162 research outputs found

    Humanoid gait generation for walk-to locomotion using single-stage MPC

    Get PDF
    We consider the problem of gait generation for a humanoid robot that must walk to an assigned Cartesian goal. As a first solution, we consider a rather straightforward adaptation of our previous work: An external block produces high-level velocities, which are then tracked by a double-stage intrinsically stable MPC scheme where the orientation of the footsteps is chosen before determining their location and the CoM trajectory. The second solution, which represents the main contribution of the paper, is conceptually different: no high-level velocity is generated, and footstep orientations are chosen at the same time of the other decision variables in a singlestage MPC. This is made possible by carefully redesigning the motion constraints so as to preserve linearity. Preliminary results on a simulated NAO confirm that the single-stage method outperforms the conventional double-stage scheme

    3LP: a linear 3D-walking model including torso and swing dynamics

    Get PDF
    In this paper, we present a new model of biped locomotion which is composed of three linear pendulums (one per leg and one for the whole upper body) to describe stance, swing and torso dynamics. In addition to double support, this model has different actuation possibilities in the swing hip and stance ankle which could be widely used to produce different walking gaits. Without the need for numerical time-integration, closed-form solutions help finding periodic gaits which could be simply scaled in certain dimensions to modulate the motion online. Thanks to linearity properties, the proposed model can provide a computationally fast platform for model predictive controllers to predict the future and consider meaningful inequality constraints to ensure feasibility of the motion. Such property is coming from describing dynamics with joint torques directly and therefore, reflecting hardware limitations more precisely, even in the very abstract high level template space. The proposed model produces human-like torque and ground reaction force profiles and thus, compared to point-mass models, it is more promising for precise control of humanoid robots. Despite being linear and lacking many other features of human walking like CoM excursion, knee flexion and ground clearance, we show that the proposed model can predict one of the main optimality trends in human walking, i.e. nonlinear speed-frequency relationship. In this paper, we mainly focus on describing the model and its capabilities, comparing it with human data and calculating optimal human gait variables. Setting up control problems and advanced biomechanical analysis still remain for future works.Comment: Journal paper under revie

    A framework for safe human-humanoid coexistence

    Get PDF
    This work is focused on the development of a safety framework for Human-Humanoid coexistence, with emphasis on humanoid locomotion. After a brief introduction to the fundamental concepts of humanoid locomotion, the two most common approaches for gait generation are presented, and are extended with the inclusion of a stability condition to guarantee the boundedness of the generated trajectories. Then the safety framework is presented, with the introduction of different safety behaviors. These behaviors are meant to enhance the overall level of safety during any robot operation. Proactive behaviors will enhance or adapt the current robot operations to reduce the risk of danger, while override behaviors will stop the current robot activity in order to take action against a particularly dangerous situation. A state machine is defined to control the transitions between the behaviors. The behaviors that are strictly related to locomotion are subsequently detailed, and an implementation is proposed and validated. A possible implementation of the remaining behaviors is proposed through the review of related works that can be found in literature

    Humanoid gait generation via MPC: stability, robustness and extensions

    Get PDF
    Research on humanoid robots has made significant progress in recent years, and Model Predictive Control (MPC) has seen great applicability as a technique for gait generation. The main advantages of MPC are the possibility of enforcing constraints on state and inputs, and the constant replanning which grants a degree of robustness. This thesis describes a framework based on MPC for humanoid gait generation, and analyzes some theoretical aspects which have often been neglected. In particular, the stability of the controller is proved. Due to the presence of constraints, this requires proving recursive feasibility, i.e., that the algorithm is able to recursively guarantee that a solution satisfying the constraints is found. The scheme is referred to as Intrinsically Stable MPC (IS-MPC). A basic scheme is presented, and its stability and feasibility guarantees are discussed. Then, several extensions are introduced. The guarantees of the basic scheme are carried over to a robust version of IS-MPC. Furthermore, extension to uneven ground and to a more accurate multi-mass model are discussed. Experiments on two robotic platforms (the humanoid robots HRP-4 and NAO) are presented in the concluding section

    From walking to running: robust and 3D humanoid gait generation via MPC

    Get PDF
    Humanoid robots are platforms that can succeed in tasks conceived for humans. From locomotion in unstructured environments, to driving cars, or working in industrial plants, these robots have a potential that is yet to be disclosed in systematic every-day-life applications. Such a perspective, however, is opposed by the need of solving complex engineering problems under the hardware and software point of view. In this thesis, we focus on the software side of the problem, and in particular on locomotion control. The operativity of a legged humanoid is subordinate to its capability of realizing a reliable locomotion. In many settings, perturbations may undermine the balance and make the robot fall. Moreover, complex and dynamic motions might be required by the context, as for instance it could be needed to start running or climbing stairs to achieve a certain location in the shortest time. We present gait generation schemes based on Model Predictive Control (MPC) that tackle both the problem of robustness and tridimensional dynamic motions. The proposed control schemes adopt the typical paradigm of centroidal MPC for reference motion generation, enforcing dynamic balance through the Zero Moment Point condition, plus a whole-body controller that maps the generated trajectories to joint commands. Each of the described predictive controllers also feature a so-called stability constraint, preventing the generation of diverging Center of Mass trajectories with respect to the Zero Moment Point. Robustness is addressed by modeling the humanoid as a Linear Inverted Pendulum and devising two types of strategies. For persistent perturbations, a way to use a disturbance observer and a technique for constraint tightening (to ensure robust constraint satisfaction) are presented. In the case of impulsive pushes instead, techniques for footstep and timing adaptation are introduced. The underlying approach is to interpret robustness as a MPC feasibility problem, thus aiming at ensuring the existence of a solution for the constrained optimization problem to be solved at each iteration in spite of the perturbations. This perspective allows to devise simple solutions to complex problems, favoring a reliable real-time implementation. For the tridimensional locomotion, on the other hand, the humanoid is modeled as a Variable Height Inverted Pendulum. Based on it, a two stage MPC is introduced with particular emphasis on the implementation of the stability constraint. The overall result is a gait generation scheme that allows the robot to overcome relatively complex environments constituted by a non-flat terrain, with also the capability of realizing running gaits. The proposed methods are validated in different settings: from conceptual simulations in Matlab to validations in the DART dynamic environment, up to experimental tests on the NAO and the OP3 platforms

    A behavior-based framework for safe deployment of humanoid robots

    Get PDF
    We present a complete framework for the safe deployment of humanoid robots in environments containing humans. Proceeding from some general guidelines, we propose several safety behaviors, classified in three categories, i.e., override, temporary override, and proactive. Activation and deactivation of these behaviors is triggered by information coming from the robot sensors and is handled by a state machine. The implementation of our safety framework is discussed with respect to a reference control architecture. In particular, it is shown that an MPC-based gait generator is ideal for realizing all behaviors related to locomotion. Simulation and experimental results on the HRP-4 and NAO humanoids, respectively, are presented to confirm the effectiveness of the proposed method

    Locomoção de humanoides robusta e versátil baseada em controlo analítico e física residual

    Get PDF
    Humanoid robots are made to resemble humans but their locomotion abilities are far from ours in terms of agility and versatility. When humans walk on complex terrains or face external disturbances, they combine a set of strategies, unconsciously and efficiently, to regain stability. This thesis tackles the problem of developing a robust omnidirectional walking framework, which is able to generate versatile and agile locomotion on complex terrains. We designed and developed model-based and model-free walk engines and formulated the controllers using different approaches including classical and optimal control schemes and validated their performance through simulations and experiments. These frameworks have hierarchical structures that are composed of several layers. These layers are composed of several modules that are connected together to fade the complexity and increase the flexibility of the proposed frameworks. Additionally, they can be easily and quickly deployed on different platforms. Besides, we believe that using machine learning on top of analytical approaches is a key to open doors for humanoid robots to step out of laboratories. We proposed a tight coupling between analytical control and deep reinforcement learning. We augmented our analytical controller with reinforcement learning modules to learn how to regulate the walk engine parameters (planners and controllers) adaptively and generate residuals to adjust the robot’s target joint positions (residual physics). The effectiveness of the proposed frameworks was demonstrated and evaluated across a set of challenging simulation scenarios. The robot was able to generalize what it learned in one scenario, by displaying human-like locomotion skills in unforeseen circumstances, even in the presence of noise and external pushes.Os robôs humanoides são feitos para se parecerem com humanos, mas suas habilidades de locomoção estão longe das nossas em termos de agilidade e versatilidade. Quando os humanos caminham em terrenos complexos ou enfrentam distúrbios externos combinam diferentes estratégias, de forma inconsciente e eficiente, para recuperar a estabilidade. Esta tese aborda o problema de desenvolver um sistema robusto para andar de forma omnidirecional, capaz de gerar uma locomoção para robôs humanoides versátil e ágil em terrenos complexos. Projetámos e desenvolvemos motores de locomoção sem modelos e baseados em modelos. Formulámos os controladores usando diferentes abordagens, incluindo esquemas de controlo clássicos e ideais, e validámos o seu desempenho por meio de simulações e experiências reais. Estes frameworks têm estruturas hierárquicas compostas por várias camadas. Essas camadas são compostas por vários módulos que são conectados entre si para diminuir a complexidade e aumentar a flexibilidade dos frameworks propostos. Adicionalmente, o sistema pode ser implementado em diferentes plataformas de forma fácil. Acreditamos que o uso de aprendizagem automática sobre abordagens analíticas é a chave para abrir as portas para robôs humanoides saírem dos laboratórios. Propusemos um forte acoplamento entre controlo analítico e aprendizagem profunda por reforço. Expandimos o nosso controlador analítico com módulos de aprendizagem por reforço para aprender como regular os parâmetros do motor de caminhada (planeadores e controladores) de forma adaptativa e gerar resíduos para ajustar as posições das juntas alvo do robô (física residual). A eficácia das estruturas propostas foi demonstrada e avaliada em um conjunto de cenários de simulação desafiadores. O robô foi capaz de generalizar o que aprendeu em um cenário, exibindo habilidades de locomoção humanas em circunstâncias imprevistas, mesmo na presença de ruído e impulsos externos.Programa Doutoral em Informátic

    A Modular Framework to Generate Robust Biped Locomotion: From Planning to Control

    Full text link
    Biped robots are inherently unstable because of their complex kinematics as well as dynamics. Despite the many research efforts in developing biped locomotion, the performance of biped locomotion is still far from the expectations. This paper proposes a model-based framework to generate stable biped locomotion. The core of this framework is an abstract dynamics model which is composed of three masses to consider the dynamics of stance leg, torso and swing leg for minimizing the tracking problems. According to this dynamics model, we propose a modular walking reference trajectories planner which takes into account obstacles to plan all the references. Moreover, this dynamics model is used to formulate the controller as a Model Predictive Control (MPC) scheme which can consider some constraints in the states of the system, inputs, outputs and also mixed input-output. The performance and the robustness of the proposed framework are validated by performing several numerical simulations using MATLAB. Moreover, the framework is deployed on a simulated torque-controlled humanoid to verify its performance and robustness. The simulation results show that the proposed framework is capable of generating biped locomotion robustly
    • …
    corecore