11,467 research outputs found

    Gesture based human-computer interface for 3D design

    Get PDF
    modeling are amongst the most important fields of interest in current computer vision research. However, traditional hand recognition systems can only operate in constrained environments using coloured gloves or static backgrounds and do not allow for 3D object manipulation. The goal of this research is to develop real-time camera based solutions to control 3D modeling applications using natural hand gestures

    The use of analytical models in human-computer interface design

    Get PDF
    Some of the many analytical models in human-computer interface design that are currently being developed are described. The usefulness of analytical models for human-computer interface design is evaluated. Can the use of analytical models be recommended to interface designers? The answer, based on the empirical research summarized here, is: not at this time. There are too many unanswered questions concerning the validity of models and their ability to meet the practical needs of design organizations

    Assessment of a human computer interface prototyping environment

    Get PDF
    A Human Computer Interface (HCI) prototyping environment with embedded evaluation capability has been successfully assessed which will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. The HCI prototyping environment is designed to include four components: (1) a HCI format development tool, (2) a test and evaluation simulator development tool, (3) a dynamic, interactive interface between the HCI prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of an HCI based on a user's performance

    Implementation of a Human-Computer Interface for Computer Assisted Translation and Handwritten Text Recognition

    Full text link
    A human-computer interface is developed to provide services of computer assisted machine translation (CAT) and computer assisted transcription of handwritten text images (CATTI). The back-end machine translation (MT) and handwritten text recognition (HTR) systems are provided by the Pattern Recognition and Human Language Technology (PRHLT) research group. The idea is to provide users with easy to use tools to convert interactive translation and transcription feasible tasks. The assisted service is provided by remote servers with CAT or CATTI capabilities. The interface supplies the user with tools for efficient local edition: deletion, insertion and substitution.Ocampo Sepúlveda, JC. (2009). Implementation of a Human-Computer Interface for Computer Assisted Translation and Handwritten Text Recognition. http://hdl.handle.net/10251/14318Archivo delegad

    Gaze Controlled Human-Computer Interface

    Get PDF
    The goal of the Gaze Controlled Human Computer Interface project is to design and construct a non-invasive gaze-tracking system that will determine where a user is looking on a computer screen in real time. To accomplish this, a fixed illumination source consisting of Infrared (IR) Light Emitting Diodes (LEDs) is used to produce corneal reflections on the user’s eyes. These reflections are captured with a video camera and compared to the relative location of the user’s pupils. From this comparison, a correlation matrix can be created and the approximate location of the screen that the user is looking at can be determined. The final objective is to allow the user to manipulate a cursor on the computer screen simply by looking at different boxes in a grid on the monitor. The project includes design of the hardware setup to provide a suitable environment for glint detection, image processing of the user’s eyes to determine pupil location, the implementation of a probabilistic algorithm to determine an appropriate matrix transformation, and performance analysis on various users

    Developing the human-computer interface for Space Station Freedom

    Get PDF
    For the past two years, the Human-Computer Interaction Laboratory (HCIL) at the Johnson Space Center has been involved in prototyping and prototype reviews of in support of the definition phase of the Space Station Freedom program. On the Space Station, crew members will be interacting with multi-monitor workstations where interaction with several displays at one time will be common. The HCIL has conducted several experiments to begin to address design issues for this complex system. Experiments have dealt with design of ON/OFF indicators, the movement of the cursor across multiple monitors, and the importance of various windowing capabilities for users performing multiple tasks simultaneously
    corecore