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Industry consumes approximately half of the total worldwide energy usage.With the increasingly rising energy costs in recent years,
it is critically important to consider one of the most widely used energies, electricity, during the production planning process. We
propose a newmathematical model that can determine efficient scheduling tominimize themakespan and electricity consumption
cost (ECC) for the flexible job shop scheduling problem (FJSSP) under a time-of-use (TOU) policy. In addition to the traditional
two subtasks in FJSSP, a new subtask called speed selection, which represents the selection of variable operating speeds, is added.
Then, a modified biogeography-based optimization (MBBO) algorithm combined with variable neighborhood search (VNS) is
proposed to solve the biobjective problem. Experiments are performed to verify the effectiveness of the proposedMBBO algorithm
for obtaining an improved scheduling solution compared to the basic biogeography-based optimization (BBO) algorithm, genetic
algorithm (GA), and harmony search (HS).

1. Introduction

Under the pressure of sustainable development, manufac-
turers today must consider not only production efficiency
but also energy consumption. In recent years, the demand
for energy and the investment in energy have continued to
increase. Global energy consumption was 524 quadrillion
Btu in 2010 and is expected to increase by 56.5%, to 820
quadrillion Btu, by 2040 [1]. Industry accounted for 52% of
energy usage worldwide in 2010 [1]. As one of themost widely
used industrial energies, electricity is an important sector
that cannot be neglected. However, the rising cost of energy
sources to generate electricity such as coal, natural gas, and
nuclear energy leads to an increasing electricity consumption
cost (ECC). Moreover, the characteristics of electricity make
its storage inefficient. Although increasingly heavy invest-
ment has been made to support backup infrastructures, with
the variable demand of consumers it remains difficult to
achieve a trade-off between demand and supply. To address
this issue, electricity suppliers have implemented demand
response technology.

Time-of-use (TOU) electricity pricing, as the main
method of demand response technology,means that the price

of electricity is dependent on the electricity consumption at
a specific time. That is, it is related to electricity demand.
The aim of this method is to encourage consumers and
manufacturers to reduce electricity consumption in high-
peak periods. For example, the electricity price in high-peak
periods can be double that in off-peak periods. Thus, man-
ufacturers can exploit TOU pricing and shift electricity con-
sumption from high-peak periods to off-peak periods. Con-
sequently, ECC, a significant industry cost, can be somewhat
reduced.

Three kinds of actions can be implemented to reduce ECC
[2]. Manufacturing companies can purchase new energy-
efficient machines; this is expensive and has minimal impact.
New product forms can be designed. This method is difficult
formedium and small-sized enterprises owing to large capital
investment. Compared to the aforementioned two methods,
production scheduling is more reasonable and applicable
because of its minimal investment and strong practicality.
The flexible job shop scheduling problem (FJSSP), which
has two subtasks, is an extension of the classical job shop
scheduling problem. Machine selection is an essential sector
in FJSSP. Processing routes are arranged after selection of
the appropriate machines. In this study, we assume that each
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candidate machine has adjustable speeds. Machines in high-
speed mode can reduce processing time but increase energy
consumption, whereas machines in low-speed mode are rel-
atively energy saving but, more time-consuming. Reasonable
arrangements of machines of different speeds in various
periods can reduce ECC efficiently under the TOU pricing
strategy that contributes to price fluctuations in different
periods.

In this study, a new mathematical model is proposed to
solve the biobjective problem, namely, makespan and ECC in
FJSSP. Moreover, we present a modified biogeography-based
optimization (MBBO) algorithm that adopts the extended
migration model, combines elitism strategy, and employs
variable neighborhood search (VNS). This kind of extension
can improve the local search ability and accelerate the con-
vergence of the original biogeography-based optimization
(BBO) algorithm. A series of experiments are performed
on extended well-known benchmark instances. We compare
the MBBO algorithm with the basic BBO algorithm, genetic
algorithm (GA), and harmony search (HS) to demonstrate
the effectiveness of the proposed algorithm.

The remainder of this paper is organized as follows. In
Section 2, we discuss some related works. In Section 3, the
problem definition and mathematical model are presented.
Section 4 describes the proposed MBBO algorithm for
solving the biobjective problem that minimizes makespan
and ECC in FJSSP. In Section 5, experiments are performed to
validate the effectiveness of the proposed MBBO algorithm.
In Section 6,we present conclusions anddiscuss futureworks.

2. Related Works

Both industry and academia have addressed green-
manufacturing in recent years, and research concentrating
on energy-efficient scheduling is gradually increasing. In the
single machine environment, Mouzon et al. [3] determined
that there existed considerable energy waste, accounting
for 80 percent of total energy consumption. Thus, they
proposed a “Turn Off/Turn On” method in the idle phase
of a single CNC machine to reduce energy consumption.
In their follow-up work, they considered total tardiness
and energy consumption and used a novel greedy heuristic
search method to solve the biobjective optimization problem
[4]. Considering variable electricity price, Shrouf et al. [5]
utilized GA to reduce ECC in a production-scheduling
problem of a single machine. They employed a “Turn
On/Turn Off” strategy to determine when to shut down the
machine to save electricity cost. Che et al. [6] developed
a new mathematical model to address a single machine
scheduling problem under TOU electricity tariffs to
minimize the total electricity cost and proposed a greedy
insertion heuristic to solve it. Ding et al. [7] investigated
the unrelated parallel-machine scheduling problem to
optimize ECC under the TOU tariff. They considered the
TOU setting where electricity prices fluctuate frequently in
short periods and proposed a column generation heuristic.
Further, a time-interval-based mixed-integer programming
formulation was developed allowing a more efficient
solution. In the flow shop environment, Bruzzone et al. [8]

established a mixed-integer programming model where
energy consumption was considered without changing the
original jobs’ assignment and sequencing provided by the
reference schedule generated by an advanced planning and
scheduling system. Lin et al. [9] proposed an integrated
model for processing parameter optimization and flow shop
scheduling considering makespan and carbon footprint and
introduced three carbon-footprint reduction strategies. Lu et
al. [10] proposed an energy-efficient permutation flow shop
scheduling model considering controllable transportation
times solved by backtracking search algorithm and developed
a new energy saving strategy. In the job shop environment,
Liu et al. [11] used a novel multiobjective GA to minimize
the total nonprocessing electricity consumption and total
weighted tardiness and employed a “Turn On/Turn Off”
method to save electricity.

Diaz et al. [12] concluded that energy consumption is
related to the cutting speed and cutting at a higher speed can
save more energy than traditional-speed cutting. Fang et al.
[13] proposed a newmodel for solving the flow shop schedul-
ing problem to reduce peak power load, energy consumption,
and carbon footprint. They assumed that jobs were operated
at dynamic speeds. However, the commercial software they
applied directly was only practical for a small-sized problem.
Thus, there could exist a gap between the theory and appli-
cation in industry. To address a parallel-machine scheduling
problem considering the total weighted job tardiness and
power cost, Fang and Lin [14] attempted to adjust CPU
frequencies to force jobs to be processed at a variablemachine
speed. They assumed that higher machine speed saved time
but increased power cost, whereas reduced machine speed
sacrificed completion times but led to higher energy cost.
They proposed two heuristic algorithms and designed a
specific encoding scheme for a particle swarm optimization
algorithm for solving the problem. Luo et al. [15] proposed
an extended ant colony optimization metaheuristic to solve a
hybrid flow shop scheduling problem under the TOU tariff.
According to a parameter analysis, the combination of a high-
power machine and a low-power machine could save more
energy than using two middle-power machines. Sharma et
al. [16] proposed a new econological schedulingmodel under
TOU pricing where machine speeds were allowed to vary.
Both economic and ecological benefits were simultaneously
achieved using a multicriteria metaheuristic optimization
method. For the job shop environment, Salido et al. [17]
presented a biobjective problem to minimize makespan and
energy consumption where machines could work at different
speeds.

However, literature concentrating on energy in FJSSP
is still lacking. Moon and Park [18] employed constraint
programming and mixed-integer programming approaches
to minimize production cost in FJSSP considering electric-
ity costs with distributed energy resources. Zhang et al.
[19] employed the extended nondominated sorting genetic
algorithm II (NSGA-II), considering makespan, machine
workload, and carbon footprint, for solving FJSSP. He et al.
[20] utilized the nested partitions algorithm to solve a
new mathematical model formulated by a mixed-integer
programming to reduce energy consumption in FJSSP. Liu
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and Tiwari [21] developed an optimization approach based
on NSGA-II to make the scheduling plans for a carbon fiber
reinforced polymer recycling workshop, considering both
makespan and energy reduction under the circumstance of
flexible job shop. Yang et al. [22] used NSGA-II for solving
FJSSP considering makespan and total energy consumption
under stochastic processing times. Lei et al. [23] proposed a
shuffled frog-leaping algorithm to investigate FJSSP with the
objective of minimizing workload balance and total energy
consumption. Yin et al. [24] considered productivity, energy
efficiency, and noise reduction in FJSSP where machining
spindle speed affected the production time, power, and noise.

Metaheuristics and intelligent algorithms have been
widely used in computer-integrated manufacturing. In our
previous work [25], to determine themanufacturing resource
allocation for supply chain deployment, extendedGAwas uti-
lized for solving the multiobjective decision-making model.
In our follow-up work [26], the teaching-learning-based
optimization algorithm was improved to plan the distributed
manufacturing resource allocation optimally. Pan et al. [27]
proposed a chaotic HS to minimize makespan to solve
the permutation flow shop scheduling problem considering
limited buffers. Ribas et al. [28] proposed an improved
artificial bee colony algorithm for solving the blocking flow
shop problem by employing various strategies for each
phase. Karthikeyan et al. [29] integrated discrete firefly algo-
rithm with local search method to solve FJSSP considering
makespan, the workload of the critical machine, and the
total workload of all machines. Li and Gao [30] used GA
for global search and tabu search for local search to achieve
a balance between the intensification and diversification
for solving FJSSP. As one of the metaheuristics, the BBO
algorithm based on population used in this study, which aims
to solve optimization problems, was first proposed by Simon
[31] in 2008. Inspired by the biogeography theory, the BBO
algorithm assumes that a suitable place for living has a high
habitat suitability index (HSI). It is clear that HSI is related
to many factors such as rainfall, temperature, and soil. These
factors are defined as suitability index variables (SIVs) in
the BBO algorithm. To our knowledge, a habitat with a high
HSI usually has a relatively significant diversity of species,
whereas species of the habitat with low HSI are minimal.
Therefore, if the number of species is overly large, then the
habitat with a high HSI cannot persist and migration will
subsequently occur. In addition to the migration operator,
mutation is another main operator that can randomly change
SIVs, accordingly affecting the HSI of the specific habitat. A
habitat can evolve constantly based on the two operations.
The BBO algorithm has been applied and improved in
scheduling problems. Rahmati and Zandieh [32] utilized the
BBO algorithm to solve FJSSP and performed a compari-
son between the BBO algorithm and GA for an improved
understanding. Wang and Duan [33] improved the standard
BBO algorithm by integrating chaos theory and a strategy
called “searching around the optimum,” which can prevent
the local optima effectively. Lin and Zhang [34] proposed
a hybrid BBO algorithm, combined with new heuristics to
minimize the makespan in the distributed assembly permu-
tation flow shop scheduling problem. However, the original

BBO algorithm has a poor local search ability and converges
slowly. The proposed MBBO algorithm in this work adopts
an extended migration model and is integrated with VNS,
which can enhance the local search ability and accelerate the
convergence.This kind of extension avoids the weaknesses of
the BBO algorithm effectively.

3. Problem Definition and Modeling

The definition of FJSSP can be described as 𝑛 independent
jobs {𝐽1, 𝐽2, . . . , 𝐽𝑛} to be processed on a set of 𝑚 machines{𝑀1,𝑀2, . . . ,𝑀𝑚}. A job 𝐽𝑖 consists of a sequence of opera-
tions𝑂𝑖𝑗. FJSSP aims to achieve the objectives by determining
the appropriate machine assignment (MA) and operation
sequence (OS).

FJSSP for reducing ECC in this study is an extension of
classical FJSSP. It not only considers the traditional objective
makespan but also ECC under the TOU tariffs. We assume
that the machine frequency is adjustable and jobs can be
operated at variable speeds. Thus, different from classical
FJSSPwith two subproblems containingMA andOS, another
subproblem that considers the selection of speeds is included.

The objective of this study is to achieve a balance between
makespan and ECC by assigning jobs to the appropriate
machines with selected operating speeds. To make this
scheduling problem more concise, there are some assump-
tions to be satisfied.

(1) An operation, once started, cannot be interrupted
until it is completed.

(2) Each machine can process only one job at a time and
each job can only be processed on one machine at a
time.

(3) The operations of each job have priority constraints.
(4) All machines are available during the planning hori-

zon and all jobs can be processed at time zero.
(5) The setup and adjustment periods of themachines are

negligible.

3.1. Notations. To understand the mathematical model more
clearly, the corresponding parameters and decision variables
are explained as follows:

Sets

𝐽: set of jobs {𝐽1, 𝐽2, . . . , 𝐽𝑛}
𝑀: set of machines {𝑀1,𝑀2, . . . ,𝑀𝑚}.

Parameters

𝑖: index of jobs, 𝑖 = 1, . . . , 𝑛
𝑘: index of machines, 𝑘 = 1, . . . , 𝑚
𝑗: index of operation sequences, 𝑗 = 1, . . . , 𝑙𝑖
𝑡: index of time periods, 𝑡 = 1, . . . , 𝑟
𝑠: index of machine processing speeds, 𝑠 = 1, . . . , 𝑞
𝑂𝑖𝑗: the jth operation of 𝐽𝑖
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𝑃𝑠𝑘𝑖𝑗 : number of time periods of processing 𝑂𝑖𝑗 on
machine 𝑘 at speed 𝑠
𝑆𝑖𝑗: start time of 𝑂𝑖𝑗
𝐶𝑖𝑗: finishing time of 𝑂𝑖𝑗
𝐶max: makespan of the schedule
𝐸𝑠𝑡𝑘: processing energy consumption onmachine 𝑘 at
speed 𝑠 at period 𝑡
𝐸𝑜𝑡𝑘: idle energy consumption onmachine 𝑘 at period𝑡
EC𝑡: the electricity cost at period 𝑡
ECC: total electricity cost of the schedule

Decision Variables

𝑥𝑠𝑘𝑖𝑗 : binary variable, if 𝑂𝑖𝑗 is processed on machine 𝑘
at speed 𝑠, then 𝑥𝑠𝑘𝑖𝑗 = 1; otherwise, 𝑥𝑠𝑘𝑖𝑗 = 0
𝑦𝑠𝑘𝑡𝑖𝑗 : binary variable, if 𝑂𝑖𝑗 is processed on machine 𝑘
at speed 𝑠 at period 𝑡, then 𝑦𝑠𝑘𝑡𝑖𝑗 = 1; otherwise, 𝑦𝑠𝑘𝑡𝑖𝑗 =0
𝛼𝑠𝑡𝑘: binary variable, if machine 𝑘 is at the processing
status at speed 𝑠 during period 𝑡, then 𝛼𝑠𝑡𝑘 = 1;
otherwise 𝛼𝑠𝑡𝑘 = 0
𝛽𝑡𝑘: binary variable, if machine 𝑘 is at the standby
status during period 𝑡, then 𝛽𝑡𝑘 = 1; otherwise 𝛽𝑡𝑘 =0.

3.2. Formulations. During the production process, the time
and energy consumption of the setting up and transforming
periods are relatively small compared to those of the process-
ing and standby periods. In this study, we only consider three
machine statuses: processing, standby, and off status.

From the following two equations, we can determine the
makespan and total electricity cost:

𝐶max = max
1≤𝑖≤𝑛

{𝐶𝑖𝑙𝑖} ,

ECC = 𝑟∑
𝑡=1

𝑚∑
𝑘=1

EC𝑡 (
𝑞∑
𝑠=1

𝐸𝑠𝑡𝑘𝛼𝑠𝑡𝑘 + 𝐸𝑜𝑡𝑘𝛽𝑡𝑘) .
(1)

Before we transform the biobjective problem, which aims
to minimize the makespan and ECC into a monoobjec-
tive, the normalization method provided in [35] must be
performed. Because the values of the makespan and ECC
belong to intervals with different lengths, a domination
could occur leading to an inefficiency of the evaluation.
Thus, the normalized makespan value 𝐶max and normalized
total electricity cost value ECC can be obtained. By setting
weights 𝑤1 and 𝑤2 manually in the interval between zero
and one, a balance can be achieved between time and ECC.
Weight coefficients summed to one are used to reflect the
respective importance of the objectives. For example, if the
decisionmaker considers timemore important than the other
objectives, the weight coefficient of time can be set higher

manually. This kind of method is more flexible for different
decision makers when planning production schedules.

The mathematical model is indicated as follows.

Objective

min {𝑤1𝐶max + 𝑤2ECC} . (2)

Constraints

𝐶𝑖𝑗 = 𝑆𝑖𝑗 +
𝑞∑
𝑠=1

𝑃𝑠𝑘𝑖𝑗 𝑥𝑠𝑘𝑖𝑗 ∀𝑖, 𝑗, 𝑘 (3)

𝑆𝑖(𝑗+1) − 𝑆𝑖𝑗 ≥
𝑞∑
𝑠=1

𝑃𝑠𝑘𝑖𝑗 𝑥𝑠𝑘𝑖𝑗 1 ≤ 𝑗 ≤ 𝑙𝑖 − 1 ∀𝑖, 𝑘 (4)

𝑚∑
𝑘=1

𝑞∑
𝑠=1

𝑦𝑠𝑘𝑡𝑖𝑗 = 1 ∀𝑖, 𝑗, 𝑡 (5)

𝑛∑
𝑖=1

𝑙𝑖∑
𝑗=1

𝑦𝑠𝑘𝑡𝑖𝑗 ≤ 1 ∀𝑠, 𝑘, 𝑡 (6)

𝑟∑
𝑡=1

𝑦𝑠𝑘𝑡𝑖𝑗 = 𝑃𝑠𝑘𝑖𝑗 𝑥𝑠𝑘𝑖𝑗 ∀𝑖, 𝑗, 𝑠, 𝑘 (7)

𝑞∑
𝑠=1

𝛼𝑠𝑡𝑘 + 𝛽𝑡𝑘 ≤ 1 ∀𝑡, 𝑘 (8)

𝑆𝑖𝑗 ≥ 0,
𝐶𝑖𝑗 ≥ 0

∀𝑖, 𝑗
(9)

𝑥𝑠𝑘𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗, 𝑠, 𝑘 (10)

𝑦𝑠𝑘𝑡𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗, 𝑠, 𝑘, 𝑡 (11)

𝛼𝑠𝑡𝑘 ∈ {0, 1} ∀𝑠, 𝑡, 𝑘 (12)

𝛽𝑡𝑘 ∈ {0, 1} ∀𝑡, 𝑘. (13)

Equation (2) is the objective function, which is aimed
at minimizing the related makespan and ECC. Constraint
(3) guarantees that each operation can be completed without
interruption once it starts. Constraint (4) guarantees that only
when the prior operation is finished can the next operation of
the same job be processed.That is, it is the priority constraint
of the operations. Constraint (5) ensures that each operation
cannot be processed on more than one machine at one speed
at the same time. Constraint (6) ensures that each machine
can perform atmost one operation at any time. Constraint (7)
describes the relationship between decision variables 𝑥𝑠𝑘𝑖𝑗 and𝑦𝑠𝑘𝑡𝑖𝑗 . Constraint (8) confines each machine to be operating at
only one specific speed at each time period and requires that
each machine must be in one of the three possible states at
any time. Constraint (9) imposes the nonnegative restriction
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Table 1: Example of FJSSP with three jobs and three machines.

Job Operation 𝑀1 𝑀2 𝑀3
𝐽1 𝑂11 3 6 4

𝑂12 5 — 3

𝐽2
𝑂21 4 7 3
𝑂22 — 5 3
𝑂23 3 4 6

𝐽3 𝑂31 6 5 5
𝑂32 7 6 —

on the start time and finishing time of each operation.
Constraints (10)–(13) specify that the decision variables 𝑥𝑠𝑘𝑖𝑗 ,𝑦𝑠𝑘𝑡𝑖𝑗 , 𝛼𝑠𝑡𝑘, and 𝛽𝑡𝑘 are binary.

4. MBBO Algorithm for FJSSP

In this section, the MBBO algorithm is proposed to solve
the FJSSP considering both makespan and ECC. To enable
the proposed approach adaptive to the investigated problem,
a new three-vector string representation is employed. In
addition, VNS is integrated to improve the performance of
the basic BBO algorithm.

4.1. Encoding and Decoding. The first step of solving FJSSP
using theMBBOalgorithm is to obtain a reasonable encoding
and decoding scheme that can effectively represent the
problem. Owing to the quality of the traditional FJSSP,
the encoding scheme design includes two subtasks, namely,
MA, which selects the machine where the operation will be
processed, and OS, which determines the specific operation
sequence of all the jobs. In this study, to meet the assumption
that machine frequency is adjustable, a new subtask called
speed selection (SS) is introduced. It must be noted that the
item called habitat in the BBO algorithm is similar to that
called chromosome in GA. Accordingly, we extended the
representation employed in [32] to form a three-vector string.
For a clear and intuitive understanding, we present Table 1
as a simple example to describe the encoding and decoding
scheme.

(1) MA. The length of a habitat is equal to the number of all
operations to be processed. Each position means the index of
the assignedmachine for the corresponding operation. Using
Table 1 as an example, given a habitat {2 2 1 2 3 2 1}, the
position of the second operation of 𝐽1 is “2,” which indicates
that 𝑂12 is processed on the second machine that can be
selected from {𝑀1,𝑀3}, namely,𝑀3.
(2) SS. The length of SS is equal to that of MA. The positive
integer number from one to three of each position indicates
the selected machine speed level of the corresponding posi-
tion of MA. Under the circumstance that the MA habitat is{2 2 1 2 3 2 1} and SS habitat is {1 3 3 2 1 3 1}, it
can be concluded that the second operation of 𝐽1 is processed
on the second machine at high speed.

(3) OS. The length of OS is also equal to that of MA. The
positive integer value means the index of the job, and the𝑝th occurrence of one positive integer value indicates the 𝑝th
operation of one job. Further, provided that there is a habitat{2 1 3 1 2 2 3}, the first genemeans the first operation of𝐽2, namely, 𝑂21, and the second occurrence of “2” means the
second operation of 𝐽2.

Decoding must identify the selected machine of each
operation first; then, the machine speed is identified based
on the MA habitat. The operation sequence is dependent on
the initial position to the end position of the habitat. That
is, the operation in the first position will be scheduled first.
According to the decoding scheme, a schedule plan can be
confirmed.

4.2. Migration Operator. HSI is one of the most important
factors affecting the movement of species. A habitat with
a high HSI has a large number of species and will not be
capable of persisting, whereas a habitat with a low HSI lacks
species. To the best of our knowledge, in the real world,
species can choose to migrate to other habitats once their
former habitat is full (of species). Similar to the biogeography
theory, migration is a vital probabilistic operator to change
the SIVs of habitats by sharing features among candidate
solutions in the BBO algorithm. The migration operator can
maintain effective solutions and to some degree expand the
search space of solutions. Ma [36] performed experiments
and concluded that applying different migration models has
significant effects on the BBO algorithm and that nonlin-
ear migration models inspired by the biogeography theory
generally outperform linear migration models. Based on this
conclusion, we employ the following sinusoidal migration
model [36]. According to (14)-(15), the immigration and
emigration rate can be calculated, respectively:

𝜆𝑘 = 𝐼max2 [cos(𝜋 𝑆𝑘𝑁𝑃) + 1] , (14)

𝜇𝑘 = 𝐸max2 [− cos(𝜋 𝑆𝑘𝑁𝑃) + 1] , (15)

where 𝜆𝑘 denotes the immigration rate, 𝜇𝑘 denotes emigra-
tion rate, 𝐼max is the maximum immigration rate, 𝐸max is the
maximum emigration rate, 𝑆𝑘 is the number of species of
habitat 𝑘, and NP is the maximum number of species that
habitats can support.

4.3. Mutation Operator. Unpredictable natural disasters can
damage the environment of habitats and destroy the eco-
logical balance causing the HSI to subsequently change.
The mutation operator represents this kind of phenomenon
in nature. It is a key operator in the BBO algorithm that
can change the goodness of habitats randomly and improve
the diversity of solutions. It is obvious that the mutation
function has an important role. The following formula [31]
can calculate the probability of mutation 𝑚𝑘 for the 𝑘th
habitat:

𝑚𝑘 = 𝑚max (1 − 𝑃𝑘𝑃max
) , (16)
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where𝑚max denotes the maximummutation probability and𝑃max = argmax𝑃𝑟 (𝑟 = 1, 2, . . . , 𝑁𝑃). 𝑃𝑘 can be calculated
according to the following formula [31]:
𝑃𝑘

=
{{{{{{{{{

− (𝜆𝑘 + 𝜇𝑘) 𝑃𝑘 + 𝜇𝑘+1𝑃𝑘+1, 𝑁𝑃 = 0,
− (𝜆𝑘 + 𝜇𝑘) 𝑃𝑘 + 𝜆𝑘−1𝑃𝑘−1 + 𝜇𝑘+1𝑃𝑘+1, 1 ≤ 𝑆𝑘 ≤ 𝑁𝑃 − 1,
− (𝜆𝑘 + 𝜇𝑘) 𝑃𝑘 + 𝜆𝑘−1𝑃𝑘−1, 𝑆𝑘 = 𝑁𝑃.

(17)

However, it is possible for the mutation operator to
decrease the goodness of solutionswith a highHSI.Therefore,
it is necessary to adopt the elitism strategy to retain the best𝑍elitism solutions.

4.4. Variable Neighborhood Search. VNS is a metaheuristic
method first proposed by Mladenović and Hansen [37]. It is
utilized to solve both continuous and discrete optimization
problems and has been employed in FJSSP efficiently. VNS
improves solution quality by searching neighborhoods of the
current solution, which avoids the possibility of falling into
local optima.

4.4.1. Neighborhood Structures. Neighborhood structures are
vital in the implementation of VNS. Limited neighborhood
structures save computational time; however, it is difficult to
obtain the optima and vice versa. Thus, achieving a trade-
off and defining reasonable neighborhood structures are
essential for VNS. The neighborhood structures used in this
research are defined as follows.

Neighborhood Structures for Shaking

(1) N5 Neighborhood. N5 neighborhood was proposed by
Nowicki and Smutnicki [38] and is based on the critical
path theory. The critical path theory integrated with VNS
has been successfully applied in FJSSP. The makespan of
a schedule is equal to the length of the critical path [39].
There may exist one or more critical paths in a schedule.
An operation belonging to a critical path is called a critical
operation. A critical block is a set of successive critical
operations processed on the same machine. To obtain a
superior solution, an efficient method is to determine each
critical path and perform operations on this path. An N5
neighborhood can be generated by exchanging the last two
operations of the head block, interchanging the first two
operations of the tail block, and swapping the first two
operations or the last two operations of the middle blocks.

(2) Machine Assignment Neighborhood. Determine the
machine that processes the most critical operations denoted
as 𝑀𝑘. Randomly select an operation 𝑂𝑖𝑗 with one more
candidate machines. From the candidate machines, select
the machine whose processing time of 𝑂𝑖𝑗 is least.
Neighborhood Structures for Local Search

(1) Insert Neighborhood. Randomly select an operation and
insert this operation into another position of a feasible
schedule.

(2) Swap Neighborhood. Randomly select two operations
belonging to different jobs and swap these operations in the
OS habitat.

4.4.2. Outline of VNS. A generalization of the main proce-
dure of VNS can be summarized as follows.

Step 1. Define the neighborhood structures and randomly
generate a solution 𝑥 denoted as the initial solution. Define
the maximum outer loop iteration OL. Set 𝑖 = 0 and 𝑗max = 2.
Step 2. Set 𝑖 = 𝑖 + 1 and 𝑗 = 1.
Step 3 (shaking). Randomly generate a neighbor solution 𝑥1
based on the 𝑗th neighborhood structure for shaking.

Step 4 (local search). Obtain a local optima denoted as 𝑥2
from 𝑥1 based on the predetermined neighborhood struc-
tures for local search.

Step 5 (move or not). If HSI of 𝑥2 is greater than that of 𝑥,
then let 𝑥2 replace 𝑥 and return to Step 3. Otherwise, perform
Step 6.

Step 6. If 𝑗 ̸= 𝑗max, set 𝑗 = 𝑗 + 1, and return to Step 3.

Step 6.1. If 𝑗 = 𝑗max and 𝑖 ≤ OL, return to Step 2.

Step 6.2. If 𝑗 = 𝑗max and 𝑖 > OL, terminate the procedure.

4.5. Time Complexity of the Proposed Algorithm. The time
complexity of the proposed algorithm is different when
applied to different problems. According to the parameters
explained before, let the number of all operations be 𝐿, the
time complexity in one iteration of each process of theMBBO
algorithm applied to the proposed model in this study is
shown as follows:

(1) Migration operator is 𝑂 (𝑁𝑃 × 𝐿).
(2) Mutation operator is 𝑂 (𝑁𝑃 × 𝐿).
(3) VNS is 𝑂 (𝑁𝑃 × 𝑚).
(4) HSI calculation is 𝑂 (𝑁𝑃 × 𝑚).
Therefore, if the maximum iteration number is 𝐾, by

synthesizing the time complexity of each process, the overall
complexity of the proposedMBBO algorithm is𝑂 (𝐾×𝑁𝑃×(𝑚 + 𝐿)).
5. Experiments

A series of experiments were performed comparing the
proposed approach with the basic BBO algorithm [31] and
two widely used algorithms, GA [40] and HS [41]. In this
study, the C# programming language was used to test the
MBBO algorithm. The experimental tests were implemented
on a personal computer with an Intel(R) Core(TM) 2.3GHz
and 12GB RAM operated on Windows 10.

5.1. Experimental Design. The parameters of each algorithm
are shown in Table 2. The initial population size and the



Mathematical Problems in Engineering 7

Table 2: Parameters of each algorithm.

Algorithm Parameters

MBBO

The maximum immigration rate 𝐼max = 1, the
maximum emigration rate 𝐸max = 1, the maximum
mutation probability 𝑚max = 0.1, and the number of

elites 𝑍elitism = 2
BBO

The maximum immigration rate 𝐼max = 1, the
maximum emigration rate 𝐸max = 1, and the maximum

mutation probability 𝑚max = 0.1
GA The crossover probability 𝑝𝑐 = 0.85 and the mutation

probability 𝑝𝑚 = 0.1
HS The harmony memory considering rate 𝑐𝑟 = 0.8 and the

pitch adjusting rate pa𝑟 = 0.3

Table 3: Time and power under different speeds in the processing
status.

Speed Time Power

1 𝑇1 = rand (1.2𝑇2, 1.4𝑇2) 𝑃1 = rand ( 𝑃21.4 ,
𝑃21.2)

2 𝑇2 = rand (1.2𝑇3, 1.4𝑇3) 𝑃2 = rand ( 𝑃31.4 ,
𝑃31.2)

3 T3 𝑃3 = rand (4, 8)

maximum iterations were set to 100 and 200, respectively,
for all algorithms. To avoid the randomness of the results,
each experimentwas performed 30 times to obtain an average
value.

Because there exist no benchmarks containing different
machine speeds and corresponding energy consumption
of FJSSP until now, to evaluate the performance of the
proposed MBBO algorithm, we extended two sets of well-
known benchmark problems, that is, Kacem instances [42]
and Brandimarte instances [43]. The number of jobs ranged
from four to ten; the number of machines ranged from five to
ten in the Kacem instances (4 × 5, 8 × 8, 10 × 7, and 10 × 10);
the number of jobs ranged from ten to twenty; the number
of machines ranged from four to fifteen in the Brandimarte
instances (MK01–MK10). Suppose that each machine owned
three possible adjustable operating speeds, high, medium,
and low. The processing time at the high operating speed,
denoted as 𝑇3, was equal to the processing time generated
originally. The machine power during the idle time was
generated randomly in the interval between two and four.
The processing time of the operation 𝑇𝑠 (𝑠 = 1, 2, 3) and
the related machine power 𝑃𝑠 (𝑠 = 1, 2, 3) under different
operating speeds were defined in Table 3.

5.2. Performance Evaluation. Generally, TOU pricing polices
differ in different seasons. To evaluate the performance of the
model, two cases under the TOU policies in summer and
winter were tested. Considering the fluctuations in electricity
pricing, one work day was divided into 96 periods with the
same length. Several periods can compose a duration and the
electricity price of the adjacent durations was different. Based
on the TOU policies in real life, Table 4 presents the specific
TOU electricity prices set in this study.
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Figure 1: HSI value for all instances of four approaches under
summer TOU electricity pricing.
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Figure 2: Evolution curves of four approaches for 10 × 7 under
summer TOU electricity pricing.

5.2.1. Case 1. In Case 1, we adopted TOU electricity pricing
for summer; all extended benchmarks were performed to test
the proposed method, and 𝑤1 was set to 0.6, and 𝑤2 was set
to 0.4.

Figure 1 displays the HSI value of both Kacem and
Brandimarte instances. It can be observed that the MBBO
algorithm outperformed the other three methods for all
instances. Based on the results obtained by the four methods,
it is clear that the MBBO algorithm was more effective.

The results and evolution curves of four approaches for10×7 under summer TOU electricity pricing are indicated in
Figure 2. According to Figure 2, theHSI value obtained by the
MBBOalgorithmwas the highest among the four approaches.
The number of iterations of the proposed approach was less
than the other three approaches, which indicates its high
convergence. It is clear that the performance of the MBBO
algorithm was superior.

The specific operation sequence for MK02 optimized
by the MBBO algorithm under TOU policy in summer is
displayed in Figure 3.
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Table 4: TOU electricity pricings in summer and winter.

Case 1 (summer) Case 2 (winter)
Duration 6 48 30 12 6 24 36 24 6
Price 5 8 16 8 5 16 8 16 5
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Figure 3: Gantt chart of an optimal solution of MK02 by MBBO
algorithm under summer TOU electricity pricing.

Although Machine 3, Machine 4, and Machine 6 remain
idle for several periods and the total completion time
increased slightly, the objective of minimizing makespan and
ECC was attained by shifting electricity consumption from
high-peak periods to other periods.

To evaluate the impact of weight combination for solu-
tions, experiments were performed and Table 5 shows the
results obtained by MBBO and other algorithms with differ-
ent weights (the best value is in bold).

From Table 5, it can be noted that, under summer TOU
electricity pricing, the proposedMBBO algorithm can obtain
better solutions for all instances than other algorithms under
four different weight combinations. Furthermore, as the
importance of time increases, HSI value is rising gradually,
and the highest HSI value can be up to 0.99149 by the
proposed algorithm in the Instance 10 × 10 when 𝑤1 = 0.8
and 𝑤2 = 0.2.
5.2.2. Case 2. In Case 2, we adopted the TOU policy for
winter; the other conditions including the preference settings𝑤1 = 0.6 and 𝑤2 = 0.4 remained unchanged.

From Figure 4, it can be seen that the proposed MBBO
algorithm outperformed the other three algorithms for all
instances. This indicates that the MBBO algorithm was effec-
tive under electricity pricing for both summer and winter.

According to the results and evolution curves of four
approaches for 10×7under thewinter TOUelectricity pricing
indicated in Figure 5, we can see that the HSI value calculated
by the proposed MBBO algorithm was the highest compared
to the other three approacheswhen the termination condition
was met. Further, the number of iterations of the MBBO
algorithmwas less than the comparative algorithms.Thus, the
proposed method was more competitive.

The specific operation sequence for MK02 optimized by
the MBBO algorithm under the TOU policy for winter is
presented in Figure 6.

We can see that, at an intermediary stage, the majority of
machines are in idle status.This is because themachines were
designed to remain idle in the high-peak periods to reduce
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Figure 5: Evolution curves of four approaches for 10 × 7 under
winter TOU electricity pricing.

ECC and a trade-off between the makespan and ECC was
achieved.

To further demonstrate the effectiveness of the MBBO
algorithm, Table 6 shows the results obtained by MBBO and
other algorithms with different weights (the best value is in
bold).

It can be concluded from Table 6 that, under winter TOU
electricity pricing with four different weight combinations,
the proposed MBBO algorithm can perform better than
other algorithms in terms of stability and solution quality.
Furthermore, HSI value increases with the improvement of
time importance, and the highest HSI value 0.99145 can be
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Figure 6: Gantt chart of an optimal solution of MK02 by MBBO
algorithm under winter TOU electricity pricing.

obtained by MBBO algorithm in Instance 10 × 10 when𝑤1 =0.8 and 𝑤2 = 0.2.
According to the results of the performed experiments,

it can be concluded that the MBBO algorithm was more
effective and competitive than the basic BBO algorithm, GA,
andHS for solving the proposedmodel under the TOUpolicy
for both summer and winter.

6. Conclusion

In this study, a modified BBO algorithm integrated with VNS
was proposed for solving FJSSP. In addition to the traditional
objective makespan, an index addressing ECC was added.
The main contributions in this study can be summarized
as follows. (1) A mathematical model for the biobjective
problem, to minimize makespan and ECC simultaneously,
was proposed in an extended FJSSP, which considered a
new subtask concerning the selection of adjustable operating
speeds. (2) A modified BBO algorithm, which adopted the
improved migration model combined with VNS, was applied
to determine the optimal solutions effectively. (3) A series
of experiments were performed on extended benchmark
instances to validate that the proposed MBBO algorithm
can obtain better solutions than the other comparative
algorithms. From a practical point of view, this study can
be applied to industry and help decision makers develop
production scheduleswhich can reduce not only time but also
electricity costs. In addition, due to the conflict between time
and ECC, different weight coefficient settings can affect the
quality of schedules, and the experiments on different weight
combinations can provide useful information for decision
makers.

Because of the limitations of the proposed model and the
MBBOalgorithm, additional investigation can be undertaken
in the future. For example, more machine statuses can be
considered, for example, start-up and shut-down. Moreover,
additional factors affecting electricity costs can be considered
to improve the accuracy of the proposedmodel. Furthermore,
in the practical production planning and scheduling process,
many dynamic factors exist, such as machine breakdown and
the insertion of jobs. Clearly, considering these factors has not
only a theoretical but also a practical significance.
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