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Abstract—Image compression in medical applications implores 

careful consideration of the effects on data veracity. The 

inexorable challenge of assessing the volume-veracity trade-off is 

becoming more prevalent in this critical application area, and 

particularly when machine learning is used for the purpose of 

assisted diagnostics. This paper investigates the impact of 

compressing X-ray images on the accuracy of fracture diagnostics. 

The accuracy of the classification system is assessed for X-ray 

images of both healthy and fracture bones when subjected to 

different levels of compression. Compression is achieved using 

principal components analysis. Results indicate that accuracy is 

only marginally affected under a level one compression but begins 

to deteriorate under level two compression. These results are 

potentially useful as the level one compression yields gains up to 

94% with less than a 2% drop in classification accuracy. 

 

Index Terms—X-ray, image classification, principal component 

analysis, compression, big data 

 

I. INTRODUCTION 

Medical imaging is amongst the most rapidly developing 

fields providing tremendous breakthroughs in medical 

research and clinical diagnosis [1]. In general, a foremost 

consideration in modern imaging is the data size or volume, 

which affects the storage and transmission bandwidth, and 

processing speed [1], [2]. Therefore, in order to meet the 

transmission, processing and storage requirements for the 

application, compression of the images is typically required. 

Since the application area of medical imaging is so critical, 

the compression of the images should not affect the quality 

so as to compromise the clinical diagnosis.  

In this work, the effect of principal components analysis 

(PCA) -based compression of X-ray images on the 

performance of a fracture classification system is 

investigated. PCA enables redundant or insignificant image 

components to be excluded, thereby resulting in both, a 

suitable compression ratio and adequate quality for 

classification, after construction. The change in the 

performance of the classification system is assessed under 

varying levels of compression - i.e. varying levels of 

principal components 

II. BACKGROUND  

A. X-ray Image Classification and Fracture Diagnosis 

Image processing techniques are applied to various fields 

like space programs, aerial and satellite imagery as well as 

medicine [3]. Medical imaging is a set of digital image 

processing techniques that create and analyse X-ray images 

of the human body that make it possible for doctors, 

radiologist and medical scientists to examine [4]. Within the 

medical field, images are used for planning surgeries; X-ray 

imaging is used in finding bone deformities; Magnetic 

Resonance Imaging (MRI) is used to determine which layer 

of soft tissue and bone is affected [5]. The use of X-ray’s in 

image processing is based on many factors that include cost 

and complexity when compared to MRI, PET (Positron 

Emission Tomography), CT images. X-ray images are also a 

preferred source to many classifiers within the computer 

vision industry. Image-guided interventions are a current 

technology that allows not only diagnoses but conducting 

treatment strategies and planning for surgeries [6]. MRI 

together with image guidance technology makes a 

difference in the removal of invasive cancers within the 

breast tissue of humans [6], [7]. The finding of multiple 

cancers in the same breast has been successfully detected 

using MRI technology [8]. Other cancers can be detected at 

its earliest stages due to Optical-based cellular imaging. 

PET imaging and MRI has also resulted in advancements in 

cancer detection [6], [8]. CT scans and MRI have been 

utilised in guided cardiovascular interventions allowing 

doctors to view arteries in 3D to find an obstruction [6], [7]. 

Ultrafast CT scanning allows the heart and coronary artery 

to be imaged and to guide cardiac procedures. An overview 

of the steps involved in a typical medical image processing 

and classification system is given in figure 1. 

B. Volume, Veracity and Value 

The medical industry, amongst many others, is especially 

prone to Big Data. This is because medical data – 

particularly medical imaging data - is both voluminous, 

come from various sources, and are of tremendous value. In 

this paper, the issues of volume, veracity and value are 

considered. In X-ray imaging, the value and veracity of the 
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data is critical towards correct diagnosis and is of obvious 

value. Fracture classification systems that process X-ray 

images to assist with diagnosis need to provide high levels 

of certainty. On the other hand, transfer, storage and 

processing of voluminous image data is both cumbersome 

and costly. Therefore, the opportunity to reduce volume of 

X-ray images without comprising the veracity of the data is 

of value. This paper investigates how compression of X-ray 

images - via principal components analysis - affects the 

accuracy of a fracture classification system. 

 

 

 
 

Fig.1: Process overview for typical X-ray image classification. 

 
III. METHODOLOGY 

 

The focus of the presented investigation deals specifically 

with the assessment of compression effects on the 

classification accuracy. The classification system used in the 

investigation (shown in figure 2) is briefly described in the 

subsequent sections before the compression - as a pre-

processing subsystem - is explained. 

 

A. X-ray Image Classification System 

 

The complexity of the human body leads to the problem of 

determining the existence and location of possible fractures. 

Fractures range from compound to hairline, buckle to stress 

fractures. Most fractures that occur to the bones of the 

forearm are due to extra stress concentrated at a specific 

point [9], [10]. A fracture in most cases is referred to as a 

break in the bone material. Fracture severity can be 

challenging to determine as many fractures are not open 

wounds. Through the use of digital X-ray technology, this 

can now be exploited to detect fractures in the bone. Many 

Computational Intelligence Techniques such as Artificial 

Neural Networks, Support Vector Machines, and Fuzzy 

Inference Systems have been explored together with digital 

X-ray’s to aid doctors in the diagnosis of fractures. Within 

the human forearm, two main bones are present namely the 

radius and ulna. When under tremendous stress, the ulna of 

the forearm is the most likely bone to fracture. In most 

cases, a fracture is most likely to occur at the mid-ulna of 

the forearm which was taken into consideration when the 

classifier systems were explored [11]. The SVM and FIS 

classifiers were trained with the mid-ulna Region of Interest 

(ROI). Although X-ray images contain many feature data, 

interest typically concentrated towards the soft tissue, 

background, bone, and fracture. The similarity of the SVM 

network to the MLP and FIS networks is the input vector 

which is mapped to a class space allowing the proficiency of 

the regression and classification [12]. 

 

 

 
 

Fig. 2: Process overview for X-ray image classification and 

fracture detection system 

 



1) X-ray input and data analysis: The most conventional X-

ray imaging - in most general healthcare facilities – utilises 

X-ray film. Some of the X-ray film data has to first be 

digitised. A digital X-ray scanner was utilised for creating 

the investigated dataset, taking into consideration the quality 

of the X-ray images were not compromised. The 

abovementioned digitising method also impacts on the 

quality of X-ray data obtained which includes the required 

radiologist’s supervision and the type of machine that can 

produce a quality image. Digitised images comprise of 2D 

and 3D matrices which have intensity and amplitude values 

[13]. In most cases grayscale images are utilised within 

image processing, this allows pixels of varying shades from 

0 being black and 1 being white and colour images having 

different shades of RGB values ranging from 0 to 255 [13]. 

2) Image pre-processing and segmentation: Digitisation of 

the image data was further processed into a 5x5 matrix and 

fed into the system by a 1x25 vector. This enhances 

accuracy in interpretation of the data by the various 

classifiers and ease of data transmission. The pre-processing 

subsystem/stage segments the image into specific regions or 

ROIs (as shown in figure 3) that consisted of background, 

soft tissue, and bone data [11]. 

 

 
Fig. 3: Example of region of interest for segmentation 

 

3) Classification and fracture detection: The segmentation of 

the X-ray images provided data that were utilised to classify 

the input data. Background, soft tissue and fractured bone 

data as well as normal bone data were utilized in training, 

validating and testing of the classification system. ANN, 

SVM and FIS classifiers predicted possible fractures when 

the X-ray images were propagated through the system [11]. 

4) Thresholding and optimisation: Due to the variance of 

pixels, threshold values -i.e. minimum and maximum 

values, are required. This can be achieved by automatically 

using a standised algorithm e.g. a genetic algorithm or by 

simply assigning minimum and maximum values. Minimum 

and maximum threshold values were set for the system 

which allowed for comparison of neighbouring pixels with 

similar contrast. This was further optimized using a genetic 

algorithm which utilized the scaled conjugate gradient 

(SCG) method. The method allowed for the minimisation of 

the error function within the ANN computation [11]. 

 

B. Compression via Principal Components 

 

Compression of images are carried using a variety of 

different techniques inter alia removal of spectral 

redundancies, transform-based approaches, and PCA has 

been previously applied for compression in application areas 

such facial recognition and remote sensing [14], [15]. The 

approach taken here is to firstly separate the X-ray image in 

three colour schemes/components, and then perform PCA 

on these components. The proportion of variance is analysed 

to view the extent of contribution of the principal 

components on the overall image. The exclusion of principal 

components and subsequent reconstruction of the X-ray 

image constitutes the actual compression. Principal 

component Analysis of the X-ray images used in this 

investigation indicates that high proportions of variance are 

largely owing to approximately 30 principal components of 

the image. Simply put, this means that there is a possibility 

to exclude insignificant components without losing data that 

may be critical to classification. Examples of the proportion 

of variance plots obtained from PCA of an X-ray image 

used in this investigation are given in figures 5 and 6. The 

visual quality deterioration in the X-ray image after 

compression and reconstruction is given in figures 7a, 7b, 

and 7c. 

 

C. Image Preprocessing and Processing  

 

The approach taken here is to incorporate the compression 

via PCs as a pre-processing subsystem to the overall 

classification system shown in figure 2, in order to evaluate 

the effects of image compression. This modified system - 

with compression pre-processing - is shown in figure 4. 

 

 
 

Fig. 4: Process overview for X-ray image classification and 

fracture detection system with modified compression 

preprocessing 
 



It should be highlighted that only the SVM- and ANFIS-
based classification systems are used in this investigation as 
focus is placed on the compression effects. 

 

 
 

Fig. 5: Cumulative proportion of variance obtained from 

principal component analysis of X-ray image 

 

 
 

Fig. 6: Scree plot of variance obtained from principal 

component analysis of X-ray image 

 

IV. RESULTS AND ANALYSIS 

A. Compression 

Two different levels of compression were applied 

consistently to all the images. For the level 1 compression, 

200 components were extracted, while 30 components were 

extracted for level 2.  

Although these compression levels are applied consistently, 

the resulting compression ratios and actual volumes for each 

of the X-rays are expectedly different due to variation in 

initial sizes. A summary of these results are given in table I. 

 

TABLE I: Summary of size reductions resulting from 

different PCA compression levels 

 
Image  Level 1 (%)  Level 2 (%) 

H1 67.15174 69.1365 

H2 50.73583 64.50694 

H3 68.35623 74.20801 

H4 58.99052 63.80504 

H5 93.24539 93.30798 

F1 56.6188 57.25153 

F2 86.74174 87.64268 

F3 91.59408 91.67574 

F4 93.56891 93.57381 

F5 88.46931 89.09141 

 

 

 
 

Fig. 7: X-ray image subjected to different compression rates 

(a) standard (uncompressed), (b) level 1 compression, and 

(c) level 2 compression. 

 
 



B. Classification Results 

 

The compressed images were then put through the 

classification system, as shown in figure 4. The change in 

the classification accuracy for each of the classification 

system using the uncompressed X-ray images, and the X-

rays compressed at the two different levels were recorded. 

Table II gives a summary of the decline in classification 

accuracies corresponding to each of the compressed images, 

where δTA(%) corresponds to the normalised change in 

classification test accuracy using standard (uncompressed) 

X-ray image versus compressed X-ray image.  

 

TABLE II: Summary of change (decrease) in classification 

accuracy for different levels of compression 

 

 
 

V. CONCLUSION 

 

As medical imaging technology advances, so too does the 

need to account for the growing storage, transmission and 

processing bandwidth requirements. X-ray image-based 

classification systems for assisted fracture detection and 

diagnosis have become increasingly popular but suffer from 

the bottlenecks brought about by voluminous data. Thus, a 

compression technique that provides suitable ratios but does 

not adversely affect the performance of these classification 

systems is desired. The presented investigation deals with 

the assessment of PCA-based compression on the accuracy 

of an X-ray image classification system. A number of X-ray 

images are subjected to different levels of compression. The 

classifier system is applied to the normal and compressed 

images to determine changes in accuracy. Results indicate 

that, on average, a level 1 compression ratio diminishes the 

classification accuracy by approximately 8.75% (for 

ANFIS-based classification) and 1.67% (for SVM-based 

classification) while providing average compression ratios 

of approximately 75.7% for the test dataset. Although 

limited amount of X-ray image data were used, this study 

provides a clear case for further testing of PCA using a 

richer dataset. Furthermore, testing of X-ray images, done 

alongside diagnoses carried out by medical practitioners 

could bring out an understanding of the medical 

implications of the accuracy reductions of classification 

accuracies under varying levels of compression. 
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