4,606 research outputs found

    Distributed Bio-inspired Humanoid Posture Control

    Full text link
    This paper presents an innovative distributed bio-inspired posture control strategy for a humanoid, employing a balance control system DEC (Disturbance Estimation and Compensation). Its inherently modular structure could potentially lead to conflicts among modules, as already shown in literature. A distributed control strategy is presented here, whose underlying idea is to let only one module at a time perform balancing, whilst the other joints are controlled to be at a fixed position. Modules agree, in a distributed fashion, on which module to enable, by iterating a max-consensus protocol. Simulations performed with a triple inverted pendulum model show that this approach limits the conflicts among modules while achieving the desired posture and allows for saving energy while performing the task. This comes at the cost of a higher rise time.Comment: 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC

    Biped robot walking control on inclined planes with fuzzy parameter adaptation

    Get PDF
    The bipedal structure is suitable for a robot functioning in the human environment, and assuming assistive roles. However, the bipedal walk is a poses a difficult control problem. Walking on even floor is not satisfactory for the applicability of a humanoid robot. This paper presents a study on bipedal walk on inclined planes. A Zero Moment Point (ZMP) based reference generation technique is employed. The orientation of the upper body is adjusted online by a fuzzy logic system to adapt to different walking surface slopes. This system uses a sampling time larger than the one of the joint space position controllers. A newly defined measure of the oscillatory behavior of the body pitch angle and the average value of the pelvis pitch angle are used as inputs to the fuzzy adaptation system. A 12-degrees-of-freedom (DOF) biped robot model is used in the full-dynamics 3-D simulations. Simulations are carried out on even floor and inclined planes with different slopes. The results indicate that the fuzzy adaptation algorithms presented are successful in enabling the robot to climb slopes of 5.6 degrees (10 percent)

    Learning at the Ends: From Hand to Tool Affordances in Humanoid Robots

    Full text link
    One of the open challenges in designing robots that operate successfully in the unpredictable human environment is how to make them able to predict what actions they can perform on objects, and what their effects will be, i.e., the ability to perceive object affordances. Since modeling all the possible world interactions is unfeasible, learning from experience is required, posing the challenge of collecting a large amount of experiences (i.e., training data). Typically, a manipulative robot operates on external objects by using its own hands (or similar end-effectors), but in some cases the use of tools may be desirable, nevertheless, it is reasonable to assume that while a robot can collect many sensorimotor experiences using its own hands, this cannot happen for all possible human-made tools. Therefore, in this paper we investigate the developmental transition from hand to tool affordances: what sensorimotor skills that a robot has acquired with its bare hands can be employed for tool use? By employing a visual and motor imagination mechanism to represent different hand postures compactly, we propose a probabilistic model to learn hand affordances, and we show how this model can generalize to estimate the affordances of previously unseen tools, ultimately supporting planning, decision-making and tool selection tasks in humanoid robots. We present experimental results with the iCub humanoid robot, and we publicly release the collected sensorimotor data in the form of a hand posture affordances dataset.Comment: dataset available at htts://vislab.isr.tecnico.ulisboa.pt/, IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL-EpiRob 2017

    Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid

    Full text link
    Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.Comment: 21 pages, 11 figures, 4 tables in Autonomous Robots (2015

    Push recovery with stepping strategy based on time-projection control

    Get PDF
    In this paper, we present a simple control framework for on-line push recovery with dynamic stepping properties. Due to relatively heavy legs in our robot, we need to take swing dynamics into account and thus use a linear model called 3LP which is composed of three pendulums to simulate swing and torso dynamics. Based on 3LP equations, we formulate discrete LQR controllers and use a particular time-projection method to adjust the next footstep location on-line during the motion continuously. This adjustment, which is found based on both pelvis and swing foot tracking errors, naturally takes the swing dynamics into account. Suggested adjustments are added to the Cartesian 3LP gaits and converted to joint-space trajectories through inverse kinematics. Fixed and adaptive foot lift strategies also ensure enough ground clearance in perturbed walking conditions. The proposed structure is robust, yet uses very simple state estimation and basic position tracking. We rely on the physical series elastic actuators to absorb impacts while introducing simple laws to compensate their tracking bias. Extensive experiments demonstrate the functionality of different control blocks and prove the effectiveness of time-projection in extreme push recovery scenarios. We also show self-produced and emergent walking gaits when the robot is subject to continuous dragging forces. These gaits feature dynamic walking robustness due to relatively soft springs in the ankles and avoiding any Zero Moment Point (ZMP) control in our proposed architecture.Comment: 20 pages journal pape

    The Anthropomorphic Hand Assessment Protocol (AHAP)

    Get PDF
    The progress in the development of anthropomorphic hands for robotic and prosthetic applications has not been followed by a parallel development of objective methods to evaluate their performance. The need for benchmarking in grasping research has been recognized by the robotics community as an important topic. In this study we present the Anthropomorphic Hand Assessment Protocol (AHAP) to address this need by providing a measure for quantifying the grasping ability of artificial hands and comparing hand designs. To this end, the AHAP uses 25 objects from the publicly available Yale-CMU-Berkeley Object and Model Set thereby enabling replicability. It is composed of 26 postures/tasks involving grasping with the eight most relevant human grasp types and two non-grasping postures. The AHAP allows to quantify the anthropomorphism and functionality of artificial hands through a numerical Grasping Ability Score (GAS). The AHAP was tested with different hands, the first version of the hand of the humanoid robot ARMAR-6 with three different configurations resulting from attachment of pads to fingertips and palm as well as the two versions of the KIT Prosthetic Hand. The benchmark was used to demonstrate the improvements of these hands in aspects like the grasping surface, the grasp force and the finger kinematics. The reliability, consistency and responsiveness of the benchmark have been statistically analyzed, indicating that the AHAP is a powerful tool for evaluating and comparing different artificial hand designs

    Humanoid robot walking control on inclined planes

    Get PDF
    The humanoid bipedal structure is suitable for a assitive robot functioning in the human environment. However, the bipedal walk is a difficult control problem. Walking just on even floor is not satisfactory for the applicability of a humanoid robot. This paper presents a study on bipedal walk on inclined planes. A Zero Moment Point (ZMP) based reference generation technique is employed. The orientation of the feet is adjusted online by a fuzzy logic system to adapt to different walking surface slopes. This system uses a sampling time larger than the one of the joint space position controllers. The average value of the body pitch angle is used as the inputs to the fuzzy logic system. A foot pitch orientation compensator implemented independently for the two feet complements the fuzyy controller. A 12-degrees-of-freedom (DOF) biped robot model is used in the full-dynamics 3-D simulations. Simulations are carried out on even floor and inclined planes with different slopes. The results indicate that the control method presented is successful in enabling the robot to climb slopes of 8.5 degrees (15 percent grade)

    "Sticky Hands": learning and generalization for cooperative physical interactions with a humanoid robot

    Get PDF
    "Sticky Hands" is a physical game for two people involving gentle contact with the hands. The aim is to develop relaxed and elegant motion together, achieve physical sensitivity-improving reactions, and experience an interaction at an intimate yet comfortable level for spiritual development and physical relaxation. We developed a control system for a humanoid robot allowing it to play Sticky Hands with a human partner. We present a real implementation including a physical system, robot control, and a motion learning algorithm based on a generalizable intelligent system capable itself of generalizing observed trajectories' translation, orientation, scale and velocity to new data, operating with scalable speed and storage efficiency bounds, and coping with contact trajectories that evolve over time. Our robot control is capable of physical cooperation in a force domain, using minimal sensor input. We analyze robot-human interaction and relate characteristics of our motion learning algorithm with recorded motion profiles. We discuss our results in the context of realistic motion generation and present a theoretical discussion of stylistic and affective motion generation based on, and motivating cross-disciplinary research in computer graphics, human motion production and motion perception
    • 

    corecore