53 research outputs found

    Emerging technologies for learning report (volume 3)

    Get PDF

    Mobile Pen and Paper Interaction

    Get PDF
    Although smartphones, tablets and other mobile devices become increasingly popular, pen and paper continue to play an important role in mobile settings, such as note taking or creative discussions. However, information on paper documents remains static and usage practices involving sharing, researching, linking or in any other way digitally processing information on paper are hindered by the gap between the digital and physical worlds. A considerable body of research has leveraged digital pen technology in order to overcome this problem with respect to static settings, however, systematically neglecting the mobile domain. Only recently, several approaches began exploring the mobile domain and developing initial insights into mobile pen-and-paper interaction (mPPI), e.g., to publish digital sketches, [Cowan et al., 2011], link paper and digital artifacts, [Pietrzak et al., 2012] or compose music, [Tsandilas, 2012]. However, applications designed to integrate the most common mobile tools pen, paper and mobile devices, thereby combining the benefits of both worlds in a hybrid mPPI ensemble, are hindered by the lack of supporting infrastructures and limited theoretical understanding of interaction design in the domain. This thesis advances the field by contributing a novel infrastructural approach toward supporting mPPI. It allows applications employing digital pen technology in controlling interactive functionality while preserving mobile characteristics of pen and paper. In addition, it contributes a conceptual framework of user interaction in the domain suiting to serve as basis for novel mPPI toolkits. Such toolkits ease development of mPPI solutions by focusing on expressing interaction rather than designing user interfaces by means of rigid widget sets. As such, they provide the link between infrastructure and interaction in the domain. Lastly, this thesis presents a novel, empirically substantiated theory of interaction in hybrid mPPI ensembles. This theory informs interaction design of mPPI, ultimately allowing to develop compelling and engaging interactive systems employing this modality

    PAPIERCRAFT: A PAPER-BASED INTERFACE TO SUPPORT INTERACTION WITH DIGITAL DOCUMENTS

    Get PDF
    Many researchers extensively interact with documents using both computers and paper printouts, which provide an opposite set of supports. Paper is comfortable to read from and write on, and it is flexible to be arranged in space; computers provide an efficient way to archive, transfer, search, and edit information. However, due to the gap between the two media, it is difficult to seamlessly integrate them together to optimize the user's experience of document interaction. Existing solutions either sacrifice inherent paper flexibility or support very limited digital functionality on paper. In response, we have proposed PapierCraft, a novel paper-based interface that supports rich digital facilities on paper without sacrificing paper's flexibility. By employing the emerging digital pen technique and multimodal pen-top feedback, PapierCraft allows people to use a digital pen to draw gesture marks on a printout, which are captured, interpreted, and applied to the corresponding digital copy. Conceptually, the pen and the paper form a paper-based computer, able to interact with other paper sheets and computing devices for operations like copy/paste, hyperlinking, and web searches. Furthermore, it retains the full range of paper advantages through the light-weighted, pen-paper-only interface. By combining the advantages of paper and digital media and by supporting the smooth transition between them, PapierCraft bridges the paper-computer gap. The contributions of this dissertation focus on four respects. First, to accommodate the static nature of paper, we proposed a pen-gesture command system that does not rely on screen-rendered feedback, but rather on the self-explanatory pen ink left on the paper. Second, for more interactive tasks, such as searching for keywords on paper, we explored pen-top multimodal (e.g. auditory, visual, and tactile) feedback that enhances the command system without sacrificing the inherent paper flexibility. Third, we designed and implemented a multi-tier distributed infrastructure to map pen-paper interactions to digital operations and to unify document interaction on paper and on computers. Finally, we systematically evaluated PapierCraft through three lab experiments and two application deployments in the areas of field biology and e-learning. Our research has demonstrated the feasibility, usability, and potential applications of the paper-based interface, shedding light on the design of the future interface for digital document interaction. More generally, our research also contributes to ubiquitous computing, mobile interfaces, and pen-computing

    Supporting Reflection and Classroom Orchestration with Tangible Tabletops

    Get PDF
    Tangible tabletop systems have been extensively proven to be able to enhance participation and engagement as well as enable many exciting activities, particularly in the education domain. However, it remains unclear as to whether students really benefit from using them for tasks that require a high level of reflection. Moreover, most existing tangible tabletops are designed as stand-alone systems or devices. Increasingly, this design assumption is no longer sufficient, especially in realistic learning settings. Due to the technological evolution in schools, multiple activities, resources, and constraints in the classroom ecosystem are now involved in the learning process. The way teachers manage technology-enhanced classrooms and the involved activities and constraints in real-time, also known as classroom orchestration, is a crucial aspect for the materialization of reflection and learning. This thesis aims to explore how educational tangible tabletop systems affect reflection, how reflection and orchestration are related, and how we can support reflection and orchestration to improve learning. It presents the design, implementation, and evaluations of three tangible tabletop systems – the DockLamp, the TinkerLamp, and the TinkerLamp 2.0 – in different learning contexts. Our experience with these systems, both inside and outside of the laboratory, results in an insightful understanding of the impacts of tangible tabletops on learning and the conditions for their effective use as well as deployment. These findings can be beneficial to the researchers and designers of learning environments using tangible tabletop and similar interfaces

    Designing Hybrid Interactions through an Understanding of the Affordances of Physical and Digital Technologies

    Get PDF
    Two recent technological advances have extended the diversity of domains and social contexts of Human-Computer Interaction: the embedding of computing capabilities into physical hand-held objects, and the emergence of large interactive surfaces, such as tabletops and wall boards. Both interactive surfaces and small computational devices usually allow for direct and space-multiplex input, i.e., for the spatial coincidence of physical action and digital output, in multiple points simultaneously. Such a powerful combination opens novel opportunities for the design of what are considered as hybrid interactions in this work. This thesis explores the affordances of physical interaction as resources for interface design of such hybrid interactions. The hybrid systems that are elaborated in this work are envisioned to support specific social and physical contexts, such as collaborative cooking in a domestic kitchen, or collaborative creativity in a design process. In particular, different aspects of physicality characteristic of those specific domains are explored, with the aim of promoting skill transfer across domains. irst, different approaches to the design of space-multiplex, function-specific interfaces are considered and investigated. Such design approaches build on related work on Graspable User Interfaces and extend the design space to direct touch interfaces such as touch-sensitive surfaces, in different sizes and orientations (i.e., tablets, interactive tabletops, and walls). These approaches are instantiated in the design of several experience prototypes: These are evaluated in different settings to assess the contextual implications of integrating aspects of physicality in the design of the interface. Such implications are observed both at the pragmatic level of interaction (i.e., patterns of users' behaviors on first contact with the interface), as well as on user' subjective response. The results indicate that the context of interaction affects the perception of the affordances of the system, and that some qualities of physicality such as the 3D space of manipulation and relative haptic feedback can affect the feeling of engagement and control. Building on these findings, two controlled studies are conducted to observe more systematically the implications of integrating some of the qualities of physical interaction into the design of hybrid ones. The results indicate that, despite the fact that several aspects of physical interaction are mimicked in the interface, the interaction with digital media is quite different and seems to reveal existing mental models and expectations resulting from previous experience with the WIMP paradigm on the desktop PC

    Emerging And Disruptive Technologies For Education: An Analysis Of Planning, Implementation, And Diffusion In Florida\u27s Eleven State University System Institutions

    Get PDF
    The purpose of the study was to understand and appreciate the methodologies and procedures used in determining the extent to which an information technology (IT) organization within the eleven member State University Systems (SUS) of Florida planned, implemented, and diffused emerging educational technologies. Key findings found how critical it was that flexibility be given during the planning stages and not rely on standardized models which may or may not be of use any longer. Research also found that the SUS institutions have to be prepared to organize and preserve the deluge of digital data if they intended to remain relevant as a tower of knowledge transmissions. The literature found that institutions of higher education needed to keep abreast of the new technologies, new pedagogies, and never before open-access concepts because authors found these ideas were converging and producing an unprecedented period of innovation in learning. Furthermore, the implications of perpetual connectivity to information, peers, and teachers garnered a great deal of attention among educational technologists. However, those implications had not been gauged, especially in Florida\u27s SUS institutions. A survey of those institutions regarding how technologies were planned for, implemented logically, and thoroughly diffused, along with lessons learned could potentially save resources and ensure Florida\u27s institutions continue to be on higher learning\u27s forefront

    Playful Materialities

    Get PDF
    Game culture and material culture have always been closely linked. Analog forms of rule-based play (ludus) would hardly be conceivable without dice, cards, and game boards. In the act of free play (paidia), children as well as adults transform simple objects into multifaceted toys in an almost magical way. Even digital play is suffused with material culture: Games are not only mediated by technical interfaces, which we access via hardware and tangible peripherals. They are also subject to material hybridization, paratextual framing, and processes of de-, and re-materialization
    corecore