204 research outputs found

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Learning-based run-time power and energy management of multi/many-core systems: current and future trends

    Get PDF
    Multi/Many-core systems are prevalent in several application domains targeting different scales of computing such as embedded and cloud computing. These systems are able to fulfil the everincreasing performance requirements by exploiting their parallel processing capabilities. However, effective power/energy management is required during system operations due to several reasons such as to increase the operational time of battery operated systems, reduce the energy cost of datacenters, and improve thermal efficiency and reliability. This article provides an extensive survey of learning-based run-time power/energy management approaches. The survey includes a taxonomy of the learning-based approaches. These approaches perform design-time and/or run-time power/energy management by employing some learning principles such as reinforcement learning. The survey also highlights the trends followed by the learning-based run-time power management approaches, their upcoming trends and open research challenges

    Energy optimizing methodologies on heterogeneous data centers

    Get PDF
    In 2013, U.S. data centers accounted for 2.2% of the country’s total electricity consumption, a figure that is projected to increase rapidly over the next decade. Many important work-loads are interactive, and they demand strict levels of quality-of-service (QoS) to meet user expectations, making it challenging to reduce power consumption due to increasing performance demands

    Machine Learning Centered Energy Optimization In Cloud Computing: A Review

    Get PDF
    The rapid growth of cloud computing has led to a significant increase in energy consumption, which is a major concern for the environment and economy. To address this issue, researchers have proposed various techniques to improve the energy efficiency of cloud computing, including the use of machine learning (ML) algorithms. This research provides a comprehensive review of energy efficiency in cloud computing using ML techniques and extensively compares different ML approaches in terms of the learning model adopted, ML tools used, model strengths and limitations, datasets used, evaluation metrics and performance. The review categorizes existing approaches into Virtual Machine (VM) selection, VM placement, VM migration, and consolidation methods. This review highlights that among the array of ML models, Deep Reinforcement Learning, TensorFlow as a platform, and CloudSim for dataset generation are the most widely adopted in the literature and emerge as the best choices for constructing ML-driven models that optimize energy consumption in cloud computing

    Hipster: hybrid task manager for latency-critical cloud workloads

    Get PDF
    In 2013, U. S. data centers accounted for 2.2% of the country's total electricity consumption, a figure that is projected to increase rapidly over the next decade. Many important workloads are interactive, and they demand strict levels of quality-of-service (QoS) to meet user expectations, making it challenging to reduce power consumption due to increasing performance demands. This paper introduces Hipster, a technique that combines heuristics and reinforcement learning to manage latency-critical workloads. Hipster's goal is to improve resource efficiency in data centers while respecting the QoS of the latency-critical workloads. Hipster achieves its goal by exploring heterogeneous multi-cores and dynamic voltage and frequency scaling (DVFS). To improve data center utilization and make best usage of the available resources, Hipster can dynamically assign remaining cores to batch workloads without violating the QoS constraints for the latency-critical workloads. We perform experiments using a 64-bit ARM big.LITTLE platform, and show that, compared to prior work, Hipster improves the QoS guarantee for Web-Search from 80% to 96%, and for Memcached from 92% to 99%, while reducing the energy consumption by up to 18%.Peer ReviewedPostprint (author's final draft

    Dynamic Lifetime Reliability and Energy Management for Network-on-Chip based Chip Multiprocessors

    Get PDF
    In this dissertation, we study dynamic reliability management (DRM) and dynamic energy management (DEM) techniques for network-on-chip (NoC) based chip multiprocessors (CMPs). In the first part, the proposed DRM algorithm takes both the computational and the communication components of the CMP into consideration and combines thread migration and dynamic voltage and frequency scaling (DVFS) as the two primary techniques to change the CMP operation. The goal is to increase the lifetime reliability of the overall system to the desired target with minimal performance degradation. The simulation results on a variety of benchmarks on 16 and 64 core NoC based CMP architectures demonstrate that lifetime reliability can be improved by 100% for an average performance penalty of 7.7% and 8.7% for the two CMP architectures. In the second part of this dissertation, we first propose novel algorithms that employ Kalman filtering and long short term memory (LSTM) for workload prediction. These predictions are then used as the basis on which voltage/frequency (V/F) pairs are selected for each core by an effective dynamic voltage and frequency scaling algorithm whose objective is to reduce energy consumption but without degrading performance beyond the user set threshold. Secondly, we investigate the use of deep neural network (DNN) models for energy optimization under performance constraints in CMPs. The proposed algorithm is implemented in three phases. The first phase collects the training data by employing Kalman filtering for workload prediction and an efficient heuristic algorithm based on DVFS. The second phase represents the training process of the DNN model and in the last phase, the DNN model is used to directly identify V/F pairs that can achieve lower energy consumption without performance degradation beyond the acceptable threshold set by the user. Simulation results on 16 and 64 core NoC based architectures demonstrate that the proposed approach can achieve up to 55% energy reduction for 10% performance degradation constraints. Simulation experiments compare the proposed algorithm against existing approaches based on reinforcement learning and Kalman filtering and show that the proposed DNN technique provides average improvements in energy-delay-product (EDP) of 6.3% and 6% for the 16 core architecture and of 7.4% and 5.5% for the 64 core architecture

    Resource-aware scheduling for 2D/3D multi-/many-core processor-memory systems

    Get PDF
    This dissertation addresses the complexities of 2D/3D multi-/many-core processor-memory systems, focusing on two key areas: enhancing timing predictability in real-time multi-core processors and optimizing performance within thermal constraints. The integration of an increasing number of transistors into compact chip designs, while boosting computational capacity, presents challenges in resource contention and thermal management. The first part of the thesis improves timing predictability. We enhance shared cache interference analysis for set-associative caches, advancing the calculation of Worst-Case Execution Time (WCET). This development enables accurate assessment of cache interference and the effectiveness of partitioned schedulers in real-world scenarios. We introduce TCPS, a novel task and cache-aware partitioned scheduler that optimizes cache partitioning based on task-specific WCET sensitivity, leading to improved schedulability and predictability. Our research explores various cache and scheduling configurations, providing insights into their performance trade-offs. The second part focuses on thermal management in 2D/3D many-core systems. Recognizing the limitations of Dynamic Voltage and Frequency Scaling (DVFS) in S-NUCA many-core processors, we propose synchronous thread migrations as a thermal management strategy. This approach culminates in the HotPotato scheduler, which balances performance and thermal safety. We also introduce 3D-TTP, a transient temperature-aware power budgeting strategy for 3D-stacked systems, reducing the need for Dynamic Thermal Management (DTM) activation. Finally, we present 3QUTM, a novel method for 3D-stacked systems that combines core DVFS and memory bank Low Power Modes with a learning algorithm, optimizing response times within thermal limits. This research contributes significantly to enhancing performance and thermal management in advanced processor-memory systems
    • …
    corecore