21 research outputs found

    Sentiment analysis via multi-layer perceptron trained by meta-heuristic optimisation

    Get PDF

    Optimal energy management system using biogeography based optimization for grid-connected MVDC microgrid with photovoltaic, hydrogen system, electric vehicles and Z-source converters

    Get PDF
    Currently, the technology associated with charging stations for electric vehicles (EV) needs to be studied and improved to further encourage its implementation. This paper presents a new energy management system (EMS) based on a Biogeography-Based Optimization (BBO) algorithm for a hybrid EV charging station with a configuration that integrates Z-source converters (ZSC) into medium voltage direct current (MVDC) grids. The EMS uses the evolutionary BBO algorithm to optimize a fitness function defining the equivalent hydrogen consumption/generation. The charging station consists of a photovoltaic (PV) system, a local grid connection, two fast charging units and two energy storage systems (ESS), a battery energy storage (BES) and a complete hydrogen system with fuel cell (FC), electrolyzer (LZ) and hydrogen tank. Through the use of the BBO algorithm, the EMS manages the energy flow among the components to keep the power balance in the system, reducing the equivalent hydrogen consumption and optimizing the equivalent hydrogen generation. The EMS and the configuration of the charging station based on ZSCs are the main contributions of the paper. The behaviour of the EMS is demonstrated with three EV connected to the charging station under different conditions of sun irradiance. In addition, the proposed EMS is compared with a simpler EMS for the optimal management of ESS in hybrid configurations. The simulation results show that the proposed EMS achieves a notable improvement in the equivalent hydrogen consumption/generation with respect to the simpler EMS. Thanks to the proposed configuration, the output voltage of the components can be upgraded to MVDC, while reducing the number of power converters compared with other configurations without ZSC.This work was partially supported by Spain's Ministerio de Ciencia, Innovaci ' on y Universidades (MCIU), Agencia Estatal de Investigaci ' on (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) Uni ' on Europea (UE) (grant number RTI2018-095720-B-C32), by the Federal Center for Technological Education of Minas Gerais, Brazil (process number 23062-010087/2017-51) and by the National Council of Technological and Scientific Development (CNPq-Brazil)

    Biogeography-Based Optimization for Weight Optimization in Elman Neural Network Compared with Meta-Heuristics Methods

    Get PDF
    In this paper, we present a learning algorithm for the Elman Recurrent Neural Network (ERNN) based on Biogeography-Based Optimization (BBO). The proposed algorithm computes the weights, initials inputs of the context units and self-feedback coefficient of the Elman network. The method applied for four benchmark problems: Mackey Glass and Lorentz equations, which produce chaotic time series, and to real life classification; iris and Breast Cancer datasets. Numerical experimental results show improvement of the performance of the proposed algorithm in terms of accuracy and MSE eror over many heuristic algorithms

    A New Energy-Aware Flexible Job Shop Scheduling Method Using Modified Biogeography-Based Optimization

    Get PDF
    Industry consumes approximately half of the total worldwide energy usage. With the increasingly rising energy costs in recent years, it is critically important to consider one of the most widely used energies, electricity, during the production planning process. We propose a new mathematical model that can determine efficient scheduling to minimize the makespan and electricity consumption cost (ECC) for the flexible job shop scheduling problem (FJSSP) under a time-of-use (TOU) policy. In addition to the traditional two subtasks in FJSSP, a new subtask called speed selection, which represents the selection of variable operating speeds, is added. Then, a modified biogeography-based optimization (MBBO) algorithm combined with variable neighborhood search (VNS) is proposed to solve the biobjective problem. Experiments are performed to verify the effectiveness of the proposed MBBO algorithm for obtaining an improved scheduling solution compared to the basic biogeography-based optimization (BBO) algorithm, genetic algorithm (GA), and harmony search (HS)

    Biogeography-Based Optimization of a Variable Camshaft Timing System

    Get PDF
    Automotive system optimization problems are difficult to solve with traditional optimization techniques because the optimization problems are complex, and the simulations are computationally expensive. These two characteristics motivate the use of evolutionary algorithms and meta-modeling techniques respectively. In this work, we apply biogeography-based optimization (BBO) to radial basis function (RBF)-based lookup table controls of a variable camshaft timing system for fuel economy optimization. Also, we reduce computational search effort by finding an effective parameterization of the problem, optimizing the parameters of the BBO algorithm for the problem, and estimating the cost of a portion of the candidate solutions in BBO with design and analysis of computer experiments (DACE). We find that we can improve fuel economy by 1.7 compared to the original control parameters, and we find effective, problem-specific values for BBO population size and mutation rate. Finally, we find that we can use a small number of samples to construct DACE models, and we can use these models to estimate a significant portion of the BBO candidate solutions each generation to reduce computation effort and still obtain good BBO solution

    Biogeography-Based Optimization of a Variable Camshaft Timing System

    Get PDF
    Automotive system optimization problems are difficult to solve with traditional optimization techniques because the optimization problems are complex, and the simulations are computationally expensive. These two characteristics motivate the use of evolutionary algorithms and meta-modeling techniques respectively. In this work, we apply biogeography-based optimization (BBO) to radial basis function (RBF)-based lookup table controls of a variable camshaft timing system for fuel economy optimization. Also, we reduce computational search effort by finding an effective parameterization of the problem, optimizing the parameters of the BBO algorithm for the problem, and estimating the cost of a portion of the candidate solutions in BBO with design and analysis of computer experiments (DACE). We find that we can improve fuel economy by 1.7 compared to the original control parameters, and we find effective, problem-specific values for BBO population size and mutation rate. Finally, we find that we can use a small number of samples to construct DACE models, and we can use these models to estimate a significant portion of the BBO candidate solutions each generation to reduce computation effort and still obtain good BBO solution

    A dynamic neighborhood learning-based gravitational search algorithm

    Get PDF
    Balancing exploration and exploitation according to evolutionary states is crucial to meta-heuristic search (M-HS) algorithms. Owing to its simplicity in theory and effectiveness in global optimization, gravitational search algorithm (GSA) has attracted increasing attention in recent years. However, the tradeoff between exploration and exploitation in GSA is achieved mainly by adjusting the size of an archive, named Kbest, which stores those superior agents after fitness sorting in each iteration. Since the global property of Kbest remains unchanged in the whole evolutionary process, GSA emphasizes exploitation over exploration and suffers from rapid loss of diversity and premature convergence. To address these problems, in this paper, we propose a dynamic neighborhood learning (DNL) strategy to replace the Kbest model and thereby present a DNL-based GSA (DNLGSA). The method incorporates the local and global neighborhood topologies for enhancing the exploration and obtaining adaptive balance between exploration and exploitation. The local neighborhoods are dynamically formed based on evolutionary states. To delineate the evolutionary states, two convergence criteria named limit value and population diversity, are introduced. Moreover, a mutation operator is designed for escaping from the local optima on the basis of evolutionary states. The proposed algorithm was evaluated on 27 benchmark problems with different characteristic and various difficulties. The results reveal that DNLGSA exhibits competitive performances when compared with a variety of state-of-the-art M-HS algorithms. Moreover, the incorporation of local neighborhood topology reduces the numbers of calculations of gravitational force and thus alleviates the high computational cost of GSA

    Optimal Mixed Tracking/Impedance Control With Application to Transfemoral Prostheses With Energy Regeneration

    Get PDF
    We design an optimal passivitybased tracking/impedance control system for a robotic manipulator with energy regenerative electronics, where the manipulator has both actively and semi-actively controlled joints. The semi-active joints are driven by a regenerative actuator that includes an energy-storing element. Method: External forces can have a large influence on energy regeneration characteristics. Impedance control is used to impose a desired relationship between external forces and deviation from reference trajectories. Multi-objective optimization (MOO) is used to obtain optimal impedance parameters and control gains to compromise between the two conflicting objectives of trajectory tracking and energy regeneration. We solve the MOO problem under two different scenarios: 1) constant impedance; and 2) timevarying impedance. Results: The methods are applied to a transfemoral prosthesis simulation with a semi-active knee joint. Normalized hypervolume and relative coverage are used to compare Pareto fronts, and these two metrics show that time-varying impedance provides better performance than constant impedance. The solution with time-varying impedance with minimum tracking error (0.0008 rad) fails to regenerate energy (loses 9.53 J), while a solution with degradation in tracking (0.0452 rad) regenerates energy (gains 270.3 J). A tradeoff solution results in fair tracking (0.0178 rad) and fair energy regeneration (131.2 J). Conclusion: Our experimental results support the possibility of net energy regeneration at the semi-active knee joint with human-like tracking performance. Significance: The results indicate that advanced control and optimization of ultracapacitor-based systems can significantly reduce power requirements in transfemoral prostheses

    Investigating evolutionary computation with smart mutation for three types of Economic Load Dispatch optimisation problem

    Get PDF
    The Economic Load Dispatch (ELD) problem is an optimisation task concerned with how electricity generating stations can meet their customers’ demands while minimising under/over-generation, and minimising the operational costs of running the generating units. In the conventional or Static Economic Load Dispatch (SELD), an optimal solution is sought in terms of how much power to produce from each of the individual generating units at the power station, while meeting (predicted) customers’ load demands. With the inclusion of a more realistic dynamic view of demand over time and associated constraints, the Dynamic Economic Load Dispatch (DELD) problem is an extension of the SELD, and aims at determining the optimal power generation schedule on a regular basis, revising the power system configuration (subject to constraints) at intervals during the day as demand patterns change. Both the SELD and DELD have been investigated in the recent literature with modern heuristic optimisation approaches providing excellent results in comparison with classical techniques. However, these problems are defined under the assumption of a regulated electricity market, where utilities tend to share their generating resources so as to minimise the total cost of supplying the demanded load. Currently, the electricity distribution scene is progressing towards a restructured, liberalised and competitive market. In this market the utility companies are privatised, and naturally compete with each other to increase their profits, while they also engage in bidding transactions with their customers. This formulation is referred to as: Bid-Based Dynamic Economic Load Dispatch (BBDELD). This thesis proposes a Smart Evolutionary Algorithm (SEA), which combines a standard evolutionary algorithm with a “smart mutation” approach. The so-called ‘smart’ mutation operator focuses mutation on genes contributing most to costs and penalty violations, while obeying operational constraints. We develop specialised versions of SEA for each of the SELD, DELD and BBDELD problems, and show that this approach is superior to previously published approaches in each case. The thesis also applies the approach to a new case study relevant to Nigerian electricity deregulation. Results on this case study indicate that our SEA is able to deal with larger scale energy optimisation tasks
    corecore