49,079 research outputs found

    The evolution of man–machine interaction: the role of human in Industry 4.0 paradigm

    Get PDF
    Industry 4.0 is a new paradigm in the manufacturing world and it has deeply changed the Human–machine interaction. This paper focus is on the nature of this interaction, which is made possible thanks to the Internet of Things (IoT), and Cyber-Physical System (CPS). These Industry 4.0 key technologies are studied related to the standard Deming cycle, in order to underline the importance of Human–machine interaction. The Fourth Industrial Revolution involves several changes in the workforce's key features. In this paper, a new perspective based on the centrality of humans is given in the new Industry era. The importance of the human factor will be deeply studied through the implementation of the 'Sand Cone Model'. A new framework is proposed in order to explain the quality measures addiction on the workforce quality skills, and how it engraves on improving efficiency and effectiveness of an industrial process

    The evolution of man–machine interaction: the role of human in Industry 4.0 paradigm

    Get PDF
    ndustry 4.0 is a new paradigm in the manufacturing world and it has deeply changed the Human–machine interaction. This paper focus is on the nature of this interaction, which is made possible thanks to the Internet of Things (IoT), and Cyber-Physical System (CPS). These Industry 4.0 key technologies are studied related to the standard Deming cycle, in order to underline the importance of Human–machine interaction. The Fourth Industrial Revolution involves several changes in the workforce’s key features. In this paper, a new perspective based on the centrality of humans is given in the new Industry era. The importance of the human factor will be deeply studied through the implementation of the ‘Sand Cone Model’. A new framework is proposed in order to explain the quality measures addiction on the workforce quality skills, and how it engraves on improving efficiency and effectiveness of an industrial process

    TANTANGAN SDM MENGHADAPI INDUSTRI 4.0: PROFESIONALISME

    Get PDF
    Along with the acceleration of globalization of the world economy and the era of information disclosure, it influences the pattern of life and encourages more intensive and interconnected human interaction. The global world is currently in the era of the peak of major changes with the advent of the Industrial 4.0 era. Where this means that the business process will combine three important elements, namely human, machine / robot, and big data. The combination of the three elements will drive the entire process of operation and production and services to be more efficient, fast and massive. With the direct impact of this era on the dynamics of life, especially human resources, the real challenge now is a change in the competency perspective. The aim of the research is to redefine the dimensions of the Professionalism challenge 4.0 to answer the integration of technology and talent interconnection and align the commitment of the Government of Indonesia itself to take advantage of opportunities in the Industry 4.0 era to improve Indonesia's competitiveness position in 2018 according to International Institute for Management Development (IMD). This article was developed by using the method of analyzing literature both theoretically and the results of consultative reports and assessments of several leading organizations in Indonesia. From the results of this study, there are new patterns of opportunity change and challenges that can only be answered by introducing dimensions and narratives of Professionalism 4.0 into the world of HR development in Indonesia

    Proceedings of ARCOM Doctoral Workshop on 'Industry 4.0 and Disaster Resilience in the Built Environment': ARCOM Doctoral Workshop in association with CIB W120 - Disasters and the Built Environment

    Get PDF
    Disruptive innovations of the 4th industrial revolution are now starting to make an impact on construction. Although construction has lagged behind some of the other industries in embracing this revolution, recent years have seen a concentrated effort to drive change in construction processes and practices. The 4th industrial revolution is characterised by technologies such as digitisation, optimisation, and customisation of production, automation and adaptation; as well as processes such as human machine interaction; value-added services and businesses, and automatic data exchange and communication. In construction, the applications of Industry 4.0 include 3D printing of building components, autonomous construction vehicles, the use of drones for site and building surveying, advanced offsite manufacturing facilities etc. The application of technologies, processes associated with Industry 4.0 is seen to be already making an impact on construction, and reshaping the future of built environment. This new digital era of construction, fuelled by Industry 4.0, has significant potential to enhance disaster resilience practices in the built environment. Knowledge on resilience of the built environment including preparedness, response and recovery has advanced significantly over the recent years and we are now in an era where resilience is seen as a key constituent of the built environment. But the recurring and devastating impacts of disasters constantly challenge us to improve our practices and seek ways of achieving greater heights in our quest of achieving a resilient built environment. It is often proposed that the innovations associated with Industry 4.0 joined by IoTs and sensors can be exploited to enhance the ability of the built environment to prepare for and adapt to climate change and withstand and recover rapidly from the impacts of disasters. This integration of cyber physical systems through IoTs needs a holistic view of disaster resilience. Often, the focus is on benefits individual technologies can offer. However, the ability to integrate different aspects of disaster resilience using a range of new technologies promise to deliver wider benefits beyond and above what individual technologies can offer. For instance, an integrated digital twin allows to bring together advanced risk modelling, big data, cloud computing, internet of things, advanced off-site manufacturing, etc. together to deliver a resilient built environment. This requires careful planning and extensive research on the complexities surrounding disaster resilience related aspects and the use of related data. The ultimate objective of any new innovation, including Industry 4.0, should ideally be to benefit the society. The society that we live today is often disrupted by natural hazard induced disasters, whether it be floods, cyclones, earthquakes, landslides or tsunamis. The challenge that is in front of us is to effectively utilise new innovations driven by digital information to enhance disaster resilience in our buildings, communities, cities and regions. However, unlike earlier industrial revolutions, digital revolution is not easy to control. We must ensure that the fundamental values such as freedom, openness and pluralism are inbuilt in these new technologies. This is an uncharted territory for us. In addition to addressing complexities and challenges of using Industry 4.0 technologies, we also need to have policies and guidelines on the use of information. There should be a balance between innovation and regulation. We are confident that by bringing together researchers, practitioners and policy-makers alike from relevant disciplines we can deliver realistic benefits to transform our disaster resilience practices and policies, and make the built environment we live in more resilient

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process
    corecore