B1)x(u · B). (E.8)

As can be seen from these derivations, we obtained a non-conservative term contributing in the total energy equation 
although we started off from equations that do not contain non-conservative term. It is this very specific (positive) contribution 
that cancels with one of the two (negative) (B1)x(u · B) terms coming from the momentum and induction equations with 
non-conservative term:

1. Kinetic energy with non-conservative term

∂

∂t

(

1

2
̺‖u‖2

)

= u(̺u)t + v(̺v)t + w(̺w)t − 1

2
‖u‖2(̺)t

= −
{

u

(
1

2
̺‖u‖2

)}

x

− u(p)x − 1

2
u
(

−(B1)
2
x + (B2)

2
x + (B3)

2
x

)

+ v(B1B2)x + w(B1B3)x − (B1)x(u · B) (E.9)

2. Magnetic energy with non-conservative term

∂

∂t

(
1

2
‖B‖2

)

= B ·
(

∂B

∂t

)

=

⎡

⎣

B1

B2

B3

⎤

⎦ ·

⎛

⎝− ∂

∂x

⎡

⎣

0
uB2 − vB1

uB3 − wB1

⎤

⎦− (B1)x

⎡

⎣

u

v

w

⎤

⎦

⎞

⎠

= −B2(uB2)x + B2(vB1)x − B3(uB3)x + B3(wB1)x − (B1)x(B · u) (E.10)

Using the kinetic and magnetic energy contributions with non-conservative term as derived in Section 2 results in the 
shown equation (2.15):
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∂E

∂t
+ ∂

∂x

(

u

(
1

2
̺‖u‖2 + γ p

γ − 1
+ ‖B‖2

)

− B(u · B)

)

=
↓
− (B1)x(u · B). (E.11)

Appendix F. Ideal GLM-MHD equations in y and z-direction

For completeness, we summarize the ideal GLM-MHD equations in the two and three-dimensional case below:

∂

∂t
q + ∂

∂x
f x + ϒ = 0, in 1D (F.1)

∂

∂t
q + ∂

∂x
f x + ∂

∂ y
f y + ϒ = 0, in 2D (F.2)

∂

∂t
q + ∂

∂x
f x + ∂

∂ y
f y + ∂

∂z
f z + ϒ = 0, in 3D (F.3)

where f x,y,z(q) are the flux vectors in x, y, and z-direction, and ϒ is the non-conservative term.

f x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺ u

̺u2 + p + 1
2‖B‖2 − B1B1

̺ u v − B1B2

̺ u w − B1B3

uÊ − B1
(

u · B
)

+ chψB1

chψ

u B2 − v B1

u B3 − w B1

chB1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, f y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺ v

̺ v u − B2B1

̺v2 + p + 1
2‖B‖2 − B2B2

̺ v w − B2B3

v Ê − B2
(

u · B
)

+ chψB2

v B1 − u B2

chψ

v B3 − w B2

chB2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

f z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺ w

̺ w u − B3B1

̺ w v − B3B2

̺w2 + p + 1
2‖B‖2 − B3B3

wÊ − B3
(

u · B
)

+ chψB3

w B1 − u B3

w B2 − v B3

chψ

chB3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (F.4)

Appendix G. Dimensional ideal GLM-MHD equations

We used dimensionless quantities in this work for the sake of convenience as it allows us to hide some physical constants 
as they are set to one. However, as the authors have also shown in [2, Appendix D], our EC/ES schemes trivially extend to 
dimensional units, where the magnetic permeability, μ0 , has to explicitly be taken into account:

Emag = 1

2μ0
‖B‖2, (G.1)

Eψ = 1

2μ0
ψ2. (G.2)

The dimensional ideal GLM-MHD equations are given by

∂

∂t
q + ∇ · f = ∂

∂t

⎡

⎢
⎢
⎢
⎢
⎣

̺

̺u

E

B

ψ

⎤

⎥
⎥
⎥
⎥
⎦

+ ∇ ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̺u

̺(u ⊗ u) +
(

p + ‖B‖2
2μ0

)

I− B⊗B
μ0

u
( 1
2̺‖u‖2 + γ p

γ −1 + ‖B‖2
μ0

)

− B(u·B)
μ0

+ ch
μ0

ψB

u ⊗ B − B ⊗ u + chψI

chB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −ϒGLM,

(a)

(b)

(c)

(d)

(e)

(G.3)

with
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Table G.1

Simulation units determined by different values for μ0 [2].

Unit system: SI CGS

Length ℓ m cm
Time t s s
Density ̺ kgm−3 g cm−3

Velocities u ms−1 cms−1

Specific energy E Jm−3 erg cm−3

Pressure p Nm−2 dyn cm−2

Magnetic field B T G
Damping coefficient α s−1 s−1

with μ0 := 4π × 10−7 T2 m3 J−1 4π G2 cm3 erg−1

ϒGLM := (∇ · B)

⎡

⎢
⎢
⎢
⎢
⎣

0
μ−1

0 B

μ−1
0 u · B
u

0

⎤

⎥
⎥
⎥
⎥
⎦

+ (∇ψ) ·

⎡

⎢
⎢
⎢
⎢
⎣

0

0
μ−1

0 uψ

0
u

⎤

⎥
⎥
⎥
⎥
⎦

(G.4)

where the thermal pressure is related to the conserved quantities through the dimensional ideal gas law:

p = (γ − 1)

(

E − ̺

2
‖u‖2 − 1

2μ0

(

‖B‖2 + ψ2
)
)

. (G.5)

The resulting units of the simulation quantities are can be determined by the chosen value for μ0 . They are listed in 
Table G.1. In non-dimensional units, one typically uses μ0 = 1, where (G.3) and (G.5) are identical to (3.16) and (3.18).
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I implemented my entropy-stable scheme into the multi-physics, multi-scale adaptive mesh
refinement (AMR) simulation suite FLASH. Overall, I created three altogether different imple-
mentations of my entropy-stable MHD solver. In this chapter, I shortly describe the simulation
framework FLASH as well as my different implementations and comment on their applicability for
simulations.

5.1 The simulation code FLASH

FLASH (Fryxell et al., 2000; Flash Center for Computational Science, 2017) is a parallelized,
publicly available, high performance simulation software system. It works on Eulerian grids
and is capable of handling flow problems found in many common astrophysical environments.
According to Dubey et al. (2009), FLASH is used by thousands of researchers in various fields.
The code is written in FORTRAN90 and C. It uses the Message-Passing Interface (MPI) library
for inter-processor communication and the HDF5 library for parallel I/O to achieve portability
and scalability on a variety of different parallel architectures. In astrophysics, FLASH is used for
simulations in the research fields of supernova explosions (SNe) and remnant evolution, X-ray
bursts, galaxy formation, the evolution of the interstellar medium (ISM), stellar structures and
many more. Beyond astrophysics, FLASH is also applicable to other physical applications like laser
experiments at high-energy-density physics (HEDP) facilities.

The FLASH code includes physics capabilities for (magneto)hydrodynamics, flux-limited diffusion,
reaction networks for nuclear burning and the formation of chemical species in the interstellar
medium (ISM), various forms of Equations of State (EOS), material properties, self-gravity, and
many more organized as code modules. All modules can be included and exchanged as desired.
The code’s architecture is designed to be flexible and extensible. Users can configure initial and
boundary conditions, change algorithms, and add new physics units. My entropy stable schemes
are a module that can be exchanged freely within FLASH’s framework to ensure a high level of
portability and flexibility.
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FLASH is used within Cologne’s Theoretical Astrophysics Group (TAG) for astrophysical projects,
a very prominent one being the “SILCC” project introduced in Walch et al. (2015) and Girichidis
et al. (2016). In the framework of SILCC, researchers from Cologne (Universität zu Köln),
Garching (Max-Planck-Institut für Astrophysik), Heidelberg (Universität Heidelberg), Prague
(Astronomický Ústav, the Astronomical Institute of the Czech Academy of Sciences), Cardiff
(Cardiff University), and Potsdam (Leibniz-Institut für Astrophysik Potsdam) model galactic disk
regions with the necessary physical complexity to understand the full life-cycle of molecular
clouds.

The ultimate goal of the SILCC project is to provide self-consistent answers to questions like:

• How does stellar feedback regulate the star formation efficiency of a galaxy?

• How are molecular clouds formed and which processes destroy them?

• How are galactic outflows driven?

First results of the SILCC project have been published in Walch et al. (2015), Girichidis et al.
(2016), Gatto et al. (2016), Peters et al. (2017a), and Seifried et al. (2017).

5.1.1 The modular structure

FLASH is a modular simulation code. Hence, simulations are able to approximate a wide variety of
fluid simulations depending on which modules are selected.

For instance, FLASH offers three interchangeable discretization grids: a Uniform Grid (UG), a
block-structured oct-tree based adaptive grid using the PARAMESH library (MacNeice et al.,
2000), and a block-structured patch based adaptive grid using Chombo (Adams et al., 2015). The
advantage of both PARAMESH and Chombo is that they place resolution elements only where they
are needed. UG comes at a simpler implementation but notably higher computational costs.

All simulations performed with FLASH are composed out of modules coming from five categories:

Simulation modules define runtime parameters and initialize the simulation with the initial
conditions of a particular simulation.

Infrastructure modules are responsible for FLASH-related housekeeping tasks such as the man-
agement of runtime parameters, the handling of input and output to and from the code, and
the administration of the grid, which describes the simulation’s physical domain.

Physics modules are responsible for the actual simulation of the effect of various physics that
may or may not be relevant for the current simulation. They are categorized in smaller units
such as

Physics/Hydro modules solve the (magneto-)hydrodynamics equations for compressible
gas dynamics in one, two, or three spatial dimensions,

Physics/Eos modules add an equation of state computing the temperature, pressure, and
other thermodynamic quantities needed by simulations,
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Physics/Gravity modules compute gravitational source terms for the code,

Physics/sourceTerms modules compute local source terms like forcing or chemical
reaction networks, or

Physics/TreeRay is a fast algorithm for radiation transport in (M)HD simulations.

Monitor modules track the progress and performance of a given simulation, they include modules
like Monitor/Logfile, Monitor/Profiler, and Monitor/Timers.

Driver modules implement the actual time integration methods and are responsible for the general
management of the interaction between all included modules. They are responsible for
determining the time step ∆t that is used to advance the simulation from time t = tn−1 to tn.

5.1.2 Time step restrictions

I implemented my new ideal GLM-MHD solver as multiple standalone Physics/Hydro modules
selectable at setup time. During my investigations, it turned out that the time marching scheme
dictated by the Driver modules is very restrictive and limits the applicability of my new scheme
in FLASH:

“ Subsequently, the routine Driver_computeDt (usually invoked from Driver_evolveFlash at

the end of an iteration of the main evolution loop) is used to recompute ∆t for the next evolution
step. ”– FLASH user guide, Sec. 7.1.5

In the following, I shortly describe the time marching schemes prescribed by the two available
Driver modules to highlight the limitations implied by this.

The Driver/split module

The method of “dimensional splitting” has become popular in fluid dynamics as it allows us to
apply our knowledge about one-dimensional systems directly to multi-dimensional systems. Using
the dimensional splitting method, one-dimensional problems along each coordinate direction are
solved in turn to determine the fluxes across the faces of a multi-dimensional finite volume cell. It
has proven to be an inexpensive way of extending one-dimensional high-resolution methods to
higher spatial dimensions (LeVeque et al., 1998, p. 103).

The dimensionally “split” driver module implements a Strang-split method of time advancement
(Strang, 1968): Each physics module updates the solution for two equal time steps, advancing the
simulation by 2∆t in each evolution step. Given entropy-stable GLM-MHD fluxes F, G, and H at
the interfaces, the MHD modules directly update the solution using multiple one-dimensional
sweeps:

q
n,∗
i, j ,k
= qni, j ,k +

∆t

∆x
(Fn

i−1/2, j ,k − Fn
i+1/2, j ,k) (5.1)
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q
n,∗∗
i, j ,k
= q

n,∗
i, j ,k
+

∆t

∆y
(Gn,∗

i, j−1/2,k − G
n,∗
i, j+1/2,k) (5.2)

qn+1
i, j ,k = q

n,∗∗
i, j ,k
+

∆t

∆z
(Hn,∗∗

i, j ,k−1/2 − H
n,∗∗
i, j ,k+1/2) (5.3)

This first sweep is followed by the computation and immediate application of the other physics
modules. Thereafter, a second MHD sweep, in reversed dimensional order, is carried out:

q
n+1,∗
i, j ,k

= qn+1
i, j ,k +

∆t

∆z
(Hn+1

i−1/2, j ,k − Hn+1
i+1/2, j ,k) (5.4)

q
n+1,∗∗
i, j ,k

= q
n+1,∗
i, j ,k

+

∆t

∆y
(Gn+1,∗

i, j−1/2,k − G
n+1,∗
i, j+1/2,k) (5.5)

qn+2
i, j ,k = q

n+1,∗∗
i, j ,k

+

∆t

∆x
(Fn+1,∗∗

i, j ,k−1/2 − F
n+1,∗∗
i, j ,k+1/2) (5.6)

After another sequence of the remaining physics modules, the evolution loop is completed and
the simulations has been advanced by two time steps of equal size: qn

i, j ,k
→ qn+2

i, j ,k
. After two

half temporal sweeps, the can time step size can be adjusted if necessary. Furthermore, also the
condition for updating the mesh refinement pattern is tested only then and local refinement is
applied if required.

As indicated by the superscripts of the numerical flux functions, the Driver/split uses the fluid
quantities at the intermediate values to compute the individual numerical fluxes. Note that these
intermediate values may only be partially dimensionally updated.

The issue with the time marching of the split driver is immediately apparent: Based on a
previous MHD sweep, we fix the time step for the next two time steps. Now, even if the solver
determines that a much smaller time step is necessary for the intermediate steps due to newly
evolving discontinuities or shock interactions it can likewise not be used right here, but only in the
subsequent step as the solver is forced to use the predetermined time step. This directly influences
the robustness and stability of the numerical scheme. The issue of possibly unstable time steps

should not be treated lightly.

This limitation is by design. Even if the MHD solver would change the time step by itself, this
would inevitably invalidate multi-physics effects already computed by, e.g., local source terms.
The problem here is that their contributions have already been applied to the solution so a rescaling
of the effects (necessary due to the changed ∆t) is not possible. Due to memory limitations on all
currently available high-performance computing platforms, FLASH simulations cannot afford to
store historical information and retain the ability to rewind a simulation to a previous solution
state once it detects that the time step is not suitable. Hence, there is no possibility to retry the
computation with a smaller time step if problems are detected and the only way to mitigate such
problems is setting a somewhat conservative value for the CFL condition in complex simulations.
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The Driver/unsplit module

The Driver/unsplit module implements a dimensionally unsplit update of the quantities. It is
the default since version FLASH4.4 (Flash Center for Computational Science, 2017, Sec. 7.1.2.2).
In contrast to the Driver/split module, it does only perform one sweep within a given time
step and then computes the solution at the next time step. The fluxes are all computed from the
same solution quantities at time step tn (in contrast to intermediate, only partially updated values
of the split scheme):

qn+1
i, j ,k = qni, j ,k +

∆t

∆x
(Fn

i−1/2, j ,k − Fn
i+1/2, j ,k)

+

∆t

∆y
(Gn

i, j−1/2,k − Gn
i, j+1/2,k)

+

∆t

∆z
(Hn

i, j ,k−1/2 − Hn
i, j ,k+1/2) (5.7)

In general, unsplit implementations can achieve arbitrarily high accuracy, whereas split solvers
are intrinsically limited in their accuracy. However, unsplit implementations have the major
drawback of having to account for flows in multiple directions whereas split schemes only solve
one-dimensional problems. This not only leads to (slightly) increased code complexity, but also
reduces the maximum allowable time step, as the CFL condition must be fulfilled in all spatial
dimensions simultaneously in contrast to have to be fulfilled for each separate spatial direction as
in split methods.

Unfortunately, the unsplit implementation suffers from a similar, albeit reduced, issue with
prescribed time step sizes. Like in the split driver implementation, the unsplit module fixes the
time step for a given run. The restriction implied by this may be less critical than in the split case,
where up to six sweeps would have to be performed with a possibly unstable time steps.

5.2 Unsplit GLM-MHD implementation

The unsplit GLM-MHD solver is the code in my second and third publications (Derigs et al.,
2017; Derigs et al., 2018b). It solves the ideal GLM-MHD equations by computing the fluxes
in a directionally unsplit way by updating all quantities at once as described in the preceding
Driver/unsplit module subsection.

I coded this implementation for maximum flexibility to be able to exchange the fluxes, dissipation
terms, spatial reconstruction, as well as temporal integration methods easily. It is fully MPI
parallelized and works with adaptive meshes.

To overcome the time step size limitations described in the preceding section, this solver intentionally
deviates from how FLASH handles the time step synchronization by manipulating internal Driver
module variables during the evolution step to always use a suitable time step. Although the benefits
for stability and usability of the scheme are immediate, this prevents me from using this solver in
combination with other Physics modules as those modules, implemented in separate modules
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(“operator split”), would not see a time step that is constant in an evolution round. Accordingly,
this implementation does not support the inclusion of external physics modules such as gravity or
multi-species and is not suitable for general purpose multi-physics simulations.

As a testing bench, this implementation had proven to be a valuable tool during the development of
my new model when I routinely derived new discrete entropy-stable fluxes with varying physical
properties, including, but not limited to, alternative discretizations and source terms. It includes
a variety of additional diagnosis output useful for measuring the entropic properties of a given
scheme.

5.3 Split GLM-MHD implementation

The split GLM-MHD solver is an extended version of the code described in my first publication
(Derigs et al., 2016). It is fully compatible with FLASH’s split Driver module and hence supports
any multi-physics applications. However, due to this, it is also subject to the time step stability
restrictions outlined in the description of the split driver module.

To obtain high-order spatial accuracy, I implement an extended variant of the conservative Monotone
Upstream-centered Scheme for Conservation Laws (MUSCL) scheme, introduced by van Leer
(1984) (see also the recent review by Toro, 2009, Sec. 13.4). The MUSCL approach implies,
firstly, high-order of accuracy obtained by data reconstruction and, secondly, the reconstruction is
constrained to avoid spurious oscillations.

I implement adaptive mesh refinement (AMR) flux conservation. Flux conservation is necessary
when two blocks of differing refinement levels (meaning having different grid spacings) border
one another and hence a necessity for stable and accurate computations with AMR.

More specifically, I implemented the MUSCL-Hancock5 variant. This method consists of three
steps to construct a discrete second-order accurate scheme. The three steps are:

Data reconstruction step: Based on a boundary extrapolation, one obtains intermediate interface
values qi,L,R

qi,L,R = qni ∓
1

2
∆i (5.8)

with suitable cell slopes ∆i.

Evolution step: The intermediate interface values are evolved by a half time step

qi,R,L = qi,R,L +
1

2

∆t

∆x
[ f (qi,L) − f (qi,R)]. (5.9)

Solution step: Finally, the numerical fluxes are computed from the reconstructed states.

My MUSCL-Hancock implementation is based on the description of Waagan (2009, Sec. 2)
combined with the eigendecomposition I carried out for the ideal GLM-MHD system in Derigs
et al. (2018b, Appendix D, p. 124f in this thesis).

5van Leer (1984) attributes this method to S. Hancock and the literature adopted the name MUSCL-Hancock method
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5.3.1 Determination of ch

A critical part of the GLM-MHD scheme is the correct treatment of the hyperbolic cleaning speed,
ch. In my implementation, I collect the global maximum of the fast magnetoacoustic eigenvalue
found during the flux computations for each cell during the first and second dimensional sweeps.
By forcing the ψ waves to be always slower than the fast magnetoacoustic waves, I ensure that
the same CFL value can be use regardless of whether or not GLM corrections are applied to the
solution. To match the time step computation behavior of the split driver module of FLASH, I
communicate the new value for ch only at the end of two time steps using the MPI_AllReduce
subroutine.

Although this procedure might lead to less effective cleaning (ch could potentially be larger), it
ensures consistency with the way the split driver module advances the simulation and hence seems
preferable. To ensure that the maximum time step is not influenced by the choice of ch here, I offer
a runtime parameter for scaling ch (see the following section).

In the next chapter, I use this parameter to artificially increase the cleaning speed beyond the fast
magnetoacoustic wave speed. As the CFL criterion is then dominated by the ψ waves, the time
step shrinks accordingly.

5.3.2 Runtime parameters

For this implementation, I offer three runtime parameters to control the behavior of my GLM-MHD
solver. They can be set in the parameter file flash.par. If not changed explicitly, they default to
values I recommend.

entropyscheme

Using this runtime parameter, one can select the dissipation scheme used by the solver. This
setting defaults to HYBRIDWAVE. Possible choices are:

HYBRIDWAVE Use selective dissipation scheme withdissipation operator (2.45) (pressure-dependent
hybrid dissipation).

FULLWAVE Use selective dissipation scheme with dissipation operator (2.42) (wave selective
dissipation).

NOWAVE Use selective dissipation scheme with dissipation operator (2.34) (scalar dissipation).

H Use entropy Jacobian H described in Derigs et al. (2017) as scalar dissipation operator for
computing the entropy stabilization. This corresponds to eq. (2.41) in Sec. 2.6.3.

LLF Use local Lax-Friedrichs-like dissipation (as used in Derigs et al., 2017). This scheme is not
provably entropy-stable and should only be chosen for testing the entropy behavior.
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NONE No entropy stabilization is computed and applied. Note that the scheme will only be valid
for purely smooth solutions as it is nearly dissipation-free (modulo the time integrator
influence). Thus, physical dissipation necessary near discontinuities is not present in the
scheme.

alphadissipation

Using this runtime parameter, users can select if they want to use additional damping on the ψ
wave as described in Derigs et al. (2018b, Sec. 4.5, p. 105 in this thesis). This setting default
to TRUE. Dedner et al. (2002), Wesenberg (2003), Tricco & Price (2012), and Derigs et al.
(2018b) found that a mixed hyperbolic/parabolic ansatz may lead to the best results with respect
to reduced divergence errors. When set to true, the scheme adds a parabolic diffusion to the ψ
field. Through the addition of this source term, the ψ field is no longer a conserved quantity but is
actively dissipated. Clearly, including such a dissipative term makes the derivation of an entropy
conserving scheme impossible. As the contribution to the entropy is guaranteed to have the correct
sign and dissipate as the fluid evolves (see Derigs et al., 2018b, Sec. 4.5), it integrates well into my
entropy-stable scheme.

chscaling

This runtime parameter dictates the scale of the hyperbolic cleaning speed, discussed in Sec. 3.1,
to be a fraction of the maximum fast magnetoacoustic speed encountered in the two previous solver
sweeps. Setting this value to . 0.8 ensures that there are no overshoots in the GLM propagation
due to issues arising from the time step treatment of the split driver module (see Sec. 5.1.2).

5.4 Unsplit staggered mesh (CT) implementation

In addition to the previously described implementations, I wrote an entropy stable Riemann solver
for the Unsplit Staggered Mesh (USM) solver available in FLASH4.5. The unsplit staggered
mesh unit is based on a finite-volume, high-order Godunov method combined with a constrained
transport (CT) type of scheme ensuring the solenoidal constraint of the magnetic fields on a
staggered mesh geometry. In this approach, the cell-centered variables such as the plasma mass
density, momentum, and total plasma energy are updated via a second-order MUSCL-Hancock
scheme using high-order Godunov fluxes. The cell face-centered (staggered) magnetic fields
are updated using Stokes’ Theorem as applied to a set of induction equations, enforcing the
divergence-free constraint of the magnetic fields as described in the following.

The overall procedure of the unsplit staggered mesh scheme can be divided into the following
steps (see Lee & Deane (2009), Lee (2013), and Flash Center for Computational Science (2017,
Sec. 14.3.3)):
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1. Data Reconstruction-evolution The solver calculates and evolves interface values for all cells
by a half time step using the previously described MUSCL-Hancock algorithm. The approach
makes use of a new method of “multidimensional characteristic analysis” achieved in a single
time step, incorporating all flux contributions from both normal and transverse directions
without the requirement to solve a set of Riemann problems (that is usually adopted in
transverse flux updates). In this step, the USM scheme includes the multidimensional MHD
terms in both normal and transverse directions, satisfying a perfect balance law for the terms
proportional to ∇ · B in the induction equations.

2. Intermediate Riemann problem An intermediate set of high-order Godunov fluxes is calcu-
lated using the cell interface values obtained from the data reconstruction-evolution step.
The resulting fluxes are then used to evolve the normal fields by a half time step in the next
procedure.

3. Half time step update The normal magnetic fields are evolved by a half-time step using the
flux-CT method of Balsara & Spicer (1999) at cell interfaces. This method ensures the
divergence-free property on a staggered grid. This intermediate update for the normal fields
with the half time step data from the data reconstruction-evolution step provide second-order
accurate MHD states at the cell interfaces.

4. Flux computation Using the second-order MHD states calculated from the above procedures,
my entropy-stable scheme is used to obtain high-order Godunov fluxes at the cell interfaces.

5. Unsplit update of cell-centered variables The unsplit time integrations are performed using
the high-order entropy-stable fluxes to update the cell-centered variables for the next time
step.

6. Construction of electric fields Using the magnetic field fluxes computed by my entropy-stable
MHD solver, the cell-cornered (in 2D, cell-edged in 3D) electric fields are constructed using
the so-called duality relation between the components of the flux vector and the electric
fields. As an example on a two-dimensional grid (as shown in Fig. 5.1), the E

n+1/2
z,i+1/2, j+1/2

field can directly be computed from

E
n+1/2
z,i+1/2, j+1/2 =

1

4

(
− F

n+1/2
By ,i+1/2, j − F

n+1/2
By ,i+1/2, j+1 + G

n+1/2
Bx ,i, j+1/2 + G

n+1/2
Bx ,i+1, j+1/2

)
(5.10)

7. Flux-CT scheme The electric fields from step 6 are used to evolve the cell face-centered
magnetic fields, b, by solving a set of discrete induction equations:

bn+1
x,i+1/2, j = bn

x,i+1/2, j − ∆t

∆y

(
E
n+1/2
z,i+1/2, j+1/2 − E

n+1/2
z,i+1/2, j−1/2

)
(5.11)

bn+1
y,i+1/2, j = bn

y,i+1/2, j − ∆t

∆x

(
E
n+1/2
z,i+1/2, j+1/2 − E

n+1/2
z,i−1/2, j+1/2

)
(5.12)

in two spatial dimensions (Yee, 1966, Lee & Deane, 2009, eq. 51 & 52).
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Fig. 5.1: A two-dimensional sketch of the staggered mesh in the flux-CT finite volume scheme.
On the staggered mesh the numerical fluxes F and G, in x- and y-direction, respectively,
are collocated at the centers of cell interfaces and the electric fields E are collocated at
the cell corners (blue/red dots).

The resulting magnetic fields satisfy the divergence-free constraint up to the accuracy of
machine round-off errors for the chosen discretization,

(∇ · b)n+1
i, j =

bn+1
x,i+1/2, j − bn+1

x,i−1/2, j
∆x

+

bn+1
y,i, j+1/2 − bn+1

y,i, j−1/2
∆y

, (5.13)

provided that the initial configuration was divergence-free, (∇ · B)n
i, j
= 0.

8. Reconstruct cell-centered magnetic fields Finally, the cell-centered magnetic fields are
reconstructed from the divergence free cell-face magnetic fields by taking arithmetic
averages of the face variables. Note that, unlike the cell-face magnetic field divergence, the
cell-centered magnetic field divergence,

(∇ · B)n+1
i, j =

Bn+1
x,i+1, j − Bn+1

x,i−1, j

2∆x
+

Bn+1
y,i, j+1 − Bn+1

y,i, j−1

2∆y
, (5.14)

is not guaranteed to vanish as I have shown in Derigs et al. (2018b, Sec. 5.3, p. 110f in this
thesis).

Note that although entropy-stability is not strictly provable due to the flux-CT treatment of the
magnetic fields, it may be advantageous to compute the baseline fluxes using an entropy-stable
numerical scheme. An advantage of the staggered mesh formalism is that the solver’s specific
magnetic field divergence is always zero. Thereby, it reduces the amount of work in the solver as
the non-conservative terms can safely be assumed to vanish under all circumstances.

Due to the additional computational costs, using the unsplit staggered mesh solver is not feasible
for state-of-the-art multi-physics simulations. However, a future implementation of my ideal
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GLM-MHD scheme into a new unsplit solver, solely operating on cell-centered quantities, may
show advantageous properties with respect to accuracy and robustness at comparably high CFL
numbers (see also my comment on this in the Outlook chapter).
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In this chapter, I will present the application of my new numerical scheme for a state-of-the-art
astrophysical research topic. I discuss differences regarding solutions obtained with a standard ideal
MHD solver and their possible implications on the obtained results and physical interpretations of
the findings.

The formation of molecular clouds is one of the most critical steps in the star formation process.
Several publications (see, e.g., Glover et al. (2010) and references therein) suggest that the structure
and chemical composition of molecular clouds is largely dependent on the gas morphology’s
history as , under conditions predominant in molecular clouds, the dynamical and chemical
timescales are of the same order.

Hence, all numerical simulations of such scenarios must account for the effects of not only
magnetohydrodynamics and self-gravity, but also dust and molecular (self-)shielding, heating
and cooling at different gas metallicities, molecule formation and dissociation, stellar feedback,
ultraviolet (UV) radiation, X-rays, and cosmic rays from diffuse interstellar radiation.

To account for all these effects, the SILCC project6 (Walch et al., 2015; Girichidis et al., 2016)
developed an encompassing multi-physics framework with which they modeled representative
regions of disk galaxies. They include the necessary physical complexity to follow the full life-cycle
of molecular clouds.

A critical question in the applicability of my new scheme to astrophysical simulations is the
divergence cleaning efficiency in application-ready multi-physics environments. The evidence

6SILCC = Simulating the Life-Cycle of molecular Clouds
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Fig. 6.1: 3D sketch of the simulation domain. Gas is inflowing towards the center of the domain
where it then collides at a non-uniform interface to form turbulent structures.

presented in my papers (esp. Derigs et al., 2018b) proves high cleaning efficiency for dimensionless
simulations. This chapter investigates the cleaning efficiency in full astrophysical applications.

6.1 The colliding flow model

An astrophysically interesting application is the “colliding flow” scenario where two gas flows,
representative for the warm neutral medium, collide at an irregular interface. In this setup, various
dynamical and thermal instabilities lead to the generation of turbulence in the collision area and
eventually to the formation of a molecular cloud. Kinetic energy is naturally injected through the
continually inflowing warm neutral medium onto the collision zone. The constant energy input by
the inflowing gas sustains the generated turbulence self-consistently.

The usefulness of this particular scenario has been demonstrated in many publications. It has
been shown that realistic clumps of molecular gas form quickly in the resulting dense molecular
medium (see e.g., Ballesteros-Paredes et al., 1999; Heitsch et al., 2006; Vázquez-Semadeni et al.,
2007; Hennebelle & Audit, 2007; Hennebelle et al., 2008; Banerjee et al., 2009; Clark et al., 2012;
Körtgen & Banerjee, 2015; Fogerty et al., 2016; Joshi et al., 2018). Furthermore, Klessen &
Hennebelle (2010) and Valdivia et al. (2016) showed that colliding flow simulations can reproduce
the typical velocity dispersions and column densities observed in real molecular clouds. Due to
this, simulations of colliding flows are a promising tool for studying the emergence and evolution
of molecular clouds.

The particular setup I use for the simulations presented in this chapter has recently been described
by Joshi et al. (2018, Sc. 3.2). I repeat their three-dimensional multi-physics simulations with
my new numerical scheme to compare the properties of the generated molecular clouds. All
simulations are computed with CFL = 0.5.

The sole purpose of the present discussion is the investigation of differences in the solutions and
statistical properties obtained using my new Galilean-invariant entropy-stable ideal GLM-MHD
scheme.
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6.2 Simulation setup

In Fig. 6.1, I depict a three-dimensional sketch of the simulation setup. The computational domain
has the extent 128 pc × 32 pc × 32 pc (x × y × z). It is filled with a uniform gaseous medium
resembling the warm neutral medium of the ISM (n = 1 cm−3, sound speed cs = 7.8 km s−1,
corresponding to a temperature of T = 5541 K). The boundary conditions are set to inflow in the
x−direction where gravity is set to isolated boundaries7. For the y− and z−directions, I use fully
periodic boundary conditions.

A non-uniform collision interface is established at the center of the computational domain.
Inflowing warm gas colliding at the interface triggers the onset of turbulence immediately at the
beginning of the simulation. The inflowing gas is modeled by directing the medium with a velocity
of v = 13.6 km s−1 towards the collision interface. This inflow is indicated by arrows in Fig. 6.1.

The spatial resolution of the simulations was chosen to be (a) low enough to be still affordable in
terms of computational resources, and (b) high enough to resolve all interesting effects. Seifried
et al., 2017, Sec. 6 recommend a resolution of . 0.1 pc to obtain realistic morphological and
dynamical properties in astrophysical applications. I configured the adaptive mesh refinement
(AMR) to go from level 4 to 6, corresponds to a minimum grid size of 0.125 pc to approximately
meet this criterion.

6.3 Non-magnetized colliding flow

Firstly, I ran the colliding flow simulation without any magnetic field to compare the hydrodynamic
properties of the schemes. The temporal evolution of a few interesting simulation quantities such
as the simulation time step or the global minimum temperature is plotted in Fig. 6.2. As can be
seen in the uppermost plot in this figure, the amount of computational cells is of the same order
compared to the Bouchut5 scheme (Bouchut et al., 2010; Waagan et al., 2011). It is interesting to
note that my solver behaves very similar and starts to deviate only at later times (t > 20 Myr). The
slight difference in the number of computational blocks results from a different density structure
that has developed during the highly non-linear simulation and should be understood as a feature
of this particular simulation rather than as a general trend.

The second plot from the top in Fig. 6.2 shows the time step size used by the schemes. The arrows
depict the time when the simulation first refined to the maximum allowed AMR level. We see that
the overall magnitude of the time step is comparable between Bouchut5 and my solver. In the
bottom two plots of Fig. 6.2, I show the global maximum density and minimum temperature. The
obtained results are in good agreement with each other.

In Fig. 6.3, I plot the cell mass distribution as two-dimensional profiles of temperature against
density at t = 28 Myr. Three cell mass extrema can be identified in this plot:

7Isolated gravity boundaries mean that no gas outside of the box is considered for the gravitational potential.
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Fig. 6.2: Plot showing the temporal evolution of some simulation properties. From top to bottom:
Total number of computational blocks in the grid (a computational block is composed
of 83 cells); time step size; global maximum density (non-weighted); global minimum
temperature (non-weighted).

1. A maximum in the top left corner corresponds to the inflowing warm neutral medium
(n = 1 cm−3, T = 5541 K),

2. A broad extremum around the center corresponds to gas pilled up in the collision volume
(n ≈ 1 × 102 cm−3, T ≈ 100 K), and

3. A tail at the end of the phase plot (n > 1 × 106 cm−3, T < 10 K) corresponding to the gas
that has collapsed into molecular cores.

Overall, the statistical properties of both simulations are comparable.

6.4 Magnetized colliding flow

For investigating the effect of magnetic fields on the emerging molecular cloud, an identical setup
with the addition of a uniform initial magnetic field aligned with the inflow in x-direction is applied
to the medium. Weis et al. (2018) investigated the evolution of the colliding flow influenced by
magnetic fields varying from 0 µG to 10 µG in initial field strength. For the sake of brevity, I limit
my comparison in here to one average magnetic field strength of 2.5 µG.
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Fig. 6.3: Two-dimensional profile plots of the cell mass distribution in dependence of temperature
and density at t = 28 Myr. The color of the pixels correspond to the mass found in a
given density/temperature bin. The overplotted lines show the average temperature for a
given density bin. The shaded region corresponds to gas densities that are not Jeans
resolved, i.e., where the gravitational infall is no longer accurately resolvable at the given
spatial resolution. Three distinct regions with high mass can be identified (see text).

In the forthcoming plots, I sometimes include two plots for the Bouchut5 scheme, representing
two different source term implementations (once with the Powell and once with the Janhunen
terms). The Janhunen terms based implementation of the scheme is used in state-of-the-art
simulations, e.g., by Walch et al. (2015), Girichidis et al. (2016), more recently Seifried et al.
(2018a) and Weis et al. (2018). For the sake of completeness, I present a detailed discussion
about the implications of this difference in implementation in the appendix of this thesis. It is of
no immediate relevance for the present discussion. I primarily compare my new entropy stable
scheme against the Bouchut5 solutions with the Powell terms as this implementation is physically
more meaningful (see appendix and also Derigs et al., 2018b, Sec. 3.8, p. 93f in this thesis).

6.4.1 The dissipation factor α

In Derigs et al. (2018b, Sec. 4.5, p. 105 in this thesis), we described a mixed hyperbolic/parabolic
GLM ansatz. This approach gives very good results and has been found to be even necessary for
periodic boundary conditions. The additional source term enters the ideal GLM-MHD equations
in form of

∂

∂t
ψ = −αψ, (6.1)

with a dissipation factor α ∈ [0,∞). In discretized form, eq. (6.1) reads

ψn+1
= −∆tnαnψn. (6.2)

149



6 An astrophysical application

In Derigs et al. (2018b), we confirmed the finding of Dedner et al. (2002) that

α =
ch

0.18
(6.3)

gives satisfactory results for dimensionless simulations.

In the present astrophysical setup, however, I found that this choice is too restrictive as α is too
large. This is caused by the typically very large time steps (∆t ∼ a few kyr) in conjunction with the
typically very large speeds in the simulations8 leading to a large value of ch and hence α.
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Fig. 6.4: Plot of the volume-integrated absolute magnetic field divergence. I plot difference
possibilities for the dissipation parameter α. The cleaning speed is not altered (1× ch, see
also Sec. 6.4.2). The no cleaning simulation was terminated early to save computational
resources. For the remainder of this work, I use α = ch/22.5 (brown line). This plot
shows

|∇ · B|global =

∫
|∇ · B| dV

In Fig. 6.4, I plot the absolute volume-integrated magnetic field divergence for different values
of the dissipation parameter α. It is obvious that magnetic cleaning is necessary in order to
control the global magnetic field divergence as it otherwise grows over time as depicted by the
blue line in Fig. 6.4. without divergence cleaning. We see that the mixed ansatz (hyperbolic +

8typically on the order of several kilometers per second
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6.4 Magnetized colliding flow

parabolic) is necessary to keep the long-term magnetic field divergence low. If one would use only
hyperbolic GLM, the periodicity of the computational domain would only lead to an ever increase
of complexity in the ψ field, leading to highly complex morphologies that cannot be cleaned in a
timely fashion (see α = 0, orange line). Due to various interference phenomena of ψ waves, the
GLM correction can even be adverse so that the long-term magnetic field divergence can increase
further when no additional damping is applied on the ψ field.

I found that a reduced parabolic dissipation factor α ∼ ch/22.5 gives the best results over the entire
evolution of the simulation. I use this value of α for the remainder of this chapter.

6.4.2 The divergence cleaning efficiency
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Fig. 6.5: Plot of the volume-integrated absolute magnetic field divergence for difference scalings of
the cleaning speed ch. Crosses mark simulations I terminated early to save computational
resources. In the forthcoming analysis, I focus on the 5 × ch simulation as it shows the
lowest global magnetic field divergence. This plot shows the same quantity as in Fig. 6.4.

In Fig. 6.5, I plot the integrated magnetic field divergence for various cleaning speeds ch. We
see that the cleaning efficiency increases with increasing cleaning speed. This is expected as the
higher speeds leads to a faster transport of the ψ correction field and hence a faster correction of
magnetic field divergence errors. For comparison, I add the measured integrated magnetic field
divergence for the Bouchut5 solver (once with the Janhunen and once with the Powell source
term, see also the appendix of this thesis).
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As described in Derigs et al. (2018b, Sec. 3.7, p. 93 in this thesis), the cleaning speed, ch, directly
influences the time step of the simulation. In my code, I compute ch by

ch = chscaling × max
Ω

(cf ) (6.4)

where maxΩ(cf ) is maximum fast magnetoacoustic wave speed in the entire simulation domain.
The parameter chscaling dictates the scale of the hyperbolic cleaning speed. It is discussed in
Sec. 5.3.2.

Using chscaling > 1, it is possible to select values for ch that exceed maxΩ(cf ). This leads to
the CFL criterion being dominated by the dynamics of the GLM-waves and, hence, will shrink the
(global) time step.

In my tests, I see the best cleaning behavior for the simulation with a fivefold upscaled cleaning
speed, 5 × ch. The increase in cleaning speed immediately reduces the time step size by a factor of
five, just as expected. It is clear that such a decrease in the global time step is not feasible for
large-scale astrophysical simulations. However, the purpose of this chapter is to compare the
solution of my solver and the existing Bouchut5 solver. Later in this chapter, I revisit the problem
of reduced time steps and present a solution for practical astrophysical simulations.

6.4.3 Simulation properties

In Fig. 6.6, I plot the same quantities as already shown for the simulations without magnetic fields.
As in the non-magnetized case, I find here that my new entropy stable scheme requires a nearly
identical number of computational blocks as the Bouchut5 run. Looking at the time step size, we
see that the “ES (1 × ch )” scheme uses a comparable, but slightly smaller time step compared
to the Bouchut5 solver. This is expected, as the time step criterion for the Bouchut5 solver is
determined by a combination of the Alfvén and the hydrodynamical sound speed (Waagan et al.,
2011, Sec. 2.5), whereas my scheme uses the fastest wave speed of the ideal GLM-MHD system9

for determining the maximum time step being smaller under the same CFL condition.

As before, the global minimum temperatures obtained in the simulations are in good agreement.
The ES (5 × ch ) run produces higher densities sooner in the evolution of the simulation, leading to
an earlier structure formation.

9This is usually the magnetoacoustic wave speed, however, when ch is scaled up, the GLM waves, λ±ψ = u ± ch ,
provide the predominant wave speed.
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Fig. 6.6: Plot showing the temporal evolution of some simulation properties (magnetized colliding
flow). From top to bottom: Total number of computational blocks in the grid; time
step size; global maximum density (non-weighted); global minimum temperature
(non-weighted). The arrows mark the time when the individual simulations first refined
to the highest available AMR level.
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6.4.4 Column densities
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Fig. 6.7: Total gas column density at t = 24 Myr. This plot shows

Σgas =

∫
ρ(x, y, z) ŷ dy.

In Fig. 6.7, I show column density maps of the total gas by new entropy stable scheme, as well as
the Bouchut5 scheme at t = 24 Myr. We see that the thickness of the collision region is similar
across all three results. The most prominent difference is that a larger number of more concentrated
core clumps10 are produced by the simulation using my scheme compared to the typical clouds
generated by the Bouchut5 scheme. The Bouchut5 (Janhunen) result is more diffuse and shows
an overall less dense structure. These observations are confirmed by the evolution of the dense
gas11 mass fraction, shown in Fig. 6.8. The evolution of the ratio of dense to total gas mass in the
system continuously increases due to the constant inflow of gas onto the collision interface and
the gravitational collapse of gas into molecular cloud cores. At t = 24 Myr, the dense gas mass
fraction of the ES result lies in between the results obtained using the two Bouchut5 results.

10I denote high-density regions as cores when a surface density of larger than Σgas ≈ 104 M⊙ pc−2 is seen in the
projection plots. Using 3D data inspection, I ensured that the identified cores are not caused by projection effects
but are actual singly connected structures.

11ρ ≥ 2.34 × 1.67 × 10−22 g cm−3
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Fig. 6.8: Dense gas mass fraction (ρ ≥ 2.34 × 1.67 × 10−22 g cm−3).
This plot shows

Mρ

Mtotal
=

∫
ρ(x, y, z)|ρ≥2.34×1.67 × 10−22 g cm−3 dV∫

ρ(x, y, z) dV
.

6.4.5 Plasma-β

In Fig. 6.9, I plot the mass-weighted projections of plasma-β. The beta of a plasma is the ratio
of the thermal pressure ptherm to the magnetic pressure pmag. It is used to measure their relative
importance in a given fluid. In the projection plot, reddish gas is thermally dominated (β > 1),
whereas blueish gas is magnetically dominated (β < 1). White regions are in an equilibrium state
(β ≈ 1). We see that the dynamics of the gas are slightly more magnetically dominated in the
solution obtained using my entropy stable GLM-MHD solver.

For the sake of convenience, I overplot black crosses at the locations of the molecular cloud cores
in Fig. 6.9. This makes it easier to see that molecular cores form both within magnetically and
thermally dominated regions. This is in agreement with the results obtained using the Bouchut5
(Powell) solver and highlights the importance of a physically consistent magnetic field treatment
when studying the creation and evolution of molecular clouds in magnetized simulations.

In Fig. 6.10, I plot the temporal evolution of the magnetically dominated gas mass fraction
(plasma-β criterion). We see that the temporal evolution is similar for the first ≈ 12 Myr. Later
on, my entropy stable scheme produces a slightly higher percentage of magnetically dominated
gas than the Bouchut5 solver. This is in agreement with the observations in Fig. 6.9 where we
have seen extended magnetically dominated regions in the ES results but much less magnetically
predominance in the Bouchut5 (Janhunen) simulation.
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Fig. 6.9: Mass-weighted projected plasma β at t = 24 Myr. The black crosses correspond to the
molecular cloud cores visible in the surface density plots (Fig. 6.7). This plot shows

β =

∫
β(x, y, z)ρ(x, y, z) ŷ dy∫

ρ(x, y, z) ŷ dy
, with β =

ptherm

pmag
=

nkBT
1

2µ0
‖B‖2

.
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Fig. 6.10: Magnetically dominated gas mass fraction (plasma β < 1). This plot shows

Mβ<1

Mtotal
=

∫
ρ(x, y, z)|β<1 dV∫
ρ(x, y, z) dV

.
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6.4.6 Average magnetic field
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Fig. 6.11: Mass-weighted projected magnetic field strength at t = 24 Myr. The black crosses
correspond to the molecular cloud cores visible in the surface density plots (Fig. 6.7).
This plots shows

B =

∫
‖B(x, y, z)‖ρ(x, y, z) ŷ dy∫

ρ(x, y, z) ŷ dy
.

In Fig. 6.11, we see that the magnetic field is dominant in some, but not all, cloud cores. The lower
and more scattered magnetization found in the Bouchut5 (Janhunen) runs is in disagreement with
the other two results. However, as mentioned earlier, the Janhunen term based result is physically
questionable.

The result supports the prevalence of magnetic effect in the dynamics of the forming molecular
clouds.
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6.4.7 Gas energies
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Fig. 6.12: Volume-integrated gas energies in the simulation.

In Fig. 6.12, I plot the volume-integrated fluid energies,

Etot =

∫
E(x, y, z) dV, (6.5)

Emag =
1

2µ0

∫
‖B(x, y, z)‖2 dV, (6.6)

Ekin =
1

2

∫
ρ(x, y, z)‖u(x, y, z)‖2 dV, and (6.7)

Eint = Etot −
(
Ekin + Emag

)
. (6.8)

The GLM energy,

Eψ =
1

2µ0

∫
ψ(x, y, z)2 dV, (6.9)

is not shown as it is, at all times, several orders of magnitude smaller than the other forms of
energy. Note that the gravitational energy is not contained in these plots as the MHD scheme
itself is unaware of the effects of gravity (implementationwise, they are added in a separate step as
source terms on momentum and kinetic energy).

We see a large agreement between the integrated energies across all three solvers. They only
start to differ very late in their evolution when, e.g., the gravitational collapse into very few, very
massive molecular cores becomes the dominant contribution for the generated kinetic energy in
the Bouchut5 (Powell) simulation.
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Fig. 6.13: Integrated internal energy in the dense gas (ρ ≥ 2.34 × 1.67 × 10−22 g cm−3).

As the internal energy is dominated by the inflowing warm neutral medium12, I plot the
volume-integrated internal energy of only the dense gas in Fig. 6.13. We see that the integrated
internal energy behaves similar across all simulations. It should, however, be noted that general
statements about the behavior of the internal energy in multi-physics simulations are difficult as the
gas is not only subject to adiabatic processes but also affected by heating and cooling. Especially
the cooling processes are of great importance in the present simulations as the forming molecular
cloud cores are, to a large degree, optically thin and can efficiently radiate away thermal energy.
This cooling mechanism is likely the predominant effect in the high-density cores and continuously
alters the temperatures seen by the MHD solver.

6.4.8 Temperatures

In Fig. 6.14, I show two-dimensional cell mass profiles similar to those I have shown for the simula-
tions without magnetic fields (Fig. 6.3). They confirm that the statistical properties of the simulations
are comparable with one notable difference found in the region ρ ∈ [1 × 103 cm−3,1 × 105 cm−3],
T ≈ 100 K. The gas found in this interval corresponds to intermediate density gas surrounding
the central collision zone. This gas is visible in mass-weighted temperature projection plots (see
Fig. 6.15) (located around x = 0, the position of the initial collision interface).

12Temperature of the inflowing gas: Tin = 5541 K
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Fig. 6.14: Two-dimensional cell mass profile plots showing temperature against number density
at t = 24 Myr. The color of the pixels correspond to the mass found in a given
density/temperature bin. The overplotted lines show the average temperature for a given
density bin. The shaded region corresponds to gas densities that are not Jeans resolved
at the given spatial resolution.
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Fig. 6.15: Mass-weighted projected temperature at t = 24 Myr. The black crosses correspond to
the molecular cloud cores visible in the surface density plots (Fig. 6.7). This plot shows

T =

∫
T(x, y, z)ρ(x, y, z) ŷ dy∫

ρ(x, y, z) ŷ dy
.
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6.5 Applicability in state-of-the-art simulations

As I pointed out in Sec. 6.4.2, I see the best cleaning behavior for the simulation with a fivefold
upscaled cleaning speed, 5 × ch. As increases in cleaning speed immediately shrink the size of
the global time step, it is clear that such a scheme is not feasible for large-scale astrophysical
simulations. There are two solutions for this issue:

1. Implement subcycling for the MHD solver, and

2. Augment the system with a further divergence-control mechanism.

Subcycling for the MHD solver

Subcycling allows different time step sizes to be used for different parts of a simulation code. It
can efficiently reduce the overall run time for a simulation when a comparably small module in
the code controls the global time step. In the colliding flow simulations, the MHD solver only
uses about 6 % of the overall computing time whereas other modules, such as gravity (using
approximately 60 % of the total runtime), dominate the computational costs of the simulation.

The idea of subcycling is to run smaller modules several times in a row (with correspondingly
reduced time steps) without enforcing the small time steps also for the other, more expensive,
parts of the code. This increases the overall efficiency of the numerical implementation. In FLASH,
subcycling is already successfully used for the chemistry module which computes the chemical
evolution of the gas using a chemical network. This module regularly requires smaller time steps
for its integration. Therefore, to not affect the global time step, subcycling is employed.

A similar subcycling could be implemented for the MHD solver to allow for an upscaling of the
cleaning speed, ch, at manageable additional computational costs. It would allow using a larger ch
at the same global time step without violating the CFL condition.

An additional divergence-control mechanism

A further possibility is to augment the entropy stable MHD solver with a similar post-processing
divergence-control step as used, e.g., in the Bouchut5 and other splitMHD solvers available
for FLASH. The entropy stable solver equipped with this divergence treatment as an additional
post-processing step is denoted as “ES (divbdiffuse)”. The post-processing step is implemented in
an entropy aware manner by ensuring that neither the density not the thermal pressure change
during the procedure. This requires an adjustment of the gas total energy to account for the changed
magnetic field morphology caused by this post-processing step.

As can be seen in Fig. 6.16, the magnetic field divergence cleaning properties of the “ES
(divbdiffuse)” are similar as in the Bouchut5 runs and slightly improved compared to the “ES
(5 × ch )” simulation.
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Fig. 6.16: Plot of the volume-integrated absolute magnetic field divergence. This plot shows the
same quantity as in Fig. 6.5 (different scale).

In Fig. 6.17, I show the mass-weighted and maximum absolute magnetic field divergence over
time. We see that all schemes agree within roughly one order of magnitude. This is in agreement
with the integrated absolute magnetic field divergence plot (Fig. 6.16) and furthermore confirms
that the magnetic cleaning works correctly also in the most active regions undergoing gravitational
collapse.

In Fig. 6.18 – 6.21, I show similar projection plots to what I discussed in details already before.
We see that the properties of the “ES (divbdiffuse)” scheme are very similar to the reference
scheme. Hence, the “ES (divbdiffuse)” is a promising alternative to a GLM-only entropy stable
MHD solver for the high demands of astrophysical simulations.
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Fig. 6.18: Total gas column density at t = 24 Myr. Compare to Fig. 6.7.
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Fig. 6.19: Mass-weighted projected plasma β at t = 24 Myr. Compare to Fig. 6.9.
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Fig. 6.20: Mass-weighted projected magnetic field strength at t = 24 Myr. Compare to Fig. 6.11.
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Fig. 6.21: Mass-weighted projected temperature at t = 24 Myr. Compare to Fig. 6.15.
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6.6 Computational costs

Solver B0 ∆t Nsteps real time CPU hours

ES none 3.121 kyr 5557 20.6 h 13 305 CPUh
Bouchut5 none 3.123 kyr 5512 19.2 h 11 728 CPUh

ES (1 × ch ) 2.5 µG 2.75 kyr 6438 23.9 h 15 415 CPUh
ES (5 × ch ) 2.5 µG 0.5 kyr 25 486 101.9 h 76 895 CPUh
ES (divbdiffuse) 2.5 µG 2.83 kyr 6124 24.9 h 16 064 CPUh
Bouchut5 (Powell) 2.5 µG 2.98 kyr 5816 23.6 h 15 226 CPUh

Table 6.1: Comparison of computational resources used for the described simulations. From left to
right: Numerical scheme (“solver”); initial magnetic field along inflow direction (B0);
average time step size (∆t); number of evolution steps used by the simulation (Nsteps);
wall clock time used by the simulation (real time); computational costs accounted in
total core hours (CPU hours).

In Table 6.1, I summarize the computational costs of the presented simulations. All simulations
have been computed on the SuperMUC Petascale System (phase 1). Each simulation ran on 644
“thin” compute node cores (Intel© Xeon© E5-2680 CPU (Sandy Bridge) at 2.7 GHz, 2 GB memory
per core, nodes connected via a non-blocking 10 GBit/s Infiniband™ FDR10 network).

The top panel in the table shows data for the simulations without magnetic fields. We see that the
average time step is almost identical. The computational costs of the simulations are comparable
whereas my new scheme leads to a slightly increased computational cost of 13 % compared to
the Bouchut5 scheme. These additional costs are caused by the higher complexity of the hybrid
entropy stabilization as already analyzed in Derigs et al. (2017, Sec. 5, p. 76f). Using a simpler
entropy stabilization (e.g., entropyscheme=H), the computational costs could be lowered at the
cost of increased dissipation.

In the magnetized simulations, the mean time step size of my entropy stable solver is slightly smaller
than the Bouchut5 time steps. This is expected as my scheme can resolve fast magnetoacoustic
waves while the Bouchut5 solver cannot resolve these waves. Accordingly, the total number
of evolution steps is about 10 % higher compared to the Bouchut5 results. However, the total
additional costs are only ≈ 1 % higher as my scheme is computationally more efficient per evolution
step as my new scheme does not require an additional post-processing divergence cleaning step.
As expected, the computational costs of the simulation with fivefold upscaled cleaning speed are
about five times as expensive.

The simulation with added post-processing divergence correction (“ES (divbdiffuse)”) is about
5 % more expensive compared to the Bouchut5 (Powell) reference solution.
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6.7 Summary

In this chapter, I have demonstrated the utility of my new entropy stable solver for a large-scale
astrophysical application. My scheme proved to be applicable to a state-of-the-art multi-physics
simulations with and without magnetic fields and can resolve fluid features accurately (see
also Fig. 6.22 for a direct comparison). Its divergence cleaning properties are similar to the
post-processing diffusive divergence cleaning used by the Bouchut5 solver. The omnipresence of
dynamically important magnetic fields in the entire molecular cloud indicates the importance of a
physically consistent treatment of magnetic fields in this particular setup and beyond.
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Fig. 6.22: Total gas column density at t = 24 Myr, projected along the x-axis. Top panel:
Simulations without magnetic field. Bottom panel: Simulations with magnetic fields.
Left side: ES 5 × ch result. Right side: Bouchut5 result.
Although the simulations start from the same initial conditions, the highly non-linear
character of the colliding flow model results in an entirely different evolution. The
disk-like features visible in the simulations without magnetic fields are phenomena
caused by the limited spatial resolution (see Seifried et al., 2017, Sec. 6).
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The aim of this work was to develop and test a new mathematical model for astrophysical simulations.
This development was necessary because the traditionally used discrete form of the ideal MHD
equations becomes invalid in the presence of numerically caused magnetic field divergence errors.
As the ideal MHD equations have no inbuilt mechanism to control the growth of such errors,
numerical schemes have to resort to so-called “divergence cleaning methods”, most of which
conflict with the laws of thermodynamics. To ensure a physically meaningful treatment of the
simulated gas, consistency with the laws of thermodynamics was the driving design principle from
the beginning of my derivations.

In my first paper in this thesis (Derigs et al., 2016), I described the implementation of a new
entropy-aware high-order numerical method for MHD problems. I carefully described the
implementation strategy, e.g., details about building the new solver into the adaptive mesh
refinement system PARAMESH (MacNeice et al., 2000). I further developed a hybrid dissipation
term for MHD flows that continuously blends the highly accurate selective dissipation scheme
with the more dissipative scalar dissipation scheme to increase the robustness of my numerical
scheme, while retaining more accurate features in smooth regions. I used a variety of tests to
verify the utility, flexibility, and robustness of my numerical model for hydrodynamical and
magnetohydrodynamical flows in single and multiple spatial dimensions. A detailed comparison
against the other available numerical schemes for MHD in FLASH showed that my new entropy
stable solver was the most accurate in smooth regions of a flow, and was also able to resolve strong
shocks.

My second work (Derigs et al., 2017) is a follow-up paper. It highlights that special care needs to
be taken when designing discrete dissipation operators for numerical schemes. I have shown that
schemes designed for both hydrodynamical and magnetohydrodynamical flows may easily break
down for strong shocks in moving background media. I analytically verified that the commonly
used entropy conservative numerical flux function for the Euler equations of Ismail & Roe (2009)
suffers from such breakdown for pressure jumps larger than a few orders of magnitude. As we
expect such pressure discontinuities in strong shocks like those generated by supernova explosions,
my findings are of immediate importance for the simulations concerned with plasmas under
extreme conditions like in astrophysical applications. I demonstrated that the kinetic energy
preserving entropy conserving (KEPEC) flux, first derived by Chandrashekar (2013) and more
recently extended to ideal MHD by Winters & Gassner (2016), shows no pathological behavior
even for very large pressure jumps. The KEPEC flux is the baseline flux of the solver implemented
in my works.
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My new contributions through this second work are two-fold: First, I showed that a straightforward
discretization of the entropy Jacobian, needed to design entropy stable numerical methods, leads
to an asymmetric, i.e., not provably entropy stable scheme. I presented a new technique that is
convenient for the derivation of discrete entropy Jacobian operators. Secondly, I showed that it is
essential to choose very specific averaging for the entries of the discrete entropy Jacobian. Further,
I demonstrate that naive averaging strategies (such as commonly used arithmetic mean averaging)
can quickly lead to unphysical states in cases where strong pressure jumps are present.

As a result, I establish a, for the first time, unique averaging technique for entropy stable approximate
Riemann solvers. Whereas previously there have been a number of free choices in the design of
numerical schemes, this work closes almost all of these uncertainties. It leaves open the unique
discretization of the eigenvalues which I have presented in my third work (Derigs et al., 2018b).
Together, these unique averages makes the entropy stable numerical scheme uniquely defined,
giving detailed justification for the averaging on each term.

The third research paper contained in this thesis (Derigs et al., 2018b) is independent but meanwhile
supplementary to the first two. In this work, I carefully described the derivation of a new physically
motivated mathematical model suitable for building entropy stable numerical schemes for ideal
MHD flows. In agreement with earlier publications, I choose to call my model the “ideal
GLM-MHD equations”. This new mathematical model can be used to build numerical methods
for a number of schemes, including but not limited to, finite volume (applied in this work), finite
difference, and high-order discontinuous Galerkin (see, e.g., Bohm et al., 2018) frameworks.

Whereas all entropy stable schemes for ideal MHD available in the literature to date either have
insufficient magnetic field divergence treatment (e.g. through non-conservative terms), lose their
favorable entropy stable properties when augmented with post-processing divergence cleaning, or
are applicable in only one spatial dimension, my new scheme is free of such limitations.

My new mathematical model has the advantage of offering an effective magnetic field divergence
cleaning while retaining in full agreement with thermodynamic laws. In contrast to other
divergence cleaning methods, the purely hyperbolic nature of my new model makes it very
attractive for parallelization on the largest scales. With this, one can acknowledge the increasingly
stringent performance and scalability requirements driven by present-day trends in computing
architectures.

Similar to previous GLM investigations as done by Munz et al. (2000) and Dedner et al. (2002),
the idea of my model is to not enforce the divergence-free condition exactly, but to design a scheme
that evolves towards a divergence-free state. By this, the model deliberately tolerates a certain
numerically caused non-zero magnetic field divergence in the evolution of the simulations.

One notable drawback of my new mathematical model is that, as the magnetic field topology
is corrected in a hyperbolic fashion, the cleaning cannot be instantaneous. Furthermore, I
recommended to restrict the cleaning speed to be, at most, as fast as the fastest propagating waves
in the solution. This choice was intentionally made to not alter the timestep size of multi-physics
simulations. This drawback could be mitigated with, e.g., MHD solver subcycling, allowing for a
substantially larger cleaning speed.
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While the magnetic field morphology is corrected by the GLM waves, a certain amount of energy
is temporarily removed from the magnetic field and carried by the ψ field. Hence, I found that one
must account for this new type of energy to design entropy-aware methods. As the ψ energy can
only come from the magnetic energy, it is natural to think of it as an additional component to the
conserved fluid’s total energy. Hence, the total energy equation should to be re-derived as well.

In my approach, the non-conservative terms on the right-hand side of the ideal MHD equations,
initially discussed by Godunov (1972) and later rediscovered by Powell et al. (1999), naturally
arise when coupling the Lorentz force with the Euler equations. Whereas the justification for using
these terms previously was most often of mathematical nature as they are needed to symmetrize the
equation system, I was now able to add new, solely physical motivations for these terms. Although
these extra terms proportional to ∇ · B have been known for decades, a physically motivated
derivation was missing. It is most likely due to this lack of a physically founded interpretation that
most researchers refrain from using these terms as they bring the ideal MHD equations into a
strictly non-conserved form. However, as described in Derigs et al. (2018b), this commonly found
lack of the proper non-conservative terms can quickly lead to unphysical behavior of the simulated
fluid. For instance, the fluid could be affected by an artificial force parallel to the magnetic field
lines. I thoroughly discussed this and further implications of my findings in a general framework
in Derigs et al. (2018b, Sec. 2, pp. 84-88 in this thesis).

Galilean-invariance ensures that the same physical laws are valid in all inertial reference frames,
and is a necessary property of any well-posed theory in non-relativistic physics. The ideal MHD
equations (without non-conservative terms) are not Galilean-invariant when written in Eulerian
form. Another discovery I made is that Galilean-invariance can easily and self-consistently
be attained when deriving the mathematical model using the generalized form of Maxwell’s
equations.

Very recently, Bohm et al. (2018) applied my new scheme in the framework of high-order nodal
discontinuous Galerkin (DG) schemes on curvilinear unstructured hexahedral meshes. They
extended my ideal GLM-MHD scheme with resistive terms and demonstrated the versatility of the
scheme in DG spectral element methods (DGSEM). They demonstrated that the entropy-stable
GLM-MHD based DGSEM method gives increased robustness compared to standard DGSEM
methods. Furthermore, they demonstrated high-order convergence rates for DGSEM with my new
ideal GLM-MHD model.

I successfully applied my new ideal GLM-MHD model to a state-of-the-art application in
astrophysics and compared the difference to a commonly used ideal MHD scheme utilizing a
post-processing divergence cleaning method (see Chapter 6). My new scheme is currently under
testing in today’s largest-scale simulations which try to obtain a complete understanding of the
formation of molecular clouds and star-forming regions therein carried out by Haid et al. (2018)
and Seifried et al. (2018b).

To summarize, the significance of this thesis is that my work leads to the first entropy consistent
hyperbolic formulation of the ideal MHD equations with effective inbuilt divergence cleaning.
The ideal GLM-MHD scheme has many favorable properties, such as entropy stability ensuring
consistency with the universally valid laws of thermodynamics, kinetic energy preservation
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preventing the emergence of spurious kinetic energy generation, and Galilean invariance ensuring
that the model describes the same physics in all reference frames. As high-performance computing
facilities are pushing further towards sustainable highly power-efficient systems, they evolve more
and more towards architectures featuring a larger number of machines. The purely local nature
of my scheme warrants its high appeal for applications running current large-scale and the even
larger-scale simulations we expect over the next decades.
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Based on the developments presented in this thesis, I suggest potential follow-up works and
research topics. I will shortly discuss these possible extensions herein to facilitate future projects
building upon my entropy-stable GLM-MHD scheme.

One potential future project is the implementation of my scheme in arbitrary accuracy. This
high-order extension is computationally feasible due to relying on simple linear combinations of
fluxes.

One further project could investigate the effect of an adjustable scaling parameter in the pres-
sure-based shock indicator used to enhance the accuracy of the hybrid dissipation scheme, in
particularly for smooth flow regimes.

Furthermore, the ideal GLM-MHD system can easily be extended to include non-ideal effects such
as resistivity, viscosity, and (an)isotropic thermal conduction, so work in this direction may prove
be useful for future, more complex numerical simulations of plasma phenomena.

Another possible future project would be the implementation of my new entropy-stable GLM-MHD
scheme into FLASH’s new GLM variant of the unsplit solver that is currently under development.
This would reduce some of the time step restrictions I discussed in Sec. 5.1.2. Unfortunately, this
variant of the unsplit solver was not available in June 2018, so I couldn’t investigate further on
this topic for this thesis.

Other projects could be the implementation of subcycling as mentioned in Chapter 6 and the
comparison to actual astrophysical systems using the technique of synthetic observations.
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8.1 Implementation of a numerical scheme with arbitrary

high-resolution

In Derigs et al. (2018b, Sec. 4.8, pp. 105-107 in this thesis), I described how one can build entropy
stable schemes of arbitrarily high-order in space and time.

High temporal accuracy may be achieved by replacing the time integrator by a suitable higher-order
scheme, e.g. strong stability preserving (SSP) Runge-Kutta (RK) schemes (see e.g. Gottlieb et al.,
2001). However, as high-order accurate time integrators come at additional computational costs,
one has to find a compromise between (temporal) accuracy and computational resources.

Fortunately, high-order accuracy in space can be achieved in a computationally very attractive way
using the fact that the entropy conserving flux describes the rate of change for the quantities over
an interface and, as such, is a first order derivative with respect to time over a fixed volume. Given
a suitable extrapolation, one can construct arbitrarily accurate interface fluxes through simple and
inexpensive linear combinations of the first-order accurate entropy conservative fluxes computed
at cell interfaces in the usual way.

I carefully described the general high-order extension technique and gave the precise forms of the
fluxes and non-conservative terms for up to sixth-order accuracy in my third paper. While this
method is very promising for the application on purely smooth solutions (entropy conserving
scheme), it is unclear how the high-order extension may affect the robustness of the overall entropy
stable scheme.

As it is not possible to apply the same technique for the entropy stable part of the numerical fluxes
(detailed by Fjordholm et al., 2012, Sec. 3.2) a specific reconstruction procedure has to be used
to ensure high-order entropy stability. To control shock-induced oscillations, the entropy-stable
fluxes should be computed from a limited reconstruction. As Fjordholm et al. pointed out, this
reconstruction should preferably be done in entropy rather than in conservative variables. It may be
done using high-accuracy limiting schemes such as the popular weighted essential non-oscillating
scheme (WENO) by Liu et al. (1994).

It is essential to keep in mind that the amount of entropy added to the solution is based on a
linearization of the ideal GLM-MHD equations. Hence, while we can ensure the sign in the
entropy inequality, we cannot guarantee that the amount of added dissipation is sufficient. This can
already be seen by the notable increase in robustness with the hybrid scheme that applies an extra
amount of dissipation.

Whether entropy stability, as a concept, is sufficient to ensure numerical robustness at high-order
accuracy remains an open question which is worthwhile for further exploration and a current field
of active research (see, e.g. Svärd, 2015; Svärd, 2016).
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8.2 Tunable hybridization factor

The parameter-free pressure-based smoothness indicator (2.46) I described in Sec. 2.6.3 is rather
restrictive as it adds a lot of dissipation at moderate pressure jumps, e.g.,

Ξ(pL/pR = 10) ≈ 0.86 (8.1)

meaning that a single order of magnitude pressure jump computes 86 % of its dissipation from the
more dissipative scalar part and only 14 % from the more selective dissipation term of the entropy
stable scheme.

One tunable smoothness indicator would be

Ξ =

√
|pκL − pκR |
pκL + pκR

∈ [0,1], (8.2)

with a new tuning parameter κ ∈ R. As can be seen in Fig. 8.1, a tuning parameter less than 1.0
leads to a less dissipative scheme as a lower fraction of the more diffusive scalar dissipation term
is used. Obviously, the tunable smoothness indicator is identical to its parameter-free equivalent
(2.46) for κ = 1.
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Fig. 8.1: Tunable pressure-based smoothness indicator (8.2) with parameter κ.

It should be investigated how this affects the robustness and shock resolution of the numerical
method as there is substantial potential for improving the accuracy in regions that are fairly but not
perfectly smooth.

8.3 Resistive MHD

Resistivity measures how collisions transport electromagnetic energy through the system. Ideal
MHD is only strictly applicable when the resistivity due to these collisions is small. The diffusivity
due to the resistive MHD terms leads to a break in the magnetic topology in contrast to the
“frozen-in” field in the ideal MHD model.
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In most astrophysical plasmas resistivity is unimportant because the plasma flows considered
are, in general, perfect conductors. However, one can easily construct cases where neglecting
resistivity may be physically wrong:

• coronal events (loops/flares/prominences)

• magnetized plasma above/below magnetorotationally-instable (MRI) accretion disks around
stars

• planetary magnetospheres

In simpler words: if we want to study what happens when oppositely-directed regions of B are
pushed together, we’re forced to take resistivity seriously.

Beyond astrophysics, resistivity plays a crucial role when designing next-generation nuclear
fusion devices as it requires understanding the non-linear macroscopic stability, reconnection
processes and refueling approaches for burning plasmas. Due to the high cost of conducting
physical experiments of nuclear fusion experiments in real devices, researchers ultimately depend
on accurate numerical simulations as a tool for performing their research.

We arrive at the resistive MHD equations if we apply Ohm’s law without the assumption of
vanishing resistivity η = 0:

E + u × B = ηJ ⇒ E = ηJ − u × B (8.3)

With Ampère’s law (negligible displacement currents due to non-relativistic approximation),

∇ × E = −∂B
∂t

⇒ ∂B

∂t
= −∇ × E, (8.4)

we have
∂B

∂t
= −∇ × (ηJ − u × B) (8.5)

or, rewritten into a similar form as (2.9d),

∂B

∂t
+ ∇ · (u ⊗ B − B ⊗ u) + ∇ × (ηJ) = 0. (8.6)

The current density, J , is defined through Faraday’s law,

J := ∇ × B =



∂B3
∂y

− ∂B2
∂z

∂B1
∂z

− ∂B3
∂x

∂B2
∂x

− ∂B1
∂y


. (8.7)

Assuming spatially constant resistivity, I get

∇ × (ηJ) = η ∇ × J = η ∇ ×



∂B3
∂y

− ∂B2
∂z

∂B1
∂z

− ∂B3
∂x

∂B2
∂x

− ∂B1
∂y


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= η
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With this the magnetic field components of the resistive MHD fluxes are

∂B

∂t
=

∂

∂x



0

u B2 − v B1 + η
(
∂B1
∂y

− ∂B2
∂x

)
u B3 − w B1 + η

(
∂B1
∂z

− ∂B3
∂x

)

. (8.9)

In the next step, one has to account for the changes in the induction equation to the total energy
equation:

∂E

∂t
=

∂

∂t

(1

2
ρ‖u‖2

+ ǫ +
1

2
‖B‖2

)
. (8.10)

For the sake of convenience, I split the obtained fluxes into two components,

(
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)
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. (8.11)

The extra contribution only by the resistive parts is given by:

∂
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)
. (8.12)

Due to the cross-multiplications of various non-differentiated magnetic field components with
derivatives of second order, it does not seem possible to bring this contribution into a divergence
form for adding it to the total energy flux. Thus, eq. (8.12) has to be added as a non-conservative
term to the total energy equation. However, this is not unexpected, since – at least from the
physical point of view – it seems wrong to include magnetic resistivity effects without new
non-conservative terms: If reconnections happen, the magnetic energy is modified. However, the
magnetic energy may not be solely released into thermal, but also into kinetic energy. However,
there seems to be no consistent way to modify the momentum conservation law to account for
such energy exchanges.
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Interestingly, I have only been able to recover the equations reported in the literature (e.g., Samtaney
et al., 2005, Reynolds et al., 2006, or more recently Hindenlang et al., 2016, and Bohm et al.,
2018) using a mathematically invalid ansatz for the magnetic energy contribution:
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. (8.13)

This ansatz would mean that the total energy contribution of the magnetic fluxes are computed as

∂

∂t

(
1

2
‖B‖2

)
= B ·

(
∂B

∂t

)
ideal

+

∂B

∂x
·
(
∂B

∂t

)
res.

(8.14)

in order to get the total energy contributions from the magnetic fields. This is most likely incorrect
and should certainly be investigated in future works. The details provided herein should provide
the necessary tools for doing so.

Entropy-stability of a potentially created resistive GLM-MHD extension is straightforward as
the continuous entropy analysis technique I carefully described in Derigs et al. (2018b, Sec. 4.1,
p. 95f in this thesis) can immediately be used.

8.4 Hall MHD

It is well known that Hall physics play a critical role in the accurate modeling of magnetic
reconnection (Shay et al., 1999; Birn et al., 2001; Birn & Hesse, 2001; Hesse et al., 2001; Otto,
2001; Huba & Rudakov, 2002; Huba, 2005). As has been shown, Hall MHD is important to model
magnetic reconnection at very small spatial and temporal scales correctly. In contrast to resistivity,
the Hall effect does not break the “frozen-in” condition of the magnetic field but restructures the
reconnection region.

One arrives at the Hall MHD from Ohm’s law in the form:

E + u × B =
1

a
J × B ⇒ E =

1

a
J × B − u × B (8.15)

with
a := qc, (8.16)

where q = nee is the electron charge, and c is the speed of light.

With Ampère’s law (8.4), I can write the induction equation as

∂B

∂t
= −∇ · (u ⊗ B − B ⊗ u) − ∇ × (a-1J × B), (8.17)
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or, rewritten into a similar form as (2.9d),

∂B

∂t
+ ∇ · (u ⊗ B − B ⊗ u) + ∇ × (a-1J × B) = 0. (8.18)

Examining the ∇ × (J × B) = ∇ × ((∇ × B) × B) term, I obtain

∇ × (J × B) = ∇ · (B ⊗ J − J ⊗ B) =
[
JB1 JB2 JB3

]
, (8.19)

with

JB1 :=



0

B2

(
∂B3
∂y

− ∂B2
∂z

)
− B1

(
∂B1
∂z

− ∂B3
∂x

)
B3

(
∂B3
∂y

− ∂B2
∂z

)
− B1

(
∂B2
∂x

− ∂B1
∂y

)

, (8.20)

JB2 :=



B1

(
∂B1
∂z

− ∂B3
∂x

)
− B2

(
∂B3
∂y

− ∂B2
∂z

)
0

B3

(
∂B1
∂z

− ∂B3
∂x

)
− B2

(
∂B2
∂x

− ∂B1
∂y

)

, (8.21)

and

JB3 :=



B1

(
∂B2
∂x

− ∂B1
∂y

)
− B3

(
∂B3
∂y

− ∂B2
∂z

)
B2

(
∂B2
∂x

− ∂B1
∂y

)
− B3

(
∂B1
∂z

− ∂B3
∂x

)
0


. (8.22)

With this, the magnetic field components of the Hall MHD fluxes are

∂B

∂t
=

∂

∂x

1

a



0

u B2 − v B1

+B1

(
∂B1
∂z

− ∂B3
∂x

)
−B2

(
∂B3
∂y

− ∂B2
∂z

)
u B3 − w B1

+B1

(
∂B2
∂x

− ∂B1
∂y

)
−B3

(
∂B3
∂y

− ∂B2
∂z

)



. (8.23)

Similar to the case of the resistive MHD equations, it is not clear if these additional terms can be
added to the total energy equations without introducing new non-conservative terms. As magnetic
reconnection is a process that changes magnetic field topology in highly conducting fluids, it is
suggested to by important in several astrophysical environments and research into this direction
may turn out to be very useful for future, high resolution simulations (see, e.g., Lazarian et al.,
2015 for an overview of the importance of magnetic reconnection in astrophysics).
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8 Outlook

8.5 Unsplit GLM-MHD implementation of the FLASH center

The Flash Center for Computational Science is currently working on an implementation of a new
unsplit MHD solver. This solver will, in contrast to the already existing staggered mesh solver, rely
on a GLM implementation for appropriate divergence cleaning. Unfortunately, this solver is still in
its early stages and not yet publicly available (Lee, 2018, private communication). However, as
soon as this new solver is made available, it may be advantageous to implement my entropy-stable
GLM-MHD scheme because it will be able to take advantage of the much less severe time step
restrictions for unsplit solvers in FLASH (see Sec. 5.1.2).

8.6 Synthetic observations

Synthetic observations play an increasingly important role in astrophysics, both for interpreting real
observations and for making meaningful predictions from models. In recent years, the number of
synthetic observations has increased significantly (see, e.g., the review by Haworth et al., 2017).

Within the ERC Starting Grant “The radiative interstellar medium (RADFEEDBACK)”13, a “synthetic
observations toolbox” is currently under development. This project shall facilitate the comparison
between simulations and observations by providing pipelines for atomic and molecular line as well
as synthetic continuum observations.

It could be an interesting task to use synthetic observations to compare the statistics of simulations
produced using my new entropy stable solver to actual observations. It would be interesting to
assess if my new scheme, thanks to being Galilean invariant, entropy stable, and kinetic energy
preserving, gives more realistic results.

8.7 Applicability beyond astrophysics

Nuclear fusion is a reaction in which atomic nuclei come close enough to form a different atom.
The difference in mass (∆m) between the reactants and the product, caused by the difference in
atomic binding energy, is manifested as the release of huge amounts of energy,

Ereleased = ∆m · c2, (8.24)

where c is the speed of light. The initial suggestion by Arthur Eddington that hydrogen fusion
could be the primary source of stellar energy (Eddington, 1920), lead to the idea of controlled
thermonuclear fusion for civil proposes where the released energy is harnessed for power
generation.

It is speculated that global electricity needs will sextuple by the year 2100 (Clarke et al., 2014)
requiring a dramatic transformation in the way in which we generate and distribute electric power.

13PI S. Walch, grant no. 679852
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8.7 Applicability beyond astrophysics

Nuclear fusion could provide the answer for the ever-growing need of energy, as the deuterium in a
bathtub full of water and the lithium in a used laptop battery is sufficient to generate power for a
typical family for over 50 years (Jenko, 2013). Hence, with the potential to provide clean, safe, and
abundant energy, nuclear fusion has been called the “holy grail” of energy production. However,
harnessing energy from fusion, the process that powers the stars in our Universe, has proven to be
a tough challenge.

Energy confinement in fusion plasmas is limited by thermal losses due to turbulence (Zhumabekov,
2017). Here again, analytic models show their limitations as the necessary simplifications make
them unable to predict the growth of essential plasma instabilities. As temperatures and magnetic
fields vary wildly over time and space, researchers must use detailed whole-device simulations to
understand the plasma’s dynamics inside the reactor and to determine how sustainable fusion may
be achieved.

Understanding and possibly controlling the underlying physical processes is key to achieving
the right balance between fusion energy production and the heat losses associated with plasma
turbulence. This will allow us to ultimately determine the size, cost, and practicability of an actual
fusion reactor.

Further applications can be found, e.g., in the field of geophysics, interested, for instance, in the
Earth’s magnetic field. This field is not only useful for navigation but also vital for life on Earth, as
it deflects cosmic ray particles as well as most of the solar wind, whose charged particles would
otherwise strip away the ozone layer (Schiermeier, 2005). Without the ozone layer there would be
no protection against the harmful ultraviolet radiation of the Sun.
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Non-conservative terms in the Bouchut5

solver
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2 Comparison using an astrophysical application . . . . . . . . . . . 189

This appendix gives a short overview over the non-conservative term implementation in the
Bouchut3/5 solvers used in the SILCC collaboration. I put this discussion in the appendix of my
thesis as it is unrelated to the ideal GLM-MHD scheme. It focuses on an inconsistency I have
found in the ideal MHD solver used by many international researchers. I use the Bouchut5 solver
as reference solver in Chapter 6.

To highlight the differences between the non-conservative term implementations I discuss in this
appendix, I shortly revise the ideal MHD equations equipped with the different non-conservative
terms below (see also Derigs et al., 2018b, Sec. 3.8, p. 93f in this thesis).

From the derivations of the generalized ideal MHD equations for non-vanishing magnetic field
divergence, I found that particular non-conservative terms are necessary to ensure the validity of
the numerical scheme. As, on a continuous level, the magnetic field divergence, ∇ · B vanishes
exactly, adding these non-conservative terms is nothing else than adding zero in a clever way.
However, for discrete systems, where the magnetic field divergence typically does not vanish,
they turn out to be important to ensure the physical correctness of the mathematical model under
∇ · B , 0.

Conservative formulation

The ideal MHD equations without non-conservative terms read:

∂

∂t



ρ

ρu

E

B


+ ∇ ·



ρu

ρ(u ⊗ u) +
(
p+ 1

2 ‖B‖2
)
I−B ⊗ B

u
( 1

2 ρ‖u‖2
+

γp

γ−1+‖B‖2
)
−B(u · B)

u ⊗ B − B ⊗ u


= 0 (1a-d)

As I have shown in Derigs et al. (2018b, Sec. 2), the fluid feels an artificial force parallel to the
magnetic field lines, in case any notable non-zero magnetic field divergence is present in the
solution. This leads to physically incorrect behavior.
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Non-conservative terms in the Bouchut5 solver

“Powell” non-conservative term

The non-conservative terms commonly known as the “Powell source terms” have first been
described by Godunov (1972) and have later been rediscovered and described by Powell et al.
(1999). I gave a solely physically motivated derivation of these non-conservative terms in Derigs
et al. (2018b, Sec. 2).

The ideal MHD equations with the Powell term read:

∂

∂t



ρ

ρu

E

B


+ ∇ ·



ρu

ρ(u ⊗ u) +
(
p+ 1

2 ‖B‖2
)
I−B ⊗ B

u
( 1

2 ρ‖u‖2
+

γp

γ−1+‖B‖2
)
−B(u · B)

u ⊗ B − B ⊗ u


= −(∇ · B)



0
B

u · B
u


(2a-d)

This scheme is also known as the “eight-wave” formulation of the ideal MHD equations as the
additional terms cause any magnetic field divergence to be passively advected with the fluid:

∂

∂t
(∇ · B) + ∇ · (u(∇ · B)) = 0. (3)

It may move numerically caused magnetic monopoles away from the places where they occurred
but doesn’t help at stagnation points of the fluid (where the fluid is at rest, i.e., ‖u‖ = 0). At such
points, magnetic field divergence accumulates.

The total energy can be affected by spurious magnetic energy generated by the moving “magnetic
monopoles” in the simulation. If total energy conservation would be artificially enforced by
neglecting the non-conservative term on the total energy, the internal energy, which is computed
as the remainder of the subtraction of kinetic and magnetic energy from the total energy, would
become incorrect.

The momentum equation correction is furthermore necessary to obtain the correct Lorenz force in
case of ∇ · B , 0. If this term is not included, the fluid feels an unphysical, possibly substantial,
force parallel to the magnetic field lines. This force is both, proportional to the local magnetic field
B, as well as to the local magnetic field divergence, ∇ · B:

FL · B

‖B‖ = −(∇ · B)‖B‖ (4)

I carefully investigated the effect of the individual components of the Powell terms side in Derigs
et al. (2018b, Sec. 2).

“Janhunen” non-conservative term

Janhunen (2000) presented a non-conservative term that adds the advection of the magnetic
field divergence just like the Powell terms, but preserves the conservation in all thermodynamics
quantities. Due to this reason, it has often been argued to be advantageous. However, as I have
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clearly shown in Derigs et al. (2018b), this assumption is wrong as the loss of conservation in
total energy and momentum equation actually is an advantageous property as these terms correct
for effects caused by (unphysical) numerically caused magnetic monopoles. They are mandatory
for physical correctness of the simulation.

The ideal MHD equations with the Janhunen source term read:

∂

∂t



ρ

ρu

E

B


+ ∇ ·



ρu

ρ(u ⊗ u) +
(
p+ 1

2 ‖B‖2
)
I−B ⊗ B

u
( 1

2 ρ‖u‖2
+

γp

γ−1+‖B‖2
)
−B(u · B)

u ⊗ B − B ⊗ u


= −(∇ · B)



0
0

0
u


(5a-d)

The issue with the term suggested by Janhunen is that, although it does also add an eighth wave
(the “divergence wave”) to the solution, it does neither correct the Lorenz force nor for spurious
total energy contributions in the presence of ∇ · B , 0. This is only done when adding the full
Powell term.

It should also be noted that this term does not symmetrize the ideal MHD equations. As Godunov
(1972) has shown, only the Powell terms can achieve this.

The Janhunen terms are used in the currently available numerical implementation of the Bouchut3
and Bouchut5 solvers for ideal MHD flows. This is in agreement with the description given by
Waagan et al. (2011) albeit the fact that the Janhunen (rather than the Powell) term is used, is
rather hidden in the statement:

In the original FLASH code, the momentum and energy equations were also
modified, which is what was actually recommended in [Powell, 1994]. We found it
sufficient for stability in [Bouchut et al., 2010] and [Waagan, 2009] to only include

the Powell term for the induction equation.

(Waagan, 2009, Section 2.3)14

Misleadingly, the paper continues to denote the Janhunen source term as the Powell source term in
multiple places. The statement that the latter is only included in the induction equation is not
repeated in the numerical results section, giving rise to the impression that with “a slightly more
elaborate Powell term” (Waagan et al., 2011, Sec. 4.1) the full Powell terms are meant although
this is not the case.

Even if the Janhunen term may be “sufficient for stability”, using it is adverse from a physics point
of view as the computed magnetic forces are incorrect.

14Citations changed from numeric to authoryear style.
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Non-conservative terms in the Bouchut5 solver

1 Implementation details

As has been mentioned by Bouchut et al. (2010) and Waagan et al. (2011), it is essential for
stability to discretize the terms in a proper upwind manner. In this section, I give the precise code I
used to implement the terms into the file hy_bou5_sources.F90 for the numerical tests shown
in the subsequent sections.

1.1 Conservative formulation

1 ! Only G r a v i t y
2 S ( ivn , i ) = Uc(DENS_VAR, i ) ∗ g rav ( i )
3 S (ENER_VAR, i ) = Uc( ivn , i ) ∗Uc(DENS_VAR, i ) ∗ g rav ( i )

1.2 Powell term

1 r e a l : : dBdx
2

3 ! Powel l t e rm
4 dBdx = ( Up( ibn , i )−Um( ibn , i ) ) / dx ( i )
5 S (VELX_VAR:VELZ_VAR, i ) = −dBdx∗Uc(MAGX_VAR:MAGZ_VAR, i )
6 S (ENER_VAR, i ) = −dBdx∗ d o t _ p r o d u c t ( Uc (VELX_VAR:VELZ_VAR, i ) ,Uc (MAGX_VAR:

MAGZ_VAR, i ) )
7 S (MAGX_VAR:MAGZ_VAR, i ) = −dBdx∗Uc(VELX_VAR:VELZ_VAR, i )
8

9 ! G r a v i t y
10 ! We have t o add t h e g r a v i t y s o u r c e t e rms on top of t h e Powel l t e rms
11 S ( ivn , i ) = S ( ivn , i ) + Uc(DENS_VAR, i ) ∗ g rav ( i )
12 S (ENER_VAR, i ) = S (ENER_VAR, i ) + Uc( ivn , i ) ∗Uc(DENS_VAR, i ) ∗ g rav ( i )

1.3 Janhunen term

1 r e a l : : dBdx
2

3 ! Janhunen te rm
4 dBdx = ( Up( ibn , i )−Um( ibn , i ) ) / dx ( i )
5 S (MAGX_VAR:MAGZ_VAR, i ) = −dBdx∗Uc(VELX_VAR:VELZ_VAR, i )
6

7 ! G r a v i t y
8 ! The Janhunen te rm does n e i t h e r modify t h e t o t a l ene rgy nor t h e momentum
9 S ( ivn , i ) = Uc(DENS_VAR, i ) ∗ g rav ( i )

10 S (ENER_VAR, i ) = Uc( ivn , i ) ∗Uc(DENS_VAR, i ) ∗ g rav ( i )
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2 Comparison using an astrophysical application

2 Comparison using an astrophysical application

To compare the differences caused by the three different possibilities,

1. conservative formulation (“no Powell”),

2. Powell terms, and

3. Janhunen term,

I performed simulations of the colliding flow setup, extensively described in Chapter 6.
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Fig. A.1: Evolution of the volume-integrated absolute magnetic field divergence

In Fig. A.1, we clearly see that the volume-integrated magnetic field divergence is similar in all
simulations. This is expected as the magnetic field divergence is predominantly determined by
the post-processing divergence cleaning step rather than the interior of the used numerical MHD
scheme itself. Despite this, the scheme based on the Powell term proves to be advantageous for
this particular setup.

In Fig. A.2, we see that the structure evolves notably different in the three simulations. This is
not unexpected as minor changes can lead to very different results at later times due the highly
non-linear nature of the colliding flow setup. There seems to be more dense gas in the “Powell”
solution than in the “no Powell” solution or in the “Janhunen” solution. Fig. A.3 confirms this
observation.

The mass-weighted magnetic field strength projection plots (Fig. A.4) again highlight the difference
between the obtained solutions. The differences are even more apparent in the mass-weighted
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Non-conservative terms in the Bouchut5 solver
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Fig. A.2: Total gas column density plot. The structure is different in all three results.
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Fig. A.3: Dense gas mass (ρ ≥ 2.34 × 1.67 × 10−22 g cm−3) fraction over time. There is more
dense gas in the “Powell” solution that in the “no Powell” solution or the “Janhunen”
solution.
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2 Comparison using an astrophysical application
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Fig. A.4: Mass-weighted projected magnetic field. The structural differences already seen in
Fig. A.2 are even more predominant.
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Fig. A.5: Mass-weighted average magnetic field over time. The average magnetic field is similar
in all three simulations.
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Fig. A.6: Mass-weighted projected plasma β. Blueish gas (β < 1) is magnetically dominated.
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Fig. A.7: Mass fraction of the magnetically dominated gas (plasma-β criterion). The mass fraction
constantly varies across the different solutions.
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2 Comparison using an astrophysical application

projected magnetic fields. However, Fig. A.5 suggests that the mass-weighted mean magnetic field
is similar for all three runs.

The magnetically dominated gas mass fraction constantly varies across the different solutions as
can be seen in Fig. A.7. At t = 26 Myr, the magnetically dominated gas mass fraction is similar
for all simulations, however, as can be seen in Fig. A.6, the distribution of this gas is very different.
At other simulation times, e.g., t = 17 Myr, the plasma β < 1 gas mass fraction is substantially
smaller in the Janhunen term case (see Fig. A.7).
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Fig. A.8: Mass-weighted projected magnetic field divergence.

Note that in all schemes the same post-processing divergence cleaning is used. In the “conservative”
solution, the mass-weighted projected absolute magnetic field divergence (Fig. A.8) in the
surrounding of the collision area is notably increased. However, it is still on the order of less
than ≈ 0.01 µG/pc and does not contribute notably to the integrated divergence error shown in
Fig. A.1.

A further difference becomes obvious when looking at the very early stages of the colliding flow
simulations. As can be seen in Fig. A.9, the Janhunen variant generates notable defects in the
magnetic field topology soon after the beginning of the simulation. Due to the non-linear nature of
the colliding flow simulations, these small differences at early times may significantly affect the
long-term evolution of the simulation.

In Fig. A.10, I plot the Lorentz force as applied by the individual numerical schemes. We see that
only the Powell term based scheme applies a physically meaningful Lorentz force that is always
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Fig. A.9: Mass-weighted projected magnetic field at t ≈ 0.1 Myr. We see defects in the very early
structure of the magnetic field where the magnetic field is more grainy than in the other
two solutions.

perpendicular to the magnetic field. In the conservative case, the Lorentz force is parallel to the
magnetic field almost everywhere in the inflowing medium, slightly enhancing the collapse as the
force is pointing towards the central collision area. In the Janhunen term result, the behavior is
exactly opposite: the Lorentz force close to the central region is pointing away from the center, i.e.,
the inflowing gas is slowed down shortly before the collision onto the molecular cloud occurs,
giving rise to a more inflated central region as seen in Fig. A.2. This numerical experiment
confirms that only the Powell term based simulation applies Lorentz forces that are physically
meaningful in the sense of being always perpendicular to the magnetic field.

When looking at the volume-integrated gas energies (Fig. A.11), the difference between the
solutions is most obvious. A major difference is the notably reduced growth in magnetic energy
in the simulation in which the conservative formulation is used (“no Powell”, blue line). As
the magnetic energy is the predominant contribution to the total energy, this also explains the
clearly visible difference between the run without source term (blue line) and the runs with
either the Janhunen (green line) or the Powell terms (orange line). In the evolution of the kinetic
energy, we see that the simulation using the Powell terms generates notably more kinetic energy in
the fluid. This is most likely caused by the correct computation of the Lorentz force avoiding
unphysical forces parallel to the magnetic field lines. As the initial magnetic field is aligned with
inflow direction of the gas, an incorrect Lorentz force along the field lines could likely retard the
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2 Comparison using an astrophysical application
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Fig. A.10: Lorentz force as applied by the numerical scheme at t = 26 Myr. Slice in the xy-plane
at z = 1 pc. For both, the conservative and the Janhunen solution, the computed angle
between the applied Lorentz force and the magnetic field is substantially different than
90°. With the Powell terms, the computed Lorentz force is always perpendicular with
minor numerical roundoff errors (90◦ ± 6 × 10−14◦).

gravitational collapse and cause the observed slower growth of momentum.

These findings are rather concerning and should be confirmed using a different astrophysical
simulation. The reckless omission of the non-conservative terms in the momentum and total
energy equations often justified with wanting to recover conservation in these properties has been
proven to be physically incorrect and needs to be avoided. Whereas the colliding flow model is a
realistic application, its highly non-linear nature makes it rather hard to compare aspects such as
the choice of the non-conservative terms. Comparative runs of simulations with less complicated
physical interactions, e.g., steady state turbulence, may turn out to be useful in trying to quantify
the differences for astrophysical applications.
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Non-conservative terms in the Bouchut5 solver
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Magnetic monopoles as seen by physics

Physicists often reason that magnetic monopoles are unlikely to exist as the established theory of
quantum mechanics seems only possible when there are no isolated magnetic monopoles. However,
Dirac (1931) showed that quantum mechanics does not preclude the existence of isolated magnetic
monopoles. On the contrary, they are helpful when trying to explain the quantization of the electric
charge.

Nevertheless, we phenomenologically respect the divergence-free condition (2.11) as, to this
day, little experimental evidence for the existence of magnetic monopoles has been found. The
scientific community is not aware of any theoretical reason why magnetic monopoles, magnets
with a single north or south pole, could not exist (Rajantie, 2016).

In fact, one of the most important theoretical motivations of introducing magnetic monopoles is
to obtain Maxwell’s equations in symmetric form with regard to charges. The laws governing
electrodynamics and magnetism are identical. This can be seen in (2.8a-d), which have a duality
symmetry - the electrodynamic terms can be replaced with magnetic terms, and vice versa, in such
a way that the equations are left unchanged.

One of the most notable experimental findings occurred on the night of February 14, 1982, when
a group in Stanford detected a single current jump in a four-turn coil of 5 cm diameter. Within
151 days they detected a single event consistent with one Dirac unit of magnetic charge. They
concluded that this event equaled that expected from a magnetic monopole (Cabrera, 1982).

However, as Cabrera’s measurement has never been reproduced, it sets a low limit for both the
number density as well as the magnetic charge of possibly existing magnetic monopoles. As such
observations directly apply to the magnetic field divergence itself, they strongly support Gauß’s
law (2.11) in an asymptotic fashion. Still, the discovery of magnetic monopoles would have a
massive effect on physics, and each exploration of a yet higher energy range in high energy physics
triggers renewed attempts to find magnetic monopoles (see, e.g., Aad, 2012).

Although no magnetic monopoles have been found yet...

“ ...one would be surprised if Nature had made no use of it. ”– Dirac (1931)
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