3 research outputs found

    Hybrid compression of hyperspectral images based on PCA with pre-encoding discriminant information

    Get PDF
    It has been shown that image compression based on principal component analysis (PCA) provides good compression efficiency for hyperspectral images. However, PCA might fail to capture all the discriminant information of hyperspectral images, since features that are important for classification tasks may not be high in signal energy. To deal with this problem, we propose a hybrid compression method for hyperspectral images with pre-encoding discriminant information. A feature extraction method is first applied to the original images, producing a set of feature vectors that are used to generate feature images and then residual images by subtracting the feature-reconstructed images from the original ones. Both feature images and residual images are compressed and transmitted. Experiments on data from the Airborne Visible/Infrared Imaging Spectrometer sensor indicate that the proposed method provides better compression efficiency with improved classification accuracy than conventional compression methods

    Exploring the effects of compression via principal components analysis on X-ray image classification

    Get PDF
    Abstract: Image compression in medical applications implores careful consideration of the effects on data veracity. The inexorable challenge of assessing the volume-veracity trade-off is becoming more prevalent in this critical application area, and particularly when machine learning is used for the purpose of assisted diagnostics. This paper investigates the impact of compressing X-ray images on the accuracy of fracture diagnostics. The accuracy of the classification system is assessed for X-ray images of both healthy and fracture bones when subjected to different levels of compression. Compression is achieved using principal components analysis. Results indicate that accuracy is only marginally affected under a level one compression but begins to deteriorate under level two compression. These results are potentially useful as the level one compression yields gains up to 94% with less than a 2% drop in classification accuracy

    Hybrid compression of hyperspectral images based on PCA with pre-encoding discriminant information

    No full text
    It has been shown that image compression based on principal component analysis (PCA) provides good compression efficiency for hyperspectral images. However, PCA might fail to capture all the discriminant information of hyperspectral images, since features that are important for classification tasks may not be high in signal energy. To deal with this problem, we propose a hybrid compression method for hyperspectral images with pre-encoding discriminant information. A feature extraction method is first applied to the original images, producing a set of feature vectors that are used to generate feature images and then residual images by subtracting the feature-reconstructed images from the original ones. Both feature images and residual images are compressed and transmitted. Experiments on data from the Airborne Visible/Infrared Imaging Spectrometer sensor indicate that the proposed method provides better compression efficiency with improved classification accuracy than conventional compression methods
    corecore